(19)
(11) EP 1 334 965 B9

(12) CORRECTED EUROPEAN PATENT SPECIFICATION
Note: Bibliography reflects the latest situation

(15) Correction information:
Corrected version no 1 (W1 B1)
Corrections, see
Description

(48) Corrigendum issued on:
05.07.2006 Bulletin 2006/27

(45) Mention of the grant of the patent:
28.12.2005 Bulletin 2005/52

(21) Application number: 03100248.8

(22) Date of filing: 05.02.2003
(51) International Patent Classification (IPC): 
C07C 273/02(1990.01)
C07C 333/02(1990.01)
C07C 273/18(1990.01)
C07C 275/04(1990.01)

(54)

Process to prepare alkyl-ureas from O,S-dimethyl dithiocarbonate

Verfahren zur Herstellung von Alkyl-Harnstoffen aus O,S-Dimethyl-dithiocarbonaten

Procédé de préparation d'alkylurées à partir de O,S-diméthyle-dithiocarbonates


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

(30) Priority: 07.02.2002 IT MI20020227

(43) Date of publication of application:
13.08.2003 Bulletin 2003/33

(73) Proprietor: OXON ITALIA S.p.A.
20121 Milano (IT)

(72) Inventors:
  • PALLUCCA, Edoardo
    20019, SETTIMO MILANESE (MI) (IT)
  • DEGANI, Jacopo
    10090, SAN RAFFAELE CIMENA (TO) (IT)
  • SERRI, Anna Maria
    20099, SESTO SAN GIOVANNI (MI) (IT)
  • FOCHI, Rita
    10122, TORINO (IT)
  • GAZZETTO, Sonia
    10010, CASCINETTA D'IVREA (TO) (IT)
  • FENOGLIO, Claudia
    10136, TORINO (IT)
  • ORNATI, Claudio
    20138, MILANO (IT)
  • MIGLIACCIO, Mara
    10057, SANT'AMBROGIO (TO) (IT)
  • CADAMURO, Silvano
    10155, TORINO (IT)
  • CARVOLI, Gianni
    28100, NOVARA (IT)

(74) Representative: Faggioni, Marco et al
Fumero Studio Consulenza Brevetti, Pettenkoferstrasse 20-22
80336 Munich
80336 Munich (DE)


(56) References cited: : 
   
  • LEUNG MAN-KIT ET AL: "S,S-Dimethyl Dithiocarbonate: A Convenient Reagent for the Synthesis of Symmetrical and Unsymmetrical Ureas" JOURNAL OF ORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY. EASTON, US, vol. 61, no. 12, 1996, pages 4175-4179, XP002217935 ISSN: 0022-3263
  • TANDEL ET AL.: "Conversion of Thiocarbamates to Carbamates" TETRAHEDRON, vol. 49, no. 34, 1993, pages 7479-7486, XP001152611
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] The present invention relates to a process for the preparation of alkyl-ureas, starting from O,S-dimethyl dithiocarbonate.

[0002] Alkyl-ureas are a family of well-known compounds. They are important intermediates in the production of isocyanates, drugs, phytomedicines and are used in colouring agents' chemistry, as plasticizers and stabilisers (see Ulmann's Encyclopaedia of Industrial Chemistry, Fifth Edition, 1996, Vol. A27, 355).

[0003] There are various processes for preparing monoalkyl-ureas. Among these, the main, long-known processes are the following reactions: i) the reaction of ammonia with a suitable carbamoyl chloride, obtainable by phosgenation of a suitable amine; ii) the reaction of a salt of a suitable amine with a cyanate of an alkaline metal; iii) the reaction of a suitable isocyanate with ammonia; iv) the reaction of a suitable amine with nitro-urea; v) the reaction of transamidation of urea with a suitable amine (see Houben-Weyl, Georg Thieme Verlag, Stuttgart 1952, Vol. VIII, 153). The starting materials used in the first four processes are fairly expensive, highly toxic and/or difficult to obtain. The fifth process does not exhibit the same disadvantages of the first four processes. The transamidation of urea with amines is carried out under pressure in an aqueous or anhydrous medium, as described in DE-C-8 555 551 and in U.S.-A-3 937 727, or, more easily, in a solvent at atmospheric pressure (see U.S.-A-4 310 692). The transamidation reaction uses, as a starting material, urea, which is an innocuous, non-toxic and inexpensive compound. However, the yields of the reaction products are fairly limited (they normally reach about 80%) and, at the same time, as results from their physical properties (melting point), their purity is low.

[0004] Similarly, the main processes for synthesising di- and tri-alkyl-ureas may be related to the above-described processes for monoalkyl-substituted ureas, i.e.: (i) the reaction of a suitable amine with a suitable carbamoyle chloride, obtainable by phosgenation of a suitable amine; (ii) the reaction of a suitable isocyanate with a suitable amine; (iii) the transamidation reaction of the ureas with suitable amines. The disadvantages of all these processes are the same as those mentioned above, i.e.: as regards the synthetic processes (i) and (ii), the toxicity, difficulty to obtain and/or very high costs of the raw materials; as regards process (iii), the yield and purity problems; on this subject, see for example U.S.-A-6 281 170, wherein the preparation of N,N,N'-trialkyl-ureas starting from N,N'-dimethyl-urea, where a yield of only 61% is disclosed.

[0005] Symmetric and asymmetric N,N'-dialkyl-ureas have been recently prepared also starting from S,S-dimethyl dithiocarbonate (see Man-kit Leung et al, J. Org. Chem., 1996, 61, 4175). S,S dimethyl dithiocarbonate is an industrially accessible compound (I. Degani, R. Fochi, V. Regondi, Synthesis, 1980, 375 and I. Degani, R. Fochi, V. Regondi, Synthesis, 1980, 149); however, the processes described for its conversion into symmetric and asymmetric N,N'-dialkyl-ureas are not suitable for industrial exploitation, due to the long reaction times, the usually poor yield and, referring in particular to asymmetric ureas, due to the sophisticated operation conditions and the fairly high cost of the reagents.

[0006] Concerning symmetric dialkyl-ureas only, it is also possible to synthesise them from carbon dioxide and a suitable monoalkyl-amine at high temperatures and pressures, but with no more than a 75% conversion, which implies the need to recover and purify the gaseous effluents before being able to recycle them in the reaction, as described by U.S.-A-4 178 309.

[0007] The object of the present invention is a process for preparing mono-, di- and trisubstituted ureas that may solve the disadvantages of the known processes, i.e. a process which may provide high yields of the said ureas, in fair conditions and at a low cost. Such an object is brilliantly solved by the present invention, which relates to a process for preparing alkyl-ureas starting from O,S-dimethyl dithiocarbonate, represented by the following formula (1):

characterised in that it provides the following steps:

[0008] A) causing the O,S-dimethyl dithiocarbonate (1) to react with a primary amine of general formula R1NH2 in order to obtain an 0-methyl thiocarbamate of formula (2), wherein R1 is an alkylic, cyclo-alkylic or aryl-alkylic radical



[0009] B) isomerising the O-methyl thiocarbamate of formula (2) in order to obtain a S-methyl thiocarbamate of formula (3)



[0010] C) causing the S-methyl thiocarbamate of formula (3) to react with a compound of general formula R'R"NH, wherein R' and R" may be equal or different one in respect of the other and may be H, R2 and R3, wherein R2 and R3 are alkylic, cyclo-alkylic or aryl-alkylic radicals and may be equal to or different from R1, in order to obtain one of the alkyl-ureas (4), (5) or (6)



[0011] The present invention relates to the preparation of monoalkyl-ureas (4), N,N'-dialkyl-ureas (5) and trialkyl-ureas (6) starting from O,S-dimethyl dithiocarbonate (1), through the intermediate formation of O-methyl thiocarbamates (2) and S-methyl thiocarbamates (3), wherein R1, R2 and R3 represent alkylic, cyclo-alkylic or aryl-alkylic radicals which may be equal or different one in respect of the other and wherein R2 and R3 may also be H.

[0012] The first step provides causing the O,S-dimethyl dithiocarbonate (1) to react with a primary amine R1NH2, wherein an alkylic, cyclo-alkylic or aryl-alkylic radical is bound to the nitrogen atom, which reaction results in yields between 99% and 99.9% of O-methyl thiocarbamate (2), wherein R1 represents the same radicals of the primary amine; the molar ratio R1NH2/(1) lies between 1.1 and 1.2; the reaction temperature is between 20°C and 30°C; the reaction time is between 2 and 3 hours. The 0-methyl thiocarbamate (2) thus obtained is highly pure and may be employed directly in the following step. During the formation of the O-methyl thiocarbamate (2), a mole of methanethiol is produced, which is a product of industrial value and is recovered under the form of sodium salt in aqueous solution, with a 94-98% yield.

[0013] The second step consists in isomerising the O-methyl thiocarbamate (2) into S-methyl thiocarbamate (3), wherein R1 represents the same radicals of the primary amine and of the corresponding O-methyl thiocarbamate (2). The isomerisation reaction is made at a temperature between 40°C and 60°C, in an organic solvent, preferably toluene, in amounts between 0.05 and 4.50 parts in weight per part in weight of (2), using, as initiator, a quantity of dimethyl sulphate between 4% and 8% of the weight of the reagent; the reaction time is between 0.5 and 4 hours; the reaction yields are between 94% and 98%. Dimethyl sulphate may be replaced by a protic organic acid, preferably by methansulphonic acid, used as catalyst. When the reaction is carried out using a protic organic acid, the reaction temperature is about 100°C; the reaction time is between 2 and 3.5 hours; yields are around 98%. The S-methyl thiocarbamate (3) thus obtained is extremely pure and may be employed directly in the following step.

[0014] The third step provides causing the S-methyl thiocarbamate (3), wherein R1 represents the same radicals of the primary amine R1NH2 and of the corresponding 0-methyl thiocarbamate (2), to react with a compound of general formula R'R"NH, wherein R' and R" may be equal or different one in respect of the other and they may be H or an alkylic, cyclo-alkylic or aryl-alkylic group. In case a monoalkyl-urea of formula (4) is to be obtained, R' = R" = H and the compound reacting with the S-methyl thiocarbamate is aqueous ammonia. The reaction is carried out at a temperature between 60°C and 70°C; the reaction time is between 3 and 6 hours; the reaction yields are between 93% and 96%. The alkyl-urea (4) thus obtained is extremely pure and does not require further purification steps in order to be employed for the intended purposes. During the formation of the monosubstituted urea (4), a mole of methanethiol is produced, which product has - as mentioned before - a good industrial value and which is therefore recovered under the form of sodium salt in aqueous solution, with a 95% yield.

[0015] Alternatively, if a dialkyl-urea of formula (5) is to be obtained, R' = H, R" = R2 (which may also correspond to R1) and the compound with which the 0-methyl thiocarbamate (3) is made to react is a primary amine R2NH2. The reaction is carried out at a temperature between 30°C and 60°C; the reaction time is between 4 and 8 hours; the reaction yields are between 93% and 96%. The dialkyl-urea (5) thus obtained is extremely pure and may be employed directly for the intended purposes. Also during the formation of the N,N'-disubstituted urea (5), a mole of methanethiol is produced, which is recovered under the form of sodium salt in aqueous solution, with a 95% yield.

[0016] Furthermore, if a trialkyl-urea of formula (6) is to be obtained, R' = R2, R" = R3 and the S-methyl thiocarbamate (3) is to react with a secondary amine R2R3NH. The reaction is carried out at a temperature between 60°C and 70°C; the reaction time is between 1 and 2 hours; the reaction yields are between 93% and 96%. The trialkyl-urea (6) thus obtained is extremely pure and may be employed without any further purification for the intended purposes. During the formation of the N,N,N'-trisubstituted urea (6), a mole of methanethiol is produced, which is recovered under the form of sodium salt in aqueous solution, with a 95% yield.

[0017] The process constituted by the steps A-C as described above, which employs, as a starting compound, the O,S-dimethyl dithiocarbonate, an easily accessible, safe and inexpensive compound, provides, in mild and easily obtainable conditions and with usually very high yields, mono-, di- and trialkyl-substituted ureas, respectively of formulae (4), (5) and (6), wherein the substituents R1, R2 and R3, which may be equal or different one in respect of the other, are highly pure and, in most cases, immediately usable alkylic, cyclo-alkylic or aryl-alkylic radicals. The present process also has the important advantage of producing sodium methanethiolate, by completely exploiting the O,S-dimethyl dithiocarbonate (1) used as a starting compound.

[0018] The present invention will now be described more in detail, with reference to some examples, which are only provided for purposes of illustration and are not intended to be limiting.

EXAMPLE 1


O,N-dimethyl thiocarbamate



[0019] A 40% methylamine aqueous solution (g 13.95; moles 0.180) is dropwise added, during 10-15 minutes, into the O,S-dimethyl dithiocarbonate (g 20.00; moles 0.164) placed into a 100 ml flask, while stirring. The mixture temperature is maintained at about 20°C by means of a refrigerating bath. The reaction is exothermic and produces methanethiol, which is absorbed by a sodium hydroxide aqueous solution. The course of the reaction is monitored through GC and 1H NMR analysis. After 2 hours the reaction is completed. The reaction mixture is then extracted with methylene chloride and the gathered organic extracts are washed in little water, made anhydrous with anhydrous sodium sulphate and made to evaporate by means of a rotating evaporator. The residue is constituted by g 17.21 (99.9% yield) of virtually pure (GC, GC-MS, 1H NMR analysis) O,N-dimethyl thiocarbamate: colourless oil, b.p. 122-123°C/45 mm Hg; MS: m/e 105 (M+); 1H NMR (CDCl3), cis- and trans- rotamers: δ = 2.81 and 3.03 (2 d, J = 5.12 Hz, 3 H, N-CH3), 3.92 and 4.01 (2 s, 3 H, O-CH3), 6.45 and 7.12 ppm (2 enlarged s, 1H, NH).

EXAMPLE 2


O-methyl N-ethyl thiocarbamate



[0020] The process described in example 1 is repeated, with the difference that the 40% methylamine aqueous solution is replaced by 70% ethylamine aqueous solution (g 12.66; moles 0.197). The reaction is completed in 3 hours. g 19.50 (99.9% yield) of virtually pure (GC, GC-MS, 1H NMR analysis) 0-methyl N-ethyl thiocarbamate is obtained: colourless oil, b.p. 130-131°C/50 mm Hg; MS: m/e 119 (M+); 1H NMR (CDCl3), cis- and trans- rotamers: δ = 1.10 and 1.18 (2t, J = 8.00 Hz, 3 H, CH2-CH3), 3.02-3.72 (m, 2H, CH2), 3.90 and 4.00 (2 s, 3 H, O-CH3), 6.82 and 7.50 ppm (2 enlarged s, 1H, NH).

EXAMPLE 3


O-methyl N-butyl thiocarbamate



[0021] The process described in example 1 is repeated, with the difference that the 40% methylamine aqueous solution is replaced by butylamine (g 14.38; moles 0.197). The reaction is completed in 3 hours. g 23.89 (99.1% yield) of virtually pure (GC, GC-MS, 1H NMR analysis) 0-methyl N-butyl thiocarbamate is obtained: colourless oil, b.p. 118-120°C/65 mm Hg; MS: m/e 147 (M+); 1H NMR (CDCl3), cis- and trans- rotamers: δ = 0.85 (q, J= 7.48 Hz, 3 H, CH2-CH3), 1.21-1.35 and 1.39-1.55 (2 m, 4 H, CH2-(CH2)2-CH3), 3.19 and 3.46 (2 td, J = 7.16, 2 H, N-CH2), 3.89 and 3.98 (2 s, 3 H, O-CH3), 6.45 and 7.23 ppm (2 enlarged s, 1H, NH).

EXAMPLE 4


O-methyl N-cyclohexyl thiocarbamate



[0022] The process described in example 1 is repeated, with the difference that the 40% methylamine aqueous solution is replaced by cyclohexylamine (g 19.50; moles 0.197). The reaction is completed in 4.5 hours. g 28.34 (99.9% yield) of virtually pure (GC, GC-MS, 1H NMR analysis) 0-methyl N-cyclohexyl thiocarbamate is obtained: crystallised from pentane, it has m.p. 39-40°C; MS: m/e 173 (M+); 1H NMR (CDCl3), cis- and trans- rotamers: δ = 0.92-1.30, 1.37-1.65 and 1.65-1.95 (3 m, 5:3:2, 10 H, 5 CH2), 3.45-3.55 (m, 1 H, CH), 3.78 and 3.88 (2 s, 3 H, O-CH3), 6.43 and 7.30 ppm (2 enlarged s, 1H, NH).

EXAMPLE 5


O-methyl N-benzyl thiocarbamate



[0023] The process described in example 1 is repeated, with the difference that the 40% methylamine aqueous solution is replaced by benzylamine (g 19.26; moles 0.180). The reaction is completed in 3.5 hours. g 29.38 (99% yield) of virtually pure (GC, GC-MS, 1H NMR analysis) 0-methyl N-benzyl thiocarbamate is obtained: crystallised from petroleum ether, it has m.p. 45.6-46.1°C; MS: m/e 181 (M+); 1H NMR (CDCl3), cis- and trans-rotamers: δ = 4.00 and 4.07 (2 s, 3 H, O-CH3), 4.41 and 4.73 (2 d, J = 5.00 and 6.00 Hz, 2 H, N-CH2), 6.56 ppm (enlarged s, 1H, NH), 7.19-7.45 (m, 5H, phenyl).

EXAMPLE 6


N,S-dimethyl thiocarbamate



[0024] A quantity of toluene and dimethyl sulphate, each of which equal to 5% of the thiocarbamate weight (g 0.84), is added to the N,O-dimethyl thiocarbamate (g 16.80, moles 0.16). The mixture is heated to 50°C by means of an oil bath, while stirring. The course of the reaction is monitored through GC and 1H NMR analysis. After 2.5 hours the reaction is completed. After cooling the mixture to room temperature, it is neutralised with 30% aqueous ammonia and the stirring is maintained for 10-15 minutes. The reaction mixture is then extracted with methylene chloride and the gathered organic extracts are washed in little water, dried with anhydrous sodium sulphate and made to evaporate by means of a rotary evaporator. The residue is g 15.96 (95% yield) of virtually pure (GC, GC-MS, 1H NMR analysis) N,S-dimethyl thiocarbamate: colourless oil, b.p. 81-82°C/45 mm Hg; MS: m/e 105 (M+); 1H NMR (CDCl3) : δ = 2.31 (s, 3 H, S-CH3), 2.84 (d, J = 4.76 Hz, 3 H, N-CH3), 5.65 ppm (enlarged s, 1H, NH).

EXAMPLE 7


S-methyl N-ethyl thiocarbamate



[0025] The process described in example 6 is repeated, with the difference that the N,O-dimethyl thiocarbamate is replaced by an equal quantity of 0-methyl N-ethyl thiocarbamate (g 19.04; moles 0.16). The reaction is completed in 4 hours at 40°C. g 18.22 (95.7% yield) of virtually pure (GC, GC-MS, 1H NMR analysis) S-methyl N-ethyl thiocarbamate is obtained: colourless oil, b.p. 82-84°C/50 mm Hg; MS: m/e 119 (M+); 1H NMR (CDCl3): δ = 1.20 (t, J = 6.40 Hz, 3 H, CH2-CH3), 2.36 (s, 3 H, S-CH3), 3.35 (dq, J = 6.00 Hz, 2 H, CH2), 6.32 ppm (enlarged s, 1H, NH).

EXAMPLE 8


S-methyl N-ethyl thiocarbamate



[0026] A quantity of anhydrous methanesulphonic acid equal to 5% of the thiocarbamate weight (g 0.95) is added to the O-methyl N-ethyl thiocarbamate (g 19.04, moles 0.16), while stirring. The mixture is then heated to 100°C by means of an oil bath. The course of the reaction, which is completed in 2 hours, is monitored through GC and 1H NMR analysis. After cooling the mixture to room temperature, it is extracted with methylene chloride and the gathered organic extracts are washed in little water, dried with anhydrous sodium sulphate and made to evaporate by means of a rotary evaporator. The residue is g 18.61 (97.7% yield) of virtually pure (GC, GC-MS, 1H NMR analysis) S-methyl N-ethyl thiocarbamate. The spectroscopic characteristics thereof are identical to those of the product obtained in example 7.

EXAMPLE 9


S-methyl N-butyl thiocarbamate



[0027] The process described in example 6 is repeated, with the difference that the N,O-dimethyl thiocarbamate is replaced by an equal quantity of O-methyl N-butyl thiocarbamate (g 23.52; moles 0.16). The reaction is completed in 4 hours at 50°C. g 22.10 (94% yield) of virtually pure (CG, CG-MS, 1H NMR analysis) S-methyl N-butyl thiocarbamate is obtained: crystallised from pentane, it has m.p. 34.8-35.4°C; MS: m/e 147 (M+); 1H NMR (CDCl3) : δ = 0.80-1.10 (m, 3 H, CH2-CH3), 1.20-1.70 (m, 4 H, CH2-(CH2)2-CH3), 2.35 (s, 3 H, S-CH3), 3.05-3.45 (m, 2 H, N-CH2), 6.18 ppm (enlarged s, 1H, NH).

EXAMPLE 10


S-methyl N-cyclohexyl thiocarbamate



[0028] The process described in example 6 is repeated, with the difference that the N,O-dimethyl thiocarbamate is replaced by an equal quantity of O-methyl N-cyclohexyl thiocarbamate (g 27.68; moles 0.16). The reaction is completed in 30 minutes at 60°C. g 26.99 (97.5% yield) of virtually pure (GC, GC-MS, 1H NMR analysis) S-methyl N-cyclohexyl thiocarbamate is obtained: crystallised from petroleum ether-ethanol, it has m.p. 111-111.3°C; MS: m/e 173 (M'); 1H NMR (CDCl3): δ = 0.96-2.09 (m, 10 H, 5 CH2), 2.31 (s, 3 H, SCH3), 3.39-3.99 (m, 1 H, CH), 5.52 ppm (enlarged s, 1H, NH).

EXAMPLE 11


S-methyl N-cyclohexyl thiocarbamate



[0029] The process described in example 8 is repeated, with the difference that the O-methyl N-ethyl thiocarbamate is replaced by an equal quantity of O-methyl N-cyclohexyl thiocarbamate (g 27.68; moles 0.16). The reaction is completed in 3.5 hours at 100°C. g 27.29 (98.6% yield) of virtually pure (GC, GC-MS, 1H NMR analysis) S-methyl N-cyclohexyl thiocarbamate is obtained. The spectroscopic characteristics thereof are identical to those of the product obtained in example 11.

EXAMPLE 12


S-methyl N-benzyl thiocarbamate



[0030] The process described in example 6 is repeated, with the difference that the N,O-dimethyl thiocarbamate is replaced by an equal quantity of O-methyl N-benzyl thiocarbamate (g 28.96; moles 0.16). The reaction is completed in 60 minutes at 50°C. g 28.38 (98% yield) of virtually pure (GC, GC-MS, 1H NMR analysis) S-methyl N-benzyl thiocarbamate is obtained: crystallised from ethanol, it has m.p. 75.7-76.7°C; MS: m/e 181 (M+); 1H NMR (CDCl3): δ = 2.35 (s, 3 H, S-CH3), 4.45 (d, J= 6.0 Hz, 2 H, N-CH2), 5.90 ppm (enlarged s, 1H, NH), 7.22-7.39 (m, 5 H, phenyl).

EXAMPLE 13


Methyl urea



[0031] A quantity of 30% aqueous ammonia (g 102, moles 1.80) is added, while stirring, to the N,S-dimethyl thiocarbamate (g 15.75, moles 0.15) and the mixture is heated to 65°C, still stirring it. The reaction produces methanethiol, which is absorbed by a sodium hydroxide aqueous solution. The course of the reaction is monitored through thin layer chromatography (SiO2; eluent: CHCl3 / CH3OH, 9.8 : 0.2). The reaction is completed in 3 hours. The water is distilled by means of a rotary evaporator, the solid product is then completely dried by adding chloroform and subsequently distilling it. g 10.99 of product is obtained, which is 97% pure. After washing the raw residue at 0°C in 4-5 ml of anhydrous dioxane, g 10.66 (yield 96%) of pure (TLC, GC, GC-MS, 1H NMR) methyl urea is obtained: m.p. 101.9-102.1°C; MS: m/e 74; 1H NMR (DMSO-d6): δ = 2.46 (d, J = 5.00 Hz, 3 H, CH3), 5.49 (enlarged s, 2H, NH2), 5.85 ppm (enlarged s, 1 H, NH).

EXAMPLE 14


Ethyl urea



[0032] The process described in example 13 is repeated, with the difference that the N,S dimethyl thiocarbamate is replaced by an equal quantity of S-methyl N-ethyl thiocarbamate (g 17.85; moles 0.15) and that the 30% ammonia aqueous solution is g 127.5 (moles 2.25). The reaction is completed in 6 hours at 70°C. g 12.54 of 98% pure, solid product is obtained. From the raw residue, after washing it at 0°C in 4-5 ml ethyl acetate, g 12.28 (yield 93%) of pure (TLC, GC, GC-MS, 1H NMR) ethyl urea is obtained: m.p. 93.3°C; MS: m/e 88; 1H NMR (CDCl33): δ = 1.16 (t, J = 7.00 Hz, 3 H, CH3), 3.20 (dq, J = 7.00, 2 H, N-CH2), 5.01 (enlarged s, 2 H, NH2), 5.55 ppm (enlarged s, 1H, NH).

EXAMPLE 15


Butyl urea



[0033] The process described in example 13 is repeated, with the difference that the N,S-dimethyl thiocarbamate is replaced by an equal quantity of S-methyl N-butyl thiocarbamate (g 22.05; moles 0.15). The 30% ammonia aqueous solution is g 102 (moles 1.80). The reaction is completed in 4 hours at 70°C. g 17.23 of 96% pure, solid product is obtained. From the raw residue, after washing it at 0°C in 4-5 ml ethyl acetate, g 16.53 (yield 95%) of pure (TLC, GC, GC-MS, 1H NMR) butyl urea is obtained: m.p. 96.8°C; MS: m/e 116; 1H NMR (CDCl3): δ = 0.75-1.15 (m, 3 H, CH2-CH3), 1.20-1.72 (m, 4 H, CH2-(CH2)2-CH3), 2.96-3.38 (m, 2 H, N-CH2), 5.00 (enlarged s, 2 H, NH2), 5.75 ppm (enlarged s, 1H, NH).

EXAMPLE 16


Cyclohexyl urea



[0034] The process described in example 13 is repeated, with the difference that the N,S dimethyl thiocarbamate is replaced by an equal quantity of S-methyl N-cyclohexyl thiocarbamate (g 25.95; moles 0.15) and that the 30% ammonia aqueous solution is g 76.5 (moles 1.35). In this example, about 3 g per g of thiocarbamate (ml 78) ethyl alcohol is also added. The reaction is completed in 6 hours at 70°C. g 20.66 of pure (TLC, GC, GC-MS, 1H NMR) cyclohexyl urea is obtained: m.p. 193.8-194.5°C; MS: m/e 142; 1H NMR (DMSO-d6): δ = 0.51-0.70, 0.70-0.83, 0.99-1.08, 1.10-1.20 and 1.20-1.30 (5 m, 3:2:1:2:2, 10 H, 5 CH2), 2.75-2.89 (m, 1 H, CH), 4.88 (enlarged s, 2H, NH2), 5.39 ppm (d, J = 7.88 Hz, 1 H, NH).

EXAMPLE 17


Benzyl urea



[0035] The process described in example 13 is repeated, with the difference that the N,S-dimethyl thiocarbamate is replaced by an equal quantity of S-methyl N-benzyl thiocarbamate (g 27.15; moles 0.15) and that the 30% ammonia aqueous solution is g 76.5 (moles 1.35). In this example, as in example 16, about 3 g per g of thiocarbamate (ml 81) ethyl alcohol or dioxane, alternatively, is also added. The reaction is completed in 6 hours at 60°C. g 22.05 of 97% pure solid product is obtained. From the raw residue, after washing it at room temperature in toluene (50-60 ml), g 21.38 (yield 95%) of pure (TLC, GC, GC-MS, 1H NMR) benzyl urea is obtained: m.p. 149°C; MS: m/e 150; 1H NMR (DMSO-d3) : δ = 4.15 (d, J = 6.00 Hz, 2 H, CH2), 5.42 (enlarged s, 2 H, NH2), 6.35 (enlarged s, 1H, NH), 7.05-7.25 ppm (m, 5H, phenyl).

EXAMPLE 18


N-ethyl-N'methyl urea



[0036] The reaction mixture constituted by N-ethyl S-methyl thiocarbamate (g 8.45, moles 0.071) and methylamine (g 6.6, moles 0.213; g 16.5 of 40% aqueous solution) is continuously stirred and heated to 50-55°C. The freed methanethiol is absorbed by a sodium hydroxide aqueous solution. GC monitoring shows that the reaction is completed in 1 hour. The methanethiol is completely removed from the reaction mixture through an air flow. The methylamine that is still present and the water are removed by means of a rotary evaporator, with the possible help of an azeotrope-producing solvent. g 7.24 (quantitative yield) of virtually pure (TLC, GC, GC-MS verified) N-ethyl-N-methyl urea is produced; after drying it with chloroform and subsequently crystallising it from ethylic ether, it has m.p. 50.5-51.0°C; MS: m/e 102 (M+); 1H NMR (CDCl3), d = 1.12 (t, J = 7.00 Hz, 3 H, CH2-CH3), 2.75 (d, J = 5.00 Hz, 3 H, NH-CH3), 3.17 (dq, J = 7.00 Hz, 2H, CH2), 5.53 (enlarged s, 1H, NH).

EXAMPLE 19


N,N'-diethyl urea



[0037] The reaction mixture constituted by N-ethyl, S-methyl thiocarbamate (g 4.6, moles 0.039) and ethylamine (g 3.8, moles 0.086; g 5.53 of 70% aqueous solution) is continuously stirred and heated to 40°C. The freed methanethiol is absorbed by a sodium hydroxide aqueous solution. The process continues until the starting thiocarbamate is over (chromatographic analyses: about 8 hours). The methanethiol is completely removed from the reaction mixture through an air flow. The methylamine that is still present and the water are removed by means of a rotary evaporator, possibly with the help of an azeotrope-producing solvent. g 4.52 (quantitative yield) of virtually pure (TLC, GC, GC-MS) N,N'-diethyl urea is produced; after drying it with chloroform and crystallising it from toluene, it has m.p. 111-112°C; MS: m/e 116 (M+); 1H NMR (CDCl3), d = 1.05 (t, J = 7.00 Hz, 6 H, 2 CH3), 3.09 (dq, J = 7.00 Hz, 4H, 2 CH2), 5.40 ppm (enlarged s, 2H, 2NH).

EXAMPLE 20


N,N-dibutyl-N'methyl urea



[0038] The reaction mixture constituted by N,S-dimethyl thiocarbamate (g 15.75, moles 0.15) and dibutylamine (g 23.22, moles 0.18) is continuously stirred and heated to 65-70°C. The reaction produces methanethiol, which is absorbed by a sodium hydroxide aqueous solution. The course of the reaction is monitored through GC and MS analysis. The reaction is completed in 2 hours. The dibutylamine in excess is removed through distillation by means of a rotary evaporator. g 26.51 (95% yield) of virtually pure (TLC, GC, GC-MS) N,N-dibutyl-N'methyl urea is produced: crystallised from pentane it has m.p. 46.0-46.2°C; MS: m/e 185 (M+); 1H NMR (CDCl3), d = 0.98 (t, J = 6.00 Hz, 6 H, 2 CH2-CH3), 1.12-1.75 (m, 8 H, CH2-(CH2)2CH3), 2.84 (d, J = 5.00 Hz, 3 H, NH-CH3), 3.20 (t, J= 7.20 Hz, 4H N[CH2-(CH2)2CH3)2), 4.35 ppm (enlarged s, 1H, NH).

EXAMPLE 21


Ethyl urea



[0039] 1st step - A 500 ml flask is arranged, provided with a bottom discharge, mechanical stirrer, dripping funnel with pressure compensator, reflux refrigerant connected to a tube drawing from a 12.8% sodium hydroxide aqueous solution (g. 512.5) contained into a first trap, which in turn is connected to a trapping system comprising a series of traps, a sodium hydroxide one, a diluted sulphuric acid one, a hypochlorite one and an active carbons one. g 200 (moles 1.64) of O,S-dimethyl dithiocarbonate is placed into the flask, which is kept under a weak nitrogen flow and, while mechanically stirring, g 144.5 of 61.3 % (moles 1.97) ethylamine is poured at such a speed that the maximum reaction temperature does not exceed 45°C (about 1 hour). The mass is then conditioned to 50-55°C for 1 hour at atmospheric pressure and then for a further hour at reduced pressure (400 mm Hg ca.). The mass is brought back to ordinary temperature and pressure, g 50 of water is added and the stirring is stopped; as a lower phase, g 193.1 (yield 98.9%) of 0-methyl N-ethyl thiocarbamate, under the form of colourless oil, is separated.

[0040] The aqueous solution of the first sodium hydroxide trap contains g 108.65 (yield 94%) of sodium methanethiolate.

[0041] 2nd step - g 193.1 of O-methyl N-ethyl thiocarbamate obtained in the 1st step is introduced into a 2000 ml flask, provided with a distillation head connected to a condenser and to a collector, and diluted with g 1120 of toluene. The solution is made anhydrous through distillation with the azeotrope water/toluene. After the distillation, the residual solution (g 1051.6) is brought to 45°C and the distillation head is replaced with a reflux refrigerant. Then, while mechanically stirring, g 9.6 of dimethyl sulphate is added at such a speed that the maximum reaction temperature does not exceed 47°C. The mass is conditioned to 45°C for 4 hours and then cooled to room temperature. g 8.6 of a 30% ammonium hydroxide aqueous solution is added, the mixture is stirred for 30 minutes and the organic phase is separated. The aqueous phase is thoroughly extracted with toluene. The organic extracts are gathered, washed in little water and dried. After the distillation with toluene, g 196 of 96.5% S-methyl N-ethyl thiocarbamate is obtained.

[0042] 3rd step - A 1000 ml flask, provided with mechanical stirrer, dripping funnel with pressure compensator, reflux refrigerant connected to a trap system equal to that described in the 1st step is arranged. Under a weak nitrogen flow, g 196 of raw S-methyl N-ethyl thiocarbamate obtained in the 2nd step is placed inside and, while stirring, g 762 of a 30% aqueous ammonia solution (9 eq.) is added. The mixture is heated to 60°C and the reaction is continued for 4 hours. The reflux refrigerant is replaced by a distillation head connected to a condenser and a collector, which collector is in turn connected to the trap system. g 237 of water is distilled. g 389 of 33.2% ethyl urea aqueous solution is obtained, the dry residue of which being 98.5% pure (GC area %). The aqueous solution of the first sodium hydroxide trap contains g 109.8 (yield 95%) of sodium methanethiolate. The sulphuric acid trap trapped g 202 of ammonia (i.e. 99% of the non-reacted part).


Claims

1. Process to prepare alkyl-ureas, starting from O,S-dimethyl dithiocarbonate, having the following formula (1):

characterised in that it includes the following steps:

A) Causing the O,S-dimethyl dithiocarbonate (1) to react with a primary amine of general formula R1NH2, where R1 is an alkylic, cyclo-alkylic or aryl-alkylic radical, so as to obtain an 0-methyl thiocarbamate of formula (2):

B) Isomerising the O-methyl thiocarbamate of formula (2), so as to obtain an S-methyl thiocarbamate of formula (3):

C) Causing the S-methyl thiocarbamate of formula (3) to react with a compound of general formula R'R"NH, where R' and R" can be H, R2 or R3, where R2 and R3 are an alkylic, cyclo-alkylic or aryl-alkylic radical and can be equal or different one in respect of the other and equal or different in respect of R1, so as to obtain one of the alkyl-ureas (4), (5) or (6):


 
2. Process as in claim 1), characterised in that, in step A), the molar ratio R1NH2/(1) is between 1.1 and 1.2.
 
3. Process as in claim 1) or 2), characterised in that the reaction temperature of step A) is between 20°C and 30°C.
 
4. Process as in any one of the previous claims, characterised in that the reaction time for step A) is between 2 and 3 hours.
 
5. Process as in any one of the previous claims, characterised in that the temperature of step B) is between 40°C and 60°C.
 
6. Process as in any one of the previous claims, characterised in that step B) is carried out in an organic solvent.
 
7. Process as in claim 6), characterised in that said organic solvent is toluene.
 
8. Process as in claim 6) or 7), characterised in that said organic solvent is present in amounts between 0.05 and 4.50 parts in weight per part in weight of (2).
 
9. Process as in any one of the previous claims, characterised in that use is made, as an initiator for step B), of dimethyl-sulphate in amounts between 4 and 8% by weight in respect of the weight of the reactant.
 
10. Process as in any one of the previous claims, characterised in that the reaction time for step B) is between 0.5 and 4 hours.
 
11. Process as in any one of claims 1) to 8), characterised in that, as an initiatior for step B), a protic organic acid is used.
 
12. Process as in claim 11), wherein said acid is methansulphonic acid.
 
13. Process as in claims 11) and 12), characterised in that the reaction temperature of step B) is of about 100°C.
 
14. Process as in any of claims 11) to 13), characterised in that the reaction time is between 0.5 and 1 hour.
 
15. Process as in any one of the previous claims, characterised in that, in step C), R' = R" = H, and the compound reacting with S-methyl thiocarbamate is aqueous ammonia.
 
16. Process as in claim 15), characterised in that the reaction temperature of step C) is between 60°C and 70°C.
 
17. Process as in claims 15) and 16), characterised in that the reaction time for step C) is between 3 and 6 hours.
 
18. Process as in any one of claims 1) to 14), characterised in that, in step C), R' = H, R" = R2, and the compound reacting with S-methyl thiocarbamate (3) is a primary aliphatic amine R2NH2.
 
19. Process as in claim 18), characterised in that the reaction temperature of step C) is between 30°C and 60°C.
 
20. Process as in claims 18) and 19), characterised in that the reaction time is between 4 and 8 hours.
 
21. Process as in any one of claims 1) to 14), characterised in that, in step C), R' = R2, R" = R3, and the S-methyl thiocarbamate (3) is caused to react with a secondary aliphatic amine R2R3NH.
 
22. Process as in claim 21), characterised in that the reaction temperature of step C) is between 60°C and 70°C.
 
23. Process as in claims 21) and 22), characterised in that the reaction time for step C) is between 1 and 2 hours.
 
24. Process as in any one of the previous claims, for the production of methanethiol.
 


Ansprüche

1. Verfahren zur Herstellung von Alkylharnstoffen, ausgehend von O,S-Dimethyldithiocarbonat, mit der folgenden Formel (1):

    dadurch gekennzeichnet, daß es die folgenden Schritte einschließt:

A) Bewirken einer Reaktion von O,S-Dimethyldithiocarbonat (1) mit einem primären Amin der allgemeinen Formel R1NH2, worin R1 ein Alkyl-, Cycloalkyl- oder Arylalkyl-Rest ist, um O-Methylthiocarbamat von Formel (2) zu erhalten:

B) Isomerisieren des O-Methylthiocarbamats von Formel (2), um ein S-Methylthiocarbamat von Formel (3) zu erhalten:

C) Bewirken einer Reaktion von S-Methylthiocarbamat von Formel (3) mit einer Verbindung der allgemeinen Formel R'R"NH, worin R' und R" H, R2 oder R3 sein können, wobei R2 und R3 ein Alkyl-, Cycloalkyl- oder Arylalkyl-Rest sind und gleich oder unterschiedlich im Hinblick auf den anderen und gleich oder unterschiedlich im Hinblick auf R1 sein können, um einen der Alkylharnstoffe (4), (5) oder (6) zu erhalten:


 
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß in Schritt A) das Molverhältnis R1NH2/(1) zwischen 1,1 und 1,2 liegt.
 
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Reaktionstemperatur von Schritt A) zwischen 20°C und 30°C liegt.
 
4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Reaktionszeit für Schritt A) zwischen 2 und 3 Stunden liegt.
 
5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Temperatur von Schritt B) zwischen 40°C und 60°C liegt.
 
6. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß Schritt B) in einem organischen Lösemittel durchgeführt wird.
 
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß besagtes organische Lösemittel Toluol ist.
 
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß besagtes organische Lösemittel in Mengen zwischen 0,05 und 4,50 Gewichtsteilen pro Gewichtsteil von (2) vorhanden ist.
 
9. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß Verwendung gemacht wird, als einem Initiator für Schritt B), von Dimethylsulfat in Mengen zwischen 4 und 8 Gew.-%, bezogen auf das Gewicht des Reaktanten.
 
10. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Reaktionszeit für Schritt B) zwischen 0,5 und 4 Stunden liegt.
 
11. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß als Initiator für Schritt B) eine protische organische Säure verwendet wird.
 
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß besagte Säure Methansulfonsäure ist.
 
13. Verfahren nach den Ansprüchen 11 und 12, dadurch gekennzeichnet, daß die Reaktionstemperatur von Schritt B) etwa 100°C beträgt.
 
14. Verfahren nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, daß die Reaktionszeit zwischen 0,5 und 1 Stunde liegt.
 
15. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß in Schritt C) R' = R" = H und die Verbindung, die mit S-Methylthiocarbamat reagiert, wässriges Ammoniak ist.
 
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß die Reaktionstemperatur von Schritt C) zwischen 60°C und 70°C liegt.
 
17. Verfahren nach den Ansprüchen 15 und 16, dadurch gekennzeichnet, daß die Reaktionszeit für Schritt C) zwischen 3 und 6 Stunden liegt.
 
18. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß in Schritt C) R' = H, R" = R2 und die Verbindung, die mit S-Methylthiocarbamat (3) reagiert, ein primäres aliphatisches Amin R2NH2 ist.
 
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß die Reaktionstemperatur in Schritt C) zwischen 30°C und 60°C liegt.
 
20. Verfahren nach den Ansprüchen 18 und 19, dadurch gekennzeichnet, daß die Reaktionszeit zwischen 4 und 8 Stunden liegt.
 
21. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß in Schritt C) R' = R2, R" = R3 und eine Reaktion von S-Methylthiocarbamat (3) mit einem sekundären aliphatischen Amin R2R3NH bewirkt wird.
 
22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, daß die Reaktionstemperatur von Schritt C) zwischen 60°C und 70°C liegt.
 
23. Verfahren nach den Ansprüchen 21 und 22, dadurch gekennzeichnet, daß die Reaktionszeit für Schritt C) zwischen 1 und 2 Stunden liegt.
 
24. Verfahren nach einem der vorangehenden Ansprüche zur Herstellung von Methanthiol.
 


Revendications

1. Procédé pour la préparation d'alkylurées, en partant de dithiocarbonate de O,S-diméthyle, répondant à la formule (1) suivante :

caractérisé en ce qu'il comprend des étapes consistant à :

A) amener le dithiocarbonate de O,S-diméthyle (1) à réagir avec une amine primaire de formule R1NH2, dans laquelle R1 représente un radical alkyle, cycloalkyle ou arylalkyle, de manière à obtenir un O-méthylthiocarbamate de formule (2) :

B) isomériser le O-méthylthiocarbamate de formule (2), de manière à obtenir un S-méthylthiocarbamate de formule (3) :

C) amener le S-méthylthiocarbamate de formule (3) à réagir avec un composé de formule générale R'R"NH, dans laquelle R' et R" peuvent représenter H, des groupes R2 ou R3, les groupes R2 et R3 représentant un radical alkyle, cycloalkyle ou arylalkyle et pouvant être mutuellement identiques ou différents, et identiques à, ou différents de, R1, de manière à obtenir une des alkylurées (4), (5) et (6) :


 
2. Procédé suivant la revendication 1, caractérisé en ce que, dans l'étape A), le rapport molaire R1NH2/(1) est compris entre 1,1 et 1,2.
 
3. Procédé suivant la revendication 1 ou 2, caractérisé en ce que la température réactionnelle de l'étape A) est de 20°C à 30°C.
 
4. Procédé suivant l'une quelconque des revendications précédentes, caractérisé en ce que le temps de réaction pour l'étape A) est de 2 à 3 heures.
 
5. Procédé suivant l'une quelconque des revendications précédentes, caractérisé en ce que la température de l'étape B) est de 40°C à 60°C.
 
6. Procédé suivant l'une quelconque des revendications précédentes, caractérisé en ce que l'étape B) est mise en oeuvre dans un solvant organique.
 
7. Procédé suivant la revendication 6, caractérisé en ce que ledit solvant organique est le toluène.
 
8. Procédé suivant la revendication 6 ou 7, caractérisé en ce que ledit solvant organique est présent en des quantités de 0,05 à 4,50 parties en poids par partie en poids de (2).
 
9. Procédé suivant l'une quelconque des revendications précédentes, caractérisé en ce qu'on utilise, comme initiateur pour l'étape B), du sulfate de diméthyle en des quantités de 4 à 8 % en poids par rapport au poids du corps réactionnel.
 
10. Procédé suivant l'une quelconque des revendications précédentes, caractérisé en ce que le temps de réaction pour l'étape B) est de 0,5 à 4 heures.
 
11. Procédé suivant l'une quelconque des revendications 1 à 8, caractérisé en ce que, comme initiateur pour l'étape B), un acide organique protique est utilisé.
 
12. Procédé suivant la revendication 11, dans lequel ledit acide est l'acide méthanesulfonique.
 
13. Procédé suivant les revendications 11 et 12, caractérisé en ce que la température réactionnelle de l'étape B) est égale à environ 100°C.
 
14. Procédé suivant l'une quelconque des revendications 11 à 13, caractérisé en ce que le temps de réaction est de 0,5 à 1 heure.
 
15. Procédé suivant l'une quelconque des revendications précédentes, caractérisé en ce que, dans l'étape G), R' = R" = H, et le composé réagissant avec le S-méthylthiocarbamate est une solution aqueuse d'ammoniac.
 
16. Procédé suivant la revendication 15, caractérisé en ce que la température réactionnelle de l'étape C) est de 60°C à 70°C.
 
17. Procédé suivant les revendications 15 et 16, caractérisé en ce que le temps de réaction pour l'étape C) est de 3 à 6 heures.
 
18. Procédé suivant l'une quelconque des revendications 1 à 14, caractérisé en ce que, dans l'étape C), R' = H, R" = R2, et le composé réagissant avec le S-méthylthiocarbamate (3) est une amine aliphatique primaire R2NH2.
 
19. Procédé suivant la revendication 18, caractérisé en ce que la température réactionnelle de l'étape C) est de 30°C à 60°C.
 
20. Procédé suivant les revendications 18 et 19, caractérisé en ce que le temps de réaction est de 4 à 8 heures.
 
21. Procédé suivant l'une quelconque des revendications 1 à 14, caractérisé en ce que, dans l'étape C), R' = R2, R" = R3, et le S-méthylthiocarbamate (3) est amené à réagir avec une amine aliphatique secondaire R2R3NH.
 
22. Procédé suivant la revendication 21, caractérisé en ce que la température réactionnelle de l'étape C) est de 60°C à 70°C.
 
23. Procédé suivant les revendications 21 et 22, caractérisé en ce que le temps de réaction pour l'étape C) est de 1 à 2 heures.
 
24. Procédé suivant l'une quelconque des revendications précédentes, pour la production de méthanethiol.