(19)
(11) EP 1 321 731 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
25.06.2003  Patentblatt  2003/26

(21) Anmeldenummer: 01130788.1

(22) Anmeldetag:  22.12.2001
(51) Internationale Patentklassifikation (IPC)7F26B 3/30
(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(71) Anmelder: Moletherm Holding AG
4502 Solothurn (CH)

(72) Erfinder:
  • Reichelt, Helmut
    01744 Reichstädt (DE)

(74) Vertreter: Neubauer, Hans-Jürgen, Dipl.-Phys. 
Neubauer - Liebl Patentanwälte Fauststrasse 30
85051 Ingolstadt
85051 Ingolstadt (DE)

   


(54) Energietransmitter als Bestandteil einer Beschichtungs- und/oder Trockenanlage, insbesondere für eine Lackbeschichtung


(57) Die Erfindung betrifft einen Energietransmitter (1) als Bestandteil einer Beschichtungs- und/oder Trockenanlage (2), insbesondere für eine Lackbeschichtung. Erfindungsgemäß umfasst der Energietransmitter (1) wenigstens zwei Transmitter-Flächenelemente (10) als Antennenelemente, wobei jedes der Transmitter-Flächenelemente (10) eine Glasträgerplatte (11) aufweist, die auf einer Glasrückfläche (12) eine Abstrahlschicht (13) trägt und deren gegenüberliegende freie Glasvorderfläche (17) auf eine Position für ein zu trocknendes Objekt oder eine Oberfläche eines Bauteils (3) mit aufgetragenem Beschichtungsmaterial gerichtet ist. Weiter ist im Abstand in etwa parallel zu der Glasrückfläche (12) und wenigstens in deren Größe ein Flächenreflektor (20) aus Metallmaterial angeordnet, wobei die jeweilige Abstrahlschicht (13) zur Abgabe einer elektromagnetischer Strahlung in einem Frequenzband ausgelegt ist und das Frequenzband wenigstens charakteristische Eigenfrequenzen im Ultrarot eines zu trocknenden Objekts oder Beschichtungsmaterials überdeckt und wobei die Abstrahlschicht (13) mittels einer Steuereinrichtung (16) zur Abgabe des wenigstens einen Frequenzbandes anregbar ist, so dass Eigenfrequenzen des zu trocknenden Objekts oder des Beschichtungsmaterials in Resonanz anregbar sind. Dabei ist die Abstrahlschicht (13) mittels der Steuereinrichtung (16) so zur Abgabe eines bestimmten Frequenzbandes anregbar, dass Eigenfrequenzen des Beschichtungsmaterials in Resonanz angeregt werden.




Beschreibung


[0001] Die Erfindung betrifft eine Energietransmitter als Bestandteil einer Beschichtungs- und/oder Trockenanlage, insbesondere für eine Lackbeschichtung nach dem Oberbegriff des Anspruchs 1.

[0002] Bei herkömmlichen Lackierungsprozessen werden unterschiedliche Lackmaterialien zum Teil in mehreren Schichten, wie Pulverlacke, Füller, Basislacke, Klarlacke, etc. verwendet, die bei Reaktionstemperaturen von ca. 80° bis ca. 200° aufgeschmolzen bzw. getrocknet werden müssen. In allgemein bekannten Beschichtungsanlagen, die für serienmäßige Lackierungen vieler Bauteile, wie beispielsweise von Gehäusen, Karosserien, Metallstrukturteilen, etc. ausgelegt sind, werden konventionelle Umluft-Trocknungen mit Heißluft durchgeführt, die enorme Energiekosten und lange Trocknungszeiten erfordern. Als Energietransmitter ist hier die durch Heizelemente aufgeheizte Heißluft eingesetzt. Bei einem kontinuierlichen Transport der Bauteile durch Trocknungs-Tunnels haben diese eine große Länge, so dass entsprechend aufwendige Konstruktionen in großen Gebäudekomplexen erforderlich sind. Neben diesen Beschichtungs- und Lackieranlagen mit konventionellen herkömmlichen Umlufttrocknungen durch Heißluft sind auch mehrstufige Verfahren in Verbindung mit anderen Energietransmittern bekannt, mit denen Energie in der Lackbeschichtung zum Zwecke des Aufschmelzens und/oder Trocknens aufgebracht wird:

[0003] Bei einer bekannten Lackieranlage (DE 198 57 940 C1) wird eine kombinierte UV/IR-Härtung ausgenutzt, wobei in mehreren aufeinanderfolgenden Bestrahlungsintervallen auszuhärtendes Lackmaterial mit IR- und mit UV-Strahlung abwechselnd bestrahlt wird. Hierzu ist ein spezielles teures Lackmaterial erforderlich, wobei die Anwendung bevorzugt bei Reparaturlackierungen liegt.

[0004] Weiter ist eine Lackieranlage bekannt, bei der für die Lacktrocknung ein zweistufiges Trocknungsverfahren eingesetzt wird (DE 195 03 775 C1),wobei in der ersten Trocknungsstufe als Energietransmitter Infrarot-Strahler verwendet werden. Ein Problem bei diesen Infrarot-Strahlern besteht darin, dass die Strahlungsintensität und damit die effektive Energiebeaufschlagung im Beschichtungsmaterial mit den Quadrat des Abstandes abnimmt. Daher sind hier die Infrarot-Strahler in ihrer Gestalt dem zu trocknenden Gegenstand konturengenau angepasst und mittels gesteuerter Stellvorrichtungen in der Art von Robotern auf einen geringen Abstand an die Oberfläche heranbringbar, so dass zu Erhöhung der Effektivität ein geringer Zwischenspalt verbleibt. Dies stellt einen erheblichen apparativen Aufwand dar. Dadurch ist insbesondere bei stärker strukturierten Bauteilen ersichtlich ein kontinuierlicher Transport durch eine Trocknungseinrichtung nicht möglich, da der Gegenstand während der ersten Trocknungsstufe am Ort der herangeführten Infrarotstrahler örtlich festgehalten werden muss. In einer zweiten Trocknerkabine wird dann eine Nachtrocknung als zweite Trocknungsstufe mit überwiegend stationären Infrarot-Strahlern durchgeführt, wofür wiederum ein erheblicher Zeitaufwand erforderlich ist.

[0005] Weiter ist eine Lackieranlage bekannt (DE 38 14871 A1), bei der ausschließlich eine Infrarottrocknung eingesetzt ist, die mit einer Strahlungsfrequenz im Nahen-Infrarot (NIR) bei 1,0 bis 4,0 µm arbeitet. Auch hier treten die zuvor genannten Probleme für eine effiziente Energieaufbringung auf. Zudem besteht das Problem, dass verdeckte Bereiche, wie beispielsweise hinterschnittene Bereich auf die die IR-Strahlung nicht unmittelbar auftrifft, nur wenig erwärmt und ausgehärtet werden.

[0006] Zusammenfassend ist festzustellen, dass bei den bisher bekannten Beschichtungs- und Lackieranlagen die Aufschmelzung und/oder Aushärtung von Beschichtungsmaterialien einen sehr hohen Aufwand an Energie und Zeit erfordert. Dieser Aufwand ist auch dadurch bedingt, dass ein Bauteil als Träger des Beschichtungsmaterials, insbesondere bei einem gut wärmleitenden Metallbauteil auch selbst ebenso wie die Umgebungsluft auf die erforderliche Temperatur des Beschichtungsmaterials, aufgeheizt werde muss, damit das angrenzende Beschichtungsmaterial die erforderliche hohe Temperatur annehmen kann. Bei Bauteilen mit größeren Materialmassen ergibt sich dann weiter das Problem, dass die mit großem Energieaufwand aufgeheizten Bauteile für ein weiteres Handling zeitraubend wieder abgekühlt werden müssen, wobei für eine aktive Kühlung wiederum ein hoher Energieverbrauch erforderlich ist.

[0007] Aufgabe der Erfindung ist es daher einen Energietransmitter als Bestandteil einer Beschichtungs- und/oder Trockenanlage, insbesondere für eine Lackbeschichtung zu schaffen mit dem wesentliche Prozessenergieeinsparungen möglich sind.

[0008] Diese Aufgabe wird mit den Merkmalen des Anspruchs 1 gelöst.

[0009] Gemäß Anspruch 1 umfasst der Energietransmitter wenigstens zwei Transmitter-Flächenelemente als Antennenelemente. Jedes der Transmitter-Flächenelemente weist eine Glasträgerplatte auf, die auf einer Glasrückfläche eine Abstrahlschicht trägt und deren gegenüberliegende freie Glasvorderfläche auf eine Position für ein zu trocknendes Objekt oder eine Oberfläche eines Bauteils mit aufgetragenem Beschichtungsmaterial gerichtet ist. Im Abstand und etwa parallel zu der Glasrückfläche und wenigstens in deren Größe ist ein Flächenreflektor aus Metallmaterial angeordnet.

[0010] Die jeweilige Abstrahlschicht ist zur Abgabe einer elektromagnetischen Strahlung in einem Frequenzband ausgelegt, wobei das Frequenzband wenigstens charakteristische Eigenfrequenzen im Ultrarot eines zu trocknenden Objekts oder Beschichtungsmaterials überdecken muss. Solche molekularen Eigenfrequenzen liegen insbesondere im Ultrarotbereich von ca. 10-9 bis 10-12 Hertz. Die Abstrahlschicht ist mittels einer Steuereinrichtung zur Abgabe des wenigstens einen Frequenzbandes anregbar, so dass Eigenfrequenzen des zu trocknenden Objekts oder des Beschichtungsmaterials in Resonanz anregbar sind. Dabei sucht sich die Anordnung die zutreffende korrespondierende Resonanzfrequenz zu einer Eigenfrequenz aus dem abgestrahlten Frequenzband für eine gezielte Energiebeaufschlagung mit hoher Energiedichte entsprechend üblicher Resonanzvorgänge heraus. Durch eine gezielte Anpassung des abgestrahlten Frequenzbandes an die jeweils messtechnisch ermittelbaren Eigenfrequenzen, insbesondere von Lackmaterialien ist somit ein Energieeintrag unmittelbar in diese Materialien mit hoher Energiedichte möglich, ohne dass angrenzende Umgebungsbereiche, insbesondere Bauteilträgerbereiche auf hohe Temperaturen mitaufgeheizt werden bzw. nur wenig mitaufgeheizt werden. Zudem tritt hier im Gegensatz zu herkömmlichen IR-Strahlern nur eine minimale Temperaturerhöhung in der Abstrahlschicht der Energietransmitter auf, die hier als Antennenelemente arbeiten. Da die zu beschichtenden Bauteile selbst nicht zwangsläufig auf hohe Temperaturen mitaufgeheizt werden müssen, können sonst nach einer Lacktrocknung erforderliche Abkühlprozesse eingespart oder zumindest erheblich reduziert werden.

[0011] Insgesamt können erfindungsgemäß somit Beschichtungs- und/oder Trockenanlagen aufgebaut werden, die mit erheblich geringerem Energie- und Zeitaufwand betrieben werden können.

[0012] Durch umfangreiche Versuche wurde ermittelt, dass insbesondere der angegebene Aufbau der Transmitter-Flächenelemente in Verbindung mit dem Flächenreflektor und der angegebenen Abstrahlrichtung zu einer wesentlichen Effektivitätssteigerung führt.

[0013] In einer konkreten Anordnung der Transmitter-Flächenelemente nach Anspruch 2 sind diese rechtwinkelig oder quadratisch mit ebenen Glasflächen ausgebildet und insgesamt in wenigstens einer Ebene vorzugsweise in einander gegenüberliegenden Ebenen angeordnet. Dadurch ergibt sich ein einfacher konstruktiver Aufbau mit vorteilhaft großflächigen Gesamtabstrahlflächen für eine effektive Energiebeaufschlagung. In Versuchen hat sich gezeigt, dass eine besonders effektive Abstrahlung mit Transmitter-Flächenelementen mit Kantenlängen von ca. 20 cm bis 80 cm, bevorzugt von ca. 40 cm möglich ist.

[0014] Mit den Merkmalen des Anspruchs 3 kann eine geschlossene, gasdichte Frontebene bei Bedarf hergestellt werden.

[0015] In einer besonders bevorzugten Weiterbildung nach Anspruch 4 bilden die Ebenen der Transmitter-Flächenelemente Innenwände eines Tunnels und sind an dessen Seitenwänden und/oder an der Deckenwand und/oder an der Bodenwand angeordnet. Durch einen solchen Tunnel hindurch können insbesondere Bauteile für eine Lacktrocknung automatisiert transportiert werden.

[0016] Mit den Merkmalen des Anspruchs 5 wird eine Abstrahlschicht beansprucht, die für die Abstrahlung der angegebenen Frequenzbänder in hohem Maße geeignet ist. Anspruch 6 ist dazu auf weitere Konkretisierungen und vorteilhafte Ausgestaltungen gerichtet.

[0017] Nach Anspruch 7 weisen die Transmitter-Flächenelemente jeweils an gegenüberliegenden Seitenbereichen der mit der Abstrahlschicht ausgerüsteten Glasrückflächen elektrische Leiter auf, wobei alle Transmitter-Flächenelemente in Parallelschaltung mit einem Oberwellengenerator der Steuereinrichtung verbunden sind. Der Oberwellengenerator umfasst einen elektrischen Baustein, welcher bei Ansteuerung mit einer Ansteuerschwingung eine steile Stromanstiegsgeschwindigkeit aufweist und damit zur Erzeugung eines hohen Oberwellenanteiles geeignet ist. Diese Leiter werden vorzugsweise als Kupferfolienbänder ausgebildet, wobei eine Ankopplung an die Abstrahlschicht kapazitiv oder induktiv erfolgt. Als elektronischer Baustein mit den angegebenen Eigenschaften eignet sich ein Triac oder Doppel-MOSFET oder gegebenenfalls auch ein ultraschneller Schalter. Die Abstrahlschicht wirkt bei einer solchen Anregung in der Art eines Frequenztransformators, wobei relativ kleinere Anregungsfrequenzen zu den hohen Abstrahlfrequenzen mit dem angegebenen Ultrarot-Frequenzband führen.

[0018] Mit der Weiterbildung nach Anspruch 8 wird vorgeschlagen, eine Anzahl der Transmitter-Flächenelemente mit einer Frequenz im Megahertzbereich und die anderen Transmitter-Flächenelemente mit einer Frequenz im Gigahertzbereich anzuregen. Durch die vorstehende Funktion der Abstrahlschicht als Frequenzumsetzer bzw. Frequenzmultiplikator zu höheren Frequenzen bezüglich der jeweiligen Anregungsfrequenz ist mit einer solchen aufgeteilten Anregung der Transmitter-Flächenelemente eine weite Überdeckung von Eigenfrequenzbereichen möglich, falls dies für konkrete Anwendungen erforderlich ist. Dies kann beispielsweise zutreffen, wenn als Beschichtungsmaterial Materialmischungen verwendet sind, die relativ weit auseinanderliegende, für die erfindungsgemäßen Resonanzzwecke geeignete Eigenfrequenzen aufweisen.

[0019] Nach Anspruch 9 soll der Flächenreflektor aus wenigstens einem tragfähigen Metallblech gebildet sein, an dem über Isolationselemente die Transmitter-Flächenelemente gehalten sind. Der Abstand zwischen dem Flächenreflektor und den Transmitter-Flächenelementen liegt für eine optimale Wirkung bei ca. 1 cm bis 10 cm vorzugsweise ca. bei 4 cm. Dieser Abstand ist einfach durch eine entsprechende Ausgestaltung der Isolationselemente vorgebbar. Eine solche Anordnung ergibt einen einfachen und kostengünstigen Aufbau. Der Flächenreflektor selbst kann wiederum ohne das Erfordernis einer elektrischen Installation auf geeigneten Traggestellen oder Tragwänden montiert sein. Die Abstrahlschicht liegt bei einer solchen Anordnung im Zwischenspalt zwischen den Transmitter-Flächenelementen und dem Flächenreflektor und ist damit vorteilhaft auch bei einem rauen Betrieb gegen mechanische und gegebenenfalls chemische Einflüsse geschützt. Die unbeschichtet nach außen gerichtete Glasfläche ist dagegen weitgehend unempfindlich und kann insbesondere einfach sauber gehalten werden, was für eine effektive und störungsfreie Abstrahlung wesentlich ist. Die unbeschichteten Glasflächen werden auch von den üblicherweise in Lackieranlagen bei Aufschmelzungen und Trocknungen auftretenden Chemikalien, wie beispielsweise Lösungsmitteldämpfen etc. nicht angegriffen. Hohe, störungsfreie Standzeiten mit geringen Wartungsaufwand sind somit gewährleistet.

[0020] Mit Anspruch 10 wird zudem der Aufbau einer automatisiert betreibbaren Lackbeschichtungsanlage beansprucht, wobei in einer ersten Einrichtung als erster Station das Beschichtungsmaterial in flüssiger oder pulverförmiger oder granulatförmiger Form aufgetragen wird. Dies kann vorteilhaft in an sich bekannter Weise gemäß Anspruch 10 elektrostatisch und/oder durch Aufspritzen erfolgen. Eine zweite Einrichtung umfasst in einer zweiten Station den vorstehend beschriebenen Energietransmitter, wobei damit das beschichtungsfreie Material, vorzugsweise ein Pulverlackmaterial, aufschmelzbar und/oder trockenbar ist. Dadurch werden mit sehr geringem Energieaufwand und kurzen Behandlungszeiten einwandfreie, gut haltende Beschichtungen erreicht. Zu beschichtende Bauteile, wie Metallstrukturteile, Karosserien oder Metallgehäuse können in vorzugsweise tunnelartig aufgebauten Anlagen kontinuierlich oder gegebenenfalls taktweise mittels Transporteinrichtungen, wie z. B. mit Förderbänder automatisch transportiert werden.

[0021] Als besonders geeignet haben sich nach Anspruch 12 Pulverlacke mit Eigenfrequenzen im Bereich der Wellenzahlen von ca. 1000 bis 1800 cm-1 erwiesen, die gemäß Anspruch 13 auf Bauteilen aus Metallmaterial aufgebracht werden.

[0022] Anhand einer Zeichnung wird die Erfindung näher erläutert:

[0023] Es zeigen:
Fig. 1
eine schematische, perspektivische Darstellung eines Energie-transmitters als Bestandteil einer Beschichtungs- und Trockenanlage für eine Lackbeschichtung,
Fig. 2
eine schematische, vergrößerte Detaildarstellung der Einzelheit A der Fig. 1, und
Fig. 3
eine schematische, teilweise perspektivische Darstellung eines Transmitter-Flächenelements mit auf einer Glasrückfläche aufgebrachter Abstrahlschicht.


[0024] In der Fig. 1 ist schematisch und perspektivisch ein Energietransmitter 1 als Bestandteil einer Beschichtungs- und Trockenanlage 2 für eine Lackbeschichtung gezeigt. Diese Beschichtungs- und Trockenanlage 2 weist in einer hier nicht dargestellten ersten Station eine erste Einrichtung zum Auftrag eines z. B. Pulverlacks als Beschichtungsmaterial auf eine Oberfläche eines zu beschichtenden Bauteils 3, z. B. eine Kraftfahrzeugkarosserie, auf. Der Pulverlack weist Eigenfrequenzen im Bereich der Wellenzahlen von ca. 1000 bis 1.800 cm-1 auf und wird in der ersten Einrichtung elektrostatisch auf das Bauteil 3 aufgetragen. Das Bauteil 3 mitsamt dem elektrostatisch anhaftenden Pulverlack wird mittels einer Transporteinrichtung 4 kontinuierlich oder taktweise durch die hier nicht dargestellte erste Einrichtung gefördert und gelangt nach Durchlaufen dieser ersten Station zu einer in der Fig. 1 schematisch und perspektivisch dargestellten zweiten Station 5, die der ersten Station nachgeordnet ist und einen Tunnel 7 umfasst, durch den hindurch das Bauteil 3 mittels der Transporteinrichtung 4 in der gewünschten Weise kontinuierlich oder taktweise gefördert wird.

[0025] Wie dies insbesondere aus der Fig. 1 ersichtlich ist, sind an den Innenwänden des Tunnels 7, d. h. an den Seitenwänden 8 und an den Deckenwänden 9 jeweils eine Mehrzahl von den Energietransmitter 1 bildenden Transmitter-Flächenelementen 10 angeordnet, die vorzugsweise im Wesentlichen aneinander angrenzen und z. B. einen schmalen Spalt zwischen sich ausbilden, in den, wie dies in der Fig. 2 schematisch dargestellt ist, ein elastisch isolierendes Dichtband 21 eingesetzt werden kann. Dadurch wird eine geschlossene, gasdichte Frontebene erreicht. Diese Transmitter-Flächenelemente sind hier beispielhaft in etwa rechteckförmig ausgebildet und weisen jeweils eine Glasträgerplatte 11 auf, wie dies insbesondere aus den Fig. 2 und 3, die vergrößerte schematische Detaildarstellungen zeigen, ersichtlich ist. Diese Glasträgerplatte 11 trägt auf einer Glasrückfläche 12 eine in der Darstellung der Fig. 3 schematisch durch eine Punktstruktur dargestellte Abstrahlschicht 13. An gegenüberliegenden Seitenbereichen dieser Glasrückfläche 12 sind auf der Abstrahlschicht 13 elektrische Leiter 14, 15 angeordnet, die in Parallelschaltung mit einem Oberwellengenerator einer in der Fig. 3 lediglich äußerst schematisch und beispielhaft dargestellte Steuereinrichtung 16 verbunden sind. Dieser Oberwellengenerator der Steuereinrichtung 16 umfasst einen elektrischen Baustein, der bei einer Ansteuerung mit einer Ansteuerschwingung eine steile Stromanstiegsgeschwindigkeit entsprechend einer steilen Anstiegsflanke aufweist und damit zur Erzeugung eines hohen Oberwellenanteils geeignet ist. Dadurch können die Transmitter-Flächenelemente 10 mit einer Frequenz im Megahertzbereich oder mit einer Frequenz im Gigahertzbereich angeregt werden.

[0026] Eine der Glasrückfläche 12 gegenüberliegende freie Glasvorderfläche 17 der Transmitter-Flächenelemente 10 ist auf die Kraftfahrzeugkarosserie 3 zu gerichtet.

[0027] Die Innenwände 18 des Tunnels 7 bilden hier einen Flächenreflektor 20 und sind aus einem tragfähigen Metallblech gebildet, an dem über in der Fig. 2 dargestellte Isolationselemente 19 die Transmitter-Flächenelemente 10 gehalten sind. Der Abstand zwischen dem Flächenreflektor 20 und dem Transmitter-Flächenelementen 10 beträgt dabei z. B. in etwa zwischen 1 cm bis zu 10 cm.

[0028] Bezüglich der Zusammensetzung der Abstrahlschicht 13 wird auf die Patentansprüche 4 und 5 sowie die entsprechenden Passagen in der Beschreibungseinleitung verwiesen.

[0029] Sobald das Bauteil 3 mit dem elektrostatisch anhaftenden Pulverlack mittels der Transporteinrichtung 4 durch das Tunnel 7 transportiert wird, wird von der jeweiligen Abstrahlschicht 13 auf den Transmitter-Flächenelementen 10 eine elektromagnetische Strahlung im Ultrarot abgegeben, deren Frequenzband die charakteristischen Eigenfrequenzen des Pulverlacks überdeckt, so dass dieser auf das Bauteil 3 aufgeschmolzen und getrocknet wird.


Ansprüche

1. Energietransmitter als Bestandteil einer Beschichtungs- und/oder Trockenanlage, insbesondere für eine Lackbeschichtung
dadurch gekennzeichnet,
dass der Energietransmitter (1) wenigstens zwei Transmitter-Flächenelemente (10) als Antennenelemente umfasst,
dass jedes der Transmitter-Flächenelemente (10) eine Glasträgerplatte (11) aufweist, die auf einer Glasrückfläche (12) eine Abstrahlschicht (13) trägt und deren gegenüberliegende freie Glasvorderfläche (17) auf eine Position für ein zu trocknendes Objekt oder eine Oberfläche eines Bauteils (3) mit aufgetragenem Beschichtungsmaterial gerichtet ist,
dass im Abstand und etwa parallel zu der Glasrückfläche (12) und wenigstens in deren Größe ein Flächenreflektor (20) aus Metallmaterial angeordnet ist,
dass die jeweilige Abstrahlschicht (13) zur Abgabe einer elektromagnetischen Strahlung in einem Frequenzband ausgelegt ist und das Frequenzband wenigstens charakteristische Eigenfrequenzen im Ultrarot eines zu trocknenden Objekts oder Beschichtungsmaterials überdeckt, und
dass die Abstrahlschicht (13) mittels einer Steuereinrichtung (16) zur Abgabe des wenigstens einen Frequenzbandes anregbar ist, so dass Eigenfrequenzen des zu trocknenden Objekts oder des Beschichtungsmaterials in Resonanz anregbar sind.
 
2. Energietransmitter als Bestandteil einer Beschichtungs- und/oder Trockenanlage nach Anspruch 1, dadurch gekennzeichnet, dass eine Mehrzahl rechtwinkeliger oder quadratischer Transmitter-Flächenelemente (10) eingesetzt sind, die in wenigstens einer Ebene nebeneinander angeordnet sind.
 
3. Energietransmitter nach Anspruch 2, dadurch gekennzeichnet, dass zwischen angrenzenden Kanten der Transmitter-Flächenelemente ein elektrisch isolierendes Sichtungsband eingesetzt ist.
 
4. Energietransmitter als Bestandteil einer Beschichtungs- und/oder Trockenanlage nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Transmitter-Flächenelemente (10) Innenwände (18) eines Tunnels (7) bilden und an den Seitenwänden (8) und/oder an der Deckenwand (9) und/oder an der Bodenwand angeordnet sind und ein zu trocknendes Objekt oder ein Bauteil (3) mit aufgetragenem Beschichtungsmaterial durch den Tunnel (7) transportierbar ist.
 
5. Energietransmitter als Bestandteil einer Beschichtungs- und/oder Trockenanlage nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Abstrahlschicht (13) auf den Glasträgerplatten (11) durch Aufbringen der folgenden Beschichtungsmasse gebildet ist, die aus Bindemittel, Isolationsmittel, Dispergiermittel, Wasser und Graphit besteht und zusammengesetzt ist aus

a. 55 bis 65 % Stoffmengenanteile einer Grundsubstanz aus

• 39 bis 49 % Stoffmengenanteile Bindemittel,

• 18 bis 23 % Stoffmengenanteile Isolationsmittel,

• 18 bis 24 % Stoffmengenanteile Dispergiermittel,

• 12 bis 16 % Stoffmengenanteile destilliertes Wasser

und

b. 35 bis 45 % Stoffmengenanteile Graphit,

wobei das Bindemittel zusammengesetzt ist aus

• 69,06 bis 75,54% Stoffmengenanteile destilliertes Wasser,

• 4 bis 6 % Stoffmengenanteile sulfuriertes Öl,

• 0,16 bis 0,24 % Stoffmengenanteile Phenole oder 0,05 bis 0,5 % Stoffmengenanteile Benzisothiazolinon,

• 15 bis 19 % Stoffmengenanteile Kasein,

• 0,8 bis 1,2 % Stoffmengenanteile Harnstoff,

• 2 bis 3 % Stoffmengenanteile Verdünnungsmittel, und

• 2,5 bis 3,5 % Stoffmengenanteile Caprolactam.


 
6. Energietransmitter als Bestandteil einer Beschichtungs- und/oder Trockenanlage nach Anspruch 5, dadurch gekennzeichnet, dass das sulfurierte Öl sulfatiertes Rizinusöl ist,
dass die Phenole carbonisierte, durch Cracken hergestellte Phenole sind oder Benzisothiazolinon verwendet wird,
dass das Verdünnungsmittel ein alkalisches Verdünnungsmittel und/oder ein Lösungsmittel auf Aromatenbasis und/oder Alkoholbasis und/oder Esterbasis und/oder Ketonbasis ist,
dass das Isolationsmittel ein isolierender Ruß ist,
dass das Dispergiermittel eine anorganische und/oder organische, monomere und/oder polymere Substanz ist, und
dass die Beschichtungsmasse ein Thixotropierungsmittel enthält.
 
7. Energietransmitter als Bestandteil einer Beschichtungs- und/oder Trockenanlage nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Transmitter-Flächenelemente (10) jeweils an gegenüberliegenden Seitenbereichen der mit der Abstrahlschicht (13) ausgerüsteten Glasrückflächen (12) elektrische Leiter (14, 15) aufweisen und alle Transmitter-Flächenelemente in Parallelschaltung mit einem Oberwellengenerator der Steuereinrichtung (16) verbunden sind, der einen elektrischen Baustein umfasst, welcher bei Ansteuerung mit einer Ansteuerschwingung eine steile Stromanstiegsgeschwindigkeit entsprechend einer steilen Anstiegsflanke aufweist und damit zur Erzeugung eines hohen Oberwellenanteils geeignet ist.
 
8. Energietransmitter als Bestandteil einer Beschichtungs- und/oder Trockenanlage nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass eine Anzahl der Transmitter-Flächenelemente (10) mit einer Frequenz im Megahertzbereich und die anderen Transmitter-Flächenelemente (10) mit einer Frequenz im Gigahertzbereich anregbar ist.
 
9. Energietransmitter als Bestandteil einer Beschichtungs- und/oder Trockenanlage nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Flächenreflektor (20) aus wenigstens einem tragfähigen Metallblech gebildet ist, an dem über Isolationselemente (19) die Transmitter-Flächenelemente (10) gehalten sind, wobei der Abstand zwischen dem Flächenreflektor (20) und den Transmitter-Flächenelementen (10) vorzugsweise ca. 1 cm bis 10 cm beträgt.
 
10. Energietransmitter als Bestandteil einer Beschichtungs- und/oder Trockenanlage nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet,
dass eine erste Einrichtung zum Auftrag eines flüssigen oder pulverförmigen oder granulatförmigen Beschichtungsmaterials auf zumindest einen Teil einer Oberfläche eines Bauteils (3) vorgesehen ist, und die erste Einrichtung zum Auftrag des Beschichtungsmaterials in einer ersten Station angeordnet ist, durch die das zu beschichtende Bauteil kontinuierlich oder taktweise mittels einer Transporteinrichtung (4) förderbar ist, und
dass eine zweite Einrichtung (6) vorgesehen ist, die den steuerbaren Energietransmitter (1) mit einer Wirkrichtung auf die Oberfläche des Bauteils (3) mit aufgetragenem Beschichtungsmaterial umfasst, wobei mittels des Energietransmitters (1) das Beschichtungsmaterial, vorzugsweise ein Pulverlackmaterial, aufschmelzbar und/oder trockenbar ist, und dass die zweite Einrichtung mit dem Energietransmitter in einer zweiten Station (5) angeordnet ist, die der ersten Station nachgeordnet ist und durch die mittels der Transporteinrichtung (4) das Bauteil (3) kontinuierlich oder taktweise förderbar ist.
 
11. Energietransmitter als Bestandteil einer Beschichtungs- und/oder Trockenanlage nach Anspruch 10, dadurch gekennzeichnet, dass der Auftrag des Beschichtungsmaterials in der ersten Einrichtung elektrostatisch und/oder durch Aufspritzen erfolgt.
 
12. Energietransmitter als Bestandteil einer Beschichtungs- und/oder Trockenanlage nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass als Beschichtungsmaterial ein Pulverlack mit Eigenfrequenzen im Bereich der Wellenzahlen von ca. 1000 bis 1800 cm-1 eingesetzt wird.
 
13. Energietransmitter als Bestandteil einer Beschichtungs- und/oder Trockenanlage nach Anspruch 12, dadurch gekennzeichnet, dass die zu beschichtenden Bauteile (3) aus Metallmaterial bestehen.
 




Zeichnung










Recherchenbericht