[0001] The present invention relates to a control method and system for electrically-operated
weft-braking devices, for automatically adjusting the mechanical tension of the yarn
in weaving machines using mechanical picking.
[0002] More particularly, the invention relates to systems for automatically adjusting the
mechanical tension of the yarn fed to weaving machines, in which the weft is gripped
and inserted into the shed by mechanical means. Such machines include, among others,
gripper looms and projectile looms, while fluid-jet weaving machines are outside the
field of the invention.
[0003] As well known in weaving processes, the weft yarn is fed to the loom from the reel
via a weft feeder provided with a manual-adjustment entry brake and then through at
least an electrically operated weft-braking device; both braking devices being arranged
between the reel and the loom.
[0004] Prior automatic-adjustment systems have been developed for controlling the electrically
operated weft-braking devices, in order to achieve the following objects:
- keeping the mechanical tension of the yarn substantially constant during the weaving
process independently of: a) changes of the reel geometry during its progression from
the full configuration to the empty configuration, b) different configurations selected
for said entry brake of the weft feeder, c) different angles of the weft yarn in the
path between the reel and the loom, d) wear of the braking members;
- assuring that the mechanical tension of the weft yarn has an adequate strength during
particular transient instants of the weft-picking process, typically during the gripping
step, during the step in which the weft yarn is transferred from the holding grippers
to the pulling grippers, and during the arrival step of the yarn,
- assuring that, during the entire process of weft insertion, the value of the mechanical
tension of the yarn does not reach excessive levels, which, if exceeded, would cause
the yarn to break at its weaker points.
[0005] To this purpose, the above mentioned automatic-adjustment systems act upon the electronic
control of the weft-braking device by means of an adjustment loop which, as will be
disclosed below, uses a signal measuring the actual tension of the yarn -- as generated
by a measurement sensor -- as a feedback signal of the loop, whose reference is a
predetermined signal corresponding to the tension that is desired for the yarn. The
former signal is subtracted from the latter in order to obtain an error signal, and
then the error signal is processed by logic means (PID-type logic block) in order
to obtain a correction signal such that it will cancel the error. This correction
signal will cause the weft brake to exert a braking action of a proportional intensity,
via appropriate power circuits. Said correction signal will also be called "braking
action" in the following disclosure.
[0006] EP 0 619 261 discloses a tension regulator device of the above kind. However, only
one tension reference is allowed over the entire weft-picking cycle, and it is therefore
impossible to establish different reference tension values for different stages in
the cycle.
[0007] However, the curve of the signal corresponding to the actual tension of the weft
yarn (which is drawn with thin lines in Fig. 3) as a function of the angular position
(in degrees) of the main shaft of the weaving machine (which is fed by an assembly
comprising the weft feeder and a weft-brake with overlapping laminae) clearly shows
that said signal, which is obtained by controlling the weft brake by said known adjustment
loop, is subjected to continuous fluctuations at high frequency.
[0008] Such fluctuations are generated by the variations of the above mentioned parameters
of the weaving process (geometry of the reel, wear of the braking members, path of
the yarn etc.) and destabilize the action of the adjustment loop. Therefore, an accurate
control of the yarn tension and a proper performance of the weaving process are not
attained, also because they undergo unforeseeable changes from one picking stroke
to the next.
[0009] US 5 669 421 deals with a control method for regulating the tension of a yarn such
as a weft in a weaving loom. In the method, the tension of the yarn is measured at
closely spaced points in a weft-picking cycle, and homologous samples in successive
cycles are averaged and compared with a control characteristic, which is progressively
adapted or refined on the basis of the events. The method involves handling huge amounts
of data in real time, and the feedback algorithm appears to be nonlinear.
[0010] The main object of the present invention is to improve the method for measuring the
actual mechanical tension of the weft yarn and the weft-brake control system, in order
to avoid said rapid fluctuations of the tension signal and prevent the ensuing operating
instabilities of the adjustment loop controlling the excitation current of the weft
braking device, whithout unduty increasing the cost and complexity of the control
system.
[0011] This object is achieved, according to the present invention, by means of a method
and system having the features recited in the attached claims.
[0012] Substantially, this invention is based on the concept of employing, in order to measure
the direct tension of the yarn (which generates the feedback signal of the weft-brake
adjusting loop), an average value rather than the instantaneous value of the tension,
which average value is computed at predetermined intervals of the weft picking and
for a predetermined number of picking strokes, so that it is substantially stable
and not affected by said rapid fluctuations.
[0013] Accordingly, the method of the invention consists of the features claimed in claim
1.
[0014] The invention also provides a system according to claim 3.
[0015] The features, objects and advantages of the method and system according to the present
invention will appear from the following detailed description and with reference to
the attached drawing, given by way of non limiting example, wherein:
- Fig. 1 is a block diagram of a system for feeding the weft yarn to a mechanical-picking
loom with a weft-brake adjustment loop according to the prior art,
- Fig. 2 is a block diagram of a feeding system, similar to Fig. 1, which is improved
according to the invention,
- Fig. 3 is a diagram comparing the yarn tensions obtained by the adjustment system
of Fig. 1 with the tensions obtained by the improved system of Fig. 2, said tensions
being given as a function of the angular position of the weaving machine.
[0016] With reference to Fig. 1,
SAL is a known system for feeding a weft yarn
F to a mechanical picking loom
TE. The system comprises a reel
RO on which weft yarn
F is wound, a weft feeding device
P, a weft brake
LF, e.g. of a type having overlapping laminae as described in EP 622.485, which is interposed
between feeder
P and loom
TE, and a sensor
TM for directly measuring the value of the mechanical tension
T of yarn
F; said sensor being arranged downstream of brake
LF. As known per se, feeder
P comprises a cylinder
TA on which a swivelling arm
BR, operated by a motor
MO, winds and restores a plurality of yarn loops, forming a weft reserve
RT. On request of loom
TE, at each weft insertion the yarn loops are unwound from cylinder
TA an run through a yarn guide
GA.
[0017] Similarly, as known per se, weft brake
LF comprises a stationary lamina and a movable lamina, between which runs yarn
F, and an electromechanical actuator
MF. The latter is driven by an excitation current, modulated by the signal generated
by sensor
TM to push the movable lamina against the stationary lamina with more or less force,
thereby adjusting the braking effect, i.e. the braking action
AF exerted on yarn
F.
[0018] To this purpose, sensor
TM generates a signal
tens-mis which substantially represents the feedback signal of loop
A controlling weft brake
LF. Such control loop comprises a subtracting logic block 1 in which signal
tens-mis is subtracted from a reference signal
tens-rif representing the desired value of the mechanical tension of weft yarn
F. Accordingly, the output of subtractor 1 is an error signal
error representing the difference between the reference tension and the tension measured
at the instant under consideration.
[0019] Signal
error is applied to the input of a known PID regulator 2, where an correction brake-reference
signal
fren-ref is computed, such as to cancel signal
error. Signal
fren-ref generates, by means of a logic block
3 and a power circuit
DRV, an excitation current
Ie causing brake
LF to apply a braking action
AF substantially proportional to said signal
fren-ref. The loop is preferably closed by an additional feedback signal
fren-info (e.g. consisting of a fraction of current
Ie) which is sent to logic block
3.
[0020] With reference to Fig. 2, in which similar or corresponding items bear the same reference
number, the improvement according to the invention will now be described. This improvement
consists of subdividing the period of weft picking into predetermined and modifiable
intervals
x, e.g. given as rotation angles of the main shaft of loom
TE (Fig. 3), as specified below:
- 1st interval in the range 70° to 100°, corresponding to the weft gripping step,
- 2nd interval, contiguous to the first, in the range 100° to 160°, corresponding to
a step in which the weft is brought into the shed by the holding grippers,
- 3rd interval, contiguous to the second, in the range 160° to 200°, corresponding to
a step in which the weft yarn is transferred from the holding grippers to the pulling
grippers,
- 4th interval, contiguous to the third, in the range 200° to 280°, corresponding to
a step in which the weft is brought into the shed by the pulling grippers,
- 5th and last interval, in the range 280° to 320°, corresponding to the end of weft-picking.
[0021] Obviously, the number of intervals
x into which the insertion period is subdivided, as well as their angular amplitudes
are not limitative and the values specified above are merely illustrative.
[0022] Moreover, according to the present invention and as shown in Fig. 2, braking reference
values
RFx are also defined for each of angular intervals
x, where
x is in the range 1 to n, n being the number of subdivision intervals (e.g. n = 5 in
the illustrative example). Each of such references constitutes the desired value of
the average braking acting on yarn
F, in the corresponding x-th interval.
[0023] By the method according to the invention, the average tension corresponding to each
interval x during picking is computed, so that a set of average values
Tmxi is obtained, where "i" is the number of picking strokes considered. In addition to
the average values of the current insertion (Tmxo), the machine controller, as further
described below, also stores the average tension values corresponding to the last
m picking strokes, where
m is preferably in the range 0 (zero) to 7. In the example of Fig. 2,
m is in the range 0 to 3, where the value 0 denotes a picking stroke under way.
[0024] To this purpose, operative logic block 1, comprising the above mentioned machine
controller, computes the values
Tmxi based on the instantaneous value of the tension
tens-mis and the instantaneous value of the angular position
tel-pos of the main shaft of loom
TE, which is delivered by an angular sensor
SA associated with the shaft. Moreover, at each picking stroke, a subsequent logic block
2 computes the average value
TMx corresponding to the average of all previous values
Tmxi corresponding to each interval
x, as follows:

[0025] Furthermore, logic block 3 compares each braking reference value
RFx with the average value
TMx of the corresponding interval
x and, based on the error resulting from such comparison, decides, as known per se,
a braking action
AFx (such as to cancel the error) that brake
LF shall apply during the entire braking interval
x for the next picking. Following this step, logic block 4 switches, as a function
of the angular position
tel-pos of the shaft of loom
TE, the value
AFx at output
fren-ref. The latter signal, by means of logic block 5 and power circuit
DRV, generates an excitation current
Im which will energize brake actuator
MF so that a corresponding braking action
AFx is generated.
[0026] In the diagram of Fig. 3, the curve drawn with a fat line shows the values of the
mechanical tension detected in the weft yarn and processed by the method using computed
average values, according to the invention, over predetermined angular intervals
x; such curve has no high-frequency fluctuations or variations.
[0027] Obviously, the implementation details can be changed extensively from what has been
described and illustrated by way of non limitative example, without thereby leaving
the scope of the invention.
1. A method for regulating the tension of the weft yarn (F) in a mechanical-picking weaving
machine (TE) by means of an electrically operated weft-braking device, in which the
excitation current (Ie) for the weft-braking device (LF) is controlled by a feedback
loop (A) on the basis of a measure (tens-mis) of the actual tension of the yarn, as
a feedback signal for the regulating loop (A),
characterized by the combination of the following steps:
- measuring instantaneous values of the yarn tension at successive points of each
weft insertion;
- averaging, for each insertion period of the weaving machine, the yarn tension samples
(tens_mis) over each of a plurality of predetermined intervals (x) of the insertion
period to obtain a corresponding plurality of tension values (Tmxi) for each insertion;
- averaging each of said tension values (Tmxi) over a predetermined number of successive
insertions as a running average to obtain a corresponding time-averaged tension value
(TMx);
- comparing each of the time-averaged tension values (TMx) with a respective predetermined
reference value (RFx) corresponding to the desired yarn tension in the respective
interval, so that a respective error signal (AFx) is generated; and
- computing a correction signal (fren_ref) for a feedback loop controlling the weft-braking
device (LF) so that the error is canceled.
2. The method of claim 1, characterized in that said weft-picking period is subdivided into five intervals (x1...x5) respectively
corresponding to: a weft gripping step, a step in which the weft is brought into the
shed by the holding grippers, a step in which the weft yarn is transferred from the
holding grippers to the pulling grippers, a step in which the weft is brought into
the shed by the pulling grippers, a final step of weft-picking.
3. A system for regulating the tension of the weft yarn (F) in a mechanical-picking weaving
machine (TE) by means of an electrically operated weft-braking device (LF) according
to the method of claim 1 or 2, comprising a sensor (TM) for measuring the mechanical
tension of the yarn and brake-driving means (5, DRV),
characterized in that it comprises:
a) first logic means (1)connected to said yarn tension sensor (TM) to receive instantaneous
yarn tension samples (tens_mis) from it, connected to an angular sensor (SA) to receive
instantaneous position signals (tel_pos) of a weft-insertion member of the weaving
machine (TE), the first logic means being arranged to:
- average the samples over each of a plurality of predetermined intervals (x) of the
insertion period, thereby generating a corresponding set of tension values (Tmxi)
for each of a predetermined number of successive insertions (i); and
- repeat the averaging for each subsequent insertion (i) and substitute the resulting
new set of tension values for the set corresponding to the earliest of said predetermined
number of successive insertions (i);
b) second logic means (2) connected to receive said tension values (Tmxi) from said
first logic means (1) and arranged to compute the averages of corresponding tension
values from each of said sets to obtain one set of averaged tension values (TMx);
c) third logic means (3) for individually comparing each of said set of averaged tension
values (TMx) with each of a corresponding set of braking reference values (RFx) to
yield a set of error values (AFx);
d) fourth logic means (4) receiving said error values (AFx) from said third logic
means (3) and said instantaneous position signals (tel_pos)from said angular sensor
(SA) and switching each of said set of error values (AFx) to said brake-driving means
(5, DRV) depending on the instantaneous position of said weft-insertion member of
the weaving machine (TE).
1. Verfahren zum Regeln der Spannung des Schussfadens (F) in einer Webmaschine (TE) mit
mechanischem Schusseintrag mit Hilfe einer elektrisch betriebenen Schussfadenbremsvorrichtung,
bei dem der Erregerstrom (Ie) für die Schussfadenbremsvorrichtung (LF) durch eine
Rückkopplungsschleife (A) gesteuert wird auf Grundlage eines Maßes (tens-mis) der
tatsächlichen Spannung des Fadens als ein Rückkopplungssignal für die regelnde Schleife
(A),
gekennzeichnet durch die Kombination der folgende Schritte:
- Messen von Momentanwerten der Fadenspannung an aufeinanderfolgenden Punkten eines
jeden Schusseintrags;
- Mitteln der Fadenspannungswerte (tens-mis) für jede Eintragzeitspanne der Webmaschine
über jedes einer Vielzahl von vorbestimmten Intervallen (x) der Eintragzeitspanne,
um eine entsprechende Vielzahl von Spannungswerten (Tmxi) für jeden Eintrag zu erhalten;
- Mitteln jedes Spannungswerts (Tmxi) über eine vorbestimmte Anzahl von aufeinanderfolgenden
Einträgen als einen laufenden Mittelwert, um einen entsprechenden zeitlich gemittelten
Spannungswert (TMx) zu erhalten;
- Vergleichen jedes zeitlich gemittelten Spannungswerts (TMx) mit einem jeweiligen
vorbestimmten Referenzwert (RFx), der der erwünschten Fadenspannung in dem jeweiligen
Intervall entspricht, um ein jeweiliges Fehlersignal (AFx) zu erzeugem; und
- Berechnen eines Korrektursignals (fren_ref) für eine die Schussfadenbremsvorrichtung
(LF) steuernde Rückkopplungsschleife, um den Fehler zu eliminieren.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Schusseintragszeitspanne in fünf Intervalle (x1...x5) unterteilt ist, die jeweils
entsprechen: einem Schussgreifschritt, einem Schritt, bei dem der Schuss durch die
Haltegreifer in das Fach gebracht wird, einem Schritt, bei dem der Schussfaden von
den Haltegreifern auf die Zuggreifer überführt wird, einem Schritt, bei dem der Schuss
durch die Zuggreifer in das Fach gebracht wird, und einem letzten Schritt des Schusseintrags.
3. System zum Regeln der Spannung des Schussfadens (F) in einer Webmaschine (TE) mit
mechanischem Schusseintrag mit Hilfe einer elektrisch betriebenen Schussfadenbremsvorrichtung
(LF) gemäß dem Verfahren nach Anspruch 1 oder 2, umfassend einen Sensor (TM) zum Messen
der mechanischen Spannung des Fadens und eine Bremsantriebseinrichtung (5, DRV),
gekennzeichnet durch:
a) eine erste Logikeinrichtung (1), die mit dem Fadenspannungssensor (TM), um von
diesem Momentanfadenspannungswerte (tens_mis) zu erhalten, und mit einem Winkelsensor
(SA) verbunden ist, um Momentanpositionssignale (tel_pos) eines Schusseintragelements
der Webmaschine (TE) zu erhalten, wobei die erste Logikeinrichtung dazu angeordnet
ist, um:
- die Werte über jedes Intervall einer Vielzahl vorbestimmter Intervalle (x) der Eintragzeitspanne
zu mitteln, um dadurch eine entsprechende Gruppe von Spannungswerten (Tmxi) für jeden Eintrag einer vorbestimmten
Anzahl aufeinanderfolgender Schusseinträge (i) zu erzeugen; und
- die Mittelung für jeden nachfolgenden Eintrag (i) zu wiederholen und diejenige Gruppe,
die der frühesten der vorbestimmten Anzahl aufeinanderfolgender Einträge (i) entspricht,
durch die resultierende neue Gruppe von Spannungswerten zu ersetzen;
b) eine zweite Logikeinrichtung (2), die verbunden ist, um die Spannungswerte (Tmxi)
von der ersten Logikeinrichtung (1) zu erhalten, und dazu angeordnet ist, Mittelwerte
entsprechender Spannungswerte von jeder der Gruppen zu berechnen, um eine Gruppe gemittelter
Spannungswerte (TMx) zu erhalten;
c) eine dritte Logikeinrichtung (3) zum individuellen Vergleichen jeder Gruppe gemittelter
Spannungswerte (TMx) mit jedem Bremsreferenzwert einer entsprechenden Gruppe von Bremsreferenzwerten
(RFx), um eine Gruppe von Fehlerwerten (Afx) zu gewinnen;
d) eine vierte Logikeinrichtung (4), die die Fehlerwerte (AFx) von der dritten Logikeinrichtung
(3) und die Momentanpositionssignale (tel_pos) von dem Winkelsensor (SA) erhält und
jeden Fehlerwert der Gruppe von Fehlerwerten (AFx) dem Bremsantriebsmittel (5, DRV)
vermittelt in Abhängigkeit von der Momentanposition des Schusseintragelements der
Webmaschine (TE).
1. Procédé permettant de réguler la tension du fil de trame (F) dans un métier à tisser
à insertion mécanique (FE) grâce à un dispositif électrique de freinage de la duite,
dans lequel le courant d'excitation (le) du dispositif de freinage de la duite (LF)
est contrôlé par une boucle de rétroaction (A) sur base de la mesure de la tension
effective de la duite (tens-mis) qui sert de signal de rétroaction (A), ce procédé
étant
caractérisé par les étapes qui consistent à :
- mesurer les valeurs instantanées de la tension du fil aux différents points d'insertion
de la duite,
- pour chaque période d'insertion du métier à tisser, calculer la moyenne des échantillons
de mesure de la tension de la duite (tens_mis) pour chacun des intervalles (x) prédéterminés
de la période d'insertion afin d'obtenir les valeurs de tension (Tmxi) qui correspondent
à chaque insertion,
- sur un nombre prédéterminé d'insertions successives, calculer la moyenne de chacune
desdites valeurs de tension (Tmxi) qui servira de moyenne de fonctionnement afin d'obtenir
une moyenne des valeurs de la tension en fonction du temps (TMx),
- comparer chacune des moyennes des valeurs de tension en fonction du temps (TMx)
avec leurs valeurs de référence respectives prédéterminées (RFx) qui correspondent
à la tension du fil souhaitée au sein de l'intervalle respectif, de manière à obtenir
des signaux d'erreurs respectifs (AFx), et
- calculer un signal de correction (fren_ref) pour une boucle de rétroaction qui commande
le dispositif de freinage de la duite (LF), pour ainsi éliminer l'erreur.
2. Procédé selon la revendication 1, dans lequel ladite période d'insertion est caractérisée par une subdivision en cinq intervalles (x1 ... x5) qui correspondent respectivement
à : une étape de fixation de la duite, une étape au cours de laquelle la duite est
amenée à l'intérieur de la foule à l'aide de pinces de maintien, une étape au cours
de laquelle le fil de trame est transféré des pinces de maintien aux pinces de traction,
une étape au cours de laquelle la duite est placée à l'intérieur de la foule par les
pinces de traction et une étape finale d'insertion de la duite.
3. Système de régulation de la tension du fil de trame (F) dans un métier à tisser à
insertion mécanique (FE) au moyen d'un dispositif électrique de freinage de la duite,
selon le procédé d'une quelconques des revendications 1 ou 2, comprenant un capteur
(TM) qui permet de mesurer la tension mécanique du fil et les moyens de commande de
frein (5, DRV),
caractérisé par :
a) un premier moyen logique (1) relié audit capteur de tension du fil (TM) qui permet
de recevoir instantanément l'échantillon de mesure de la tension de la duite (tens_mis),
relié à un détecteur d'angle (SA) qui permet de recevoir les signaux de position instantanée
(tel_pos) d'un élément d'insertion de duite du métier à tisser (TE), le premier moyen
logique étant conçu pour :
- calculer la moyenne des échantillons pour chacun des intervalles prédéterminés (x)
de la période d'insertion, pour ainsi générer un ensemble de valeurs de tension (Tmxi)
pour chacune des insertions successives (i) dont le nombre est prédéterminé et
- recalculer la moyenne pour chacune des insertions (i) ultérieures et substituer
le nouvel ensemble de valeurs des tensions obtenu par l'ensemble qui correspond à
la première desdites insertions successives (i) dont le nombre est prédéterminé,
b) un deuxième moyen logique (2) raccordé pour recevoir lesdites valeurs de tension
(Tmxi) dudit premier moyen logique (1) et agencé pour calculer les moyennes de valeurs
de tension correspondantes pour chacun desdits ensembles afin d'obtenir un ensemble
des valeurs de tensions moyennes (TMx),
c) un troisième moyen logique (3) qui permet de comparer individuellement chaque valeur
desdits ensembles des valeurs de tensions moyennes (TMx) à chaque valeur de l'ensemble
correspondant de valeurs de référence de freinage (RFx) afin d'obtenir un ensemble
des valeurs d'erreur (AFx),
d) un quatrième moyen logique (4) qui reçoit lesdites valeurs d'erreur (AFx) dudit
troisième moyen logique (3) et lesdits signaux de position instantanée (tel_pos) dudit
détecteur d'angle (SA) et qui permet d'envoyer chacune desdites valeurs d'erreur (AFx)
à ladite commande de frein (5, DRV) en fonction de la position instantanée dudit élément
d'insertion de duite du métier à tisser (TE).