

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) **EP 1 318 693 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:11.06.2003 Patentblatt 2003/24

(51) Int Cl.7: H05B 3/06

(21) Anmeldenummer: 02027257.1

(22) Anmeldetag: 06.12.2002

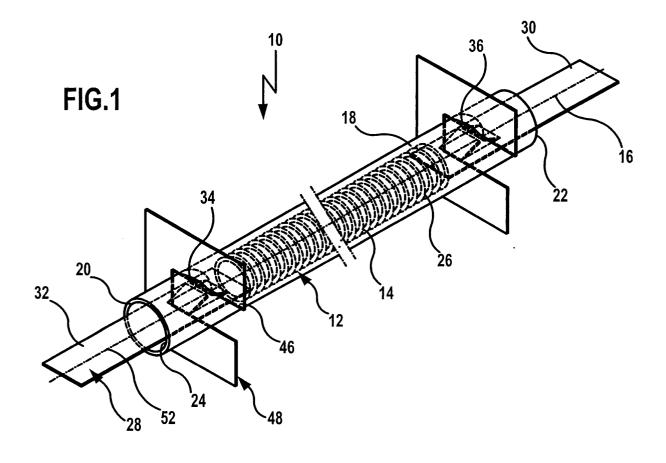
(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR Benannte Erstreckungsstaaten:

AL LT LV MK RO

(30) Priorität: 10.12.2001 DE 10161535

(71) Anmelder: Wolf, Brigitte 70563 Stuttgart (DE)


(72) Erfinder: Wolf, Brigitte 70563 Stuttgart (DE)

(74) Vertreter: Hoeger, Stellrecht & Partner Uhlandstrasse 14 c 70182 Stuttgart (DE)

(54) Heizelement und Verfahren zur Herstellung eines Heizelements

(57) Um ein Heizelement, insbesondere für Toaster, mit einer Heizwendel, mit einem Trägerkörper für die Heizwendel und mit elektrischen Anschlußelementen, welche mit der Heizwendel verbunden sind, zu schaf-

fen, welches auf möglichst einfache und kostengünstige Weise herstellbar ist, ist vorgesehen, daß an dem Trägerkörper mindestens ein Haltesteg zum Halten eines zugeordneten Anschlußelements gebildet ist.

Beschreibung

[0001] Die Erfindung betrifft ein Heizelement mit einer Heizwendel, mit einem Trägerkörper für die Heizwendel und mit elektrischen Anschlußelementen, welche mit der Heizwendel verbunden sind.

[0002] Ferner betrifft die Erfindung ein Verfahren zur Herstellung eines Heizelements mit einem Hohlrohr als Trägerkörper, einer Heizwendel und mit elektrischen Anschlußelementen.

[0003] Derartige Heizelemente sind aus der EP 0 381 976 A2 bekannt. Sie werden beispielsweise in Toastern, Infrarotstrahlern oder industriellen Quarzstrahlern eingesetzt.

[0004] Der Erfindung liegt die Aufgabe zugrunde, ein Heizelement der eingangs beschriebenen Art zu schaffen, welches auf möglichst einfache und kostengünstige Weise herstellbar ist.

[0005] Diese Aufgabe wird bei dem gattungsgemäßen Heizelement erfindungsgemäß dadurch gelöst, daß an dem Trägerkörper mindestens ein Haltesteg zum Halten eines zugeordneten Anschlußelements gebildet ist.

[0006] Dadurch, daß ein Haltesteg zum Halten eines Anschlußelements an dem Trägerkörper selbst gebildet ist, läßt sich die Anzahl der zur Herstellung benötigten Teile minimieren. Ist für die beiden Anschlußelemente jeweils ein Haltesteg vorgesehen, dann läßt sich das erfindungsgemäße Heizelement mittels vier Teilen herstellen, nämlich der Heizwendel, dem Trägerkörper und den beiden Anschlußelementen. Weitere Teile werden nicht benötigt. Insbesondere werden keine Abstützkappen zum Halten von Anschlußelementen an Stirnseiten des Trägerkörpers benötigt.

[0007] Die Haltestege lassen sich auf einfache Weise bei der Herstellung des Trägerkörpers an diesem bilden, beispielsweise bei einem Quarzglasrohr als Trägerkörper während des Glasblasprozesses in diesem einformen. Diese lassen sich somit auf einfache und kostengünstige Weise ausbilden.

[0008] Dadurch, daß an dem Trägerkörper selber bereits Haltestege zur Fixierung der Anschlußelemente gebildet sind, läßt sich das Heizelement auch auf einfache Weise herstellen, da sich insbesondere ein Anschlußelement auf einfache Weise auf einen Haltesteg aufschieben läßt, um dieses an dem Haltesteg zu fixieren

[0009] Insbesondere ist dabei ein Haltesteg einstükkig oder integral an dem Trägerkörper gebildet, so daß der Trägerkörper selber bereits die Haltestege aufweist, um dann die Anschlußelemente mit der daran fixierten Heizwendel halten zu können.

[0010] Günstig ist es, wenn ein Haltesteg beabstandet zu einem Ende des Trägerkörpers gebildet ist. Dadurch ist ein Haltesteg zum einen auf einfache Weise herstellbar. Zum anderen läßt es sich dadurch auch erreichen, daß insbesondere nur noch eine Anschlußfahne des Anschlußelements über den Trägerkörper hin-

ausragt. Dadurch läßt sich bei gleicher Gesamtlänge des Heizelements der Trägerkörper länger ausbilden und damit eine höhere Heizleistung erreichen bzw. bei gleicher Heizleistung läßt sich das Heizelement kürzer ausbilden.

[0011] Vorteilhafterweise ist die Heizwendel über mindestens zwei beabstandete Haltestege an dem Trägerkörper gehalten. Dadurch läßt sich die Heizwendel zwischen den beiden Haltestegen an dem Trägerkörper fixieren.

[0012] Günstigerweise ist die Heizwendel in ihrer Längsrichtung gespannt am Trägerkörper gehalten und insbesondere zwischen beabstandeten Haltestegen am Trägerkörper gespannt gehalten. Dies erleichtert die Herstellbarkeit des Heizelements, da während der Herstellung der Abstand zwischen den heiden Anschlußelementen, welche an die Heizwendel gekoppelt sind, nicht festgelegt werden muß. Durch Überwindung der Federkraft der Heizwendel lassen sich die beiden Halteelemente an ihren zugeordneten Haltestegen fixieren. Durch die Kräfte, welche die gespannte Heizwendel auf die Anschlußelemente ausübt, ist wiederum für eine sichere Fixierung der Anschlußelemente an den Haltestegen am Trägerkörper gesorgt.

[0013] Vorteilhafterweise ist ein Haltesteg durch eine Ausformung einer Trägerkörperwand gebildet. Ein derartiger Haltesteg läßt sich auf einfache Weise herstellen

[0014] Weiterhin ist es günstig, wenn ein Haltesteg über eine der Heizwendel zugewandte Oberfläche des Trägerkörpers hinausragt. Ist die Heizwendel in einem Innenraum eines als Hohlrohr ausgebildeten Trägerkörpers angeordnet, dann ragt ein Haltesteg in diesen Innenraum. Es kann aber auch vorgesehen sein, daß der Trägerkörper beispielsweise ein Keramikrohr ist und ein Haltesteg über dessen äußere Oberfläche hinausragt, so daß ein Anschlußelement daran fixierbar ist.

[0015] Besonders vorteilhaft ist es jedoch, wenn der Trägerkörper ein Hohlrohr ist, in dessen Innenraum die Heizwendel angeordnet ist. Dies ist besonders geeignet für beispielsweise Toaster, da dann auch über das Hohlrohr die Heizwendel mechanisch geschützt ist.

[0016] Insbesondere ist der Trägerkörper ein Quarzglasrohr, welches hitzebeständig ist und eine gute Wärmeableitung ermöglicht. Außerdem läßt sich bei einem Quarzglasrohr ein Haltesteg auf relativ einfache Weise während der Herstellung ausformen, indem beispielsweise in das noch weiche Glasmaterial eine entsprechende Kerbe eingedrückt wird, die eine in den Innenraum des Hohlrohrs weisende Erhebung ausbildet.

[0017] Vorteilhafterweise ist ein Haltesteg durch eine in den Innenraum des Trägerkörpers weisende Erhebung über eine innere Trägerkörperwandoberfläche gebildet. Ein solcher Haltesteg läßt sich auf einfache und kostengünstige Weise ausbilden.

[0018] Ferner ist es günstig, wenn die Erhebung auf einer Außenseite des Trägerkörpers eine Vertiefung aufweist, beispielsweise eine kerbenförmige Vertiefung

mit einer V-Form. Über eine solche Vertiefung läßt sich ein Heizelement an einer Anwendung, beispielsweise einem Toaster, fixieren.

[0019] Es ist dann sehr vorteilhaft, wenn ein einem Haltesteg zugeordnetes Fixierungselement für das Heizelement vorgesehen ist, über welches das Heizelement insbesondere an einem Toaster fixierbar ist, wobei ein Fixierungselement zum Halten des Heizelement in die Vertiefung des zugeordneten Haltestegs eintauchbar ist. Durch das Eintauchen des Fixierungselements läßt sich eine Translationsbewegung des Heizelements quer zur Vertiefung sperren. Umgreift dann auch noch das Fixierungselement mindestens teilweise den Trägerkörper, läßt sich ebenfalls eine Drehbewegung des Trägerkörpers sperren.

[0020] Besonders günstig ist es, wenn sich ein Haltesteg in einem Umfangsbereich des Trägerkörpers erstreckt, welcher gleich oder kleiner ist als ein halber Umfang des Trägerkörpers. Dadurch läßt es sich ermöglichen, daß ein Anschlußelement insbesondere mit entsprechenden Haltezungen über eine Drehung auf einen Haltesteg aufschiebbar ist, um so sich an diesem abzustützen. Dies hat den Vorteil, daß beispielsweise über entsprechende Haltezungen eine kleinere Kraft überwunden werden muß, wenn diese auf den Haltesteg über Drehung aufgeschoben werden, als wenn eine Translationsbewegung in einer Längsrichtung des Trägerkörpers erforderlich ist. Dadurch ist beispielsweise auch kein zusätzliches Werkzeug erforderlich, um eine Haltezunge aus einer Haltestellung zu drücken, damit die Haltezunge einen Haltesteg passieren kann, wenn ein Anschlußelement an einem Haltesteg vorbeigeschoben wird.

[0021] Ein Haltesteg ist günstigerweise so ausgebildet, daß die Verdrehbarkeit eines an ihm gehaltenen Anschlußelements aus einer Haltestellung gesperrt ist. Es läßt sich dann erreichen, daß ein Haltesteg nicht nur eine Translationsbewegung des Anschlußelements in einer Längsrichtung des Trägerkörpers sperrt, sondern auch eine Verdrehbarkeit um eine Achse parallel zu dieser Längsrichtung. Dadurch wird das Anschlußelement an dem zugeordneten Haltesteg mit geringer Spielfreiheit gehalten, wobei sich diese minimierte Spielfreiheit durch einen geringen konstruktiven Aufwand herstellen läßt.

[0022] Eine einfache Verbindung zwischen den Anschlußelementen und der Heizwendel läßt sich herstellen, wenn diese miteinander verschweißt sind.

[0023] Insbesondere endet die Heizwendel dabei an beiden Enden mit einer letzten Spiralwindung, so daß an der Heizwendel selbst keine weiteren Arbeitsgänge wie Biegen der letzten Windung erforderlich sind. Dadurch ist auch die Gefahr beseitigt, daß sich die Heizwendel ungleichmäßig verzieht. Durch Abschneiden nach der jeweils letzten Windung läßt sich erreichen, daß diese eben mit der letzten Spiralwindung endet.

[0024] Vorteilhafterweise sind die Anschlußelemente

mit der letzten oder mehreren letzten Spiralwindungen verschweißt, beispielsweise mit den letzten zwei bis fünf Windungen der Heizwendel oder den letzten zwei bis drei Windungen.

[0025] Um ein Verschweißen der Anschlußelemente mit der Heizwendel zu erleichtern, ist vorgesehen, daß diese mit einer Schweißfahne versehen sind.

[0026] Ganz besonders vorteilhaft ist es, wenn ein Anschlußelement mindestens eine Haltezunge zum Abstützen an dem zugeordneten Haltesteg aufweist. Auf diese Weise läßt sich ein Anschlußelement an dem zugeordneten Haltesteg abstützen und damit an dem Trägerkörper halten.

[0027] Insbesondere ist dabei die mindestens eine Haltezunge einstückig an dem Anschlußelement gebildet, so daß dieses sich auf einfache und kostengünstige Weise herstellen läßt.

[0028] Um eine sichere und weitgehend spielfreie Fixierung eines Anschlußelements an einem Haltesteg zu erreichen, weist ein Anschlußelement mindestens zwei Haltezungen auf, wobei eine erste Haltezunge sich an einer Fläche des zugeordneten Haltestegs abstützt, welche dem einen Ende des Trägerkörpers zugewandt ist, und eine zweite Haltezunge sich an einer Fläche des Haltestegs abstützt, welche dem anderen Ende des Trägerkörpers zugewandt ist. Dadurch läßt sich eine Translationsbewegung des Anschlußelements relativ zu dem Haltesteg in einer Längsrichtung des Trägerkörpers verhindern, und zwar in Richtung des einen Endes hin als auch in Gegenrichtung.

[0029] Günstigerweise ist die mindestens eine Haltezunge so an dem Anschlußelement angeordnet, daß bei an dem Trägerkörper gehaltenem Anschlußelement diese in einem Winkel zur Längsrichtung des Trägerkörpers positioniert ist. Dadurch ist erreicht, daß sich eine Haltezunge an einem Haltesteg abstützen kann und eine Klemmkraft ausübbar ist mit einer Komponente parallel zur Längsrichtung des Trägerkörpers und somit ein Anschlußelement an dem zugeordneten Haltesteg fixierbar ist. Zum anderen läßt sich eine solche Haltezunge auf einfache Weise an einem Anschlußelement herstellen, beispielsweise durch Ausstanzung.

[0030] Insbesondere ist ein Anschlußelement mit seiner mindestens einen Haltezunge so ausgebildet, daß diese auf den zugeordneten Haltesteg aufschiebbar ist. Ein Anschlußelement läßt sich dann so positionieren, daß es an einem Haltesteg vorbeischiebbar ist, d. h. diesen passieren kann. Soll das Anschlußelement mit einem Haltesteg fixiert werden, dann wird es auf diesen aufgeschoben. Dadurch läßt sich die Herstellung des erfindungsgemäßen Heizelements stark vereinfachen, da sich die Heizwendel mit einem Anschlußelement durch den Trägerkörper durchschieben läßt, wobei durch eine entsprechende Stellung des Anschlußelements dieses einen Haltesteg passieren kann, an welchem es nicht gehalten werden soll, und mit dem zugeordneten Haltesteg, an dem es fixiert werden soll, so ausgerichtet wird, daß es dann aufschiebbar ist.

20

25

[0031] Eine einfache Herstellungsmöglichkeit ergibt sich, wenn die mindestens zwei Haltezungen so ausgebildet und angeordnet sind, daß diese durch Drehung des Anschlußelements um eine Achse parallel zur Längsrichtung des Trägerkörpers oder zusammenfallend mit dieser auf den zugeordneten Haltesteg aufschiebbar sind. In einer bestimmten Winkelstellung kann dann ein Anschlußelement so ausgerichtet werden, daß dieses einen Haltesteg mindestens teilweise passieren kann, während es dann, wenn es mit dem zugeordneten Haltesteg entsprechend ausgerichtet ist, durch Drehung auf diesen aufschiebbar ist.

[0032] Insbesondere weist ein Haltesteg eine Aufnahme für die mindestens eine Haltezunge auf, wobei die Aufnahme gegenüber dem restlichen Haltesteg derart zurückgesetzt ist, daß eine Drehbarkeit aus der Aufnahme im wesentlichen gesperrt ist. Dadurch läßt sich eine Haltestellung eines Anschlußelement an einem Haltesteg, welche durch Aufschiebung über eine Drehung erreicht wurde, sichern; um das Anschlußelement aus dem zugeordneten Haltesteg herauszudrehen, ist ein größerer Kraftaufwand erforderlich. Dadurch wiederum läßt sich eine sichere Fixierungsstellung des Anschlußelements an einem Haltesteg mit geringem Spiel erreichen.

[0033] Weiterhin ist es günstig, wenn ein Anschlußelement ein Stützteil aufweist, welches im wesentlichen auf einem Durchmesser des Trägerkörpers in dessen Innenraum angeordnet ist. Der Durchmesser eines zylindrischen Körpers ist diejenige Strecke, welche die größte Länge zwischen zwei Verbindungspunkten aufweist. Ist das Stützteil, beispielsweise ein Anschlußfahnenfortsetzung, so ausgebildet, das eine Verschieblichkeit quer zur Längsrichtung des Trägerkörpers im wesentlichen gesperrt ist, und zwar insbesondere dadurch, daß seine entsprechende Breite nur wenig kürzer ist als der Innendurchmesser des Trägerkörpers, dann ist eben das Anschlußelement auch gegenüber einer Querverschieblichkeit gesichert, ohne daß dazu weitere konstruktive Maßnahmen und insbesondere zusätzliche Bauteile notwendig sind.

[0034] Ganz besonders vorteilhaft ist es, wenn die Anschlußelemente und Haltestege so aufeinander abgestimmt sind, daß ein Anschlußelement mit Heizwendel durch den Trägerkörper schiebbar ist und durch Drehung an dem zugeordneten Haltesteg fixierbar ist. Dadurch läßt sich gewährleisten, daß ein Anschlußelement mit der Heizwendel beim Einschub in den Trägerkörper an dem Haltesteg, an welchem das andere Anschlußelement zu fixieren ist, vorbeischiebbar ist, indem nämlich das Anschlußelement in eine entsprechende Winkelstellung gebracht wird. Auf den zugeordneten Haltesteg läßt es sich dann aber durch Drehung aufschieben. Dadurch läßt es sich beispielsweise erreichen, daß beide Anschlußelemente jeweils endseitig mit der Heizwendel verbunden werden und dann ein Anschlußelement mit der Heizwendel durch den Trägerkörper hindurchgeschoben wird, ohne dabei die

Heizwendel zu überdehnen oder ungleichmäßig zu verziehen.

[0035] Ein Anschlußelement insbesondere mit zwei beabstandeten Haltezungen ist auf einfache und kostengünstige Weise als Stanzteil herstellbar.

[0036] Ferner liegt der Erfindung die Aufgabe zugrunde, das eingangs genannte Verfahren derart zu verbessern, daß ein Heizelement möglichst einfach und kostengünstig herstellbar ist.

[0037] Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Trägerkörper an dessen Ende beabstandete, in einen Innenraum ragende Haltestege aufweist und das Verfahren die Schritte umfaßt:

- die Heizwendel wird mit einem oder beiden Anschlußelementen verbunden;
- ein Anschlußelement wird so relativ zu den Haltestegen verdreht, daß dieses in das Hohlrohr eingeführt an einem Haltesteg vorbei und durch dieses schiebbar ist, bis dieses Anschlußelement mit dem zugeordneten Haltesteg ausgerichtet ist und
- dieses Anschlußelement wird auf den zugeordneten Haltesteg mit entsprechenden Haltezungen zur Abstützung an dem Haltesteg durch Drehung aufgeschoben.

[0038] Durch das erfindungsgemäße Verfahren läßt sich ein Heizelement herstellen, welches nur vier Bauteile aufweist, nämlich eine Heizwendel, zwei Anschlußelemente und einen Trägerkörper mit entsprechend daran gebildeten Haltestegen.

[0039] Weitere Vorteile und weitere vorteilhafte Ausgestaltungen wurden bereits im Zusammenhang mit dem erfindungsgemäßen Heizelement erläutert.

[0040] Insbesondere wird weiterhin das andere Anschlußelement in einer solchen Winkelstellung in das Hohlrohr eingeschoben, daß es durch Drehung gegen diese Stellung auf den zugeordneten Haltesteg aufschiebbar ist. Es lassen sich damit beide Anschlußelemente mit der Heizwendel verbinden und entsprechend läßt sich dann die Heizwendel mit den Anschlußelementen durch das Hohlrohr schieben. Dadurch wiederum wird eine übermäßige Dehnung und Verziehung der Heizwendel vermieden.

[0041] Es kann dabei vorgesehen sein, daß an einem Anschlußelement eine Drehsperre angeordnet wird, um dessen Verdrehung während des Durchschiebens durch das Hohlrohr oder des Einschiebens in das Hohlrohr im wesentlichen zu verhindern. Bei dieser Drehsperre kann es sich beispielsweise um einen Dorn handeln.

[0042] Die nachfolgende Beschreibung bevorzugter Ausführungsformen dient im Zusammenhang mit der Zeichnung der näheren Erläuterung der Erfindung. Es zeigen:

Figur 1 eine perspektivische Ansicht eines Ausführungsbeispiels eines erfindungsgemäßen Heizelements;

Figur 2 eine Teilschnittansicht des Heizelements gemäß Figur 1 (längs der Linie 2-2 gemäß Figur 3);

Figur 3 eine Draufsicht auf das Heizelement gemäß Figur 1 in Richtung A gemäß Figur 2;

Figur 4 eine Variante eines Haltestegs in Draufsicht;

Figur 5 eine Teilschnittansicht eines Heizelements längs der Linie 5-5 gemäß Figur 4 und

Figur 6 eine Draufsicht in Richtung B gemäß Figur 5 auf das entsprechende Heizelement, wobei eine Heizwendel nicht gezeigt ist.

[0043] Ein Ausführungsbeispiel eines erfindungsgemäßen Heizelements, welches in Figur 1 als Ganzes mit 10 bezeichnet ist, umfaßt einen Trägerkörper 12 für eine Heizwendel 14. Dieser Trägerkörper 12 erstreckt sich in einer Längsrichtung 16 und weist eine zylindrische Außenfläche 18 mit gegenüberliegenden stirnseitigen Enden 20 und 22 auf.

[0044] Bei dem in Figur 1 gezeigten Ausführungsbeispiel ist der Trägerkörper 12 als Hohlrohr ausgebildet mit einem zylindrischen Innenraum 24 zur Aufnahme der Heizwendel 14. Insbesondere ist der Trägerkörper 12 dann aus Quarzglas gefertigt.

[0045] Die in dem Trägerkörper 12 innenliegende Heizwendel 14 ist spiralförmig ausgebildet mit einer Mehrzahl von Windungen 26. An den jeweiligen Enden der Heizwendel 14 ist ein elektrisches Anschlußelement angeordnet; dem Ende 20 des Trägerkörpers 12 hin ist ein erstes Anschlußelement 28 mit der Heizwendel 14 verbunden und dem Ende 22 des Trägerkörpers 12 zugewandt ist ein zweites Anschlußelement 30 mit der Heizwendel 14 verbunden. Die beiden Anschlußelemente 28 und 30 werden in einer Anwendung, beispielsweise in einem Toaster, mit entgegengesetzten Polen einer Stromquelle verbunden, so daß die Heizwendel 14 strombeaufschlagbar ist. Die durch den Stromdurchfluß durch die Heizwendel 14 erzeugte ohmsche Wärme stellt die Heizquelle des Heizelements 10 dar.

[0046] Die Anschlußelemente 28, 30, welche beispielsweise aus einem zunderfreien Material und insbesondere aus einer Chrom-Nickel-Verbindung hergestellt sind, weisen jeweils eine über die zugeordneten Enden 20, 22 des Trägerkörpers 12 hinausragende Anschlußfahne 32 auf, welche jeweils mit der Stromquelle verbunden wird. Die Anschlußelemente 28, 30 sind dabei über zugeordnete Haltestege 34, 36, welche an dem Trägerkörper 12 beabstandet zu den jeweiligen Enden 20, 22 gebildet sind, gehalten (Figur 2).

[0047] Die Haltestege 34, 36 sind einstückig und in-

tegral an dem Hohlrohr 12 als Trägerkörper gebildet. Der Haltesteg 34 (und auf die gleiche Weise der Haltesteg 36) umfaßt dabei eine V-förmige Erhebung 38, welche über eine innere Oberfläche 40 des Hohlrohrs 12 in den Innenraum 24 ragt. Die innere Oberfläche 40, über die der Haltesteg 34 hinausragt, ist dabei parallel zur Längsrichtung 16 des Trägerkörpers 12 orientiert (mit Normalenrichtung senkrecht zur Längsrichtung 16).

[0048] Auf der Außenfläche 18 des Trägerkörpers 12 weist der Haltesteg 34 gegenüber einer zur inneren Oberfläche 40 parallelen äußeren Oberfläche 42 eine kerbenförmige Vertiefung 44 beispielsweise in V-Form auf, in die beispielsweise eine Flanke 46 eines Haltebleches 48 eintauchen kann, um das Heizelement 10 über das Halteblech 48 als Fixierungselement an einer Anwendung, beispielsweise einem Toaster, unverschieblich und drehfest zu halten.

[0049] Das Halteblech 48 ist dabei als Fixierungselement so an die zugeordnete Vertiefung 44 angepaßt, daß zum einen die Verschieblichkeit längs der Richtung 16 gesperrt ist und zum anderen die Verdrehbarkeit des Trägerkörpers 12 relativ zu dem Halteblech 48 gesperrt ist

[0050] Der Haltesteg 34 erstreckt sich, wie in Figur 3 gezeigt, über einen Umfangsbereich des Trägerkörpers 12, welcher kleiner ist als der halbe Umfang des Trägerkörpers 12 (bezogen sowohl auf die Außenfläche 18 des Trägerkörpers 12 als auch auf dessen den Innenraum 24 bildende Innenseite). Dadurch wird zur Herstellung einer Fixierungsverbindung zwischen dem Anschlußelement 28 und dem Haltesteg 34 eine Drehbarkeit zwischen eben dem Anschlußelement 28 und dem Haltesteg 34 mit Erhebung 38 in den Innenraum 24 hinein ermöglicht. Dies wird untenstehend noch näher beschrieben.

[0051] Die Erhebung 38 ist durch eine V-förmige Ausformung einer Hohlkörperwand 50 in Richtung einer Achse 52 des Trägerkörpers 12 hin gebildet (d. h. in Richtung der Heizwendel 14). Der Haltesteg 34 wird wie der Haltesteg 36 insbesondere während der Herstellung des Trägerkörpers 12 integral gebildet; beispielsweise wird bei einem entsprechenden Glasblasvorgang eines Quarzrohrs als Trägerkörper 12 der Haltesteg 34 und der Haltesteg 36 geformt.

[0052] Bei an dem Haltesteg 34 gehaltenem Anschlußelement 28 ist dieses mit seiner Anschlußfahne 32 im wesentlichen bezüglich der Achse 52 des Trägerkörpers 12 ausgerichtet, d. h. sitzt im wesentlichen auf einem Durchmesser (Innendurchmesser) des Trägerkörpers 12 (Figur 3). Das Anschlußelement 28 ist dabei über eine in den Innenraum 24 eintauchende Fortsetzung 54 der Anschlußfahne 32 so ausgebildet, daß bei dem Sitz auf einem Durchmesser die Querverschieblichkeit des Anschlußelements 28 zur Achse 52, d. h. quer zur Längsrichtung 16, im wesentlichen gesperrt ist, da die Anschlußfahnenfortsetzung 54 als Stützteil bei einer Querbewegung an die Hohlkörperwand 50 anstößt. Dazu weist die in den Innenraum eintauchende

Anschlußfahnenfortsetzung 54 eine Querbreite auf, welche etwas kleiner ist als ein Innendurchmesser des Innenraums 24 (vgl. Figur 3), so daß genügend Spiel bereitgestellt ist, daß das Anschlußelement 28 im Innenraum 24 drehbar ist, jedoch ohne wesentliche Querverschieblichkeit.

[0053] An der Anschlußfahnenfortsetzung 54 sitzt parallel versetzt zur Anschlußfahne 32 eine Schweißfahne 56, welche beispielsweise in die Heizwendel 14 eintaucht, so daß diese über mehrere Windungen mit der Schweißfahne 56 verschweißbar ist, um das Anschlußelement 28 mit der Heizwendel 14 zu verbinden. Die Anschlußelementfortsetzung 54 weist dabei eine Verbindungslasche 58 auf, welche quer und insbesondere senkrecht zu der Achse 52 orientiert ist, um eben die Parallelversetzung zwischen der Anschlußfahne 32 und der Schweißfahne 56 zu ermöglichen. Die Verbindungslasche 58 kann gleichzeitig als Anlageelement für ein dem Ende 20 des Trägerkörpers 12 zugewandtes Ende der Heizwendel 14 dienen.

[0054] Vorzugsweise endet die Heizwendel 14 an ihren jeweiligen Enden mit einer letzten Windung 60, welche dann auch an der Verbindungslasche 58 mindestens teilweise anliegt. Die Schweißfahne 56 erstreckt sich mindestens über diese letzte Windung 60 und vorzugsweise über die letzten zwei bis fünf Windungen der Heizwendel 14, um so eine gute Schweißverbindung zu erhalten.

[0055] An der Anschlußfahnenfortsetzung 54 ist eine erste Haltezunge 62 in einem Winkel zur Längsrichtung 16 und eine zweite Haltezunge 64 in einem Winkel zur Längsrichtung 16 gebildet, wobei sich jeweilige Stirnflächen 66 (der ersten Haltezunge 62) und 68 (der zweiten Haltezunge 64) gegenüberliegen. Diese Haltezungen 62, 64 ragen über die Ebene der Anschlußfahne 32 hinaus in Richtung der Erhebung 38 und stützen sich an dieser ab, um so wiederum das Anschlußelement 28 im Innenraum 24 des Trägerkörpers 12 zu halten. Die Haltezunge 62, welche bezogen auf die Achse 52 in einem spitzen Winkel gegenüber dieser angeordnet ist, stützt sich dabei an einer Fläche 70 des Haltestegs 34 ab, welche dem Ende 22 des Trägerkörpers 12 zugewandt ist. Die zweite Haltezunge 64 stützt sich an einer Fläche 72 der V-förmigen Erhebung 38 des Haltestegs 34 ab, welcher dem Ende 20 des Trägerkörpers 12 zugewandt ist. Dadurch ist eine Translationsbewegung Anschlußelements 28 zu dem Ende 22 hin durch die Haltezunge 64 gesperrt und eine Translationsbewegung in Gegenrichtung (zum Ende 20 hin) durch die erste Haltezunge 62 gesperrt. Eine Querbewegung dazu ist aufgrund der Durchmesserpositionierung der Anschlußfahnenfortsetzung 54 mit angepaßter Breite ge-

[0056] Es können anstatt einer Haltezunge 62 und/ oder 64 auch mehrere insbesondere parallele Haltezungen vorgesehen sein (in der Zeichnung nicht gezeigt). Beispielsweise sind mindestens auf einer oder beiden Seiten zur Abstützung an den zugeordneten Flächen 70, 72 zwei quer zur Richtung 16 beabstandete Haltezungen vorgesehen.

[0057] Das erste Anschlußelement 28 mit seinen Haltezungen 62 und 64 ist insbesondere einstückig ausgebildet, beispielsweise als Stanzteil. Die Haltezungen 62 und 64 sind dabei derart elastisch ausgebildet und an der Anschlußfahnenfortsetzung 54 angeordnet, daß, wie unten noch näher beschrieben, das Anschlußelement 28 auf die Erhebung 38 insbesondere über eine Drehbewegung aufschiebbar ist und nach Aufschieben klemmend an der Erhebung 38 gehalten ist.

[0058] Die Anschlußfahnenfortsetzung 54 weist eine quer zur Richtung 16 orientierte Ausnehmung 73 auf, die sich von einem Querrand aus erstreckt. Die Breite dieser Ausnehmung 73 in der Richtung 16 und deren Länge sind dabei derart, daß die Drehbarkeit des Anschlußelements 28 zum Aufschieben der Haltezungen 62, 64 auf die Erhebung 38 gewährleistet ist. Insbesondere ist diese Breite größer als die Ausdehnung der Erhebung 38 an einem Fußpunkt.

[0059] Der dem zweiten Anschlußelement 30 zugeordnete Haltesteg 36 ist gleich ausgebildet wie der Haltesteg 34 und entsprechend ist auch das zweite Anschlußelement 30 gleich ausgebildet wie das erste Anschlußelement 28.

[0060] Die Haltestege 34 und 36 sind dabei vorzugsweise parallel zueinander an der gleichen Seite des Trägerkörpers 12 angeordnet.

[0061] Durch die beiden Anschlußelemente 28 und 30 läßt sich dann die Heizwendel 14 in dem Innenraum 24 des Trägerkörpers 12 an den Haltestegen 34 und 36 insbesondere gespannt halten, wobei die Translationsbewegung der Heizwendel 14 in der Längsrichtung 16 durch die Fixierung der Anschlußelemente 28, 30 an den zugeordneten Haltestegen 34, 36 gesperrt ist. Ferner ist die Querbewegung der Anschlußelemente 28, 30 von den Haltestegen 34, 36 weg durch die Durchmesseranordnung der Anschlußfahnenfortsetzung 54 in dem Innenraum 24 des Trägerkörpers 12 im wesentlichen gesperrt.

[0062] Das erfindungsgemäße Heizelement 10 läßt sich wie folgt herstellen:

[0063] Die Heizwendel 14 wird gewickelt und anschließend, eventuelle nach Abschneiden nach der jeweils letzten Windung, mit den Anschlußelementen 28 und 30 verschweißt. Von einem Ende her wird dann die Heizwendel 14 durch den Trägerkörper 12 geschoben, um sie eben in dem Innenraum 24 zu positionieren. Beispielsweise wird dazu das Anschlußelement 28 an dem Ende 22 eingeschoben und in Richtung des anderen Endes 20 durchgeschoben.

[0064] Damit das Anschlußelement 28 an dem Haltesteg 36 vorbei in dem Innenraum 24 verschiebbar ist, ist dieses so gedreht, daß seine Haltezungen 62, 64 von der Erhebung 38 des Haltestegs 36 weg weisen, beispielsweise in einer 180°-Drehstellung relativ zu der Erhebung 38 des Haltestegs 36. Dadurch weist die flache Seite der Anschlußfahnenfortsetzung 54 zu der Erhe-

bung 38 des Haltestegs 36 zu und kann ohne jegliche Sperrwirkung an diesem vorbeigeschoben werden. Ist die Verbindungslasche 58 so dimensioniert, daß diese an der Erhebung 38 ohne Sperrwirkung vorbeiführbar ist, dann wird das Anschlußelement 28 in dieser Drehstellung bis zu dem Haltesteg 34 geführt und dann beispielsweise durch eine 180°-Drehung auf diesen aufgeschoben, indem die Haltezungen 62 und 64 auf die Erhebung 38 durch eine entsprechende Drehbewegung aufgeschoben werden, so daß diese sich an den zugeordneten Flächen 70 und 72 abstützen. Die Ausnehmung 73 gewährleistet dabei diese entsprechende Verdrehbarkeit in dem Trägerkörper 12.

[0065] Entsprechend wird dann auch das zweite Anschlußelement 30 von dem Ende 22 her in den Hohlkörper 12 geschoben in einer Drehstellung, in welcher die dem Ende 20 zugewandte Haltezunge die entsprechende Erhebung 38 des Haltestegs 36 passieren kann. Es wird dann das zweite Anschlußelement 30 auf seinen zugeordneten Haltesteg 36 durch eine Drehbewegung aufgeschoben, wobei als Ergebnis die Heizwendel 14 zwischen den Haltestegen 34, 36 über die beiden Anschlußelemente 28 und 30 gespannt in dem Trägerkörper 12 gehalten ist.

[0066] Die Winkelstellung insbesondere des Anschlußelements 28 bei der Durchführung durch den Innenraum 24 des Trägerkörpers 12 in der Längsrichtung 16 kann dabei beispielsweise durch einen Dorn gesichert sein.

[0067] Ist die Verbindungslasche 58 so dimensioniert, daß sie an die Erhebung 38 des Haltestegs 36 anstoßen kann, dann muß das erste Anschlußelement 28 nach Passieren des Haltestegs 34 zurückgedreht werden, damit nunmehr die Verbindungslasche 58 von der Erhebung 38 abgewandt von dem Haltesteg 36 positioniert ist, um diesen passieren zu können. Entsprechend ist die Verbindungslasche des zweiten Anschlußelements 30 so gedreht, daß sie den Haltesteg 36 positionieren kann, während dann das zweite Anschlußelement 30 bei Erreichen der Erhebung 38 des Haltestegs 36 durch seine entsprechenden Haltezungen gedreht werden muß, damit die dem Ende 20 zugewandte Haltezunge diesen passieren kann.

[0068] Die Ausdehnung der V-förmigen Erhebung 38 der Haltestege 34 und 36 in Richtung der Achse 52 ist an die entsprechende Dimensionierung der Haltezungen 62, 64 der zugeordneten Anschlußelemente 28, 30 derart angepaßt, daß zum einen ein Anschlußelement durch den Trägerkörper 12 durchschiebbar ist, wenn er entsprechend gedreht ist (wie oben anhand des ersten Anschlußelements 28 beschrieben) und dann zum anderen die Anschlußelemente 28 und 30 mit möglichst wenig Spiel an ihren zugeordneten Haltestegen 34 und 36 gehalten sind, um so wiederum die Heizwendel 14 an dem Trägerkörper 12 zu halten.

[0069] Die Dimensionierung der Verbindungslasche 58 in Richtung der Achse 52 ist ebenfalls so angepaßt, um dieses Durchschieben (mit oder ohne eventuelle

Zwischendrehung) zu ermöglichen.

[0070] Weiterhin sind die Haltezungen 62, 64 der Anschlußelemente 28 und 30 auch in ihrer Länge so dimensioniert und so elastisch ausgebildet, daß sie auf die zugeordneten Flächen 70, 72 der Erhebung 38 der Haltestege 34 und 36 eine Kraft ausüben, d. h. die Anschlußelemente 28, 30 klemmend an den Haltestegen 34, 36 gehalten sind. Dadurch wird die Spielfreiheit der Fixierung der Anschlußelemente 28, 30 verringert.

[0071] Das erfindungsgemäße Heizelement 10 läßt sich kostengünstig und auf einfache Weise nur mittels vier Teilen herstellen, nämlich dem Trägerkörper 12, der Heizwendel 14 und den beiden Anschlußelementen 28 und 30. Weitere Teile werden nicht benötigt.

[0072] Bei einer Variante einer Ausführungsform, welche in den Figuren 4 bis 6 gezeigt ist, sind die Anschlußelemente 28 und 30 gleich ausgebildet wie oben beschrieben und tragen deshalb auch das gleiche Bezugszeichen. Jedoch ist der Trägerkörper modifiziert. Entsprechende modifizierte Teile sind gegenüber dem Heizelement 10 gemäß den Figuren 1 bis 3 mit einem Strich am Bezugszeichen versehen. Der modifizierte Trägerkörper 12' weist modifizierte Haltestege 34', 36' auf (in den Figuren 4 bis 6 ist nur der Haltesteg 34' gezeigt).

[0073] Der Haltesteg 34' weist eine Vertiefung 44' an der Außenfläche 18' des Trägerkörpers 12' auf. Ferner umfaßt er eine Erhebung 38', welche wie die Erhebung 38 des Trägerkörpers 12 zu einer Achse 52' des Trägerkörpers 12' hin weist. Die Erhebung 38' umfaßt dabei eine Aufnahme 74' (Figuren 4 und 6), welche zur Aufnahme der Haltezungen 62, 64 des Anschlußelements 28 dient.

[0074] Diese Aufnahme 74' ist quer zur Achse 52' zugewandt einem Ende 20' des Trägerkörpers 12' durch beabstandete Wulstelemente 76', 78' begrenzt; der Abstand dieser Wulstelemente 76', 78' entspricht dabei im wesentlichen einer Breite der zweiten Haltezunge 64, so daß diese drehsicher zwischen den beiden Wulstelementen 76' und 78' gehalten ist.

[0075] Auf die gleiche Weise ist die Aufnahme 74' quer zur Achse 52' dem anderen Ende 22' (in den Figuren 4 bis 6 nicht gezeigt) des Trägerkörpers 12' zugewandt durch Wulstelemente 80' und 82' begrenzt. Insbesondere sind dabei die Wulstelemente 80' und 76' im wesentlichen fluchtend in Achsrichtung gegenüberliegend und ebenso die Wulstelemente 78' und 82'.

[0076] Durch die Wulstelemente 80', 82' wird ein Herausdrehen der zweiten Haltezunge 62 insbesondere um eine Drehachse, welche parallel zur Achse 52' ist oder mit dieser zusammenfällt, verhindert bzw. ist nur unter Überwindung einer Kraftschwelle möglich.

[0077] Die Haltezungen 62, 64 sind so elastisch an dem ersten Anschlußelement 28 angeordnet, daß diese bei einer Drehung über die Erhebung 38' über das entsprechende Wulstpaar, beispielsweise 78', 82', übergeschoben werden können und dann in die Aufnahme 74 federn.

[0078] Durch die Haltezungen 62, 64, welche sich an der Erhebung 38 abstützen, ist dann die Translationsbewegung des Anschlußelements 28 in Achsrichtung gesperrt. Die Bewegung quer dazu ist in der einen Richtung dadurch gesperrt, daß die Haltezungen 62 und 64 an der Erhebung 38 anliegen sowie die Anschlußfahnenfortsetzung 54 auf einem Durchmesser angeordnet ist und die Querbewegung sperrt. Die Querbewegung in der Gegenrichtung ist ebenfalls durch die Anschlußfahnenfortsetzung 54 gesperrt.

[0079] Die Wulstelemente 76', 78', 80', 82' sperren dann weiterhin die Drehbarkeit des Anschlußelements 28 in dem Trägerkörper 12', d. h. es muß mindestens die elastische Kraft der Haltezungen 62, 64 zum Überschieben über die jeweiligen Wulstelemente aufgebracht werden, um das Anschlußelement 28 aus seiner Haltestellung herauszudrehen.

[0080] Durch die entsprechende Haltestellung, bei der die Haltezungen 62, 64 in der Aufnahme 74' liegen, wird also das Spiel des Anschlußelements 28 bei seiner Halterung an dem Haltesteg 34' weiter verringert.

[0081] Entsprechend ist der Haltesteg 36', welcher dem zweiten Anschlußelement 30 zugeordnet ist, ausgebildet.

[0082] Das Heizelement mit dem Trägerkörper 12' läßt sich auf die gleiche Weise wie oben beschrieben herstellen. Der einzige Unterschied ist, daß ein höherer Kraftaufwand zur Drehung der Anschlußelemente in ihre jeweilige Haltestellung an den Haltestegen 34' und 36' erforderlich ist.

Patentansprüche

- Heizelement mit einer Heizwendel (14), mit einem Trägerkörper (12; 12') für die Heizwendel (14) und mit elektrischen Anschlußelementen (28, 30), welche mit der Heizwendel (14) verbunden sind, dadurch gekennzeichnet, daß an dem Trägerkörper (12; 12') mindestens ein Haltesteg (34; 36; 34'; 36') zum Halten eines zugeordneten Anschlußelements (28; 30) gebildet ist.
- 2. Heizelement nach Anspruch 1, dadurch gekennzeichnet, daß ein Haltesteg (34, 36) einstückig an dem Trägerkörper (12) gebildet ist.
- 3. Heizelement nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß ein Haltesteg (34; 36) integral an dem Trägerkörper (12) gebildet ist.
- 4. Heizelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß ein Haltesteg (34; 36) beabstandet zu einem Ende (20; 22) des Trägerkörpers (12) gebildet ist.
- Heizelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die

Heizwendel (14) über mindestens zwei beabstandete Haltestege (34, 36) an dem Trägerkörper (12) gehalten ist.

- 6. Heizelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Heizwendel (14) in ihrer Längsrichtung gespannt am Trägerkörper (12) gehalten ist.
- 7. Heizelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Heizwendel (14) zwischen beabstandeten Haltestegen (34, 36) am Trägerkörper (12) gespannt gehalten ist.
 - 8. Heizelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß ein Haltesteg (34; 36) durch eine Ausformung einer Trägerkörperwand (50) gebildet ist.
 - Heizelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß ein Haltesteg über eine der Heizwendel (14) zugewandte Oberfläche (40) des Trägerkörpers (12) hinausragt.
 - **10.** Heizelement nach einem der vorangehenden Ansprüche, **dadurch gekennzeichnet**, **daß** der Trägerkörper ein Hohlrohr ist, in dessen Innenraum (24) die Heizwendel (14) angeordnet ist.
 - Heizelement nach Anspruch 10, dadurch gekennzeichnet, daß der Trägerkörper (12) ein Quarzglasrohr ist.
 - 12. Heizelement nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß ein Haltesteg (34; 36) durch eine in den Innenraum (24) des Trägerkörpers (12) weisende Erhebung (38) über eine innere Trägerkörperoberfläche (40) gebildet ist.
 - 13. Heizelement nach Anspruch 12, dadurch gekennzeichnet, daß die Erhebung (38) auf einer Außenseite (18) des Trägerkörpers (12) eine Vertiefung (44) aufweist.
 - 14. Heizelement nach Anspruch 13, gekennzeichnet durch ein einem Haltesteg (34; 36) zugeordnetes Fixierungselement (48) für das Heizelement, über welches das Heizelement insbesondere an einem Toaster fixierbar ist, wobei ein Fixierungselement (48) zum Halten des Heizelements in die Vertiefung (44) des zugeordneten Haltestegs (34; 36) eintauchbar ist.
- 55 15. Heizelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß sich ein Haltesteg (34; 36) in einen Umfangsbereich des Trägerkörpers (12) erstreckt, welcher gleich oder

8

15

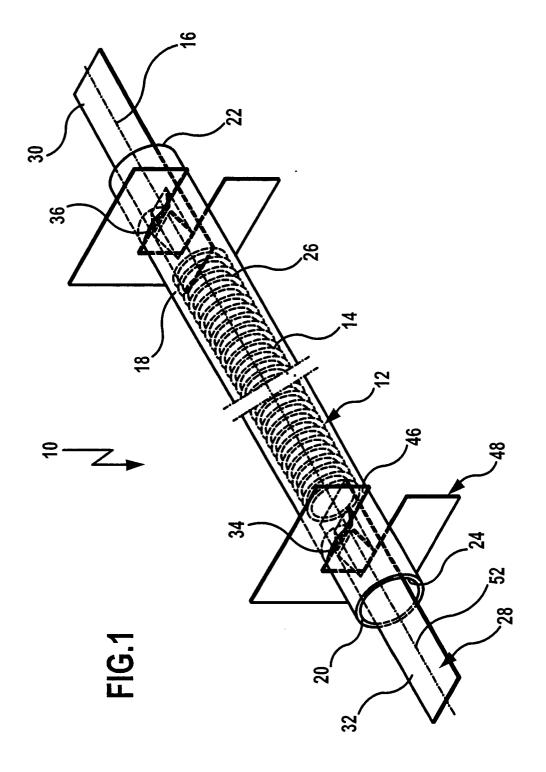
20

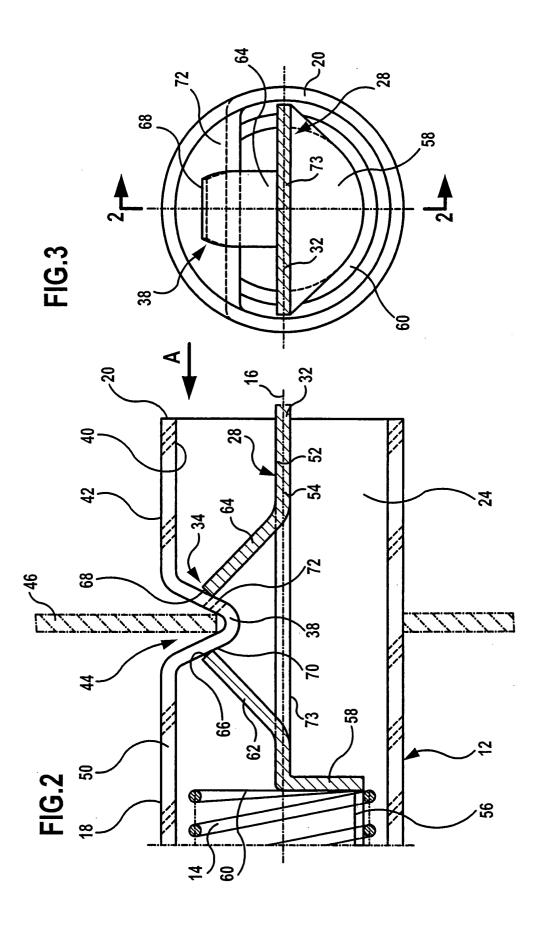
30

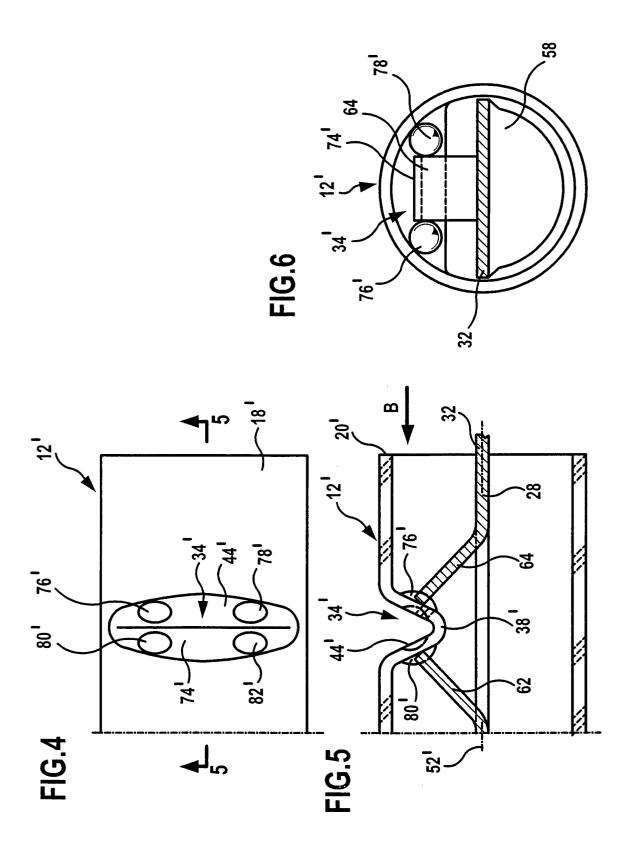
40

kleiner ist als ein halber Umfang des Trägerkörpers (12).

- **16.** Heizelement nach einem der vorangehenden Ansprüche, **dadurch gekennzeichnet**, **daß** ein Haltesteg (34'; 36') so ausgebildet ist, daß die Verdrehbarkeit eines an ihm gehaltenen Anschlußelements (28; 30) aus einer Haltestellung gesperrt ist.
- 17. Heizelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Anschlußelemente (28, 30) mit der Heizwendel (14) verschweißt sind.
- **18.** Heizelement nach einem der vorangehenden Ansprüche, **dadurch gekennzeichnet**, **daß** die Heizwendel (14) an beiden Enden mit einer letzten Spiralwindung (60) endet.
- **19.** Heizelement nach Anspruch 18, **dadurch gekennzeichnet**, **daß** die Anschlußelemente (28, 30) mit der oder mehreren letzten Spiralwindungen (60) verschweißt sind.
- 20. Heizelement nach einem der Ansprüche 17 bis 19, dadurch gekennzeichnet, daß ein Anschlußelement (28; 30) eine Schweißfahne (56) aufweist.
- 21. Heizelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß ein Anschlußelement mindestens eine Haltezunge (62, 64) zum Abstützen an dem zugeordneten Haltesteg (34; 36) aufweist.
- Heizelement nach Anspruch 21, dadurch gekennzeichnet, daß die mindestens eine Haltezunge (62, 64) einstückig an dem Anschlußelement (28; 30) gebildet ist.
- 23. Heizelement nach Anspruch 21 oder 22, dadurch gekennzeichnet, daß ein Anschlußelement (28; 30) mindestens zwei Haltezungen (62, 64) aufweist, wobei eine erste Haltezunge (62) sich an einer Fläche (70) des zugeordneten Haltestegs (34) abstützt, welche dem einen Ende (22) des Trägerkörpers (12) zugewandt ist, und eine zweite Haltezunge (64) sich an einer Fläche (72) des Haltestegs (36) abstützt, welche dem anderen Ende (20) des Trägerkörpers (12) zugewandt ist.
- 24. Heizelement nach einem der Ansprüche 21 bis 23, dadurch gekennzeichnet, daß die mindestens eine Haltezunge (62, 64) so an dem Anschlußelement angeordnet ist, daß bei an dem Trägerkörper (12) gehaltenem Anschlußelement diese in einem Winkel zur Längsrichtung (16) des Trägerkörpers (12) positioniert ist.


- 25. Heizelement nach einem der Ansprüche 21 bis 24, dadurch gekennzeichnet, daß ein Anschlußelement (28; 30) mit seiner mindestens einen Haltezunge (62, 64) so ausgebildet ist, daß diese auf den zugeordneten Haltesteg (34; 36) aufschiebbar ist.
- 26. Heizelement nach einem der Ansprüche 23 bis 25, dadurch gekennzeichnet, daß die mindestens zwei Haltezungen, (62, 64) so ausgebildet und angeordnet sind, daß diese durch Drehung des Anschlußelements um eine Achse parallel zur Längsrichtung (16) des Trägerkörpers (12) oder zusammenfallend mit dieser auf den zugeordneten Haltesteg (34; 36) aufschiebbar sind.
- 27. Heizelement nach einem der Ansprüche 21 bis 26, dadurch gekennzeichnet, daß ein Haltesteg (34'; 36') eine Aufnahme (74') für die mindestens eine Haltezunge (62, 64) aufweist, wobei die Aufnahme (74') gegenüber dem restlichen Haltesteg (34'; 36') derart zurückgesetzt ist, daß eine Drehbarkeit aus der Aufnahme (74') im wesentlichen gesperrt ist.
- 28. Heizelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß ein Anschlußelement (28; 30) ein Stützteil (54) aufweist, welches im wesentlichen auf einem Durchmesser des Trägerkörpers (12) in dessen Innenraum (24) angeordnet ist.
- 29. Heizelement nach Anspruch 28, dadurch gekennzeichnet, daß das Stützteil (54) so ausgebildet ist, daß seine Verschieblichkeit quer zur Längsrichtung (16) des Trägerkörpers (12) im wesentlichen gesperrt ist.
- 30. Heizelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Anschlußelemente (28, 30) und Haltestege (34, 36) so aufeinander abgestimmt ausgebildet sind, daß ein Anschlußelement mit Heizwendel (14) durch den Trägerkörper (12) schiebbar ist und durch Drehung an dem zugeordneten Haltesteg fixierbar ist.
- 31. Heizelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß ein Anschlußelement (28; 30) ein Stanzteil ist.
 - 32. Verfahren zur Herstellung eines Heizelements mit einem Hohlrohr als Trägerkörper, einer Heizwendel und mit elektrischen Anschlußelementen, wobei der Trägerkörper zu dessen Ende beabstandete, in einen Innenraum ragende Haltestege aufweist, umfassend die Schritte:
 - die Heizwendel wird mit einem oder beiden Anschlußelementen verbunden;


ein Anschlußelement wird so relativ zu den Haltestegen verdreht, daß dieses in das Hohlrohr eingeführt an einem Haltesteg vorbei durch dieses schiebbar ist, bis dieses Anschlußelement mit dem zugeordneten Haltesteg ausgerichtet ist und


dieses Anschlußelement wird auf den zugeordneten Haltesteg mit entsprechenden Haltezungen zur Abstützung an dem Haltesteg durch 10 Drehung aufgeschoben.

33. Verfahren nach Anspruch 32, dadurch gekennzeichnet, daß das andere Anschlußelement in einer solchen Winkelstellung in das Hohlrohr eingeschoben wird, daß es durch Drehen gegen diese Stellung auf den zugeordneten Haltesteg aufschiebbar ist.

34. Verfahren nach Anspruch 32 oder 33, **dadurch ge- kennzeichnet**, **daß** an einem Anschlußelement eine Drehsperre angeordnet wird, um dessen Verdrehung während des Durchschiebens durch das Halterohr im wesentlichen zu verhindern.

