(12)

DEMANDE DE BREVET EUROPEEN

(43) Date de publication: 11.06.2003 Bulletin 2003/24

(51) Int CI.⁷: **F02D 41/10**, F02D 41/04, F02D 41/38

(21) Numéro de dépôt: 02292955.8

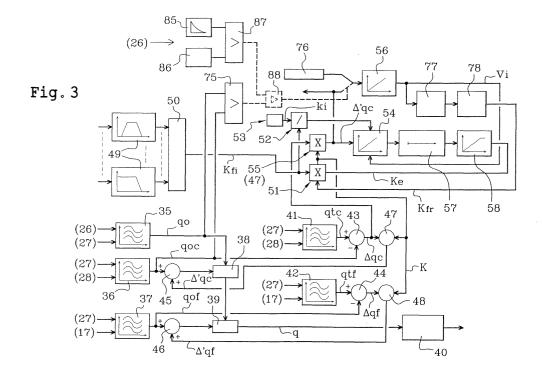
(22) Date de dépôt: 29.11.2002

(84) Etats contractants désignés:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
IE IT LI LU MC NL PT SE SK TR
Etats d'extension désignés:
AL LT LV MK RO SI

(30) Priorité: 05.12.2001 FR 0115718

(71) Demandeur: Renault s.a.s. 92100 Boulogne Billancourt (FR)


(72) Inventeurs:

- Cruchet, Jérôme
 91600 Savigny sur Orge (FR)
- Fontvieille, Laurent 91700 Sainte Genevieve des Bois (FR)
- Lombardin, Jacques-Olivier 91600 Savigny sur Orge (FR)
- Santangeli, Vincent 91790 Boissy Saint Yon (FR)

(54) Procédé de réglage des performances d'un moteur diesel et moteur équipé d'une unité de commande correspondante

(57) On se préoccupe d'améliorer la réponse d'un moteur diesel aux régimes transitoires d'accélération en accroissant la quantité d'injection de carburant momentanément au-delà des limites autorisées pour le couple moteur et la protection de fumées (36, 37 : qoc, qof). Des débits supplémentaires d'injection de carburant (41, 42 : Δ qc, Δ qf) sont calculés et ajoutés (45, 46) aux limites normales. Toutefois, ces débits supplémentaires

sont modérés par des facteurs (Kfi, Ke, Kfr) tenant compte de paramètres de fiabilité du fonctionnement, qui peuvent être des températures, pressions, etc. et aussi des durées de régimes transitoires et de fréquence de ces régimes. Les facteurs modérateurs permettent d'envisager des débits supplémentaires plus importants en sachant qu'ils seront réduits automatiquement aux approches de fonctionnements extrêmes du moteur.

Description

20

30

35

45

50

55

[0001] Cette invention a trait à un procédé de réglage des performances d'un moteur, notamment diesel, mais qui s'applique aussi à un moteur à essence.

[0002] Le domaine technique auquel se rapporte l'invention est le réglage d'un moteur à combustion interne avec l'ensemble des capteurs et actionneurs. L'ensemble des lois de contrôle-commande - exprimé notamment par des logiciels - et des paramètres de caractérisation ou de calibration du moteur est contenu dans un calculateur appelé UCE (Unité de Contrôle Electronique). Nous nous intéressons ici aux moteurs diesel, pouvant être suralimentés par un turbocompresseur, et dont les performances sont réglées par la quantité de carburant injectée.

[0003] Lorsque le conducteur souhaite tirer une plus grande puissance du moteur, la position d'enfoncement de la pédale d'accélération est détectée par l'UCE et traduite par elle en une consigne de débit de carburant. Cette consigne est toutefois limitée par des seuils qui sont notamment fonction du débit d'air frais et du régime du moteur. Le débit d'air frais peut être mesuré par un débitmètre ou calculé. On limite ainsi les particules de fumées noires présentes dans les gaz d'échappement du moteur pendant les régimes transitoires à cause d'une richesse excessive du mélange en carburant. Lorsque le débit d'air entrant dans le moteur est devenu suffisant, la consigne de débit de carburant est alors limitée par une valeur qui est fonction du régime du moteur et éventuellement d'autres paramètres comme le rapport de boîte de vitesse. Cette limitation est destinée à maintenir le couple moteur à des valeurs admissibles. Elle est déterminée au moyen d'essais préliminaires du moteur de façon à respecter les contraintes thermomécaniques du moteur. Cependant, il est important de signaler que ces mesures et la limitation qui en découle sont faites en régime stabilisé et ne tiennent pas compte des paramètres réels du moteur en régime transitoire.

[0004] La consigne de débit de carburant, cartographiée d'après le régime du moteur et la position de pédale, peut encore être limitée d'après d'autres critères destinés à protéger le groupe motopropulseur, pour accroître l'agrément de conduite en évitant les filtrages et les à-coups, et permettre des fonctionnements spéciaux en cas de défaillances diverses.

[0005] La figure 1, qui est un diagramme temporel, résume cette partie de description. La partie supérieure est une courbe 1 en échelon représentant une fonction d'une pédale soumise d'abord à un état relâché 2 de pied levé, puis un état enfoncé 3 de pied à fond.

[0006] La partie inférieure du diagramme est une famille de courbes représentant toutes des débits d'injection de carburant en fonction du temps. La courbe 4 est une autre courbe en échelon qui exprime le débit de consigne déduit de la courbe 1 et qui comprend donc d'abord une consigne faible 5, puis une consigne élevée 6. La courbe 7 est un débit de limite pour les fumées, dont la valeur augmente peu à peu pendant l'accélération à mesure que le débit aspiré augmente. La courbe 8 est le débit de limitation d'après le couple, dont la valeur diminue un peu pendant l'accélération ; cette courbe 8 est aussi utilisée pour détecter un régime transitoire du moteur, quand le débit de consigne 4 devient supérieur à ce débit de limitation pour le couple. Si on respecte les limitations des courbes 7 et 8, le débit injecté serait la courbe 9 obtenue par l'assemblage des portions des courbes 4, 7, et 8 les plus basses à tout instant.

[0007] Cependant, les débits de limitation peuvent être enfreints temporairement, et le débit injecté peut être supérieur à la courbe 9 pendant les régimes transitoires. L'invention appartient à ces procédés perfectionnés qui offrent de meilleures accélérations et donc un agrément de conduite plus grand, bienvenu surtout pour les moteurs suralimentés. la courbe 10 donne une idée du débit de carburant injecté en appliquant l'invention. Enfin, la dernière partie de la figure 1 illustre la montée en régime du moteur sans application de l'invention, d'après l'application de la courbe 9 au moyen de la courbe 11, et la courbe 12 exprime le régime du moteur avec l'invention, en appliquant le débit de la courbe 10. [0008] Voici pourquoi les limitations ne sont pas impératives pour les deux critères principaux qui ont été mentionnés ici. Les véhicules modernes sont de plus en plus équipés de filtres à particules qui complètent les réglages du moteur pour interdire la sortie de débits excessifs de fumée en arrêtant les particules éjectées par l'échappement. Ils permettent donc des débits d'injection assez élevés pour produire de telles particules sans qu'une pollution soit produite; on veillera simplement à ce que cet état soit bref afin qu'il n'en résulte pas d'encrassement trop rapide du filtre. Et la limitation d'après le couple est déterminée pour chaque régime stabilisé par une grandeur physique (température, pression, vitesse, etc.) qui est la plus contraignante pour cet état. L'état de la grandeur physique qui est la cause de la contrainte n'est pourtant pas atteint immédiatement dans un régime transitoire, si bien que cette limitation d'après le couple peut être enfreinte temporairement elle aussi.

[0009] Les procédés déjà existants dans lesquels les débits de limitation sont temporairement enfreints ne proposent qu'une augmentation temporaire du débit de limitation d'une valeur déterminée. Ils permettent donc un meilleur traitement des régimes transitoires, mais sans tirer le meilleur parti des performances possibles du moteur puisque l'accroissement du débit injecté reste modéré de peur d'atteindre les limites acceptables de fonctionnement du moteur. Avec l'invention, on se propose d'introduire une plus grande augmentation de débit d'injection pendant les régimes transitoires.

[0010] L'idée sur laquelle repose l'invention est de disposer des grandeurs physiques qui ont fixé les limites de fonctionnement du groupe motopropulseur, d'appréhender les valeurs momentanées de ces grandeurs physiques ou

certaines d'entre elles et d'ajuster le débit d'injection supplémentaire de carburant pendant le régime transitoire en fonction desdites valeurs que prennent ces grandeurs physiques.

[0011] L'invention est susceptible de nombreuses formes de réalisations concrètes en fonction des grandeurs physiques évaluées et des critères de limitation du débit d'injection de carburant. Son utilité est la plus grande quand le débit d'injection est principalement limité d'après le couple du moteur, mais elle reste importante quand le débit est limité par d'autres contraintes et notamment par la production de fumées. L'invention peut être résumée comme un procédé d'ajustement des performances d'un moteur diesel pendant les régimes transitoires en augmentant temporairement le débit de carburant injecté au-delà de limites normales tout en veillant à sauvegarder un état fiable de fonctionnement du moteur pendant que les limites sont enfreintes, en ajoutant des moyens de contrôle du moteur et de réglage du débit inconnus des procédés déjà existant.

[0012] Le débit d'injection peut être accru plus fortement que dans ces procédés, mais seulement si les conditions du régime transitoire, exprimées par des paramètres de fiabilité, l'autorisent.

[0013] Les paramètres de fiabilité de fonctionnement retenus peuvent être nombreux. Certains peuvent être détectés, d'autres calculés et d'autres encore peuvent être simplement estimés. Il est ainsi conforme à un aspect complémentaire de l'invention de limiter le débit supplémentaire d'injection de carburant pendant la durée du régime transitoire, soit en limitant la durée de l'augmentation du débit, soit en limitant l'énergie supplémentaire fournie, soit en tenant compte de l'existence de régimes transitoires précédents, afin de se prémunir contre les risques que les critères de fiabilité du moteur n'aient approché de leur limite permise à ce régime transitoire ou aux précédents.

[0014] Une description plus complète de l'invention sera désormais faite au moyen des figures suivantes :

- la figure 1, déjà décrite, est une suite de diagrammes temporels illustrant la nature et l'effet de débits d'injection supplémentaire pendant des régimes transitoires ;
- la figure 2 est un schéma de groupe motopropulseur ;

20

25

30

35

45

50

- la figure 3 illustre le dispositif d'asservissement conforme à l'invention ;
- et les figures 4, 5, 5, et 7 sont des suites de diagrammes temporels de description de certains aspects de l'invention.

[0015] La figure 2 illustre un exemple non limitatif d'un groupe motopropulseur diesel sur lequel l'invention peut trouver emploi. Le moteur porte la référence 13, l'unité de commande électronique ou UCE la référence 14, la pédale d'accélération la référence 15, et l'air comburant passe successivement par un filtre à air 16, un débitmètre 17, un compresseur 18, un échangeur de chaleur 19 et une vanne 20 avant d'atteindre le moteur 13; les gaz de combustion sortent du véhicule en traversant successivement une turbine 21 et un filtre à particules 22. Le compresseur 18 et la turbine 21 appartiennent à un même turbocompresseur 23 dont le fonctionnement peut être réglé en ajustant, ainsi qu'il est connu, l'angle de fermeture d'ailettes à l'entrée de la turbine 21 ou une vanne de fermeture d'un conduit de dérivation des gaz d'échappement. L'UCE 14 permet d'accomplir ce réglage ainsi que l'ajustage d'injection conforme à l'invention, entre autres. Elle reçoit des valeurs exprimant certains paramètres du fonctionnement du groupe motopropulseur au moyens de capteurs de débits, de pressions, de températures, d'enfoncement de la pédale d'accélération 15, etc. qui n'ont pas été représentés et calcule d'autres paramètres. Dans la réalisation présente, on utilise des signaux de position de la pédale d'accélérateur 15, du régime du moteur, du rapport de la boîte de vitesse 24 en particulier.

[0016] Des capteurs 26, 27 et 28 mesurent l'enfoncement de la pédale d'accélération 15, le régime du moteur 13 (par une vitesse de rotation de l'arbre de vilebrequin) et le rapport de la boîte de vitesse 24 (par la position du levier de vitesse ou le rapport de vitesses de rotation de part et d'autre de la boîte).

[0017] On se reporte maintenant à la figure 3, qui représente la portion de l'UCE 14 responsable de la détermination du débit d'injection de carburant pendant les régimes transitoires. Cette vue fait apparaître un certain nombre de cartes, c'est-à-dire de fonctions fixes à plusieurs variables enregistrées dans l'UCE 14 et qui délivrent une valeur de sortie d'après les valeurs atteintes par les variables. Une première carte 25 détermine ainsi la consigne de débit de carburant (qo) d'après les valeurs d'enfoncement de la pédale d'accélération 15 et de régime de moteur fourni par les capteurs 26 et 27, une carte 36 détermine la limitation de débit d'après le couple (qoc) du moteur en fonction du régime du moteur et du rapport de boîte de vitesse 24 par les capteurs 27 et 28, et une troisième carte 37 détermine la limitation de débit d'injection pour les fumées (qof) à l'aide du régime du moteur et du débit d'air frais par les capteurs 27 et 17. Les courbes 4, 8 et 7 proviennent respectivement des sorties des cartes 35, 36, et 37, et la courbe 9 serait produite en fournissant ces valeurs à des circuits de sélection 38 et 39 qui délivrent toujours la plus faible valeur qui leur est simultanément appliquée. Ici, on dispose de deux tels circuits de sélection 38 et 39 en série, dont le premier recevrait les sorties des cartes 35 et 36 et le second recevrait la sortie du circuit 38 et la sortie de la troisième carte 37. La courbe 9 serait obtenue à la sortie du second circuit de sélection 39 et pourrait ultérieurement être corrigée par un module 40 accentuant l'agrément de conduite et chargé par exemple de réduire les à-coups de conduite. L'influence de ce module 40, qui n'appartient pas à l'invention, sera cependant ignorée ici.

[0018] L'utilisation de l'invention implique d'ajouter une paire de cartes 41 et 42 supplémentaires qui sont utilisées pendant les régimes transitoires et expriment, comme les cartes 36 et 37, des limitations des débits d'injection d'après

le couple (qtc) et les fumées (qtf). Elles sont renseignées par les signaux provenant des mêmes capteurs (respectivement 27 et 28, et 27 et 17) et fournissent des valeurs de limitation qui parviennent à des bornes positives d'entrée de soustracteurs respectifs 43 et 44. les inégalités qtc > qoc et qtf > qof sont normalement respectées.

[0019] Les sorties des cartes 36 et 37 sont fournies aux bornes négatives d'entrée des soustracteurs 43 et 44, de façon que ceux-ci fournissent en sortie des signaux exprimant des augmentations de limitation de couple et de fumée en régimes transitoires et donc des débits d'injection supplémentaires (Δqc et Δqf). Ces signaux viennent s'ajouter aux signaux de sortie des cartes 36 et 37 dans des additionneurs respectifs 45 et 46, et ce sont en réalité les sommes sortant de ces additionneurs qui sont fournies aux circuits de sélection 38 et 39. Le signal sortant des circuits de sélection 38 et 39 représente donc le débit q réellement injecté dans le moteur 13, c'est-à-dire la courbe 10.

[0020] Toutefois, les signaux sortant des soustracteurs 43 et 44 n'arrivent aux additionneurs 45 et 46 qu'après avoir été corrigés dans des multiplicateurs 47 et 48 qui expriment l'influence des critères de fiabilité du groupe motopropulseur. Les signaux Δqc et Δqf entrant dans les multiplicateurs 47 et 48 représentent des valeurs de débits bruts d'injection supplémentaires d'après le couple et les fumées, et ceux qui en sortent représente des débits supplémentaires d'injection réduits par l'application d'un facteur de limitation global K, inférieur à 1, aux multiplicateurs 47 et 48. Ils sont notés $\Delta q'c$ (= $\Delta qc x K$) et $\Delta q'f$ (= $\Delta qf x K$). Cette partie de l'invention va maintenant être décrite.

10

20

25

30

35

40

45

50

[0021] Une rangée de courbes 49 exploite les signaux de capteurs respectifs mesurant les états atteints par des paramètres de fiabilité du groupe motopropulseur, ou des indications estimées d'une autre manière, par calcul ou estimation, notamment dans l'UCE 14. Les capteurs peuvent comprendre certains au moins des capteurs déjà rencontrés ou d'autres. Une liste possible des grandeurs utilisées peut être donnée par le tableau 1, sachant qu'elle n'est ni inclusive ni exclusive, chaque grandeur permettant d'évaluer au moins un paramètre de fiabilité.

Tableau 1

Liste des grandeurs	Moyen d'appréhension des grandeurs
Durée du régime transitoire	calcul
Fréquence des régimes transitoires	calcul
Régime du moteur	capteur
Dérivée du régime du moteur	calcul
Rapport de la boîte de vitesse	calcul
Température avant la turbine du turbocompresseur	estimation
Température d'huile du moteur	capteur
Pression d'huile du moteur	estimation
Température d'eau du moteur	capteur
Pression aux bornes du filtre à particules	capteur
Température de l'échangeur d'air	estimation
Température d'air de sortie du compresseur	estimation

[0022] Les courbes 49 fournissent un coefficient compris entre 0 et 1 d'après une fonction qui y est enregistrée. D'une façon générale, les coefficients élevés représentent des situations où le fonctionnement du moteur est parfaitement fiable et où les augmentations de débit d'injection de carburant ne sont pas à redouter, et les coefficients bas expriment au contraire des situations où les états extrêmes de fonctionnement du moteur sont proches et où il est donc prudent de respecter les limitations d'injection de carburant prescrites par les cartes 36 et 37.

[0023] Tous les coefficients correspondant aux critère de fiabilité issus des courbes 49 sont fournis à un circuit de sélection 50 qui choisit le plus petit d'entre eux et l'expédie vers les multiplicateurs 47 et 48, auxquels il ne parvient cependant qu'après avoir subi d'autres corrections qui constituent des aspects subsidiaires de l'invention et qui seront décrits dans quelques lignes. On remarquera maintenant que le circuit de sélection 50 a pour effet de faire dépendre l'augmentation du débit d'injection de carburant de celui des critères de fonctionnement du moteur qui est critique à l'instant considéré, ou qui exprime la limitation la plus stricte de l'augmentation du débit d'injection. On appelle "coefficient de limitation brut" et on note Kfi le coefficient issu du circuit de sélection 50.

[0024] Le procédé proposé dans ce mode de réalisation comporte une limitation de l'augmentation des performances, c'est-à-dire du débit d'injection supplémentaire. La limitation porte à la fois sur la durée du régime transitoire et sur la fréquence des régimes transitoires. Le facteur de limitation brut Kfi produit par le circuit de sélection 50 est délivré à la fois à un multiplicateur 51 et à un diviseur 52. Celui-ci divise un coefficient de gain ki produit par un circuit de gain

53 par le facteur de limitation brut et transmet un coefficient de gain corrigé

$$(\frac{ki}{K}fi)$$

5

10

15

30

35

40

45

50

à un intégrateur 54. La grandeur traitée par l'intégrateur 54 est le débit supplémentaire d'injection d'après le couple Δ 'qc (réduit par le facteur de limitation globale), c'est-à-dire la même grandeur que produit le multiplicateur 47. Ici, cette grandeur est produite par un autre multiplicateur 55. Il reçoit donc à une borne d'entrée le débit supplémentaire d'injection (brut) d'après le couple Δ qc et à l'autre borne un facteur de limitation global K issu du multiplicateur 51 et qui est aussi délivré aux multiplicateurs 47 et 48.

[0025] L'intégrateur 54 procède à une intégration temporelle de ce débit supplémentaire, et multiplie cette valeur par le gain issu du diviseur 52 tout en tenant compte aussi d'une valeur d'initialisation v, fournie par un second intégrateur 56 sur lequel on reviendra. L'intégrale obtenue

$$\left(\frac{ki}{Kfi}\int_{t_{i}}^{t_{2}}\Delta'\operatorname{qc}\,\mathrm{dt}\,+\,\mathrm{v}_{i}\right)\,=\,\mathrm{x}$$

[0026] La figure 4 illustre les résultats obtenus. Le premier diagramme temporel qui est représenté est de nouveau la courbe 1. Le deuxième diagramme porte la référence 59 et représente la valeur x de l'intégrale issue de l'intégrateur 54, et la troisième courbe porte la référence 60 et représente le débit supplémentaire d'injection pour la limitation de couple, issu du multiplicateur 47 ou 55 (Δ'qc). La valeur de la courbe 59 augmente assez vite jusqu'à ce qu'un seuil d'énergie 61 soit atteint, ce qui correspond à un état du filtre 58 fournissant une sortie égale à 1, et le débit d'injection supplémentaire 60 forme un palier 62 à un niveau élevé. Quand le seuil d'énergie 61 est dépassé, le filtre 58 fournit des valeurs de plus en plus faibles qui affectent le facteur de limitation global K et font diminuer assez rapidement le débit d'injection supplémentaire 60 jusqu'à ce qu'il devienne nul. L'intégrale 59 prend alors une valeur constante. Les courbes 63 et 64 sont analogues aux courbes 59 et 60 et montrent que si la valeur initiale de l'intégrale n'est pas nulle, le seuil d'énergie 61 est atteint plus vite, le palier 62 est plus bref, et la convergence du débit supplémentaire d'injection vers zéro est plus rapide. Or l'aire comprise sous la courbe 60 ou 64 figure le débit supplémentaire d'injection total pendant le régime transitoire, ou l'énergie supplémentaire totale fournie. On voit donc que la valeur d'initialisation influe fortement sur cette énergie.

[0027] La figure 5 montre aussi l'effet modérateur du facteur de limitation brut Kfi issu du circuit de sélection 50. Les courbes 1, 59 et 60 ont été recopiées. Si un facteur de limitation brut inférieur à 1 est appliqué, si par exemple il est égal à 0,5, les courbes 65 et 66 remplaceraient les courbes 59 et 60 en l'absence du diviseur 52 : l'intégrale convergerait vers la même valeur finale avec une lenteur plus grande et atteindrait aussi le seuil d'énergie 62 avec du retard. Il en résulterait que le palier 67 de la courbe 66, correspondant au palier 62 de la courbe 60, aurait une valeur égale à celle du palier 62 de la courbe 60 divisée par le gain ki, mais durerait plus longtemps que le palier 62 dans le même rapport, et que la courbe 66 convergerait ensuite vers zéro, mais plus lentement que la courbe 60, ce qui explique que l'aire comprise sous la courbe 66 serait identique, et que la quantité de carburant totale injectée serait invariable. En soi, le gain ki produit par le circuit 53 n'influe pas sur la quantité de carburant injecté mais sur la durée totale de l'injection. C'est pourquoi le diviseur 52 est ajouté. La figure 6 montre alors que le facteur de limitation brut Kfi est employé pour limiter la quantité de carburant total injecté : la courbe 65 est remplacée par la courbe 68 coïncidant avec la courbe 59 et permet donc au filtre 58 de fournir son facteur de réduction sans retard. La courbe 67 est alors remplacée par la courbe 69, dont le palier n'est pas plus haut que le palier 62 de la courbe 60 et qui converge aussi vite vers une valeur nulle que la courbe 60 : la quantité totale de carburant injecté est alors réduite en proportion du facteur de

limitation brut.

[0028] Pour finir on mentionne le mode d'influence des régimes transitoires précédents sur le traitement de celui-ci. L'objectif est de limiter l'amplitude de l'augmentation des performances du moteur en régime transitoire en fonction de la fréquence des régimes transitoires. Le signal qui entre dans le second intégrateur 56 dépend d'un commutateur 75 qui effectue une comparaison entre les signaux de sortie des cartes 35 et 36 pour déterminer si un état de régime transitoire existe maintenant, selon que la consigne des débits de carburant est supérieure à la limitation de débit d'après le couple. Dans un état transitoire, la sortie du multiplicateur 55, c'est-à-dire le débit d'injection supplémentaire Δ'qc, entre dans le second intégrateur 56, sinon c'est une constante négative provenant d'un circuit 76. Ainsi, la valeur d'initialisation v_i fournie au premier intégrateur 54 sera d'autant plus importante que des régimes transitoires précédents importants et prolongés auront été enregistrés ; leur influence décroîtra avec le temps grâce à l'effet de la constante négative, qui diminuera progressivement la valeur d'initialisation produite à la sortie du second intégrateur 56. Après une durée suffisante, la sortie du second intégrateur 56 tombera à zéro (mais le second intégrateur 56 est conçu pour ne jamais fournir de valeur négative) et l'énergie fournie dans le régime transitoire actuel ne sera pas diminuée, d'après le raisonnement fait à propos des courbes 59 et 61 de la figure 4.

[0029] La fréquence des transitoires permet aussi de corriger le facteur de limitation brut Kfi en y introduisant un autre coefficient modérateur Kfr. La valeur vi provenant du second intégrateur 56 est inversée dans un module de calcul 77 et enregistrée dans une mémoire 78 dont la fonction est de délivrer la valeur Kfr = 1- v_i fournie par le module de calcul 77 au début d'un transitoire pendant toute la durée de ce régime transitoire au premier module multiplicateur 51. Il apparaît maintenant clairement que le facteur de limitation globale fourni au module multiplicateur 47 et 48 dépend non seulement de l'état de fiabilité du fonctionnement du moteur, mais de la durée du transitoire et de la fréquence des régimes transitoires, qui interviennent toutes comme entrées dans le multiplicateur 51 d'après la formule K=(Kfi x x Ke x Kfr). On décrira finalement brièvement la figure 7 qui illustre l'effet de la fréquence des transitoires sur la commande du moteur. Le premier diagramme porte la référence 79 et illustre en fait trois régimes transitoires semblables à celui du diagramme 1 et séparés de durées égales à leurs durées d'existence. Le diagramme 80 illustre la sortie du premier intégrateur 54 et montre que le seuil d'énergie 81 est atteint de plus en plus vite après le début de chacun des régimes transitoires ; le diagramme 82 illustre le débit supplémentaire d'injection pour la limitation de couple et montre que la quantité totale de carburant fournie décroît à chaque nouveau régime transitoire ; le diagramme 83 représente la valeur de sortie du second module intégrateur 56 qui initialise le premier intégrateur 54 et montre notamment qu'elle prend des valeurs toujours plus élevées à chaque nouveau régime transitoire malgré la décroissance produite pendant leurs intervalles ; enfin, le diagramme 84 illustre la sortie de la mémoire 78 et montre que le facteur de limitation en fonction de la fréquence des régimes transitoires est régulièrement décroissant. Mais on doit noter que, si l'accélération est moins sensible à chacun des transitoires, le système tend à converger vers un état où un débit supplémentaire d'injection est encore délivré au moteur, même s'il est plus petit qu'au premier transitoire.

[0030] Pour résumer, l'invention est relative, dans toutes ses variantes à un procédé d'ajustage des performances d'un moteur en fonctionnement , comprenant une détermination de débit d'injection de carburant de consigne, un calcul d'au moins une limite de débit d'injection de carburant en fonction d'au moins un critère de fonctionnement du moteur et, quand un état de régime transitoire d'accélération est détecté, un calcul d'un débit supplémentaire de carburant autorisé temporairement au-delà de la limite (Δqc , Δqf), caractérisé en ce que le débit supplémentaire est limité (Δqc , Δqf) en fonction d'au moins un paramètre de fiabilité du moteur.

on notera que pour le calcul des coefficients élémentaires Ke et Kfr qui, comme le coefficient de limitation brut Kfi, sont compris entre 0 et 1, on utilise des estimations de débit supplémentaire d'injection total d'après un seul des débits supplémentaires calculés, ici d'après le couple moteur (Δ 'qc), alors même qu'un autre débit supplémentaire, Δ 'qf par exemple peut déterminer le débit d'injection total q. On se contente donc d'une estimation approchée, dont l'expérience a cependant montré la validité.

[0031] La détection d'un régime transitoire peut dépendre d'un critère plus compliqué que celui qu'on a signalé. Par exemple, le capteur de pédale d'accélération 26 peut alimenter un module différentiateur 85, et un module de style de conduite 86 lui est associé. Un comparateur 87 détecte la vitesse d'enfoncement de la pédale 15 et détermine si elle est supérieure à un seuil fourni par le module de style de conduite 86 et qui peut être ajusté d'après la demande du conducteur. Si la vitesse d'enfoncement est supérieure au seuil, il est détecté par le comparateur 87 qu'un régime transitoire existe ; les sorties des modules comparateurs 75 et 87 contribuent alors toutes deux à la détection de l'état transitoire au moyen d'une porte logique 88, ET par exemple.

Revendications

55

20

30

35

40

45

50

1. Procédé d'ajustage des performances d'un moteur (13) en fonctionnement, comprenant une détermination d'un débit d'injection de carburant de consigne (qo), une détermination d'au moins une limite de débit d'injection de carburant en fonction d'au moins un critère de fonctionnement du moteur (qoc, qof) et, quand un état de régime

transitoire d'accélération est détecté, une détermination d'un débit d'injection supplémentaire de carburant autorisé temporairement au-delà de la limite (Δqc , Δqf), **caractérisé en ce que** le débit d'injection supplémentaire est limité ($\Delta'qc$, $\Delta'qf$) en fonction d'au moins un paramètre de fiabilité du moteur.

2. Procédé d'ajustage des performances d'un moteur selon la revendication 1, caractérisé en ce que la limite de débit d'injection est calculée au moyen d'au moins une carte (41, 42) en fonction du régime du moteur.

10

35

40

45

- 3. Procédé d'ajustage des performances d'un moteur selon l'un quelconque des revendication 1 ou 2, caractérisé en ce qu'il comprend une détermination de plusieurs des limites d'injection de carburant en fonction de critères respectifs de fonctionnement du moteur et une sélection d'une valeur la plus basse parmi lesdites limites.
- **4.** Procédé d'ajustage des performances d'un carburant selon la revendication 3, **caractérisé en ce que** les critères de fonctionnement du moteur sont le couple moteur, et la production de fumées d'échappement.
- 5. Procédé d'ajustage des performances d'un moteur selon la revendication 4, **caractérisé en ce que** l'état de régime transitoire est détecté quand le débit d'injection de carburant de consigne (qo) est supérieur à la limite de débit d'injection de carburant en fonction du couple moteur (qoc).
- 6. Procédé d'ajustage des performances d'un moteur selon l'une quelconque des revendication 1 à 5, caractérisé en ce que le débit supplémentaire est limité en fonction d'au moins un paramètre de fiabilité du moteur, des limitations du débit supplémentaire sont calculées séparément pour chacun desdits paramètres, et une sélection (Kfi) d'une limitation la plus stricte parmi lesdites limitations est faite, ladite limitation la plus stricte étant utilisée pour limiter le débit d'injection supplémentaire.
- 7. Procédé d'ajustage des performances d'un moteur diesel selon l'une quelconque des revendications précédentes, caractérisé en ce que le paramètre de fiabilité du moteur comprend au moins l'un des paramètres suivant : régime du moteur ou dérivée temporelle dudit régime ; un rapport de boîte de vitesse ; au moins une température parmi des températures d'huile, de liquide de refroidissement, d'échangeur d'air, d'air de sortie d'un compresseur et d'air d'entrée d'une turbine ; au moins une pression parmi des pressions d'huile du moteur et de borne d'un filtre à particules ; une durée du régime transitoire ; une durée entre le régime transitoire et au moins un régime transitoire précédent.
 - 8. Procédé d'ajustage des performances d'un moteur selon la revendication 7, caractérisé en ce qu'il comprend une estimation répétitive (54) du débit supplémentaire d'injection (Δ'qc, Δ'qf) total depuis le commencement du régime transitoire, et une application au débit supplémentaire d'injection d'un facteur modérateur (Ke) calculé en fonction du débit supplémentaire d'injection total.
 - **9.** Procédé d'ajustage des performances d'un moteur selon la revendication 8, **caractérisé en ce que** le facteur modérateur est appliqué lorsqu'un seuil du débit supplémentaire d'injection total est atteint (55).
 - 10. Procédé d'ajustage des performances d'un moteur selon l'une quelconque des revendications 8 ou 9, caractérisé en ce que l'estimation du débit supplémentaire d'injection total est multipliée par un gain (ki/Kfi) inversement proportionel à un coefficient multiplicateur inférieur à 1 qui limite le débit d'injection supplémentaire en fonction du paramètre de fiabilité du moteur, avant que le facteur modérateur (Ke) ne soit calculé.
 - 11. Procédé d'ajustage des performances d'un moteur selon l'une quelconque des revendication 8 à 10 et la revendication 7, caractérisé en ce que l'estimation du débit supplémentaire d'injection total est augmentée d'un terme positif (v_i) exprimant le régime transitoire précédent, avant que le facteur modérateur ne soit appliqué.
- 12. Procédé d'ajustage des performances d'un moteur selon la revendication 11, caractérisé en ce que ledit terme positif est un débit supplémentaire d'injection total pendant au moins un régime transitoire précédent, diminué d'une quantité proportionnelle à la durée écoulée depuis le régime transitoire précédent.
- 13. Procédé d'ajustage des performances d'un moteur selon la revendication 1, caractérisé en ce que le débit sup-55 plémentaire est limité par un coefficient multiplicateur (K) qui est un produit de coefficients élémentaires (Kfi, Ke, Kfr) tous au plus égaux à 1 calculés en fonction de paramètres respectifs de fiabilité du moteur.
 - 14. Procédé d'ajustage des performances d'un moteur selon la revendication 13, caractérisé en ce que les coeffi-

cients élémentaires comprennent un coefficient (Kfi) calculé directement en fonction du paramètre de fiabilité du moteur, un coefficient (Ke) calculé en fonction d'une estimation du débit supplémentaire d'injection total depuis le commencement du régime transitoire et un coefficient (Kfr) calculé en fonction d'une proximité ou d'une fréquence de régimes transitoires précédents.

5

15. Moteur équipé d'une unité de commande électronique apte à mettre en oeuvre le procédé selon l'une quelconque des revendications précédentes.

16. Moteur selon la revendication 15, qui est un moteur diesel.

15

10

20

25

30

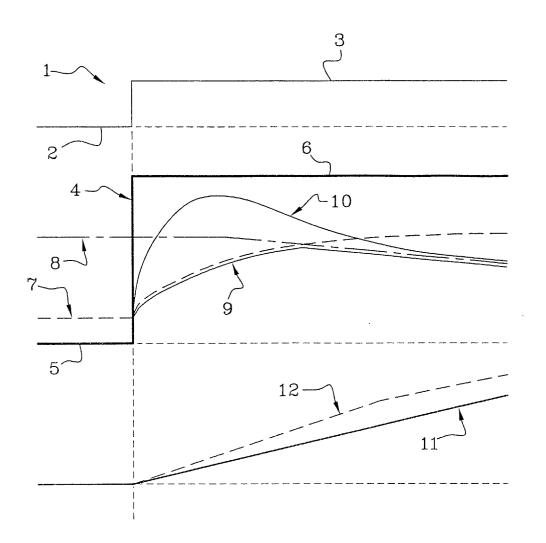
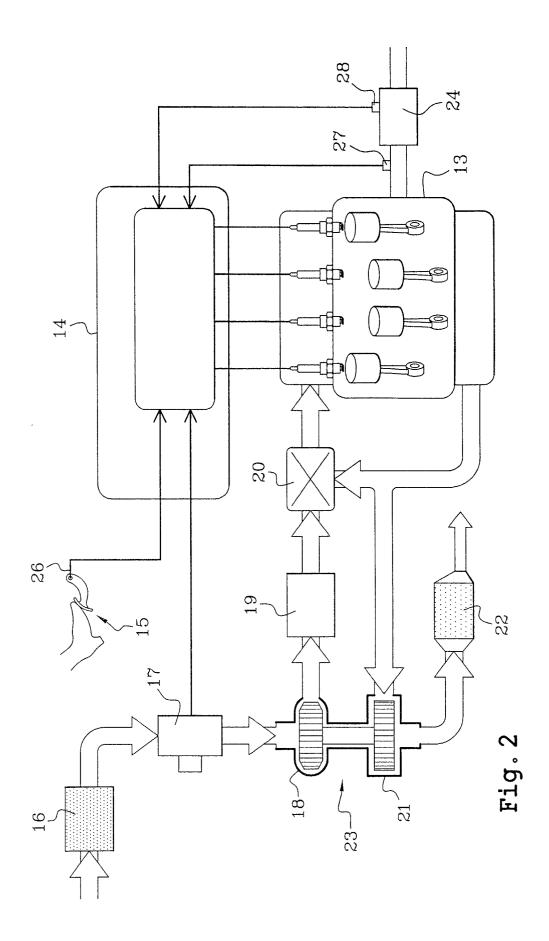
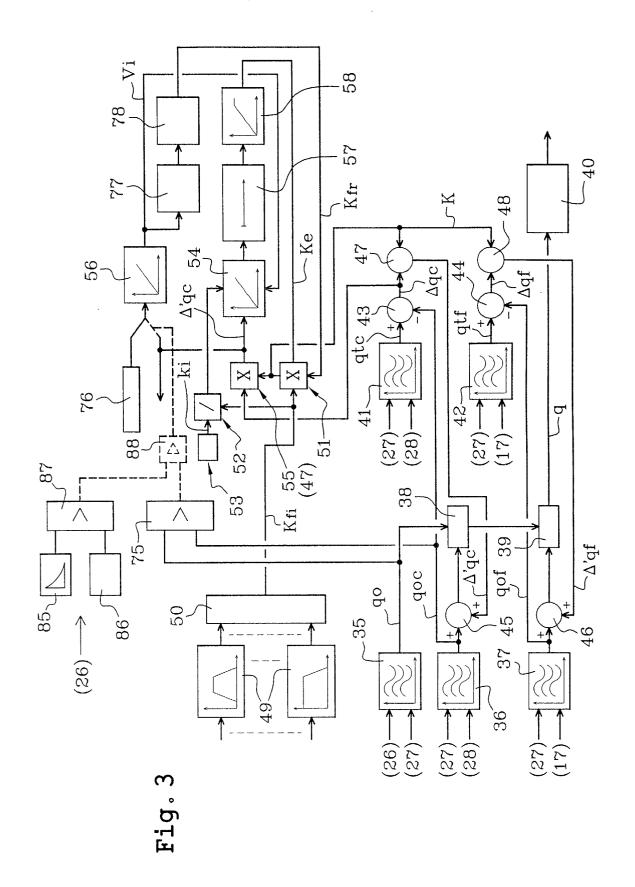
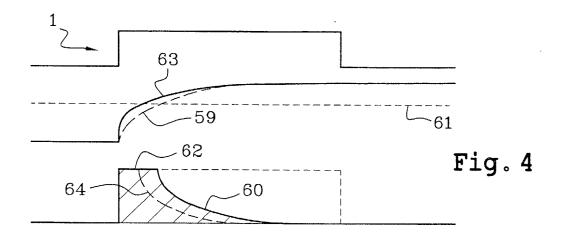
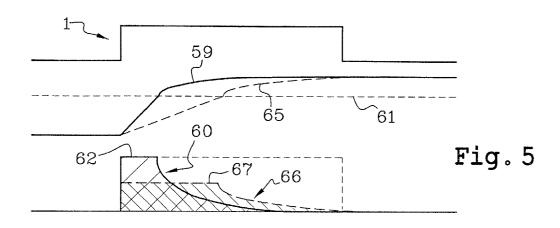
35

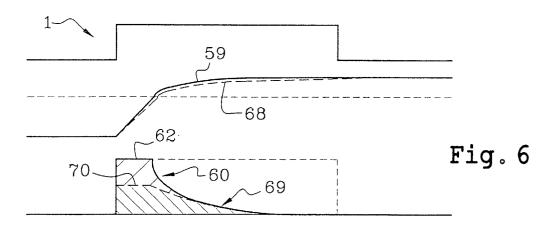
40

45

50

55


Fig. 1

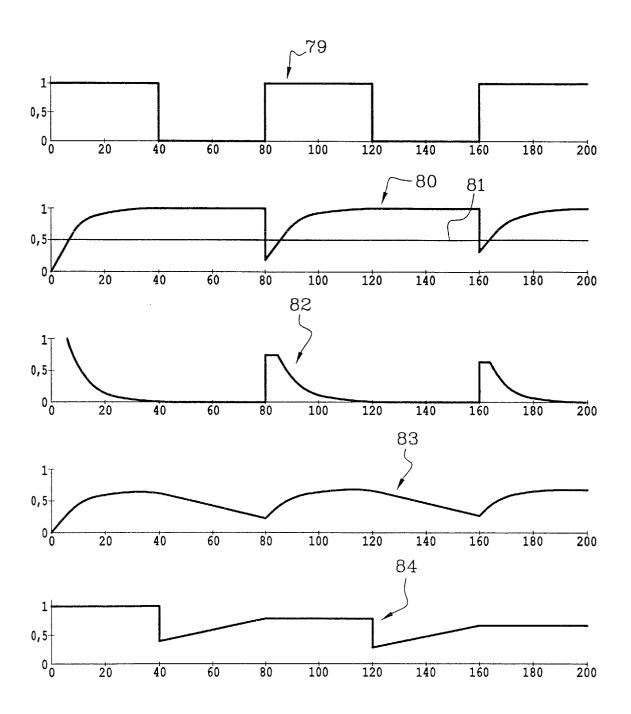


Fig.7