(19) |
 |
|
(11) |
EP 1 320 758 B9 |
(12) |
CORRECTED EUROPEAN PATENT SPECIFICATION |
|
Note: Bibliography reflects the latest situation |
(15) |
Correction information: |
|
Corrected version no 1 (W1 B1) |
|
Corrections, see
|
(48) |
Corrigendum issued on: |
|
07.12.2005 Bulletin 2005/49 |
(45) |
Mention of the grant of the patent: |
|
03.08.2005 Bulletin 2005/31 |
(22) |
Date of filing: 11.09.2001 |
|
(51) |
International Patent Classification (IPC)7: G01R 29/10 |
(86) |
International application number: |
|
PCT/GB2001/004060 |
(87) |
International publication number: |
|
WO 2002/023205 (21.03.2002 Gazette 2002/12) |
|
(54) |
MICROWAVE HOLOGRAPHIC MEASURING METHOD AND APPARATUS
VORRICHTUNG UND VERFAHREN ZUR HOLOGRAPHISCHEN MESSUNG VON MIKROWELLEN
PROCEDE ET APPAREIL DE MESURE HOLOGRAPHIQUE HYPERFREQUENCE
|
(84) |
Designated Contracting States: |
|
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
(30) |
Priority: |
13.09.2000 GB 0022503
|
(43) |
Date of publication of application: |
|
25.06.2003 Bulletin 2003/26 |
(73) |
Proprietor: University of Northumbria at Newcastle |
|
Newcastle upon Tyne, NE1 8ST (GB) |
|
(72) |
Inventor: |
|
- SMITH, David
Lanchester,
Co. Durham DH7 0NH (GB)
|
(74) |
Representative: Vinsome, Rex Martin et al |
|
Urquhart-Dykes & Lord LLP
St Nicholas Chambers,
Amen Corner Newcastle-Upon-Tyne NE1 1PE Newcastle-Upon-Tyne NE1 1PE (GB) |
(56) |
References cited: :
RU-C- 2 089 921 US-A- 5 543 721
|
US-A- 4 118 668
|
|
|
|
|
- PATENT ABSTRACTS OF JAPAN vol. 1996, no. 12, 26 December 1996 (1996-12-26) & JP 08
211117 A (NIPPON TELEGR &TELEPH CORP <NTT>), 20 August 1996 (1996-08-20)
|
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The present invention relates to a microwave holographic measuring method and apparatus,
and relates particularly, but not exclusively, to such method and apparatus for testing
a microwave antenna or forming an image of an object.
[0002] Methods of testing microwave antennas by microwave holography are known (e.g. from
RU 2089921 C) and an arrangement for carrying out such a method is shown in Figure
1. A signal from a network analyser 1 causes an antenna 2 under test to emit microwave
radiation, which is sampled at suitable intervals over an appropriate aperture by
means of a sampling antenna 3 which can be moved along the axes X and Y shown in the
figure. The output signal from the sampling antenna 3 is returned to the network analyser.
At each sampling position, the signal radiated from the antenna 2 under test is fed
to the network analyser 1, which determines the relative amplitude and phase of the
return signal by comparison with the output signal of the network analyser. These
values of amplitude and phase at each scanning position are recorded, and can be Fourier
transformed to produce patterns of antenna radiation.
[0003] However, this known method suffers from the drawback that the cost of the network
analyser is very high, and the network analysers are restricted in frequency, as a
result of which the range of applications of the method is fairly limited.
[0004] Preferred embodiments of the present invention seek to overcome the above disadvantages
of the prior art.
[0005] According to an aspect of the present invention, there is provided a microwave holographic
measuring method comprising:
providing a first electrical signal of at least one microwave frequency;
directing a first part of said first signal to a first antenna;
applying predetermined changes of phase and amplitude to a second part of said first
signal to produce a second electrical signal, wherein said second part is coherent
with said first part;
detecting microwave radiation at a plurality of locations by means of a second antenna
to generate a respective third electrical signal at each said location; and
combining said second and third signals to produce a fourth electrical signal.
[0006] By applying predetermined changes of phase and amplitude to part of the first electrical
signal, this provides the advantage that the second electrical signal can reproduce
the behaviour of reference microwave radiation which would interfere with the radiation
emitted by the antenna under test, i.e. by electrically imitating the behaviour of
interfering microwave radiation. As a result, a hologram of the radiation pattern
observed at the sampling antenna can be produced, which avoids the necessity for a
network analyser. This reduces the cost of equipment for carrying out the method,
and also enables the apparatus to operate over a wider range of frequencies or even
simultaneous operation at multiple frequencies, which in turn broadens the range of
applications of the method. The invention also has the advantage that by electrically
imitating the behaviour of interfering microwave radiation, this under some circumstances
permits the electrical synthesis of reference microwave radiation which cannot be
produced in the form of microwaves.
[0007] The predetermined changes of phase and amplitude may be chosen to reproduce a predetermined
microwave signal at each said location.
[0008] The method may be a method of measuring radiation characteristics of the first antenna.
[0009] The method may further comprise the step of comparing values of said fourth electrical
signal with corresponding values of the fourth electrical signal for an antenna of
known characteristics.
[0010] This provides the advantage of enabling the properties of antennae to be tested by
comparing unprocessed image holographic data, as opposed to processed data, thus offering
savings in efficiency.
[0011] In a preferred embodiment, the method is a method of forming a microwave image of
an object, and further comprises the step of illuminating the object with said first
part.
[0012] In a preferred embodiment, the predetermined changes of phase and amplitude are chosen
to reproduce a predetermined microwave signal at each said location.
[0013] The method preferably further comprises the step of combining said fourth signal
with a signal representing predetermined microwave radiation to generate holographic
image data for each said location.
[0014] The method may further comprise the step of applying predetermined changes of phase
and amplitude to said fourth electrical signal to produce a fifth electrical signal,
wherein said fifth electrical signal represents a microwave image of the object.
[0015] The method may further comprise the step of processing said fourth electrical signal
to generate data representing an image of the object at locations other than said
plurality of locations.
[0016] The method may be a method of detecting buried objects.
[0017] According to another aspect of the present invention, there is provided a microwave
holographic measuring apparatus comprising:
signal generator means for generating a first electrical signal of at least one microwave
frequency;
coupler means for directing a first part of said first signal to an antenna and providing
a second part of said first signal, wherein said second part is coherent with said
first part;
phase/amplitude adjusting means for applying predetermined changes of phase and amplitude
to said second part to produce a second electrical signal;
at least one first antenna for detecting microwave radiation at a plurality of locations
to generate a respective third electrical signal at each said location; and
combining means for combining said second and third signals to produce a fourth electrical
signal.
[0018] The apparatus may further comprise at least one second antenna for receiving said
first part of said first signal and illuminating an object.
[0019] The apparatus may further comprise detector means for detecting said fourth signals.
[0020] The apparatus preferably further comprises position adjusting means for adjusting
the position of the or each said second antenna.
[0021] The apparatus may further comprise controller means for controlling said phase/amplitude
adjusting means.
[0022] Preferred embodiments of the invention will now be described, by way of example only
and not in any limitative sense, with reference to the accompanying drawings, in which:-
Figure 1 is a schematic view of a prior art antenna testing apparatus;
Figure 2 is a schematic view of an antenna testing apparatus embodying the present
invention; and
Figure 3 is a schematic view of a microwave imaging apparatus embodying the present
invention.
[0023] Referring to Figure 2, an apparatus 100 for measuring the radiation characteristics
of an antenna 101 (or for determining any faults in antenna 101) has a microwave source
102 for producing an electrical signal of one or more microwave frequencies. The signal
S from microwave source 102 is fed to a directional coupler 103 or other signal splitting
device which directs signal S1, part of signal S, to the antenna 101 under test, and
a signal S2, also part of signal S and coherent with signal S1, to a variable attenuator
104. The variable attenuator 104 is controlled by a computer 105 and alters the amplitude
of signal S2 to produce signal S3. Signal S3 is fed to a phase shifter 106, also controlled
by computer 105, for adjusting the phase of signal S3 to produce signal S4.
[0024] A sampling antenna 107 is mounted to a position controller 108, which can move the
antenna 107 along the axes X and Y and which is also controlled by computer 105. It
will be appreciated by persons skilled in the art that the sampling antenna 107 can
also be moved in the Z - direction, for example for carrying out object imaging applications.
The sampling antenna 107 detects the microwave radiation from the antenna 101 under
test at various positions to which it is moved by the position controller 108, and
the detected radiation signal S5 is passed to a mixing device such as a hybrid tee
109, to which the signal S4 is also fed. The signals S5 and S4 interfere with each
other in the hybrid tee 109 to produce an intensity pattern which is detected by diode
detector 110 to output a sampled intensity pattern.
[0025] The operation of the apparatus shown in Figure 2 will now be described.
[0026] The signal S4 input to the hybrid tee 109 has selected amplitude variations applied
to it via variable attenuator 104 and phase changes applied by phase shifter 106,
both of which are under the control of computer 105. Because the signals S4 and S5
are coherent with each other, the signals interfere with each other in hybrid tee
109 and a sampled intensity pattern is output from diode detector 110.
[0027] The amplitude and phase changes applied by variable attenuator 104 and phase shifter
106 can be chosen by computer 105 to reproduce a predetermined wave at the position
of sampling antenna 107, for example a plane wave, with the result that the signal
output from hybrid tee 109 represents the output of antenna 101 under test interfered
with a coherent reference wave. A second example of the predetermined wave that can
be simulated is a spherical wave, for example when the focus of a spherical reference
wave is located in the plane of the antenna under test, which would otherwise prevent
a spherical reference wave from being used because of the problem of two antennae
being in the same position. In other words, the sampled intensity pattern output from
diode detector 110 represents a hologram of the output of antenna 101. By application
of Fourier transforms and/or inverse Fourier transforms and filtering to the sampled
intensity pattern, antenna far-field radiation patterns for the antenna 101 can be
produced.
[0028] Referring now to Figure 3, in which parts common to the embodiment of Figure 2 are
denoted by like reference numerals but increased by 100, an apparatus 200 for forming
a microwave holographic image of an object 220 uses antenna 201 to illuminate object
220 with a microwave beam derived from signal S1. The beam reflected by object 220
is detected at various locations by sampling antenna 207 to produce signal S5 which
is then combined with signal S4 in hybrid tee 209. In a manner similar to the embodiment
of Figure 2, a sampled intensity pattern is output by diode detector 210 and because
the phase and amplitude variations applied to signal S4 represent a reference beam
coherent with signal S1, the sampled intensity pattern forms a hologram of the object
220. The sampled intensity pattern can be subject to Fourier transformation and, if
appropriate, inverse Fourier transformation and filtering to produce a plane wave
spectrum of the object 220, and by means of manipulation by inverse Fourier transforms,
a microwave image of the object can be obtained.
[0029] The hologram produced by the method of the present invention can be processed by
means of mathematical algorithms which will be known to persons skilled in the art
to produce data representing the image of an object at locations other than the locations
at which sampling measurements are made. One application of this feature is the detection
of buried objects, such as landmines. For example, a microwave emitter and an array
of detectors are arranged above an area of ground which is known to be free of landmines,
for example because it has been cleared. The microwaves received at the detectors
consist of high intensity signals representing microwaves from the emitter reflected
from the surface of the ground, and lower intensity signals representing microwaves
reflected by objects buried under the ground. Phase and amplitude changes are then
applied to the apparatus so that the detectors have zero output in the case of the
area of ground free of mines, so that when the same microwave input radiation is applied
to a similar piece of ground, the reflection of microwaves by buried landmines will
cause one of more of the detectors to emit a non-zero output.
[0030] It will be appreciated by persons skilled in the art that the above embodiments have
been described by way of example only and not in any limitative sense, and that various
alterations and modifications are possible without departure from the scope of the
invention as defined by the appended claims.
1. A microwave holographic measuring method comprising:
providing a first electrical signal of at least one microwave frequency;
directing a first part of said first signal to a first antenna;
applying predetermined changes of phase and amplitude to a second part of said first
signal to produce a second electrical signal, wherein said second part is coherent
with said first part;
detecting microwave radiation at a plurality of locations by means of a second antenna
to generate a respective third electrical signal at each said location; and
combining said second and third signals to produce a fourth electrical signal.
2. A method according to claim 1, wherein the predetermined changes of phase and amplitude
are chosen to reproduce a predetermined microwave signal at each said location.
3. A method according to claim 1 or 2, wherein the method is a method of measuring radiation
characteristics of the first antenna.
4. A method according to claim 3, further comprising the step of comparing values of
said fourth electrical signal with corresponding values of the fourth electrical signal
for an antenna of known characteristics.
5. A method according to claim 1 or 2, wherein the method is a method of forming a microwave
image of an object, and further comprises the step of illuminating the object with
said first part.
6. A method according to claim 5, further comprising the step of combining said fourth
signal with a signal representing predetermined microwave radiation to generate holographic
image data for each said location.
7. A method according to claim 5 or 6, further comprising the step of applying predetermined
changes of phase and amplitude to said fourth electrical signal to produce a fifth
electrical signal, wherein said fifth electrical signal represents a microwave image
of the object.
8. A method according to any one of claims 5 to 7, further comprising the step of processing
said fourth electrical signal to generate data representing an image of the object
at locations other than said plurality of locations.
9. A method according to claim 8, wherein the method is a method of detecting buried
objects.
10. A microwave holographic measuring apparatus comprising:
signal generator means for generating a first electrical signal of at least one microwave
frequency;
coupler means for directing a first part of said first signal to an antenna and providing
a second part of said first signal, wherein said second part is coherent with said
first part;
phase/amplitude adjusting means for applying predetermined changes of phase and amplitude
to said second part to produce a second electrical signal;
at least one first antenna for detecting microwave radiation at a plurality of locations
to generate a respective third electrical signal at each said location; and
combining means for combining said second and third signals to produce a fourth electrical
signal.
11. An apparatus according to claim 10, further comprising at least one second antenna
for receiving said first part of said first signal and illuminating an object.
12. An apparatus according to claim 10 or 11, further comprising detector means for detecting
said fourth signals.
13. An apparatus according to any one of claims 10 to 12, further comprising position
adjusting means for adjusting the position of the or each said second antenna.
14. An apparatus according to any one of claims 10 to 13, further comprising controller
means for controlling said phase/amplitude adjusting means.
1. Procédé de mesure holographique hyperfréquence comprenant :
la fourniture d'un premier signal électrique ayant au moins une hyperfréquence ;
la direction d'une première partie dudit premier signal vers une première antenne
;
l'application de changements de phase et amplitude prédéterminés à une seconde partie
dudit premier signal pour produire un deuxième signal électrique, dans lequel ladite
seconde partie est cohérente avec ladite première partie ;
la détection d'un rayonnement hyperfréquence à une pluralité d'emplacements au moyen
d'une seconde antenne pour générer un troisième signal électrique respectif à chacun
desdits emplacements ; et
la combinaison desdits deuxième et troisième signaux pour produire un quatrième signal
électrique.
2. Procédé selon la revendication 1, dans lequel les changements de phase et amplitude
prédéterminés sont choisis pour reproduire un signal hyperfréquence prédéterminé à
chacun desdits emplacements.
3. Procédé selon la revendication 1 ou 2, dans lequel le procédé est un procédé de mesure
des caractéristiques de rayonnement de la première antenne.
4. Procédé selon la revendication 3, comprenant en outre l'étape de comparaison des valeurs
dudit quatrième signal électrique aux valeurs correspondantes du quatrième signal
électrique pour une antenne ayant des caractéristiques connues.
5. Procédé selon la revendication 1 ou 2, dans lequel le procédé est un procédé de formation
d'une image hyperfréquence d'un objet, et comprend en outre l'étape d'éclairage de
l'objet avec un rayonnement hyperfréquence représentant ladite première partie.
6. Procédé selon la revendication 5, comprenant en outre l'étape de combinaison dudit
quatrième signal avec un signal représentant un rayonnement hyperfréquence prédéterminé
pour générer des données d'image holographiques pour chacun desdits emplacements.
7. Procédé selon la revendication 5 ou 6, comprenant en outre l'étape d'application de
changements de phase et amplitude prédéterminés audit quatrième signal électrique
pour produire un cinquième signal électrique, dans lequel ledit cinquième signal électrique
représente une image hyperfréquence de l'objet.
8. Procédé selon l'une quelconque des revendications 5 à 7, comprenant en outre l'étape
de traitement dudit quatrième signal électrique pour générer des données représentant
une image de l'objet à des emplacements autres que ladite pluralité d'emplacements.
9. Procédé selon la revendication 8, dans lequel le procédé est un procédé de détection
d'objets enfouis.
10. Appareil de mesure holographique hyperfréquence comprenant :
des moyens de génération de signaux pour générer un premier signal électrique ayant
au moins une hyperfréquence ;
des moyens de couplage pour diriger une première partie dudit premier signal vers
une antenne et fournir une seconde partie dudit premier signal, dans lequel ladite
seconde partie est cohérente avec ladite première partie ;
des moyens de réglage de phase/amplitude pour appliquer des changements de phase et
amplitude prédéterminés à ladite seconde partie pour produire un deuxième signal électrique
;
au moins une première antenne pour détecter un rayonnement hyperfréquence à une pluralité
d'emplacements pour générer un troisième signal électrique respectif à chacun desdits
emplacements ; et
des moyens de combinaison pour combiner lesdits deuxième et troisième signaux pour
produire un quatrième signal électrique.
11. Appareil selon la revendication 10, comprenant en outre au moins une seconde antenne
pour recevoir ladite première partie dudit premier signal et éclairer un objet.
12. Appareil selon la revendication 10 ou 11, comprenant en outre des moyens de détection
pour détecter lesdits quatrièmes signaux.
13. Appareil selon l'une quelconque des revendications 10 à 12, comprenant en outre des
moyens de réglage de position pour régler la position de ladite seconde antenne ou
de chacune desdites secondes antennes.
14. Appareil selon l'une quelconque des revendications 10 à 13, comprenant en outre des
moyens de contrôle pour contrôler lesdits moyens de réglage de phase/amplitude.
1. Verfahren zur holographischen Messung von Mikrowellen, umfassend:
Bereitstellen eines ersten elektrischen Signals mit mindestens einer Mikrowellenfrequenz;
Richten eines ersten Teils dieses ersten Signals auf eine erste Antenne;
Durchführen von vorbestimmten Änderungen von Phase und Amplitude mit einem zweiten
Teil dieses ersten Signals, um ein zweites elektrisches Signal zu erzeugen, wobei
dieser zweite Teil kohärent mit dem ersten Teil ist;
Detektieren von Mikrowellenstrahlung an einer Vielzahl von Orten mittels einer zweiten
Antenne, um ein zugehöriges drittes elektrisches Signal an jedem dieser Orte zu erzeugen
und
Kombinieren der zweiten und dritten Signale, um ein viertes elektrisches Signal zu
erzeugen.
2. Verfahren gemäß Anspruch 1, wobei die vorbestimmten Änderungen von Phase und Amplitude
ausgewählt werden, um ein vorbestimmtes Mikrowellensignal an jedem solchen Ort zu
reproduzieren.
3. Verfahren gemäß Anspruch 1 oder 2, wobei das Verfahren ein Verfahren zum Messen von
Strahlungseigenschaften der ersten Antenne ist.
4. Verfahren gemäß Anspruch 3, ferner umfassend den Schritt des Vergleichens von Werten
des vierten elektrischen Signals mit entsprechenden Werten des vierten elektrischen
Signals für eine Antenne mit bekannten Eigenschaften.
5. Verfahren gemäß Anspruch 1 oder 2, wobei das Verfahren ein Verfahren zum Ausbilden
einer Mikrowellenabbildung eines Gegenstandes ist und ferner den Schritt des Bestrahlens
des Gegenstandes mit Mikrowellenstrahlung, die diesen ersten Teil repräsentiert, umfasst.
6. Verfahren gemäß Anspruch 5, ferner umfassend den Schritt des Kombinierens des vierten
Signals mit einem Signal, das vorbestimmte Mikrowellenstrahlung repräsentiert, um
holographische Abbildungsdaten für jeden der Orte zu erzeugen.
7. Verfahren gemäß Anspruch 5 oder 6, ferner umfassend den Schritt des Durchführens vorbestimmter
Änderungen von Phase und Amplitude an dem vierten elektrischen Signal, um ein fünftes
elektrisches Signal zu erzeugen, wobei das fünfte elektrische Signal eine Mikrowellenabbildung
des Gegenstandes repräsentiert.
8. Verfahren gemäß einem der Ansprüche 5 bis 7, ferner umfassend den Schritt des Verarbeitens
des vierten elektrischen Signals, um Daten zu erzeugen, die eine Abbildung des Gegenstandes
an anderen Orten als der Vielzahl von Orten repräsentieren.
9. Verfahren gemäß Anspruch 8, wobei das Verfahren ein Verfahren zum Detektieren von
vergrabenen Gegenständen ist.
10. Vorrichtung zur holographischen Messung von Mikrowellen, umfassend:
Signalerzeugungsmittel zum Erzeugen eines ersten elektrischen Signals bei mindestens
einer Mikrowellenfrequenz;
Verbindungsmittel, um einen ersten Teil des ersten Signals auf eine Antenne zu richten
und einen zweiten Teil des ersten Signals bereitzustellen, wobei der zweite Teil kohärent
mit dem ersten Teil ist;
Phasen/Amplituden-Einstellmittel zum Durchführen vorbestimmter Änderungen von Phase
und Amplitude an diesem zweiten Teil, um ein zweites elektrisches Signal zu erzeugen;
mindestens eine erste Antenne zum Detektieren von Mikrowellenstrahlung an einer Vielzahl
von Orten, um ein zugehöriges drittes elektrisches Signal an jedem dieser Orte zu
erzeugen und
Kombinationsmittel zum Kombinieren der zweiten und dritten Signale, um ein viertes
elektrisches Signal zu erzeugen.
11. Vorrichtung gemäß Anspruch 10, ferner enthaltend mindestens eine zweite Antenne zum
Empfangen des ersten Teils des ersten Signals und zum Bestrahlen eines Objekts.
12. Vorrichtung gemäß Anspruch 10 oder 11, ferner umfassend Detektionsmittel zum Detektieren
der vierten Signale.
13. Vorrichtung gemäß einem der Ansprüche 10 bis 12, ferner umfassend Positionseinstellmittel
zum Einstellen der Position der oder jeder der zweiten Antenne(n).
14. Vorrichtung gemäß einem der Ansprüche 10 bis 13, ferner umfassend Steuermittel zum
Steuern der Phasen/Amplituden-Einstellmittel.