BACKGROUND OF THE INVENTION
[0001] The present invention is directed to a gaseous fuel burner for process heating. In
particular, the present invention is directed to a burner for process heating which
yields ultra low nitrogen oxides (NOx) emissions.
[0002] Energy intensive industries are facing increased challenges in meeting NOx emissions
compliance solely with burner equipment. These burners commonly use natural gas as
a fuel due to its clean combustion and low overall emissions. Industrial burner manufacturers
have improved burner equipment design to produce ultra low NOx emissions and call
them by the generic name of "Low NOx Burners" (LNBs) or various trade names. Table
I (Source: North American Air Pollution Control Equipment Market, Frost & Sullivan)
gives the LNB market share based on industry for the year 2000. An objective for new
burners is to target the industrial sectors that have the largest need for LNBs based
on geographic region and local air emission regulations.
| Table I: Low NOx Burner Market |
| Year Generation |
Public Utilities (%) |
Incineration (%) |
Refinery or CPI (%) |
Power Generation (%) |
Paper, Food, Rubber, Other (%) |
| 2000 |
46.5 |
15 |
21.3 |
6.4 |
10.8 |
[0003] As shown in Table I, public utilities and refineries (Chemical and Petroleum Industries)
utilize the largest share of low NOx burners. These burners are used in industrial
boilers, crude and process heaters (atmospheric and vacuum furnaces) and hydrogen
reformers (steam methane reformers).
[0004] Nitrogen oxides (NOx) are among the primary air pollutants emitted from combustion
processes. NOx emissions have been identified as contributing to the degradation of
environment, particularly degradation of air quality, formation of smog (poor visibility)
and acid rain. As a result, air quality standards are being imposed by various governmental
agencies, which limit the amount of NOx gases that may be emitted into the atmosphere.
[0005] Primary goals in combustion processes related to the above are to (1) decrease the
NOx emissions levels to < 9 parts per million by volume (ppmv) and (2) improve the
overall heat transfer uniformity and combustion efficiency of process heaters, boilers
and industrial furnaces. For example, in southern California, for process heaters
with a firing capacity greater than 21,1 GJ/h (20 MM Btu/hr) it is required that the
NOx emissions be less than 7 ppmv and that the exhaust gas stream from the process
heaters must be vented to a Selective Catalytic Reduction (SCR) unit. At present,
this is only possible using best available control technology such as an SCR system.
The SCR systems use post treatment of flue gas by reaction of ammonia in the presence
of a catalyst to destruct NOx into nitrogen. In addition, California law also requires
a fixed temperature window (315,6°C to 426,7°C) (600°F to 800°F) for >90% NOx removal
efficiency as well as the avoidance of ammonia slip below 5 ppmv. A typical SCR unit
for a 105,5 GJ/h (100 million Btu/hr) process heater would cost approximately $700,000
in capital costs with annual operating costs of $200,000. See, for example, Table
2 of R. K. Agrawal and S.C. Wood, "Cost-Effective NOx Reduction",
Chemical Engineering, February 2001.
[0006] The above compliance costs create a higher cost burden on furnace/process plant operators
or utility providers. Generally, emission control costs are transferred to the public
in the form of higher overall product costs, local taxes and/or user fees. Thus, power
utilities and process plants are looking for more cost effective NOx reduction technologies
that would control NOx emissions from the source and do not require post treatment
of flue gases after NOx is already formed.
[0007] In order to comply cost-effectively for NOx emissions, many combustion equipment
manufacturers have developed LNBs. See,
e.g., D. Keith Patrick, "Reduction and Control of NOx Emissions from High Temperature
Industrial Processes",
Industrial Heating, March 1998. The cost effectiveness of an LNB compared to the SCR system would generally
depend on the type of burner, consistent NOx emissions from burner, burner costs and
local compliance levels. In many ozone attainment areas, the LNBs (for >42,2 GJ/h
(40 MM Btu/hr) have not been capable of producing low enough NOx emissions to comply
with regulations or provide an alternative to SCR units. Therefore, SCR remains today
as the only best available control technology for large process heaters and utility
boilers.
[0008] The greatest challenge in designing a low NOx burner is keeping NOx emissions consistently
at sub 9 ppmv level or comparable to NOx emissions at the outlet of the SCR system.
The prior art includes low NOx or ultra low NOx burners that produce low NOx emissions
using various fuel/oxidant mixing techniques, fuel/oxidant staging techniques, flue
gas recirculation, stoichiometry variations, fluid oscillations, gas reburning and
various combustion process modifications. However, most burners are unable to produce
NOx emissions at less than 9 ppmv and those that do so in a lab, cannot reproduce
such NOx levels in an industrial setting. The technical reasons or challenges in designing
a sub 9 ppmv low NOx burner will become evident as described below.
[0009] Most large capacity gaseous fuel fired industrial burners used for process heating
applications are nozzle mixing type burners. As the name implies, the gaseous fuel
and combustion air do not mix until they leave various fuel/oxidant ports of this
type of burner. The principal advantages of nozzle mix burners over premix burners
are: (1) the flames cannot flash back, (2) a wider range of operating stoichiometry;
and (3) a greater flexibility in burner/flame design. However, most nozzle mix air-fuel
burners require some kind of flame holder/arrester for maintaining flame stability.
One prior art generic nozzle mix burner is shown in FIG. 1, where a metallic flame
holder disk is used for providing flame stability. Here, combustion air is induced
surrounding the main fuel pipe with flame holder in a large box type burner shell.
[0010] The example burner of FIG. 1 also uses staging fuel for secondary combustion to reduce
overall NOx formation. However, for successful staged combustion processes, it is
very important to have a stable primary flame attached to the flame holder. FIG. 2
shows a typical flame holder geometry in which a multiple-hole fuel nozzle is located
in the center and several perforated slots are used on the flame holder conical disk
outside for passing through a small amount of combustion air for mixing with the injected
fuel. The bluff body shape flame holder creates an air stream reversal as shown in
FIG. 2. The opposite direction air stream creates almost stagnant condition (zero
axial velocity) for air fuel mixing at the inside cavity of the flame holder cone.
This stagnant air-fuel mixture with almost no positive firing axis velocity component
is used for attaching the main flame to the flame holder base.
[0011] Flame holders of various hole patterns and external shapes (conical, perforated disk,
ring, etc.) are used for anchoring flames. For example,
U. S. Patent No. 5,073,105 (Martin, et al.) and
U.S. Patent No. 5,275,552 (Schwartz et al.) describe low NOx burner devices where such flame holders are used to anchor the flame.
In
U.S. Patent No. 5,073,105, a primary fuel (30 - 50% of total fuel) is injected radially inwardly over the flame
holder disk with flue gas entrainment (through a hole in the burner tile) for anchoring
the primary flame. The remaining, secondary fuel is injected surrounding and impacting
the external burner block (tile) surface for fuel staging and furnace gas recirculation.
Combustion air mixing with the primary fuel takes place inside the burner block over
the flame holder and some NOx is formed due to limited heat dissipation volume inside
the burner block cavity and due to creation of locally fuel rich regions.
[0012] A very similar approach involving flame holder, primary fuel and secondary fuel injection
is used in
U.S. Patent No. 5,275,552. Here, the primary gas, with entrained furnace gas through holes in the burner tile,
is swirled in the burner block cavity for better mixing. The swirling primary fuel/flue
gas mixture enables better flame anchoring on the flame holder surface.
[0013] A main disadvantage associated with flame holders for use in ultra low-NOx burners
is localized stagnant zones of fuel-rich combustion that are generally anchored at
the inner base of a flame holder cone or disk. These zones are located on the solid
ridges between adjacent air slots/holes due to pressure conditions created by the
outer air stream. The fuel-rich or sub-stoichiometric mixtures found at the flame
holder base for flame stability are unfortunately ideal for formation of C-N bonds
through the reaction CH + N
2 = HCN + N. Subsequent oxidation of HCN leads to flame holder derived prompt NO formation.
[0014] Another main disadvantage associated with flame holders for use in ultra low-NOx
burners is limited flame stability if the same burner is operated extremely fuel-lean
to avoid prompt NO formation. The overall equivalence ratio (phi) is limited to 0.2
to 0.4 for most flame holder based burners.
[0015] Finally, a third main disadvantage associated with flame holders for use in ultra-low-NOx
burners is that overheating or thermal oxidation of flame holders is quite common
due to high temperature flame anchoring, localized reducing atmosphere and scaling
on the holder base, and furnace radiation damage when there is an interruption of
combustion air supply to the metallic flame holder. In order to overcome the above
flame holder disadvantages several attempts have been made in the past. See, for example,
U. S. Patent Nos. 5,195,884 (Schwartz et al.),
5,667,376 (Robertson et al.),
5,957,682 (Kamal et al.) and
5,413,477 (Moreland). These devices use slight premix combustion or mixing recirculated flue gas (FGR)
instead of using a flame holder device (for example,
U.S. Patent No. 6,027,330 (Lifshits)). However, the problems of flash back and limited flame stability range for premix
burners (or for FGR burners) do not offer a complete solution in terms of extended
stoichiometry, ease of operation, low cost operation and extremely fuel-lean operation
(phi < 0.1) required for achieving ultra low NOx (
e.g., < 5 ppmv) performance. The lack of flame stability is especially detrimental during
the startup/heat-up of a process heater/furnace, In a cold furnace, burners with limited
flame stability may experience blow-off of flame, thereby creating a hazard and delaying
production. A remedy could be to use a second set of burners specially designed for
heat-up conditions, which can be costly as well as manpower intensive.
[0016] A further NO
x burner for a furnace and the method of operating the burner is known from
U.S. Patent No. 4,505,666. The NO
x burner has a primary and secondary combustion zone wherein staged fuel and air to
both combustion zones is provided. About 40 to 60 % of the liquid or gaseous hydrocarbon
fuel along with about 90 % of the total air required is combusted in the first reaction
zone which is a central zone. The remaining fuel together with the remaining 10 %
of the total air required is combusted in one or more secondary reaction zones adjacent
to the central zone. The burner of
U.S. Patent No. 4,505,666 is a low NO
x burner not suitable to be operated below 20 ppm NO
x, which is not sufficiently low.
BRIEF SUMMARY OF THE INVENTION
[0017] The present invention is directed to an ultra low NO
x gaseous fuel burner for process heating applications such as utility boilers, process
heaters and industrial furnaces. The novel burner utilizes two unique dependent staged
processes for generating a non-luminous, uniform and combustion space filling flame
with extremely low (< 9 ppmv) NOx emissions. This is accomplished using: (1) a flame
stabilizer such as a large scale vortex device upstream to generate a low firing rate,
well-mixed, low-temperature and highly fuel-lean (phi 0.05 to 0.3) flame for maintaining
the overall flame stability, and (2) multiple uniformly spaced and diverging fuel
lances downstream to inject balanced fuel in several turbulent jets inside the furnace
space for creating massive internal flue gas recirculation. The resulting flame provides
several beneficial characteristics such as no visible radiation, uniform heat transfer,
lower flame temperatures, combustion space filling heat release and production of
ultra low NOx emissions.
[0018] In the present invention, an ultra low NOx burner for process heating is provided
which includes a fluid based flame stabilizer which provides a fuel-lean flame at
an equivalence ratio in the range of phi = 0.05 to phi = 0.3 and fuel staging lances
surrounding the flame stabilizer with each lance having a pipe having a staging nozzle
at a firing end thereof, each lance having at least one hole for staging fuel injection,
and each hole having a radial divergence angle and an axial divergence angle whereby
the at least one hole and the divergence angles are adapted to provide complete circumferential
coverage of the fuel-lean flame. The burner generates NOx emissions of less than 9
ppmv at near stoichiometry conditions.
[0019] In another embodiment, the at least one hole and the divergence angles are adapted
to provide a flat flame pattern. In a third embodiment, the at least one hole and
the divergence angles are adapted to provide a load shaping flame pattern
[0020] Preferably, between 4 and 16 staging lances are used and each staging nozzle has
between 1 hole and 4 holes. Preferably the radial divergence angle is between 8° and
24° and the axial divergence angle is between 4° and 16°. The velocity of fuel exiting
the nozzle is preferably between 91,44 m/s to 274,32 m/s (300 to 900 feet per second)
for a natural gas staging fuel.
[0021] The distance from the forward end of the burner to a point where mixing of staging
flame and flame stabilizer flame occurs is preferably approximately 0,2032 m to 1,2192
m (8 to 48 inches). Finally, the fuel rate of the staging for natural gas fuel is
from 70% to 95% of the total fuel firing rate of the burner.
[0022] The flame stabilizer is preferably a large scale vortex device where the flame has
a peak flame temperature of less than approximately 1093°C (2000° Fahrenheit). The
equivalence ratio for the flame stabilizer is preferably in the range of phi = 0.05
to phi = 0.1.
[0023] The burner may include a burner block coaxial to the flame stabilizer. Preferably,
the burner block is cylindrical or slightly conical, or rectangular in shape.
BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS
[0024] FIG. 1 is a simplified side elevational view of a prior art air-fuel burner with
a flame holder.
[0025] FIG. 2 is a simplified side elevational view of a prior art flame holder for an air-fuel
burner.
[0026] FIG. 3 is a simplified side elevational view of a fluid based large scale vortex
flame stabilizer for use with an ultra low NOx burner of the present invention.
[0027] FIG. 4A is a graphical representation of NOx emissions vs. average flame temperature.
[0028] FIG. 4B is a graphical representation of NOx emissions vs. excess oxygen in exhaust
gas.
[0029] FIG. 5A is a simplified, side elevational view of an ultra low-NOx burner in a circular
staging configuration in accordance with the present invention.
[0030] FIG. 6 is a simplified front and side view of fuel nozzles and flame pattern of the
flame stabilizer of FIG. 3 in combination with the ultra low-NOx burner of FIG. 5A.
[0031] FIG. 7A is a cross-sectional, top plan view of a fuel staging nozzle used in the
burner of FIG. 5A.
[0032] FIG. 7B is a cross-sectional, side elevational view of the fuel staging nozzle of
FIG. 7A.
[0033] FIG. 7C is a right side view of the fuel staging nozzle of FIG 7B.
[0034] FIG. 8 is a simplified side elevational view of the burner of FIG. 5A depicting interaction
of a flame stabilizer fuel flame and a staging fuel flame.
[0035] FIG. 9 is a is a graphical representation of NOx emissions with respect to oxidant/oxygen
under diluted conditions.
[0036] FIG. 10 is a graphical representation of lab measurements of a burner flame using
a suction pyrometer depicting flame temperature vs. radial distance.
[0037] FIG. 12A is a simplified illustration of a load shaping staging configuration in
an industrial boiler using multiple flame stabilizers.
[0038] FIG. 12B is a simplified illustration of a load shaping staging configuration in
an industrial boiler using a single flame stabilizer.
[0039] FIG. 13A is a simplified illustration of a wall-fired power boiler firing configuration
with rows of stabilizers and fuel staging lances.
[0040] FIG. 13B is a simplified illustration of a tangential-fired power boiler firing configuration
with rows of stabilizers and fuel staging lances.
DETAILED DESCRIPTION OF THE INVENTION
[0041] Referring now to the drawings, wherein like part numbers refer to like elements throughout
the several views, there is shown in FIG. 3 a device for stabilization of a flame
in the form of a large scale vortex (LSV) device 12 for use with an ultra low NOx
burner 10 (see FIGS. 5A and 8) in accordance with the present invention. The LSV device
12 is comprised of an inner (secondary) air or oxidant pipe 14 recessed inside a fuel
pipe 16, which is further recessed inside an outer (primary) air or oxidant pipe 18.
The primary oxidant (
e.g., air) is introduced axially at relatively high velocity and flow rate in the outer
oxidant annulus 20 while the secondary oxidant (
e.g., air) is directed through the secondary oxidant pipe 14 at a lower velocity and
flow rate. Due to preferential high velocity combustion in the outer oxidant annulus
20 and much lower velocity through the secondary oxidant pipe 14, a pressure imbalance
is developed around the secondary oxidant pipe 14. This causes a stream-wise vortex
to develop downstream in the outer oxidant pipe 18, as shown in FIG. 3. Table I gives
an example of specific velocity ranges and dimensionless ratios for obtaining a stable
stream-wise vortex in the primary oxidant pipe 18. Here, V
pa = the velocity of the primary oxidant, V
f = the velocity of the fuel, V
sa = the velocity of the secondary oxidant, D
f = the diameter of the fuel pipe 16, L
f = the distance between the forward end of the fuel pipe 16 and the forward end of
the primary oxidant pipe 18, D
pa = the diameter of the primary oxidant pipe 18, L
sa = the distance between the forward end of the secondary oxidant pipe 14 and the forward
end of the fuel pipe 16, and D
sa = the diameter of the secondary oxidant pipe 14. The preferred average velocity ranges
for fuel is about 0,610 is to 1,829m/s (2 to 6 ft/sec) for primary oxidant is 9,144
m/s to 27,432 m/s (30 to 90 ft/sec) and for secondary oxidant is 4,572m/s is to13,716
m/s (5 to 45 ft/sec).
| TABLE 1: LSV Velocities and Dimensionless Ratio |
| LSV Firing Rate |
Velocity Range (ft./sec.) mls |
Ratio |
Ratio |
Ratio |
| GJ/h (MM Btu/hr) |
Vpa |
Vf |
Vsa |
Lf/Df |
Lf/Dpa |
Lsa/Dsa |
| 0.26 (0.25) |
(30-90) |
(2-6) |
(15-45) |
1 |
1 |
1 |
| to |
9,144- 27,432 |
0,61-1,83 |
4,57- 13,716 |
to |
to |
to |
| 5,27 (5) |
|
|
|
3 |
3 |
3 |
[0042] The LSV device 12 is a fluid based flame stabilizer which can provide a very fuel-lean
flame at an equivalence ratio as low as phi = 0.05. At this ratio, the combustion
air is almost 20 times more than the theoretically required airflow. The LSV flame
stability is maintained at high excess airflow due to fluid flow reversal caused by
a stream-wise vortex which, in turn, causes internal flue gas recirculation and provides
preheating of air/fuel mixture and intense mixing of fuel, air and products of combustion
to create ideal conditions for flame stability. The LSV flame is found to anchor on
the fuel pipe tip 22,
i.e., its forward end. Under normal operation, most LSV internal components remain at
less than 537,8°C (1000°F). The operation of the LSV device 12 based on the stream-wise
vortex principle makes it inherently more stable at a lower firing rate and at extremely
low equivalence ratios. This is beneficial to lower peak flame temperatures. At a
low firing rate and extremely fuel-lean stoichiometry, a flame with extremely low
peak temperatures (less than 871,7°C (1600°F) and NOx emissions less than 2 to 3 ppmv
is produced. Lower NOx emissions associated with lower flame temperatures and extremely
fuel-lean operation is clear. FIGS. 4A and 4B show general NOx trends as a function
of flame temperature and excess oxygen measured in the exhaust gas.
[0043] The LSV device 12 operation at extremely fuel lean conditions for ultra low-NOx emissions
necessitates that combustion of the remaining fuel downstream be accomplished in a
strategic manner to complete combustion, to avoid additional NO or CO formation, and
to operate the burner system with a slight overall excess of oxygen (2 to 3%) in the
exhaust.
[0044] FIG. 5A shows a schematic of the ultra low-NOx burner 10 in accordance with the present
invention which combines the aforementioned LSV device 12 with strategic fuel staging
lances 24 in a circular configuration. The overall burner process can be described
in three process elements: 1) extremely fuel-lean combustion, 2) large scale vortex
for flame stability, and 3) fuel staging using strategically located fuel lances 24.
As shown in FIG. 5A, the LSV device 12 is surrounded in a cage type construction using
multiple fuel staging lances 24. The lances 24 are long steel pipes with specially
designed staging nozzles 26 at the firing end. According to lab experiments, the optimum
number of staging lances 24 can vary from 4 to 16 and each staging lance 24 has multiple
diverging holes 28 (see FIGS. 7A, 7B, and 7C, as described below) for staging fuel
injection. The number of holes 28 per staging nozzle 26 can vary from a single hole
for a less than 1,055 GJ/h (1 MM Btu/hr) burner to, for example, 4 holes for higher
firing rate burners. The number of staging holes 28 and their divergence angles (alpha
and beta as described below) are chosen to accomplish complete circumferential coverage
of the LSV flame for a circular configuration (see FIG. 5A), a flat configuration
or to accomplish a load shapping pattern (see FIGS. 12A and 12B).
[0045] FIG. 6 shows a schematic for a 4,22 GJ/h (4 MM Btu/hr) burner with a 0,254m (10 inch)
diameter burner block. Eight uniformly distributed staging fuel lances 24 (on a 0,178m
(7 inch) pitch circle radius) and two diverging holes per staging lance provide a
circular pattern. FIGS. 7A, 7B and 7C show one typical design of staging lance nozzle
26 and geometry of staging holes 28 (note angles alpha and beta).
[0046] The holes 28 are drilled at a compound angle with respect to two orthogonal axes.
The objective is to distribute staging fuel uniformly over the fuel-lean LSV flame
envelope. FIG. 6 shows how a two-hole nozzle 24 installed on eight uniformly placed
lances of the above example, having a radial divergence angle alpha = 7° and axial
divergence angle beta = 15° can surround the LSV flame completely at a distance of
X= 0,610m (24 inches) This intersection or merge distance, X, (see FIG. 6) has been
verified during laboratory firing. The complete envelope of staging fuel that is significantly
diluted with combustion gases produces a very low temperature and combustion space
filling flame. The preferred range for angle alpha is between 8° and 24° and for angle
beta is between 4° and 16°. The holes 28 vary in size depending on staging fuel injection
velocity range. The preferred nozzle exit velocity range is between 91,44 m/s to 274,32
m/s (300 to 900 feet per second) for natural gas staging fuel. The above velocities
(or nozzle hole sizes) vary depending on the fuel composition (and heating value)
and burner firing capacity.
[0047] The complete ultra low NOx burner with LSV flame upstream and fuel staging downstream
is illustrated in FIG. 8. The various combustion processes are also shown. Referring
to FIG. 8, the various burner flame processes are now described:
LSV FLAME
[0048] The LSV flame is maintained extremely fuel-lean
(e.g., phi=0.05) and is anchored on the LSV fuel pipe 16. This flame gets more stable as
the primary airflow through the relatively narrow outer oxidant annulus 20 is increased
. The LSV flame has a very low peak flame temperature (less than ~1093 °C (~ 2000°
Fahrenheit) and produces very low NOx emissions. This is due to excellent mixing,
avoidance of fuel-rich zones for prompt NOx formation (as observed in traditional
flame holders) and completion of overall combustion under extremely fuel-lean conditions.
The recycling of exhaust gas in the LSV device 12 also reduces flame temperature due
to product gas dilution. Table II gives laboratory firing data on the LSV device 12
under fuel lean firing conditions. Here, it is clear that the LSV device 12 produces
very low NOx emissions at low firing rates and under extremely fuel-lean conditions.
Note that high oxygen concentration and low CO
2 concentration indicate excess air operation accompanied by leakage of outside are
through refractory cracks in the lab furnace.
| Table II: LSV lab firing data; LSV Firing Only, Furnace between 537,8°C and 815,6°C
(1000° and 1500° Fahrenheit) |
| LSV Firing Rate (MM Btu/hr) GJ/h |
Comb. Air Theo. (%) |
emissions (dry) |
Corrected NO @ 3% O2 (ppmv) |
Corrected NO @ 3% O2 (lb/MM Btu) kg/Gj |
Corrected NO @ 3% O2 (mg/Nm3) |
| O2 (%) |
CO (ppm) |
CO2 (%) |
NO (ppm) |
| (0.5) 0,53 |
550 |
17.6 |
0.25 |
0.18 |
0.4 |
2.1 |
(0.003)
0,0013 |
4.3 |
| (1) 1,055 |
450 |
18.3 |
0.25 |
0.27 |
0.5 |
3.3 |
(0.004)
0.0017 |
6.8 |
| (2) 2,11 |
255 |
15.6 |
2.4 |
0.73 |
1.8 |
6.0 |
(0.008)
0,0034 |
12.3 |
[0049] In addition, there are important observations regarding the LSV flame. The LSV device
12 is generally fired at equivalence rations of 0.05 to 0.1. For example, if there
is a total firing rate of 4,22 GJ/h (4 MM Btu/hr), the LSV device 12 is firing at
0,422 GJ/h (0.4 MM Btu/hr) and fuel staging lances 24 are set to inject fuel at 3,80
GJ/h (3.6 MM Btu/hr) the LSV device 12 will then supply total combustion air for 4,22
GJ/h (4.MM Btu/hr) or air at a 900% level for 0,422 GJ/h (0.4MM Btu/hr)firing rate.
At this condition, the LSV flame is extremely fuel-lean, it is diluted with combustion
air, and products of combustion from vortex action and the resulting peak flame temperature
(as measured by a thermocouple probe before staging fuel jets meet the LSV flame)
are less than 1093,3°C (2000° Fahrenheit).
[0050] As can be seen in FIG. 6, the merge distance, X, between the LSV flame and the staging
jets from the furnace wall is maintained at approximately 0,2032m to 1,2192m (8 to
48 inches) from the end of the burner and this distance depends on the burner-firing
rate and staging fuel divergence angle (beta). For a 4,22 GJ/h (4 MM Btu/hr) total
firing rate, a measured merge distance was approximately 0,610m (24"). This distance
is critical in keeping the flame free from visible radiation, providing combustion
space filling characteristics, having low peak flame temperatures, and producing ultra
low NOx emissions.
[0051] The dilution of combustion air using LSV products of combustion is also very important
for reducing localized oxygen availability. For example, if 1019,59 m
2/h (36,000 scfh) of combustion air (at ambient temperature) is mixed with approximate
815,5°C (1500°F) products of combustion from an LSV device 12 firing at 0,422 GJ/h
(0.40 MM Btu/hr) firing rate, there is a localized dilution of combustion air. Additionally,
oxygen concentration in the combustion air decreases from about 21% to 19%. This reduction
in oxygen availability (which may be higher locally due to volumetric gas expansion)
can reduce NOx emissions further when already diluted staging fuel reacts with the
preheated air of reduced oxygen concentration. This dual effect of fuel dilution and
air dilution are explained below under Circular Staging configuration.
[0052] Peak temperatures of the spacious flame occur outside the center core region of overall
flame. The temperature profile is a reflection of circular staging pattern and lower
temperatures exist in the core region due to fuel-lean LSV products of combustion.
During laboratory measurements (at furnace temperature of 871,7°C (1600 °F), at 4,22
GJ/h (4 MM Btu/hr) firing capacity, the peak flame temperatures never exceeded 1148,9°C
(2100° Fahrenheit) at any transverse cross section along furnace length.
CIRCULAR STAGING
[0053] As shown in FIG. 8, the fuel staging is performed using a circular staging configuration
with multiple diverging lances 24 installed around the LSV device 12 or the burner
block 17 exterior. The fuel jets are injected in the furnace space using nozzles 26
of specific hole geometry. See FIGS. 7A, 7B, and 7C.
[0054] In this method of fuel staging, the resulting combustion (above auto ignition temperature)
is controlled by chemical kinetics and by fuel jet mixing with the furnace gases and
oxidant. The carbon contained in the fuel molecule is drawn to complete oxidation
with the diluted oxidant stream instead of the pyrolitic soot forming reactions of
a traditional flame front. It is assumed here that combustion takes place in two stages.
In the first stage, fuel is converted to CO and H
2 in diluted, fuel rich conditions. Here, the dilution suppresses the peak flame temperatures
and formation of soot species, which would otherwise produce a luminous flame. In
the second stage, CO and H
2 react with diluted oxidant downstream to complete combustion and form CO
2 and H
2O. This space-based dilution and staged combustion leads to a space filling process
where a much larger space surrounding flame is utilized to complete the overall combustion
process.
[0055] In order to illustrate the effects of fuel jet dilution, the theoretical natural
gas jet entrainment calculations are presented in Table III. Here, a free turbulent
gas jet at 176,48 m/s (579 feet per second) velocity is injected inside a still furnace
environment maintained at 1093,3°C (2000° Fahrenheit). The fuel jet continues to entrain
furnace gases along the firing axis until it reaches the entrainment limit. For example,
at two feet axial distance, the jet entrained 24 times its mass and the average fuel
concentration per unit volume is reduced to less than 5%.
| Table III: NG jet entrainment in the furnace atmosphere |
| mNG (scfh) m3/h |
Ce |
x (ft) m |
do (inch) mm |
NG jet Vo (ft/sec) |
Fu. Temp (°F) °C |
Rho NG (lbm/ft3) g/cm3 |
Rho fu gas (lbm/ft3) g/cm3 |
Entrainment Ratio |
Jet mass @ x (scfh) m3/h |
Average. NG Concentration |
| (400) 11,33 |
0.32 |
(0.5) 0,152 |
(0.188) |
(579) 176,8 |
(2000) |
(0.0448) |
0.015614) |
6 |
(2,418) 0,068 |
0.165418 |
| |
|
(1) 0,305 |
4,78 |
m/s |
1093 |
0,000718 |
0,0002502 |
12 |
(4,836) 0,137 |
0.082709 |
| |
|
(1.5) 0,457 |
|
|
|
|
|
18 |
(7,254) 0,205 |
0.055139 |
| |
|
(2) 0,61 |
|
|
|
|
|
24 |
(9,671) 0,274 |
0.041354 |
| |
|
(3) 0,914 |
|
|
|
|
|
36 |
(14,509) 0,411 |
0.02757 |
[0056] Thus, in this case, a fuel jet significantly diluted (with N
2, CO
2 and H
2O) using furnace gas entrainment can readily react with furnace-oxidant to form a
combustion space filling low-temperature flame. The Handbook of Combustion, Vol. II,
illustrates lower NOx formation under diluted conditions as shown in FIG. 9.
[0057] In FIG. 9, it is shown that the oxygen available under diluted conditions for NOx
formation is further curtailed if oxidant is preheated to higher preheat temperatures.
In the present case, the LSV device 12 supplies a preheated oxidant stream, which
is also diluted in oxygen concentration due to mixing with it own products of combustion.
[0058] The amount of fuel staging (for natural gas fuel) can be anywhere from 70% to 95%
of the total firing rate of the burner. This range provides extremely low NOx emissions
(1 to 9 ppmv). Fuel staging range less than 70% can be used for spacious combustion
if NOx emissions are not of concern. The fuel staging range above 95% can be used
for gases containing hydrogen, CO or other highly flammable gases.
[0059] The combined effect of the above two dilution processes, (1) fuel jet dilution using
strategic staging and (2) oxidant dilution using LSV, is to reduce peak flame temperatures,
reduce NOx emissions and create a combustion space filling combustion process. Further
evidence of low peak flame temperatures was obtained by direct flame gas temperature
measurement using a suction pyrometer probe in the laboratory furnace. As shown in
FIG. 10 at 4,22 GJ/h (4 MM Btu/hr) total firing rate (LSV firing at 0.422 GJ/h (0.4
MM Btu/hr) and fuel staging at 101,96 m
3/h (3600 scfh), furnace average temperature of approximately 871,7°C (1600° Fahrenheit)
and under combustion space filling flame conditions, there is a radial temperature
profile consisting of peak temperatures less than 1093,3°C (2000° Fahrenheit) at an
axial distance of 2,134m (7.5 feet) from the burner exit plane. The emissions results
in the laboratory furnace are illustrated in Table IV at various firing rates.
| Table IV: Overall burner emissions in laboratory furnace LSV + Fuel Staging Data,
Furnace @~815,5°C (- 1500° Fahrenheit) |
| LSV Firing Rate (MM Btu/hr) GJ/h |
Fuel Staging Firing Rate (MM Btu/hr) GJ/h |
Total Firing Rate (MM Btu/hr) GJ/h |
Emissions (dry) |
Corrected NO @ 3% O2 (ppmv) |
Corrected NO @ 3% O2 (lb/ MM Btu) GJ/h |
Corrected NO @ 3% O2 (mg/Nm3) |
| O2 (%) |
CO (ppm) |
CO2 (%) |
NO (ppm) |
(0.5)
0,53 |
(0.75)
0,79 |
(1.25) v1,32 |
6.6 |
8 |
7.15 |
2.7 |
3.4 |
(0.005)
0,0052 |
6.9 |
(0.75)
0,79 |
(0.75) v0,79 |
(1.5)
1,58 |
5.5 |
9.3 |
7.93 |
3.8 |
4.4 |
(0.006)
0,0063 |
9.0 |
(0.75)
0,79 |
(1.25)
1,32 |
(2)
2,11 |
3.9 |
7.4 |
8.85 |
3.5 |
3.7 |
(0.005)
0,0052 |
7.6 |
(0.5)
0,53 |
(2.5)
2,64 |
(3)
3,17 |
2.9 |
22 |
9.54 |
0.9 |
0.9 |
(0.001)
0,00101 |
1.8 |
(0.75)
0,79 |
(3.25)
3,43 |
(4)
4,22 |
2 |
36 |
9.9 |
1.9 |
1.8 |
(0.002)
0,00211 |
3.7 |
(0.8)
0,84 |
(4.2)
4,43 |
(5)
5,28 |
1.68 |
21 |
10.2 |
2.67 |
2.5 |
(0.003)
0,00317 |
5.1 |
(0.8)
0,84 |
(5.2)
5,47 |
(6)
6,33 |
2.28 |
27 |
9.82 |
1.74 |
1.7 |
(0.002)
0,00211 |
3.4 |
[0060] The data in Table IV indicje mat overall NOx emissions are less than 5 ppmv (corrected
at 3% excess oxygen) for 1,055 to 6,33 GJ/h (1 to 6 MM Btu/hr) firing capacity. The
flame was completely non-luminous and combustion space filling between 2,11 to 6,33
GJ/h (2 to 6 MM Btu/hr) firing capacity. The fuel staging lances (8 total) used a
similar geometry fuel nozzle (as shown in FIG. 7 with two holes) with radial divergence
angle alpha = 15° and an axiall divergence angle beta = 7°. The fuel staging hole
diameter for above tests was 2,794 mm (0.11 inches). This provided an average natural
gas injection velocity of 91,44% to 274,32 m/s (300 to 900 feet per second) in the
firing range of 2,11 to 6,33 GJ/h (2 to 6 MM Btu/hr). The burner also used less than
38,1 mm (1.5 inches) of water column pressure drop for the combustion air in the LSV
device.
[0061] The preferred construction of the ultra low NOx burner uses concentric standard steel
pipes or standard tubes welded in a telescopic fashion to satisfy the key LSV flow,
velocity and dimensionless ratios (see above). For example, a 4,22 GJ/h (4 MM Btu/hr).
nominal firing rate LSV device 12 mav be built using standard 3 inch Schedule 40 pipe
for the secondary oxidant pipe 14, a 0,1524 m (6 inch) Schedule 40 pipe for the fuel
pipe 16, and an 0,2032m (8 inch) Schedule 40 pipe for the primary oxidant pipe. The
burner block 17 see FIG. 8) may be built using standard 0,254 m (10 inch). Schedule
40 pipe. The lances 24 may be 0,0127m (½ inch) schedule 40 pipe with nozzles 26 welded
or threaded thereon. These pipes may be made from, for example, carbon steel, aluminized
steel, stainless steel, or high temperature alloy steels.
[0062] As indicated above, the cylindrical burner block 17 for the LSV flame is sized using
a standard pipe size. The burner block 17 may be sized one or two pipe sizes larger
than the primary oxidant pipe 18 in the LSV device 12. For example, as indicated above,
for a 4,22 GJ/h (4 MM Btu/hr) nominal capacity burner, the primary oxidant pipe 18
may be an 0,203m (8 inch) Schedule 10 pipe. Thus, the burner block was selected as
0,254 m (10 inch) 40 pipe (one standard pipe size larger). The burner block 17 length
is generally the same as the furnace wall thickness (e.g., about 0,305m (12") to 0,356m
(14"). The design objective of the cylindrical burner block is to avoid LSV flame
interference on the inside surface of the burner block, keeping burner block material
cool (preventing thermal damage), and reducing the frictional pressure drop for the
incoming combustion air. The burner block cavity is preferred to be cylindrical or
slightly conical (half cone angle less than 10°) in shape for several reasons. First,
any staging fuel infiltration (back flow) into the burner block cavity is avoided.
For large conically divergent blocks, it is very likely that the staging fuel may
enter the low-pressure recirculation region inside burner block cavity to initiate
premature combustion and overheating. Second, LSV flame envelope symmetry is maintained
with corresponding fuel staging geometry in circular staging configuration. Finally,
LSV flame momentum is fully maintained to create a stronger large scale vortex and
to create delayed mixing with diluted fuel jets.
LOAD SHAPING STAGING
[0063] In a third embodiment, the ultra low NOx burner is configured in the shape identical
to load geometry. Here, single or multiple LSV devices 12g, which provide a fuel-lean
flame at an equivalence ratio in the range of phi = 0.05 to phi = 0.3, and fuel staging
lances are placed strategically inside the furnace so as to cover entire load surface
area with staging lances 24g. Each lance 24g has a pipe having a fuel staging nozzle
at a firing end thereof and having at least one hole at end for staging fuel injection,
as described above for the previous embodiments. Each hole has a radial divergence
angle and an axial divergence angle, as described above for the previous embodiments.
The hole or holes and the divergence angles provide a load shape coverage. The burner
in this configuration also provides NOx emissions of less than 9 ppmv.
[0064] The above concept can be explained by considering a typical industrial packaged boiler.
Many boilers of this kind (e.g., a D-type boiler) have the ability to totally water
cool the furnace front, sidewalls, floor and rear walls using water-tubes or load
surface. This construction eliminates the need for refractory walls for furnace construction
and high temperature seals. The design provides a totally water-cooled welded furnace
envelope for combustion to take place. The additional heat transfer surface areas
create lower NOx emissions and provide higher thermal efficiency.
[0065] As shown in Figure 12A and 12B, single or multiple LSV devices 12g, 12g' are used
and fuel staging lances 24g, 24g' are strategically placed parallel to load, such
as boiler water tube envelope surface 42a, 42b, geometry (square, rectangle, trapezoidal,
circular, elliptical or any other load shape by combination of various primary shapes).
The objective of above staging strategy is to entrain relatively cooler furnace gases
in the vicinity of load surface (e.g. water or process tubes) and create a low-temperature
overall spacious flame.
[0066] Again, preferably, between 4 and 16 staging lances 24g, 24g' are used per LSV device
12g and each staging nozzle has between 1 hole and 4 holes. The lances 24g, 24g' can
be configured parallel to the load geometry and can be positioned in several parallel
rows. The velocity of fuel exiting the nozzle is preferably between 91,44 m/s to 274,
32 m/s (300to 900 feet per second) for a natural gas staging fuel.
[0067] For power or utility boilers, the load shaping staging can be implemented using either
wall fired firing boiler 34 configuration, see FIG. 13A or tangentially fired firing
configuration 36. see FIG. 13B. Most power boilers are much larger in capacity and
use anywhere from 10 to 20 burners per firing wall and typical firing capacity is
about 1,055 GJ/h ( 1 billion Btu/hr). As shown in Figure 13A, the burners are placed
in several rows and they share common manifold 38 for combustion air. The low NOx
burners 12g can be placed in similar geometrical locations and share common combustion
air supply through a rectangular air manifold 38. The most important design aspect
for achieving low NOx emissions would be to use multiple fuel lances 24g on the firing
wall in several rows between LSV devices 12g to create spacious flame 32. Furnaces
gases are entrained in the staged fuel jets before combusting with combustion air
discharged from LSV device 12g. Unlike smaller industrial boilers, the power boilers
have refractory line combustion chamber or radiation zone where most of the fuel is
combusted and then hot products of combustion travel upward to heat water-tubes or
load in the convection zone, and then economizer section before discharged out to
the stack. In most boilers, over-fired air (portion of combustion air 5 to 25%) is
injected just after radiation zone for reducing NOx emissions.
[0068] Figure 13B shows tangentially-fired power boiler, where all four corners are used
to create a swirling or tangential flow pattern 40 inside a square furnace radiation
zone 42. The combustion air supplied by air registers and the proposed low NOx burners
are mounted in several rows on all four corners. The load shaping fuel lances 12g
can be installed in several rows between LSV devices 12g to create a tangential or
swirling spacious flame. By injecting fuel separately from combustion air and not
directly mixing it with combustion air, the availability of oxygen for NOx formation
is minimized and it also enables fuel jets to get diluted using furnace gases for
entrainment. The resulting flame is spacious and it has extremely low flame temperatures
and NOx emissions.
[0069] Again, preferably, between 4 and 16 staging lances are used per LSV device 12 and
each staging nozzle has between 1 hole and 4 holes. The lances can be configured parallel
to the load geometry and can be positioned in several parallel rows. The velocity
of fuel exiting the nozzle is preferably between 91,44 m/s to 274,32 m/s (300 to 900
feet per second) for a natural gas staging fuel.
[0070] In large utility boilers, multiple burners, for example, 20 to thirty burners, are
fired on opposite walls or in tangential configuration and heat from burner firing
is used for generating steam. These are large boiler units with capacities greater
than 263,75 GJ/h (250 MM Btu/Hr). However; typical industrial boilers are smaller
in physical size they have packaged (D-Type) or modular construction. The burner flame
is totally enclosed in a gastight water-cooled tube or load envelope. The use of "load
shaping" lances would be ideal for industrial boilers. These are used for generating
process steam used in refinery or chemical industry. The firing capacity is between
52,75 and 263,75 GJ/h (50 and 250 MMBtu/Hr).
[0071] It is noted that, for purposes of the present invention, an oxidant with an oxygen
concentration between 10 and 21% may be used or an enriched oxidant,
i.e., greater than 21% and less than 50% oxygen content may be used. Preferably, the oxidant
is at ambient conditions to a preheated level, for example 93,3°C to 1315,5°C (200
degrees F to 2400 degrees F).
[0072] Although illustrated and described herein with reference to specific embodiments,
the present invention nevertheless is not intended to be limited to the details shown.
1. An ultra low NO
x burner for process heating, comprising:
a) a fluid based flame stabilizer which is a large scale vortex device (12) and can
provide a fuel-lean flame at equivalence ratio in the range of phi=0.05 to phi=0.3;
and
b) a plurality of fuel staging lances (24, 24a-24g') surrounding said flame stabilizer,
each said lance (24, 24a-24g') comprising a pipe having a staging nozzle (26) at a
firing end thereof,
c) each lance (24, 24a-24g') having at least one hole (28) for staging fuel injection,
and
d) each hole (28) having a radial divergence angle,
characterized in that
e) each hole (28) also has an axial divergence angle, and
f) said at least one hole (28) and said divergence angles are adapted to provide complete
circumferential coverage of the fuel-lean flame,
g) whereby NOx emissions of less than 9 ppmv are generated at near stoichiometry conditions.
2. The ultra low NOx burner for process heating of claim 1, wherein said at least one
hole (28) and said divergence angles are adapted to provide a flat flame pattern.
3. The ultra low NOx burner for process heating of claim 1, wherein said at least one
hole (28) and said divergence angles are adapted to provide a load shaping flame pattern.
4. The ultra low NOx burner for process heating of claim 1, wherein the plurality of
fuel staging lances (24, 24a-24g') comprises between 4 and 16 staging lances (24,
24a-24g') per flame stabilizer.
5. The ultra low NOx burner for process heating of claim 1, wherein each staging nozzle
(26) has between 1 hole (28) and 4 holes (28).
6. The ultra low NOx burner for process heating of claim 1, wherein the radial divergence
angle is between 8° and 24°.
7. The ultra low NOx burner for process heating of claim 1, wherein the axial divergence
angle is between 4° and 16°:
8. The ultra low NOx burner for process heating of claim 1, wherein the nozzle (26) is
adapted to allow fuel to exit the nozzle (26) at from 91.44 m/s to 274.32 m/s (300
to 900 feet per second) for natural gas staging fuel.
9. The ultra low NOx burner for process heating of claim 1, wherein the large scale vortex
device (12) is adapted to provide a fuel-lean flame that has a peak flame temperature
of less than approximately 1093°C (2000° Fahrenheit).
10. The ultra low NOx burner for process heating of claim 1, wherein the equivalence ratio
is in the range of phi=0.05 to phi=0.1.
11. The ultra low NOx burner for process heating of claim 1, wherein a distance from the
forward end of the burner to a point where mixing of staging flame and flame stabilizer
flame occurs is approximately 0.2032 m to 1.2192 m (8 to 48 inches).
12. The ultra low NOx burner for process heating of claim 1, wherein the fuel rate of
the staging for natural gas fuel is from 70% to 95% of the total fuel firing rate
of the burner.
13. The ultra low NOx burner for process heating of claim 1, including a burner block
(17) coaxial to said flame stabilizer.
14. The ultra low NOx burner for process heating of claim 13, wherein the burner block
(17) is slightly conical in shape.
15. The ultra low NOx burner for process heating of claim 13, wherein the burner block
(17) is rectangular in shape.
16. The ultra low NOx burner for process heating of claim 1 and comprising between 4 and
16 of said fuel staging lances (24, 24a-24g') per flame stabilizer adjacent to said
flame stabilizer, each said lance (24, 24a-24g') comprising a pipe having a staging
nozzle (26) at a firing end thereof, each lance (24, 24a-24g') having between one
and four of said holes (28) for staging fuel injection, each hole (28) having a radial
divergence angle and an axial divergence angle.
17. The ultra low NOx burner for process heating of claim 16, wherein the fuel staging
lances (24, 24a-24g') surround said flame stabilizer and the at least one hole (28)
and the divergence angles are adapted to provide complete circumferential coverage
of the fuel-lean flame for circular staging.
18. The ultra low NOx burner for process heating of claim 16, wherein the fuel staging
lances (24, 24a-24g') are positioned in a geometrical fashion and almost parallel
to a load geometry in multiple rows and close to the flame stabilizer and wherein
the at least one hole (28) and the divergence angles are adapted to provide a flame
confined between two parallel flat planes.
19. The ultra low NOx burner for process heating of claim 16, wherein the radial divergence
angle is between 8° and 24° and the axial divergence angle is between 4° and 16°.
20. The ultra low NOx burner for process heating of claim 16, wherein the nozzle (26)
is adapted to allow fuel to exiting the nozzle (26) at from 91.44 m/s to 274.32 m/s
(300 to 900 feet per second) for natural gas staging fuel.
21. The ultra low NOx burner for process heating of claim 16, wherein the large scale
vortex device (12) is adapted to provide a fuel-lean flame that has a peak flame temperature
of less than approximately 1093°C (2000° Fahrenheit).
22. The ultra low NOx burner for process heating of claim 16, wherein the equivalence
ratio is in the range of phi=0.05 to phi=0.1.
23. The ultra low NOx burner for process heating of claim 16, wherein a distance from
the forward end of the fuel pipe of the flame stabilizer to a point occurs where mixing
of staging flame and flame stabilizer flame occurs is approximately 0.2032 m to 1.2192
m (8 to 48 inches).
24. The ultra low NOx burner for process heating of claim 16, wherein the fuel rate of
the staging for natural gas fuel is from 70% to 95% of the total fuel firing rate
of the burner.
25. The ultra low NOx burner for process heating of claim 16, including a burner block
(17) coaxial to said flame stabilizer.
26. The ultra low NOx burner for process heating of claim 25, wherein the burner block
(17) is slightly conical in shape.
27. The ultra low NOx burner for process heating of claim 25, wherein the burner block
(17) is rectangular in shape.
1. Brenner für Prozessheizung mit sehr niedrigem (ultraniedrigem) NO
x Ausstoß mit:
a) einem fluid-basierten Flammenstabilisator, der eine großformatige Vortexvorrichtung
(12) ist und eine brennstoffmagere Flamme bei dem Äquivalenzverhältnis im Bereich
von phi = 0,05 bis phi = 0,3 zur Verfügung stellen kann;
b) mehreren Brennstoff-Lanzen mit gestufter Feuerungsführung (fuel staging lances)
(24, 24a-24g'), die den Flammenstabilisator umgeben, wobei jede Lanze (24, 24a-24g')
ein Rohr mit einer Abstufungsdüse (26) an ihrem Feuerende aufweist
c) und jede Lanze (24, 24a-24g') wenigstens ein Loch (28) für die abgestufte Brennstoffinjektion
und
d) jedes Loch (28) einen radialen Divergenzwinkel hat;
dadurch gekennzeichnet, dass
e) jedes Loch (28) auch einen axialen Divergenzwinkel hat, und
f) dieses wenigstens eine Loch (28) und die Divergenzwinkel angepasst sind, um eine
vollständige Umfangsabdeckung der brennstoffmageren Flamme zur Verfügung zu stellen,
g) wodurch NOx Emissionen von weniger als 9 ppmv bei nahezu stöchiometrischen Bedingungen erzeugt
werden.
2. Brenner für Prozessheizung mit sehr niedrigem NOx Ausstoß nach Anspruch 1, wobei das wenigstens eine Loch (28) und die Divergenzwinkel
angepasst sind, um ein flaches Flammmuster zur Verfügung zu stellen.
3. Brenner für Prozessheizung mit sehr niedrigem NOx Ausstoß nach Anspruch 1, wobei das wenigstens eine Loch (28) und die Divergenzwinkel
angepasst sind, um ein lastformendes Flammenmuster zur Verfügung zu stellen.
4. Brenner für Prozessheizung mit sehr niedrigem NOx Ausstoß nach Anspruch 1, wobei die Brennstoff-Abstufungslanzen (24, 24a-24g') zwischen
4 und 16 Abstufungslanzen (24, 24a-24g') pro Flammenstabilisator aufweisen.
5. Brenner für Prozessheizung mit sehr niedrigem NOx Ausstoß nach Anspruch 1, wobei jede Abstufungsdüse (26) zwischen einem Loch (28)
und vier Löchern (28) hat.
6. Brenner für Prozessheizung mit sehr niedrigem NOx Ausstoß nach Anspruch 1, wobei der radiale Divergenzwinkel zwischen 8° und 24° beträgt.
7. Brenner für Prozessheizung mit sehr niedrigem NOx Ausstoß nach Anspruch 1, wobei der axiale Divergenzwinkel zwischen 4° und 16° beträgt.
8. Brenner für Prozessheizung mit sehr niedrigem NOx Ausstoß nach Anspruch 1, wobei die Düse (26) angepasst ist, so dass Brennstoff aus
der Düse (26) bei einer Rate von 91,44 m/s bis 274,32 m/s (300 bis 900 Fuß pro Sekunde)
für Erdgas-Abstufungs-Brennstoff austreten kann.
9. Brenner für Prozessheizung mit sehr niedrigem NOx Ausstoß nach Anspruch 1, wobei die großformatige Wirbelvorrichtung (12) angepasst
ist, um eine brennstoffmagere Flamme zur Verfügung zu stellen, die eine Spitzenflammentemperatur
von weniger als näherungsweise 1093°C (2000° Fahrenheit) hat.
10. Brenner für Prozessheizung mit sehr niedrigem NOx Ausstoß nach Anspruch 1, wobei das Äquivalenzverhältnis im Bereich von phi = 0,05
bis phi = 0,1 beträgt.
11. Brenner für Prozessheizung mit sehr niedrigem NOx Ausstoß nach Anspruch 1, wobei der Abstand von dem vorderen Ende des Brenners zu
einem Punkt, wo das Mischen der Abstufungsflamme und der Flamme des Flammenstabilisators
auftritt, näherungsweise 0,2032 m bis 1,2192 m (8 bis 48 Zoll) beträgt.
12. Brenner für Prozessheizung mit sehr niedrigem NOx Ausstoß nach Anspruch 1, wobei das Brennstoffverhältnis der Abstufung für Erdgas-Brennstoff
von 70% bis 95% der Gesamtbrennstoff-Feuerungsrate des Brenners ist.
13. Brenner für Prozessheizung mit sehr niedrigem NOxAusstoß nach Anspruch 1 mit einem Brennerblock (17) der koaxial zu dem Flammenstabilisator
ist.
14. Brenner für Prozessheizung mit sehr niedrigem NOx Ausstoß nach Anspruch 14, wobei der Brennerblock (17) eine leicht konische Form hat.
15. Brenner für Prozessheizung mit sehr niedrigem NOx Ausstoß nach Anspruch 14, wobei der Brennerblock (17) eine rechtwinklige Form hat.
16. Brenner für Prozessheizung mit sehr niedrigem NOx Ausstoß nach Anspruch 1, der zwischen 4 und 16 Brennstoff-Abstufungslanzen (24, 24a-24g')
pro Flammenstabilisator in der Nähe des Flammenstabilisators aufweist, wobei weiterhin
jede Lanze (24, 24a-24g') ein Rohr mit einer Abstufungsdüse (26) an ihrem Feuerungsende
aufweist, jede Lanze (24, 24a-24g') zwischen einem und vier der Löcher (28) für die
Abstufungs-Brennstoff-Injektion hat und jedes Loch (28) einen radialen Divergenzwinkel
und einen axialen Divergenzwinkel hat.
17. Brenner für Prozessheizung mit sehr niedrigem NOx Ausstoß nach Anspruch 16, wobei die Brennstoff-Abstufungs-Lanzen (24, 24a-24g') den
Flammenstabilisator und das wenigstens eine Loch (28) umgeben und die Divergenzwinkel
angepasst sind, um eine vollständige Umfangs-Abdeckung der brennstoff-mageren Flamme
für die zirkulare Abstufung zur Verfügung zu stellen.
18. Brenner für Prozessheizung mit sehr niedrigem NOx Ausstoß nach Anspruch 16, wobei die Brennstoff-Abstufungs-Lanzen (24, 24a-24g') in
einer linearen bzw. linienförmigen Art in einer einzigen oder mehreren Reihen auf
jeder Seite des Flammenstabilisators positioniert sind, wobei das wenigstens eine
Loch (28) und die Divergenzwinkel angepasst sind, um eine Flamme zur Verfügung zu
stellen, die zwischen zwei parallelen flachen Ebenen beschränkt bzw. eingeschränkt
bzw. begrenzt ist.
19. Brenner für Prozessheizung mit sehr niedrigem NOx Ausstoß nach Anspruch 16, wobei der radiale Divergenzwinkel zwischen 8° und 24° und
der axiale Divergenzwinkel zwischen 4° und 16° beträgt.
20. Brenner für Prozessheizung mit sehr niedrigem NOx Ausstoß nach Anspruch 16, wobei die Düse (26) angepasst ist, so dass der Brennstoff
aus der Düse (26) bei einer Rate von 91,44 m/s bis 274,32 m/s (300 bis 900 Fuß pro
Sekunde) für Erdgas-Abstufungs-Brennstoff austreten kann.
21. Brenner für Prozessheizung mit sehr niedrigem NOx Ausstoß nach Anspruch 16, wobei die großformatige Wirbelvorrichtung angepasst ist,
um eine brennstoffmagere Flamme zur Verfügung zu stellen, die eine Spitzenflammentemperatur
von weniger als näherungsweise 1093°C (2000° Fahrenheit) hat.
22. Brenner für Prozessheizung mit sehr niedrigem NOx Ausstoß nach Anspruch 16, wobei das Äquivalenzverhältnis im Bereich von phi = 0,05
bis phi = 0,1 liegt.
23. Brenner für Prozessheizung mit sehr niedrigem NOx Ausstoß nach Anspruch 16, wobei der Abstand von dem vorderen Ende des Brennstoff-Rohrs
des Flammenstabilisators zu einem Punkt, wo das Mischen der Abstufungsflamme und der
Flamme des Flammenstabilisators auftritt, näherungsweise 0,2032 m bis 1,2192 m (8
bis 84 Zoll) beträgt.
24. Brenner für Prozessheizung mit sehr niedrigem NOx Ausstoß nach Anspruch 16, wobei die Brennstoff-Rate der Abstufung für Erdgas-Brennstoff
von 70% bis 95% der Gesamt-Brennstofffeuerungsrate des Brenners beträgt.
25. Brenner für Prozessheizung mit sehr niedrigem NOx Ausstoß nach Anspruch 16 mit einem Brennerblock (17), der koaxial zu dem Flammenstabilisator
ist.
26. Brenner für Prozessheizung mit sehr niedrigem NOx Ausstoß nach Anspruch 25, wobei der Brennerblock (17) eine leicht konische Form hat.
27. Brenner für Prozessheizung mit sehr niedrigem NOx Ausstoß nach Anspruch 25, wobei der Brennerblock (17) eine rechtwinklige Form hat.
1. Brûleur à très faible émission de NO
x pour la production de chaleur, comprenant :
a) un stabilisateur de flamme à base de fluide qui est un dispositif à vortex à grande
échelle (12) et peut fournir une flamme pauvre en combustible à un rapport d'équivalence
dans la plage de phi=0,05 à phi=0,3 ; et
b) une pluralité de lances d'étagement de combustible (24, 24a à 24g') entourant ledit
stabilisateur de flamme, chaque dite lance (24, 24a à 24g') comprenant un conduit
ayant une buse d'étagement (26) à une extrémité de combustion de celui-ci,
c) chaque lance (24, 24a à 24g') présentant au moins un trou (28) destiné à étager
l'injection de combustible, et
d) chaque trou (28) présentant un angle de divergence radiale,
caractérisé en ce que
e) chaque trou (28) présente également un angle de divergence axiale ; et
f) ledit au moins un trou (28) et lesdits angles de divergence sont adaptés pour fournir
une couverture circonférentielle totale de la flamme pauvre en combustible,
g) moyennant quoi des émissions de NOx de moins de 9 ppmv sont générées dans des conditions proches de la stoechiométrie.
2. Brûleur à très faible émission de NOx pour la production de chaleur selon la revendication 1, dans lequel ledit au moins
un trou (28) et lesdits angles de divergence sont adaptés pour fournir une forme de
flamme plate.
3. Brûleur à très faible émission de NOx pour la production de chaleur selon la revendication 1, dans lequel ledit au moins
un trou (28) et lesdits angles de divergence sont adaptés pour fournir une forme de
flamme à profil de charge.
4. Brûleur à très faible émission de NOx pour la production de chaleur selon la revendication 1, dans lequel la pluralité
de lances d'étagement de combustible (24, 24a à 24g') comprend entre 4 et 16 lances
d'étagement (24, 24a à 24g') par stabilisateur de flamme.
5. Brûleur à très faible émission de NOx pour la production de chaleur selon la revendication 1, dans lequel chaque buse d'étagement
(26) possède entre 1 trou (28) et 4 trous (28).
6. Brûleur à très faible émission de NOx pour la production de chaleur selon la revendication 1, dans lequel l'angle de divergence
radiale est compris entre 8° et 24°.
7. Brûleur à très faible émission de NOx pour la production de chaleur selon la revendication 1, dans lequel l'angle de divergence
axiale est compris entre 4° et 16°.
8. Brûleur à très faible émission de NOx pour la production de chaleur selon la revendication 1, dans lequel la buse (26)
est adaptée pour permettre au combustible de quitter la buse (26) à une vitesse allant
de 91,44 m/s à 274,32 m/s (300 à 900 pieds par seconde) pour le combustible d'étagement
gaz naturel.
9. Brûleur à très faible émission de NOx pour la production de chaleur selon la revendication 1, dans lequel le dispositif
à vortex à grande échelle (12) est adapté pour fournir une flamme pauvre en combustible
qui présente une température maximale de flamme inférieure à approximativement 1093
°C (2000°Fahrenheit).
10. Brûleur à très faible émission de NOx pour la production de chaleur selon la revendication 1, dans lequel le rapport d'équivalence
se situe dans la plage de phi=0,05 à phi=0,1.
11. Brûleur à très faible émission de NOx pour la production de chaleur selon la revendication 1, dans lequel une distance
entre l'extrémité avant du brûleur et un point auquel se produit le mélange de la
flamme d'étagement et de la flamme du stabilisateur de flamme est d'approximativement
0,2032 m à 1,2192 m (8 à 48 pouces).
12. Brûleur à très faible émission de NOx pour la production de chaleur selon la revendication 1, dans lequel le taux du combustible
de l'étagement pour le combustible gaz naturel est de 70 % à 95 % du taux de combustion
totale du combustible du brûleur.
13. Brûleur à très faible émission de NOx pour la production de chaleur selon la revendication 1, comportant un bloc de brûleur
(17) coaxial audit stabilisateur de flamme.
14. Brûleur à très faible émission de NOx pour la production de chaleur selon la revendication 13, dans lequel le bloc de brûleur
(17) est de forme légèrement conique.
15. Brûleur à très faible émission de NOx pour la production de chaleur selon la revendication 13, dans lequel le bloc de brûleur
(17) est de forme rectangulaire.
16. Brûleur à très faible émission de NOx pour la production de chaleur selon la revendication 1, et comprenant entre 4 et
16 desdites lances d'étagement de combustible (24, 24a à 24g') par stabilisateur de
flamme adjacent audit stabilisateur de flamme, chaque dite lance (24, 24a à 24g')
comprenant un conduit présentant une buse d'étagement (26) au niveau d'une extrémité
de combustion de celui-ci, chaque lance (24, 24a à 24g') présentant entre un et quatre
desdits trous (28) pour l'étagement de l'injection de combustible, chaque trou (28)
présentant un angle de divergence radiale et un angle de divergence axiale.
17. Brûleur à très faible émission de NOx pour la production de chaleur selon la revendication 16, dans lequel les lances d'étagement
de combustible (24, 24a à 24g') entourent ledit stabilisateur de flamme et le au moins
un trou (28) et les angles de divergence sont adaptés pour fournir une couverture
circonférentielle totale de la flamme pauvre en combustible pour un étagement circulaire.
18. Brûleur à très faible émission de NOx pour la production de chaleur selon la revendication 16, dans lequel les lances d'étagement
de combustible (24, 24a à 24g') sont positionnées de manière géométrique et presque
parallèlement à une géométrie de charge en de multiples rangées et proche du stabilisateur
de flamme et dans lequel le au moins un trou (28) et les angles de divergence sont
adaptés pour fournir une flamme confinée entre deux plans plats parallèles.
19. Brûleur à très faible émission de NOx pour la production de chaleur selon la revendication 16, dans lequel l'angle de divergence
radiale est compris entre 8° et 24° et l'angle de divergence axiale est compris entre
4° et 16°.
20. Brûleur à très faible émission de NOx pour la production de chaleur selon la revendication 16, dans lequel la buse (26)
est adaptée pour permettre au combustible de quitter la buse (26) à une vitesse allant
de 91,44 m/s à 274,32 m/s (300 à 900 pieds par seconde) pour le combustible d'étagement
gaz naturel.
21. Brûleur à très faible émission de NOx pour la production de chaleur selon la revendication 16, dans lequel le dispositif
à vortex à grande échelle (12) est adapté pour fournir une flamme pauvre en combustible
qui présente une température maximale de flamme inférieure à approximativement 1093
°C (2000° Fahrenheit).
22. Brûleur à très faible émission de NOx pour la production de chaleur selon la revendication 16, dans lequel le rapport d'équivalence
se situe dans la plage de phi=0,05 à phi=0,1.
23. Brûleur à très faible émission de NOx pour la production de chaleur selon la revendication 16, dans lequel une distance
entre l'extrémité avant du conduit de combustible du stabilisateur de flamme et un
point auquel se produit le mélange de la flamme d'étagement et de la flamme du stabilisateur
de flamme est approximativement de 0,2032 m à 1,2192 m (8 à 48 pouces).
24. Brûleur à très faible émission de NOx pour la production de chaleur selon la revendication 16, dans lequel le taux de combustible
de l'étagement pour le combustible gaz naturel est de 70 % à 95 % du taux de combustion
totale du combustible du brûleur.
25. Brûleur à très faible émission de NOx pour la production de chaleur selon la revendication 16, comportant un bloc de brûleur
(17) coaxial audit stabilisateur de flamme.
26. Brûleur à très faible émission de NOx pour la production de chaleur selon la revendication 25, dans lequel le bloc de brûleur
(17) est de forme légèrement conique.
27. Brûleur à très faible émission de NOx pour la production de chaleur selon la revendication 25, dans lequel le bloc de brûleur
(17) est de forme rectangulaire.