[0001] The present invention relates to a continuous electrolytic pickling method for metallic
products, in particular in Iron, Nickel, Titanium and alloys thereof, based on the
use of alternate current supplied cells with electrolytic solution consisting of acid
or neutral aqueous solutions.
[0002] As it is known, pickling, e.g. for the stainless steels, is actually carried out
in order to eliminate the scale of thermal oxides which are generated during the hot-rolling
and/or annealing treatments, and to dissolve the Chromium-depleted alloy layer (dechromized
layer) therebelow. This conventional method consists of three conceptually different
steps: a first step of descaling, i.e., physico-chemical modification of the scale
with the partial removal thereof; a second step of actual pickling, i.e. removal and
solution of the residual scale and disposal of the sub-surface layer of dechromized
alloy; and a third step, so-called of finishing, consisting in a surface passivation.
The latter two steps are often carried out at the same time.
[0003] In the state of the art, several ways for carrying out the step of descaling, depending
on the type of oxide scale present in the metal at the end of metallurgical treatments,
are known.
[0004] With regards to the oxide scale generated in the hot-rolling and annealing processes,
the step of descaling, in most cases, is carried out by sandblasting with a hard grit
which breaks up and partially removes the scale.
[0005] For the cold-rolled products and the annealed stainless steel and/or Titanium, the
step of descaling cannot be carried out by surface peening, which is not compatible
with the quality of the finished product's surface.
[0006] Hence, different processes, capable of inducing a substantial modification of the
oxides, facilitating the subsequent pickling process, are adopted.
[0007] To this end, the most widely adopted methods are as follows:
a) thermochemical descaling, which consists in immersing the material to be pickled
in a bath of melted oxidizing salts (400°C-600°C) capable of altering the scale, increasing
the degree of oxidation of the metals constituting the oxides. In particular, Kolene
baths (eutectic of the NaOH-NaNO3-NaCl ternary system) at temperatures around 500°C are the most widely adopted;
b) electrolytic descaling by neutral sulphate solutions, with the partial modification
of the oxidation states of the constituent metals of the scale and the entailed solution
thereof.
[0008] For both hot- and cold-rolled stainless steels and Titanium, the pickling step is
generally carried out using highly oxidizing acid baths, capable of dissolving the
sub-surface alloy layer (Cr-depleted for stainless steels) determining the detachment
of the scale adhering thereto.
[0009] These baths mainly consist of mixtures of mineral acids, the most widely adopted
thereamong being:
1) mixtures of nitric and hydrofluoric acid at temperatures generally between 60°C
and 75°C;
2) mixtures of sulphuric, hydrofluoric, hydrochloric and phosphoric acids, with additions
of elements having a high oxidizing power (sometimes used in mixtures) like, e.g.,
permanganates, persulphates, ferric chloride, ferric sulphate and hydrogen peroxide,
at a temperature between 50°C and 100°C;
3) hydrochloric or sulphuric acid with the addition of corrosion inhibitors for the
pickling of unalloyed steels at temperatures comprised between 50°C and 85°C.
[0010] In some industrial plants, in order to increase the kinetics of the pickling step
with all of the abovementioned mixtures, electrolytic cells capable of applying a
continuous current density ranging from 3 A/dm
2 to 40 A/dm
2 to the material are used.
[0011] The finishing step, aimed at forming a passivated protective film, when this is not
carried out at the same time as the pickling step, is usually attained in baths having
high redox potential. These baths contain the abovementioned acids and oxidizers at
lower concentrations and with a lower content of the ions of the metals present in
the metallic products to be pickled.
[0012] In general, between each tank, and anyhow at the end of the line, washing sections
consisting of water jet systems equipped with rotary brushes are inserted. The function
carried out by these systems is the removal of the pickling solution dragged by the
strip, and the non-adhering scale particles deposed on the strip surface.
[0013] To date, several processes, concerning the descaling step as well as the pickling
step of stainless steels and of Titanium and alloys thereof, based on the employ of
acid solutions free from nitric acid, are known. In particular, processes for the
pickling of stainless steels and of Titanium and alloys thereof based on the use of
acid solutions, free from nitric acid, whose oxidizing power is provided by the presence
of various elements, among which the ferric ions, the hydrogen peroxide, and the persulphates,
are known.
[0014] In particular, DE-A-19624436, WO 9826111, EP-A-763609 and JP95-130582 disclose pickling
processes in acid solution, free from nitric acid, in presence of ferric ions with
the use of alternate current supplied electrolytic cells (current density comprised
between 0.5 A/dm2 and 250 A/dm2). DE-C-3937438 discloses a process in which direct
current is employed for the reoxidation of the ferrous ions to ferric ions in a hydrochloric
acid solution.
[0015] EP-A-838542 discloses a pickling process in an aqueous sodium sulphate solution,
having a concentration between 10 g/l and 350 g/l, in which the strip is vertically
passed between pairs of counter electrodes, a direct current having a density between
20 A/dm2 and 250 A/dm2 being applied therebetween.
[0016] However, the known technologies, which are schematically reported hereto, entail
significant environmental and working safety drawbacks, as well as drawbacks referring
to the management of the pickling process in terms of control and costs thereof.
[0017] With regards to the descaling step, the main drawback of the process for the mechanical
removal of the scale by sandblasting or peening lies in the difficulty of abating
the dusts made of silica and metallic oxides particles, not to mention the high noise
pollution of the surrounding working areas.
[0018] The chemical descaling carried out with melted salts proves particularly difficult
to manage, due to the high temperature of the bath (400°C-600°C) as well as to the
difficulty of disposing the washing solutions of the metallic product to be descaled
at the end of the treatment. In fact, these washing solutions contain non-negligible
quantities of hexavalent Chromium and of nitrites and nitrates.
[0019] The employ of baths containing nitric acid, for the pickling and the finishing steps,
causes relevant environmental problems, for different reasons. Among the latter, the
most important are:
A. difficulty of abating the highly polluting NOxs, evolved from the acid-metal reactions;
B. difficulty of complying with the existing norms for the environmental protection,
for the disposal of spent solutions in connection with the high nitrate content thereof.
[0020] The baths of sulphuric and of hydrofluoric acid which use, instead of the nitric
acid, systems having a high redox potential, entail a complex management in connection
with the difficulties of maintaining the appropriate concentrations of reagents capable
of ensuring the envisaged pickling kinetics.
[0021] Moreover, the costs of the reagents, e.g., of the stabilised hydrogen peroxide, are
high, considering that a fraction of the metals accumulating in the solution react
with the oxidizers, lowering the process effectiveness.
[0022] The present invention allows to overcome all of the abovementioned drawbacks, further
providing other advantages which will hereinafter be made apparent.
[0023] In particular, an object of the present invention is to provide a pickling method
for continuously cast products in steel, in compliance of the UNI EU 74/20 norm, and
in Nickel alloy and in Titanium, based on the use of alternate current supplied electrolytic
cells in acid or neutral aqueous solutions.
[0024] In fact, an object of the present invention is a continuous electrolytic pickling
method for steels, Nickel super alloys, Titanium and alloys thereof, characterised
in that the material to be treated, for a time between 3 and 60 seconds, is immersed
into or passes through at least one electrolytic cell with an electrolytic solution,
free of nitric acid, consisting of a neutral or acid aqueous solution, at a temperature
between 20°C and 95°C, with at least one pair of electrodes connected to an alternate
current power supply having a frequency ranging from 40 Hz to 70 Hz, the electrolysis
being carried out at a current density having an effective amplitude ranging from
10 A/dm2 to 250 A/dm2.
[0025] The electrolytic solution can be an aqueous solution, at a temperature between 20°C
and 95°C, containing the following components having a concentration expressed in
g/l:
* sulphuric acid (H2SO4) from 20 to 300, and at least one among
* hydrofluoric acid (HF) from 5 to 50
* orthophosphoric acid (H3PO4) from 5 to 200
* ferric ions (Fe+3) from 5 to 40.
[0026] In the case of pickling of stainless steels, the electrolytic solution is maintained
at a temperature between 70°C and 90°C and comprises sulphuric acid at a concentration
between 150 g/l and 250 g/l, and ferric ions (Fe
+3) at a concentration of from 5 g/l to 40 g/l.
[0027] In the case of Nickel-base super alloys and for Titanium and alloys thereof, the
electrolytic solution is at a temperature between 70°C and 90°C, and comprises sulphuric
acid at a concentration between 150 g/l and 250 g/l and at least one between hydrofluoric
acid at a concentration between 5 g/l and 50 g/l and hydrochloric acid at a concentration
between 5 g/l and 50 g/l.
[0028] For carbon steels, the electrolytic solution is at 70°C-90°C and comprises sulphuric
acid at a concentration between 150 g/l and 250 g/l.
[0029] In another embodiment, for any application, the electrolytic solution may be a sodium
sulphate (Na
2SO
4) neutral aqueous solution having a concentration ranging from 25 g/l to 300 g/l at
a temperature between 50°C and 95°C.
[0030] In an embodiment of the present invention, pairs of adjacent electrodes are connected
to two separate power supplies, so that the current lines outputted from a first electrode
pair facing one side of the material to be treated, cross said material and close
again on a second electrode pair, opposed to the first one and facing the other side
of the material to be treated, defining a substantially X-shaped course.
[0031] In another embodiment of the present invention, electrodes facing one side of the
material to be treated are connected to a power supply, so that the current lines
which are outputted from said electrodes and cross the material, close again on other
electrodes opposed to the first ones and facing the opposite side of the material
to be treated, defining a course which is substantially orthogonal to said sides.
[0032] The electrolytic pickling method according to the invention can be used for inducing
a physical-chemical modification of the scale of the metallic oxides present onto
the surface of the material to be pickled, a physical-chemical modification which,
in the case of the stainless steels, occurs in a treatment time comprised between
1 sec and 10 sec.
[0033] The continuous electrolytic pickling method according to the present invention may
be used in a step subsequent to that of the physical-chemical modification of the
scale of metallic oxides present onto the surface of the material to be pickled. In
the case of the stainless steels, this application of the pickling method according
to the invention requires treatment times between 2 sec and 15 sec.
[0034] The electrolytic cells employable in the present invention may be vertical electrode
or horizontal electrode cells, the former ones being preferable for the easy scavenging
of the gas evolved by electrochemical reaction at made circuit.
[0035] The electrodes are made in materials resistant to the corrosive action of the baths
employed.
[0036] The electrodes in the individual cell are connectable according to at least three
schemes, reported by way of a non-limiting example in the attached Figs. 2, 3 and
4.
[0037] In the case of opposed electrodes connected to the same terminal, the electrodes
may consist of an individual toroidal ring.
[0038] Another object of the present invention are the electrolytic cells characterised
in that they have an electrode connection as indicated hereinafter and claimed in
claims 8 and 9.
[0039] Among the most important advantages in the adoption of the present invention, the
following may be mentioned:
- provision of a descaling system capable of replacing currently employed technologies,
minimising the problems connected to pollution and working safety;
- provision of a pickling and finishing system to be carried out subsequently to the
descaling treatment carried out with the currently adopted technologies, based on
the use of solutions free from nitric acid capable of eliminating the environmental
drawbacks connected to NOxs emissions;
- provision of a pickling method capable of reuniting in a single stage the descaling,
pickling and finishing steps, carrying out the entire pickling process with a single
treatment system;
- provision of a pickling system capable of significantly reducing the times, and therefore
the costs, of the treatment.
[0040] The positive effects of the adoption of the continuous pickling method according
to the present invention may be explained in light of the following: the AC flow induces
an over voltage of the free corrosion potential on the surface of the alloy to be
pickled, so as to reach thereon electrochemical potentials capable of fostering several
oxidation-reduction reactions which involve both the alloy and the oxide layer thereabove,
as well as the aqueous solution.
[0041] Hence, the change in the oxidation state of the metals present in the surface oxides
(in particular, Chromium for stainless steels) and the solution of the underlying
metal are carried out. Moreover, water electrolysis, with an intense production of
Hydrogen and Oxygen, is carried out.
[0043] The generation of chromates (hexavalent Cr), by oxidation of the Chromium constituting
the oxide scale, contributes to increasing the solution kinetics of the alloy and
the oxidation of the ferrous ion to ferric ion according to the reactions

[0044] The dissolved Iron, in form of ferrous ion deriving from the solution of steel, is
capable of fostering the reduction, according to the abovedescribed reaction, of all
the Cr (VI) ions to Cr (III) ions, so that the Cr (VI) ions be absent from the solution.
[0045] For the stainless steels, the presence in the solution of the redox pair consisting
of ferric and ferrous ions (E°=771 mV/SHE) elevates the oxidizing power of the bath,
providing the latter with passivating capabilities.
[0046] The voltage-current phase displacement, assessed by electrode impedance spectroscopy,
is such that at frequencies between 40 Hz and 70 Hz more than 90% of the current crossing
the cell is in phase with the applied voltage (active component of the current) and
it allows the abovementioned electrochemical reactions. A mere 10% of the current
is shifted 90° out of phase with respect to the voltage (reactive component of the
current) it being employed, for the load, the discharge of the pseudo-condenser made
by the double electric charge layer on the electrode surface. As the frequency increases,
the active component tends to decrease in favour of the reactive one, decreasing the
fraction of the current fostering the electrochemical reactions required for the pickling.
[0047] The alternation of Hydrogen-developing reactions, during the cathode polarization,
and of Oxygen-developing reactions, during the anodic polarization, yields an intense
descaling action, causingthe quick detachment of the oxide layer from the matrix.
[0048] The solution kinetics of the alloys to be pickled are high, particularly so, considering
that the oxide is in no way pre-treated or conditioned prior to the in-cell electrolytic
treatment.
[0049] So far, merely a general description of the present invention has been given. With
the aidance of the figures and of the examples, having an explanatory yet not a limitative
value, a more detailed description of specific embodiments thereof, aimed at making
its objects, features, advantages and operation modes better understood, will hereinafter
be provided.
[0050] Figure 1 shows the progress of the weight loss expressed in g/m
2 as a function of the time for the entire pickling treatment in a 200 g/l H
2SO
4 aqueous solution for a X
6CrTi
12 (AISI 409) cold-rolled and annealed steel.
[0051] Figure 2 shows a first electrode configuration, in which electrodes 1 located at
the same side of the strip N are alternately connected to the two terminals of a phase
of a transformer. With this configuration, the electrodes 2 located at the side opposed
to the strip are connectable to the same terminal of a phase of a transformer, connecting
them to the corresponding ones on the other side.
[0052] Figure 3 shows a second configuration in which the electrodes 1 located in the same
side of strip N are connected to the same terminal of one or more phases of one or
more transformers, and the opposed electrodes 2 are connected to the other terminal
of the corresponding phases of the transformers.
EXAMPLE 1
Pickling of a strip (coil) of cold-rolled and annealed AISI 409LI.
[0053] The characteristics of the strip to be pickled are:
| strip width |
1270 mm |
| strip thickness |
1.5 mm |
| coil weight |
18900 kg |
| coil length |
956 m |
Pickling solution:
[0054]
| H2SO4 concentration |
200 g/l |
| solution temperature |
60°C ±5°C |
[0055] The current is applied with the electrode configuration shown in figure 2. The interelectrode
gap is equal to 80 mm. At the outlet of the electrolytic cells a water jet system
equipped with brushes, followed by a series of wringing rolls, was inserted. The in-tank
solution is such as to maintain with the immersed strip surface a ratio not lower
than 1m
3 solution/m
3 strip and it is renewed upon reaching the limits set for the dissolved metals.
[0056] Assessing the loss due to currents closing again between the electrodes without involving
the strip to be pickled to be <8%, a current density equal to 60 A/dm
2 was set.
[0057] The treatment time, i.e., the period in which the material is subjected to the action
of the alternate current, was set at 15 sec, in connection with the strip speed and
the electrode sizes.
[0058] The weight loss attained at the end of the treatment was equal to about 40 g/m
2 of strip.
[0059] Figure 1 shows the diagram related to the weight losses of the steel subject of the
example as a function of the treatment time and for two different current densities
applied.
EXAMPLE 2
Pickling according to the invention of a cold-rolled and annealed AISI 430 strip (coil)
[0060] The characteristics of the strip to be pickled are:
| strip length |
1270 mm |
| coil thickness |
1.0 mm |
| coil weight |
18900 kg |
| coil length |
1907 m |
[0061] Pickling solution:
| H2SO4 concentration |
250 g/l |
| solution temperature |
60±5°C |
[0062] The current was applied with the electrode configuration shown in figure 2. The interelectrode
gap is equal to 80 mm. At the outlet of the electrolytic cells a water jet system
equipped with brushes, followed by a series of wringing rolls, was inserted. The in-tank
solution is such as to maintain with the immersed strip surface a ratio not lower
than 1m
3 solution/m
2 strip and it is renewed upon reaching the limits set for the dissolved metals.
[0063] Assessing the load loss due to currents which close again between the electrodes
without involving the strip to be pickled to be <8%, a current density equal to 75
A/dm2 was set.
[0064] The treatment time, i.e., the period in which the material is subjected to the action
of the alternate current, was set at between 5 sec and 25 sec, in connection with
the strip speed and the electrode sizes The weight loss attained at the end of the
treatment was equal to about 40 g/m
2 of strip.
1. A continuous electrolytic pickling method for steels, Nickel super alloys, Titanium
and alloys thereof, characterised in that the material to be treated, for a time comprised between 3 sec and 60 sec, is immersed
or travels through at least one electrolytic cell with an electrolytic solution, free
from nitric acid, consisting of a neutral or acid aqueous solution, comprising sulphuric
acid from 20 to 300 g/l at a temperature comprised between 20°C and 95°C, with at
least one pair of electrodes connected to an alternate current power supply having
a frequency ranging from 40 Hz to 70 Hz, the electrolysis being carried out at a current
density having an effective amplitude ranging from 10 A/dm2 to 250 A/dm2.
2. The electrolytic pickling method according to claim 1, wherein the electrolytic solution
is an aqueous solution, at a temperature comprised between 20°C and 95°C, containing
the following components having concentrations expressed in g/l:
sulphuric acid (H2SO4) from 20 to 300, and at least one among
hydrofluoric acid (HF) from 5 to 50
orthophosphoric acid (H3PO4) from 5 to 200
ferric ion (Fe+3) from 5 to 40.
3. The electrolytic pickling method for stainless steels according to any one of the
claims 1 to 2, wherein the electrolytic solution is maintained at a temperature between
70°C and 90°C and comprises sulphuric acid at a concentration comprised between 150
g/l and 250 g/l, and ferric ions (Fe+3) at a concentration of from 5 g/l to 40 g/l.
4. The electrolytic pickling method for Nickel-base super alloys and for Titanium and
alloys thereof according to claims 1 to 2, wherein the electrolytic solution is maintained
at a temperature between 70 and 90°C and comprises sulphuric acid at a concentration
between 150 g/l and 250 g/l and at least one between hydrofluoric acid at a concentration
between 5 g/l and 50 g/l and hydrochloric acid at a concentration between 5 g/l and
50 g/l.
5. The electrolytic pickling method for carbon steel according to any one of the claims
1 to 2, wherein the electrolytic solution is maintained at 70°C-90°C and comprises
sulphuric acid at a concentration between 150 g/l and 250 g/l.
6. The electrolytic pickling method according to claim 1, wherein the electrolytic solution
is a sodium sulphate (Na2SO4) aqueous solution having a concentration ranging from 25 g/l to 300 g/l at a temperature
between 50°C and 95°C.
7. The electrolytic pickling method according to any one of the claims 1 to 6, wherein
pairs of adjacent electrodes are connected to two separate power supplies, so that
the current lines, outputted from a first electrode pair facing one side of the material
to be treated, cross said material and close again on a second electrode pair, opposed
to the first pair and facing the other side of the material to be treated, defining
a substantially X-shaped course.
8. The electrolytic pickling method according to any one of the claims 1 to 6, wherein
electrodes facing one side of the material to be treated are connected to a power
supply, so that the current lines, which are outputted from said electrodes and cross
the material, close again on other electrodes opposed to the first ones and facing
the opposite side of the material to be treated, defining a course which is substantially
orthogonal to said sides of the material to be treated.
9. A use of the electrolytic pickling method according to claims 1 to 8, for inducing
a physical-chemical modification of the scale of the metallic oxides present onto
the surface of the material to be pickled.
10. The use of the electrolytic pickling method according to claim 9, for stainless steels,
with a treatment time between 1 and 10 sec.
11. The use of the electrolytic pickling method according to claims 1 to 8, in a step
subsequent to that of the physical-chemical modification of the scale of metallic
oxides present onto the surface of the material to be pickled.
12. The use of the electrolytic pickling method according to claim 11 - in a step subsequent
to that of the physical-chemical modification of the scale of metallic oxides present
onto the surface of the material to be pickled - for stainless steels, with a treatment
time comprised between 2 sec and 15 sec.
13. The use of the pickling method according to claims 1 to 12, combined to other conventional
pickling systems.
14. Electrolytic cells, characterised in that they have an electrode connection as indicated in claim 7 or 8.
1. Verfahren zum kontinuierlichen elektrolytischen Beizen von Stählen, Nickelbasi-Superlegierungen,
Titan und dessen Legierungen, dadurch gekennzeichnet, dass das zu behandelnde Material für einen Zeitraum zwischen 3 Sek. und 60 Sek. in wenigstens
eine elektrolytische Zelle eingetaucht wird oder durch diese hindurch bewegt wird,
welche eine elektrolytische Lösung aufweist, die keine Salpetersäure enthält, bestehend
aus einer neutralen oder sauren wässrigen Lösung, umfassend Schwefelsäure mit zwischen
20 bis 300 g/l, bei einer Temperatur zwischen 20°C und 95°C, wobei wenigstens ein
Elektrodenpaar mit einer Wechselstromversorgung mit einer Frequenz in dem Bereich
von 40 Hz bis 70 Hz verbunden ist, und wobei die Elektrolyse bei einer Stromdichte
mit einer wirksamen Amplitude in dem Bereich von 10 Å/dm2 bis 250 Å/dm2 durchgeführt wird.
2. Verfahren zum elektrolytischen Beizen nach Anspruch 1, wobei die elektrolytische Lösung
eine wässrige Lösung ist, bei einer Temperatur zwischen 20°C und 95°C, enthaltend
die folgenden Bestandteile mit den in g/l ausgedrückten Konzentrationen:
Schwefelsäure (H2SO4) zwischen 20 bis 300, und wenigstens eines von
Flusssäure (HF) zwischen 5 bis 50
Orthophosphorsäure (H3PO4) zwischen 5 bis 200
Eisen(III)-lon (Fe+3) zwischen 5 bis 40.
3. Verfahren zum elektrolytischen Beizen von rostfreien Stählen, gemäß einem der Ansprüche
1 oder 2, wobei die elektrolytische Lösung auf einer Temperatur zwischen 70°C und
90°C gehalten wird und Schwefelsäure mit einer Konzentration zwischen 150 g/l und
250 g/l und Eisen(III)-lonen (Fe+3) mit einer Konzentration von zwischen 5 g/l und 40 g/l enthält.
4. Verfahren zum elektrolytischen Beizen von Nickelbasis-Superlegierungen und von Titan
und dessen Legierungen gemäß Anspruch 1 bis 2, wobei die elektrolytische Lösung auf
einer Temperatur zwischen 70 und 90°C gehalten wird, und Schwefelsäure mit einer Konzentration
zwischen 150 g/l und 250 g/l und wenigstens eines gewählt aus Flusssäure mit einer
Konzentration zwischen 5 g/l und 50 g/l und Salzsäure mit einer Konzentration zwischen
5 g/l und 50 g/l enthält.
5. Verfahren zum elektrolytischen Beizen von Kohlenstoffstahl gemäß einem der Ansprüche
1 bis 2, wobei die elektrolytische Lösung auf 70°C - 90°C gehalten wird und Schwefelsäure
mit einer Konzentration zwischen 150 g/l und 250 g/l umfasst.
6. Verfahren zum elektrolytischen Beizen nach Anspruch 1, wobei die elektrolytische Lösung
eine wässrige Natriumsulfat (Na2SO4) Lösung ist, mit einer Konzentration im Bereich von 25 g/l bis 300 g/l bei einer
Temperatur zwischen 50°C und 95°C.
7. Verfahren zum elektrolytischen Beizen nach einem der Ansprüche 1 - 6, wobei Paare
einander benachbarter Elektroden mit zwei getrennten Stromversorgungen verbunden sind,
so dass die Stromlinien, welche von einem ersten Elektrodenpaar, das einer Seite des
zu behandelnden Materials gegenüberliegt, ausgestoßen werden, das Material kreuzen
und sich wieder an einem zweiten Elektrodenpaar schließen, welches dem ersten Paar
gegenüberliegt und das der anderen Seite des zu behandelnden Materials gegenüberliegt,
wodurch ein im wesentlichen X-förmiger Verlauf definiert wird.
8. Verfahren zum elektrolytischen Beizen nach einem der Ansprüche 1 - 6, wobei die Elektroden,
welche einer Seite des zu behandelnden Materials gegenüberliegen, mit einer Stromversorgung
verbunden sind, so dass die Stromlinien, welche von diesen Elektroden ausgestoßen
werden und das Material kreuzen, sich wieder an den anderen Elektroden schließen,
welche den ersten Elektroden gegenüberliegen und den gegenüberliegenden Seiten des
zu behandelnden Materials gegenüberliegen, wodurch ein Verlauf definiert wird, welcher
zu den Seiten des zu behandelnden Materials im wesentlichen orthogonal ist.
9. Verwendung eines Verfahrens zum elektrolytischen Beizen nach einem der Ansprüche 1
- 8, zum induzieren einer physikalisch-chemischen Modifikation des Anteils bzw. Ausmaßes
der metallischen Oxide, die auf der Oberfläche des zu beizenden Materials vorhanden
sind.
10. Verwendung eines Verfahrens zum elektrolytischen Beizen nach Anspruch 9, an rostfreien
Stählen, mit einer Behandlungsdauer zwischen 1 und 10 Sekunden.
11. Verwendung des Verfahrens zum elektrolytischen Beizen nach einem der Ansprüche 1 -
8, in einem Schritt, welcher auf die physikalisch-chemische Modifikation des Anteils
bzw. Ausmaßes der metallischen Oxide, welche auf der Oberfläche des zu beizenden Materials
vorhanden sind, folgt.
12. Verwendung eines Verfahrens zum elektrolytischen Beizen nach Anspruch 11 - in einem
Schritt, welcher auf den der physikalisch-chemischen Modifikation des Anteils bzw.
Ausmaßes der metallischen Oxide, die auf der Oberfläche des zu beizenden Materials
vorhanden sind, folgt - an rostfreien Stählen, mit einer Behandlungsdauer zwischen
2 Sek. und 15 Sek.
13. Verwendung des Beizverfahrens nach Anspruch 1 - 12, kombiniert mit anderen herkömmlichen
Beizsystemen.
14. Elektrolytische Zelle, dadurch gekennzeichnet, dass sie eine Elektrodenverbindung aufweisen, wie in Anspruch 7 oder 8 angegeben.
1. Procédé de décapage électrolytique continu pour des aciers, superalliages de Nickel,
Titane et alliages de celui-ci, caractérisé en ce que le matériau à traiter, pendant un temps compris entre 3 secondes et 60 secondes,
est immergé ou passe à travers au moins une cellule électrolytique ayant une solution
électrolytique, exempt d'acide nitrique, constituée d'une solution aqueuse neutre
ou acide, comportant de l'acide sulfurique entre 20 et 300 g/l à une température comprise
entre 20°C et 95°C, avec au moins une paire d'électrodes connectées à une alimentation
en courant alternatif ayant une fréquence dans la plage allant de 40 Hz à 70 Hz, l'électrolyse
étant effectuée à une densité de courant ayant une amplitude efficace dans la plage
allant de 10 A/dm2 à 250 A/dm2.
2. Procédé de décapage électrolytique selon la revendication la revendication 1, dans
lequel la solution électrolytique est une solution aqueuse, à une température comprise
entre 20°C et 95°C, contenant les composants suivants ayant des concentrations exprimées
en g/l :
acide sulfurique (H2SO4) entre 20 et 300, et au moins un élément parmi
acide hydrofluorique (HF) entre 5 et 50
acide orthophosphorique (H3PO4) entre 5 et 200
ion ferrique (Fe+3) entre 5 et 40.
3. Procédé de décapage électrolytique pour des aciers inoxydables selon l'une quelconque
des revendications 1 à 2, dans lequel la solution électrolytique est maintenue à une
température comprise entre 70°C et 90°C et comporte de l'acide sulfurique à une concentration
comprise entre 150 g/l et 250 g/l, et des ions ferriques (Fe+3) à une concentration allant de 5 g/l à 40 g/l.
4. Procédé de décapage électrolytique pour des superalliages à base de Nickel et pour
du Titane des alliages de celui-ci selon la revendication 1 ou 2, dans lequel la solution
électrolytique est maintenue à une température comprise entre 70 et 90°C et comporte
de l'acide sulfurique à une concentration comprise entre 150 g/l et 250 g/l et au
moins un élément parmi l'acide hydrofluorique à une concentration comprise entre 5
g/l à 50 g/l et l'acide chlorhydrique à une concentration comprise entre 5 g/l à 50
g/l.
5. Procédé de décapage électrolytique pour de l'acier carboné selon l'une quelconque
des revendications 1 à 2, dans lequel la solution électrolytique est maintenue entre
70°C et 90°C, et comporte de l'acide sulfurique à une concentration comprise entre
150 g/l et 250 g/l.
6. Procédé de décapage électrolytique selon la revendication 1, dans lequel la solution
électrolytique est une solution aqueuse de sulfate de sodium (Na2SO4) ayant une concentration dans la plage allant de 25 g/l à 300 g/l à une température
comprise entre 50°C et 95°C.
7. Procédé de décapage électrolytique selon l'une quelconque des revendications 1 à 6,
dans lequel des paires d'électrodes adjacentes sont connectées à deux alimentations
séparées, de sorte que les lignes de courant, qui sortent d'une première paire d'électrodes
faisant face à un côté du matériau à traiter, traversent ledit matériau et se raccordent
à nouveau sur une seconde paire d'électrodes, opposées à la première paire d'électrodes
et faisant face à l'autre côté du matériau à traiter, définissant un trajet en forme
essentiellement de X.
8. Procédé de décapage électrolytique selon l'une quelconque des revendications 1 à 6,
dans lequel des électrodes faisant faces à un côté du matériau à traiter sont connectées
à une alimentation, de sorte que les lignes de courant, qui sortent desdites électrodes
et traversent le matériau, se raccordent à nouveau sur d'autres électrodes opposées
aux premières et faisant faces au côté opposé du matériau à traiter, définissant un
trajet qui est essentiellement orthogonal auxdits côtés du matériau à traiter.
9. Utilisation du procédé de décapage électrolytique selon les revendications 1 à 8,
pour induire une modification physico-chimique de l'échelle des oxydes métalliques
présents sur la surface du matériau à décaper.
10. Utilisation du procédé de décapage électrolytique selon la revendication 9, pour des
aciers inoxydables, ayant un temps de traitement compris entre 1 et 10 secondes.
11. Utilisation du procédé de décapage électrolytique selon les revendications 1 à 8,
dans une étape ultérieure à celle de la modification physico-chimique de l'échelle
d'oxydes métalliques présents sur la surface du matériau à décaper.
12. Utilisation du procédé de décapage électrolytique selon la revendication 11, dans
une étape ultérieure à celle de la modification physico-chimique de l'échelle d'oxydes
métalliques présents sur la surface du matériau à décaper, pour des aciers inoxydables,
ayant un temps de traitement compris entre 2 secondes et 15 secondes.
13. Utilisation du procédé de décapage selon les revendications 1 à 12, combinée à d'autres
systèmes de décapage classiques.
14. Piles électrolytiques, caractérisées en ce qu'elles ont une connexion d'électrode comme indiqué dans la revendication 7 ou la revendication
8.