

Europäisches Patentamt European Patent Office Office européen des brevets

(11) **EP 1 338 341 A1**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:27.08.2003 Patentblatt 2003/35

(51) Int Cl.7: **B05B 3/04**, B08B 9/093

(21) Anmeldenummer: 03003476.3

(22) Anmeldetag: 15.02.2003

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR Benannte Erstreckungsstaaten:

AL LT LV MK RO

(30) Priorität: 26.02.2002 DE 10208237

(71) Anmelder: TUCHENHAGEN GmbH 21514 Büchen (DE)

(72) Erfinder: Coura, Herbert 21514 Büchen (DE)

(54) Vorrichtung zur Innenreinigung von Behältern, z.B. Tanks

Die Erfindung betrifft eine Vorrichtung zur Innenreinigung von Behältern, z.B. Tanks, die langsam laufend und gleichzeitig sehr kompakt und konstruktiv relativ einfach ausgeführt ist. Dies wird erreicht mit einem in eine Öffnung eines Tanks einführbaren stationären Gehäuse (2), das über einen rohrförmigen Gehäuseteil (2a) mit einer Zuführleitung für eine Reinigungsflüssigkeit verbunden ist und einen gegenüber dem Gehäuse (2) um eine Drehachse (D) drehbaren Düsenhalter (1) mit wenigstens einer Düse (1a, 1b) aufweist, mit einer im Strömungsweg der zugeführten Reinigungsflüssigkeit angeordneten und von deren Strömungsenergie angetriebenen Turbine (3), die den Düsenhalter (1) umlaufend antreibt, mit dem Düsenhalter (1), der als Hohlkörper ausgebildet ist, wobei dieser Hohlkörper das Gehäuse (2) teilweise in sich aufnimmt und vom rohrförmigen Gehäuseteil (2a) durchdrungen wird, mit der Turbine (3), die im rohrförmigen Gehäuseteil (2a) in unmittelbarer Nähe zu dessen Durchdringungsstelle mit dem Düsenhalter (1) angeordnet ist, mit einer Turbinenwelle (3c), die in den Düsenhalter (1) hineingeführt und dort im Gehäuse (2) gelagert ist, wobei die Drehbewegung der Turbinenwelle (3c) unmittelbar oder mittelbar auf einen Lagerarm (3d) übertragen wird, der um die Drehachse (D) drehbar und geführt angeordnet ist, und mit einem auf dem Lagerarm (3d) drehbeweglich angeordneten Planetenrad (5) (Zähnezahl z₃), das einerseits mit einem ersten innen verzahnten Außenrad (1d) am Düsenhalter (1) und andererseits mit einem zweiten innen verzahnten Außenrad (2d) am Gehäuse (2) im Eingriff ist, wobei sich die Außenräder (1d, 2d) hinsichtlich ihrer jeweiligen Zähnezahl (z₁, z₂) um wenigstens einen Zahn unterscheiden (Figur 2).

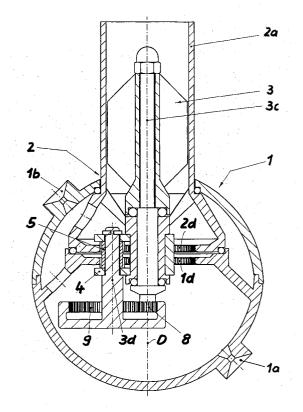


Fig. 2

Beschreibung

TECHNISCHES GEBIET

[0001] Die Erfindung betrifft eine Vorrichtung zur Innenreinigung von Behältern, z.B. Tanks.

STAND DER TECHNIK

[0002] Eine Vorrichtung zur Innenreinigung von Behältern, z.B. Tanks, ist beispielsweise hinsichtlich ihres grundsätzlichen Aufbaus aus der DE 26 45 401 A1 bekannt. Eine derartige Vorrichtung wird in Fachkreisen auch als so genannter Zielstrahlreiniger bezeichnet. Sie basiert, ähnlich wie die Behälterreinigung mittels einer Sprühkugel, auf dem Niederdruck-Reinigungsprinzip. Im Gegensatz zur Sprühkugelreinigung, bei der mehr oder weniger die gesamte innere Oberfläche des Tanks gleichzeitig über eine Vielzahl von an der Sprühkugel angebrachten Bohrungen mit Reinigungsflüssigkeit beaufschlagt wird, beschwallt bei einem Zielstrahlreiniger ein langsam umlaufender Fächerstrahl nur jeweils Teilbereiche der Behälterwand. Es hat sich gezeigt, dass ein derartiger Fächerstrahl auf der Behälterwand eine Intervallspülung mit pulsierendem Schwall bewirkt, wobei im Vergleich zur Sprühkugel trotz stark reduziertem Reinigungsflüssigkeits-Durchsatz eine mindestens wirkungsgleiche Reinigung gegeben ist.

[0003] Der Antrieb der seit langem bekannten Zielstrahlreiniger erfolgt über ein selbstreinigendes Strömungsgetriebe, das seine Antriebsenergie aus der Strömungsenergie der dem Reiniger zugeführten Reinigungsflüssigkeit bezieht. Bei dem Strömungsgetriebe handelt es sich um eine Turbine, die im Reinigungsflüssigkeits-Zulauf außerhalb des Tanks angeordnet ist. In der Regel wird die Drehzahl der Turbinenwelle über ein Schneckengetriebe und anschließend ein Winkelgetriebe auf ein in den Tankinnenraum bis zu einem Düsenhalter hinein geführtes Antriebsgestänge übertragen. Ein derartiger Zielstrahlreinigerantrieb ist einerseits sehr wartungsfreundlich, da alle ausbaufähigen Teile außerhalb des zu reinigenden Tanks installiert sind (vergleiche hierzu beispielsweise die Firmendruckschrift 4.003.0 "Reinigungsgeräte" der Firma Tuchenhagen, Büchen, Seite 3), andererseits ist allerdings eine derartige Antriebsausgestaltung wegen der notwendigen großen Übersetzungsverhältnisse und der erforderlichen Richtungsänderung des Kraftflusses zwischen der Richtung der Turbinenwelle und der Richtung der Drehachse des Düsenhalters sowohl räumlich als auch kostenmäßig relativ aufwändig.

[0004] Aus der DE 198 11 421 A1 ist eine Tankreinigungsvorrichtung bekannt, die in einem drehfesten Gehäuseteil ihres Gehäuse eine durch die Strömungsenergie der zugeführten Reinigungsflüssigkeit angetriebene Turbine aufweist. Die Drehbewegung der Turbine wird über ein Planetengetriebe auf einen gegenüber dem drehfesten Gehäuseteil um eine erste Drehachse

drehbaren Düsenhalter übertragen. Letzterer treibt über ein Kegelradgetriebe eine Düsenanordnung an, die am Düsenhalter um eine zweite Drehachse drehbar gelagert ist. Dabei sind jeweils zwei Düsen der mit insgesamt vier Düsen ausgestatteten Düsenanordnung im spitzen Winkel zueinander als V-Formation angeordnet, wobei die beiden V-Formationen im Wesentlichen in entgegen gesetzte Richtungen weisen. Durch diese Düsenanordnung ist die Einführung der Tankreinigungsvorrichtung in schmale Tanköffnungen möglich.

[0005] Eine weitere Tankreinigungsvorrichtung ist in der US 53 33 630 A beschrieben, bei der ein mit Düsen ausgestatteter Düsenhalter einander überlagerte Drehbewegungen um eine erste und eine zweite Drehachse ausführt. Der Antrieb des Düsenhalters erfolgt über eine durch die Strömungsenergie der zugeführten Reinigungsflüssigkeit angetriebene Turbine, wobei die Kinematik des Getriebes zwischen Turbine und Düsenhalter im Wesentlichen jener gemäß DE 198 11 421 A1 entspricht. Die aus der US 53 33 630 A bekannte Tankreinigungsvorrichtung ist nicht nur selbstreinigend hinsichtlich ihrer von der Reinigungsflüssigkeit durchströmten inneren Bereiche ausgeführt, sondern sämtliche Durchtrittsspalte zwischen relativ zueinander bewegten Bauteilen werden zum Zwecke ihrer Reinigung jeweils mit einer begrenzten Menge Reinigungsflüssigkeit durchströmt, die nach Austritt in die Umgebung derart geführt werden, dass eine Reinigung auch der äußeren Oberflächen der Tankreinigungsvorrichtung er-

[0006] Die Tankreinigungsvorrichtungen gemäß DE 198 11 421 A1 und US 53 33 630 A sind gegenüber dem sog. Zielstrahlreiniger gemäß DE 26 45 401 A1 einerseits deutlich kompakter, andererseits jedoch konstruktiv wesentlich komplizierter aufgebaut.

[0007] Es ist Aufgabe der vorliegenden Erfindung, eine Vorrichtung zur Innenreinigung von Behältern, z.B. Tanks, zu schaffen, die langsam laufend und gleichzeitig sehr kompakt und konstruktiv relativ einfach ausgeführt ist.

ZUSAMMENFASSUNG DER ERFINDUNG

[0008] Die Aufgabe wird durch eine Vorrichtung mit den Merkmalen des Nebenanspruchs 1 oder 3 gelöst. Vorteilhafte Ausführungsformen der erfindungsgemäßen Vorrichtung sind Gegenstand von Unteransprüchen.

[0009] Erfindungsgemäß nimmt der als Hohlkörper ausgebildete Düsenhalter nicht nur wenigstens eine Düse zur Erzeugung eines Spritzstrahles oder mehrerer Spritzstrahlen und den hierzu notwendigen Raum zur Zuleitung der Reinigungsflüssigkeit auf, sondern auch einen Teil des Gehäuses der Vorrichtung, in dem die Turbinenwelle und alle Getriebeteile zur Transformation der Drehzahl der Turbinenwelle auf die extrem niedrige Drehzahl des Düsenhalters (wenige Umdrehungen je Minute) angeordnet sind. Eine weitere, entscheidende

Maßnahme besteht darin, dass die Turbine im rohrförmigen Gehäuseteil des Gehäuses in unmittelbarer Nähe zu dessen Durchdringungsstelle mit dem Düsenhalter angeordnet ist. Dadurch wird es möglich, Turbine und Getriebe in unmittelbarer Nähe zueinander anzuordnen, so dass auf mehr oder weniger lange Übertragungsgestänge zwischen diesen beiden Komponenten, die ggf. von Fall zu Fall noch auf die örtlichen Gegebenheiten anzupassen sind, verzichtet werden kann.

[0010] Eine erste Ausführungsform der vorgeschlagenen Vorrichtung sieht vor, die Drehbewegung der Turbinenwelle unmittelbar auf einen Lagerarm zu übertragen, der gemäß einer vorteilhaften Ausgestaltung derart in einer Traverse gelagert ist, dass er eine um die Drehachse des Düsenhalters geführte Bewegung ausführt. Auf diesem Lagerarm ist ein so genanntes Planetenrad drehbeweglich angeordnet, das einerseits mit einem ersten innen verzahnten Außenrad am Düsenhalter und andererseits mit einem zweiten innen verzahnten Außenrad am Gehäuse im Eingriff ist. Eine diesbezügliche getriebetechnische Anordnung erlaubt es, durch Wahl der jeweiligen Zähnezahl dieser Außenräder ein großes Übersetzungsverhältnis zu realisieren, das ansonsten nur mit mehrstufigen Getrieben und/oder durch Einbeziehung eines Schneckengetriebes erreichbar ist. Unterscheiden sich beispielsweise die Zähnezahlen der beiden mit dem Planetenrad gleichermaßen kämmenden Außenräder um wenigstens einen Zahn, dann ist bei Zähnezahlen von beispielsweise 90 und 91 ein Übersetzungsverhältnis von $i_2 = 90/1$ möglich.

[0011] Eine zweite Ausführungsform der vorgeschlagenen Vorrichtung ermöglicht ein noch größeres Übersetzungsverhältnis zwischen antreibender Turbine und getriebenem Düsenhalter, und zwar dadurch, dass zwischen Turbinenwelle und dem Lagerarm, der mittels einer im Gehäuse und koaxial zur Drehachse gelagerten Traverse um die Drehachse drehbar und geführt angeordnet ist, ein Zwischengetriebe vorgesehen ist. Abhängig vom Übersetzungsverhältnis i₁ dieses Zwischengetriebes lässt sich das Gesamtübersetzungsverhältnis i_{ges} des Antriebes für die erfindungsgemäße Vorrichtung entsprechend erhöhen.

[0012] Der im Rahmen der vorliegenden Erfindung vorgeschlagene Antrieb baut in überraschender Weise kompakt und Raum sparend, so dass der Düsenhalter in an sich bekannter Weise als Hohlkugel ausgeführt werden kann. In dieser Hohlkugel sind das Getriebe, die Verbindungsmittel zwischen letzterem und der Turbine und ausreichend bemessene Strömungsquerschnitte zu wenigstens einer am Düsenhalter angeordneten Düse angeordnet. Darüber hinaus wird der Düsenhalter vom rohrförmigen Gehäuseteil des Gehäuse zentrisch durchdrungen.

[0013] Der als Hohlkugel ausgebildete Düsenhalter stellt einerseits eine nahezu ideale geometrische Form für ein Reinigungsgerät in einem zu reinigenden Tank dar, andererseits schafft die Kugel als geometrisches Gebilde ideale räumliche Vorraussetzungen für die im

Rahmen der vorgeschlagenen Vorrichtung notwendigen Bauteile innerhalb dieses kugelförmigen Gebildes. Die Zugänglichkeit zu den Antriebsteilen innerhalb der Vorrichtung wird dadurch auf sehr einfache und wirksame Weise sichergestellt, dass der Düsenhalter in einer auf der Längsachse des rohrförmigen Gehäuseteils senkrecht stehenden Meridianebene geteilt ausgeführt ist. Diese Teilung ist in der Regel form- und kraftschlüssig ausgeführt, wobei beispielsweise Verschraubungsoder so genannte Sprengringelemente zur Anwendung kommen.

[0014] Wird, wie dies ein weiterer Vorschlag vorsieht, die Anordnung derart getroffen, dass die Drehachse des Düsenhalters mit der Längsachse des rohrförmigen Gehäuseteils zusammenfällt, dann ergibt sich eine besonders einfache, symmetrische Anordnung, in der das Laufrad der Turbine den Durchtrittsquerschnitt des rohrförmigen Gehäuseteils vollständig ausfüllt. Somit liegt die Turbine im ungeschmälerten Zuleitungsweg für die Reinigungsflüssigkeit, da in der Regel der rohrförmige Gehäuseteil und die Zuleitung für Reinigungsflüssigkeit querschnittsgleich und geometrisch kongruent ausgeführt sind.

[0015] Besonders hohe Übersetzungsverhältnisse zwischen der Drehzahl der antreibenden Turbine und jener des angetriebenen Düsenhalters werden sichergestellt, wenn, wie dies ein weiterer Vorschlag vorsieht, die Drehbewegung der Turbinenwelle auf den Lagerarm über ein Zwischengetriebe übertragen wird. Dieses Zwischengetriebe kann in vielfältiger Weise ausgestaltet sein. Es hat sich als zweckmäßig erwiesen, wenn es als Stirnradgetriebe ausgeführt ist, bei dem die Turbinenwelle an ihrem dem Laufrad abgewandten Ende ein Ritzel trägt, das mit einem mit dem Lagerarm fest verbundenen innen verzahnten Außenrad im Eingriff steht.

[0016] Weist, wie dies ein weiterer Vorschlag vorsieht, das erste innen verzahnte Außenrad eine Zähnezahl z₁ = 91 und das zweite innen verzahnte Außenrad eine Zähnezahl z₂ = 90 auf, so dass ein Übersetzungsverhältnis von i₂ = 90/1 gegeben ist, und wird, gemäß einem weiteren Vorschlag, das Übersetzungsverhältnis des Zwischengetriebes mit i₁ = 4/1 bemessen, dann ergibt sich ein Gesamtübersetzungsverhältnis des Antriebes von i_{des} = 90/1 x 4/1 = 360/1. Dies bedeutet in der Praxis, da die antreibende Turbine, abhängig vom Reinigungsflüssigkeits-Durchsatz, in einem Drehzahlbereich von etwa 300 bis 800 min-1 arbeitet, dass je nach Ausgestaltung des Planeten- und des Zwischengetriebes eine Drehzahl bis herunter auf 1 bis 2 min-1 möglich ist, so dass die gestellte Aufgabe, eine äußerst langsam laufende Vorrichtung zur Innenreinigung von Behältern zu schaffen, die gleichzeitig kompakt ausgeführt ist, in sehr eindrucksvoller Weise gelöst ist.

KURZBESCHREIBUNG DER ZEICHNUNGEN

[0017] Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden nachfolgend be-

schrieben. Es zeigen

Figur 1 einen Meridiarischnitt durch eine erste Ausführungsform der vorgeschlagenen Vorrichtung, bei der die Drehbewegung der Turbinenwelle unmittelbar auf einen Lagerarm übertragen wird und

Figur 2 gleichfalls im Meridianschnitt eine zweite Ausführungsform der vorgeschlagenen Vorrichtung, bei der die Drehbewegung der Turbinenwelle unter Zwischenschaltung eines als Stirnradgetriebe ausgebildeten Zwischengetriebes mittelbar auf den Lagerarm übertragen wird.

BEZUGSZEICHENLISTE DER VERWENDETEN AB-KÜRZUNGEN

[0018]

- 1 Düsenhalter
- 1.1 erster Düsenhalterteil
- 1.2 zweiter Düsenhalterteil
- 1a erste Düse
- 1 b zweite Düse
- 1c Lagerteil
- 1 d erstes innen verzahntes Außenrad
- 2 Gehäuse
- 2a rohrförmiges Gehäuseteil
- 2b äußerer Lagerträger
- 2c innerer Lagerträger
- 2d zweites innen verzahntes Außenrad
- 3 Turbine
- 3a Laufrad
- 3b Nabe
- 3c Turbinenwelle
- 3d Lagerarm
- 3e Gegengewicht
- 4 Traverse
- 5 Planetenrad
- 6a erstes Düsenhalterlager
- 6b zweites Düsenhalterlager
- 7a erstes Turbinenlager
- 7b zweites Turbinenlager
- 8 Ritzel
- 9 innen verzahntes Außenrad
- D Drehachse
- L Längsachse
- $i_{\alpha es}$ Gesamtübersetzungsverhältnis
- i₁ Übersetzungsverhältnis Zwischengetriebe
- i₂ Übersetzungsverhältnis Planetengetriebe
- z₁ Zähnezahl des ersten innen verzahnten Außenrades 1d
- z₂ Zähnezahl des zweiten innen verzahnten Außenrades 2d
- z₃ Zähnezahl des Planetenrades 5
- z₄ Zähnezahl des Ritzels 8

z₅ Zähnezahl des innen verzahnten Außenrades 9

DETAILLIERTE BESCHREIBUNG

[0019] Ein als Hohlkugel ausgeführter, drehbar gelagerter Düsenhalter 1 (Figur 1) trägt an seiner Kugeloberfläche eine erste Düse 1a und diametral hierzu eine zweite Düse 1 b. Er wird von einem rohrförmigen Gehäuseteil 2a, das Teil eines stationären Gehäuses 2 ist, zentrisch durchdrungen. Der im Innenraum des Düsenhalters 1 angeordnete Teil des Gehäuses 2 teilt sich auf in einen äußeren Lagerträger 2b und einen über nicht näher bezeichnete Arme befestigten inneren Lagerträger 2c. Der äußere Lagerträger 2b dient in seinem oberen Bereich der Aufnahme eines ersten Düsenhalterlagers 6a und in seinem unteren Bereich eines zweiten Düsenhalterlagers 6b. Über diese beiden Lagerstellen 6a, 6b wird der Düsenhalter 1 drehbeweglich auf dem Gehäuse 2 gelagert und geführt, wobei das erste Düsenhalterlager 6a dem oberen Bereich des Düsenhalters 1 im Bereich seiner Durchdringungsstelle mit dem rohrförmigen Gehäuseteil 2a und das zweite Düsenhalterlager 6b dem unteren Bereich des Düsenhalters 1 in Gestalt eines Lagerteils 1c zugeordnet sind.

[0020] Gemäß einer vorteilhaften Ausführungsform ist der Düsenhalter 1 in einer auf einer Längsachse L des rohrförmigen Gehäuseteils 2a senkrecht stehenden Meridianebene geteilt, so dass oberhalb ein erster Düsenhalterteil 1.1 und unterhalb ein zweiter Düsenhalterteil 1.2 entstehen. Die Verbindung beider Düsenhalterteile 1.1 und 1.2 erfolgt zweckmäßigerweise form- und kraftschlüssig, beispielsweise über Verschraubungselemente oder eine so genannte Sprengringverbindung, die im Ausführungsbeispiel nicht dargestellt und bezeichnet sind.

[0021] Eine Turbine 3 ist mit einem Laufrad 3a, einer Nabe 3b und einer in letzterer angeordneten Turbinenwelle 3c im rohrförmigen Gehäuseteil 2a in unmittelbarer Nähe zu dessen Durchdringungsstelle mit dem Düsenhalter 1 angeordnet. Die Turbinenwelle 3c ist in den Düsenhalter 1 hineingeführt und dort im inneren Lagerträger 2c zweifach gelagert. Der Lagerung im oberen Bereich dient hierzu ein erstes Turbinenlager 7a und im unteren Bereich ein zweites Turbinenlager 7b. Das der Turbine 3 abgewandte Ende der Turbinenwelle 3c ist fest mit einem Lagerarm 3d verbunden, der mittels einer außenseits auf dem inneren Lagerträger 2c und koaxial zu einer Drehachse D des Düsenhalters 1 gelagerten Traverse 4 um die Drehachse D drehbar und geführt angeordnet ist. Der Lagerarm 3d trägt in drehbeweglicher Anordnung ein Planetenrad 5, das einerseits mit einem ersten innen verzahnten Außenrad 1d, welches in fester Verbindung mit dem zweiten Düsenhalterteil 1.2 des Düsenhalters 1 steht, und andererseits mit einem zweiten innen verzahnten Außenrad 2d, das fest mit dem äußeren Lagerträger 2b des Gehäuses 2 verbunden ist, im Eingriff ist. Zum Zwecke des Massenausgleichs befindet sich auf der dem Lagerarm 3d gegenüber liegenden Seite ein mit der Turbinenwelle 3c verbundenes Gegengewicht 3e.

[0022] Das durch die Energie des zuströmenden Reinigungsmittels angetriebene Laufrad 3a der Turbine 3 überträgt seine Drehbewegung auf die Turbinenwelle 3c und somit synchron auf den Lagerarm 3d, der in fester Verbindung und in radialem Abstand zur Turbinenwelle 3c angeordnet ist. Die umlaufende Drehbewegung des Lagerarms 3d wird zusätzlich durch die konzentrisch zur Turbinenwelle 3c gelagerte Traverse 4 geführt. Im Bereich des Lagerarmes 3d ist die Traverse 4 vorzugsweise gabelförmig ausgebildet, so dass das Planetenrad 5, das drehbeweglich auf dem Lagerarm 3d angeordnet ist, in axialer Richtung beidseitig eine Begrenzung erfährt. Die Zähnezahlen der innen verzahnten Außenräder 1d und 2d unterscheiden sich zweckmäßig um einen Zahn, und die Verzahnung ist in Bezug auf das Planetenrad 5 derart ausgebildet, dass letzteres gleichermaßen auf dem gleichen Teilkreisdurchmesser mit dem ersten und dem zweiten innen verzahnten Außenrad 1d bzw. 2d im Eingriff ist. Dadurch ergibt sich nach einem vollständigen Umlauf des Lagerarmes 3d in Verbindung mit dem auf ihm gelagerten Planetenrad 5 eine Umfangsverschiebung zwischen den beiden innen verzahnten Außenrädern 1d und 2d nach Maßgabe der einem Zahn entsprechenden Teilung.

[0023] Wird beispielsweise, wie dies vorgesehen ist, die Zähnezahl des ersten innen verzahnten Außenrades 1d mit z_1 = 91 und jene des zweiten innen verzahnten Außenrades 2d mit z_2 = 90 Zähne gewählt, dann ergibt sich nach 90 Umläufen des Lagerarmes 3d insgesamt eine Relativverschiebung zwischen dem ersten und dem zweiten innen verzahnten Außenrad 1d bzw. 2d um eine volle Umdrehung. Ein derart ausgestaltetes Planetengetriebe besitzt somit ein Übersetzungsverhältnis von i_2 = 90/1, so dass beispielsweise 90 Umdrehungen der Turbine 3 eine Umdrehung des Düsenhalters 1 ergeben.

[0024] Nach einer zweiten Ausführungsform (Figur 2) wird die Drehbewegung der Turbinewelle 3c mittelbar auf den Lagerarm 3d übertragen. Dies geschieht durch Zwischenschaltung eines Zwischengetriebes, welches im dargestellten Ausführungsbeispiel als Stirnradgetriebe mit einem Ritzel 8 und einem innen verzahnten Außenrad 9 ausgebildet ist. Das Ritzel 8 ist auf dem dem Laufrad 3a abgewandten Ende der Turbinenwelle 3c angeordnet und es steht im ständigen Eingriff mit der Innenverzahnung des Außenrades 9, welches fest mit dem Lagerarm 3d verbunden ist.

[0025] Wird beispielsweise, wie dies vorgeschlagen wird, das Übersetzungsverhältnis des Zwischengetriebes mit $i_1 > 1$ ausgeführt, vorzugsweise $i_1 \ge 4:1$, dann ergibt sich für den Antrieb ein Gesamtübersetzungsverhältnis $i_{ges} = i_1 \times i_2$, d.h. im vorliegenden Fall $i_{ges} = 4/1 \times 90/1 = 360/1$. Ein Übersetzungsverhältnis $i_1 = 4/1$ ist beispielsweise mit einer Zähnezahl $z_4 = 15$ für das Ritzel 8 und einer Zähnezahl $z_5 = 60$ für das innen verzahnte Außenrad 9 erreichbar. Das Planetenrad 5 innerhalb

des Planetengetriebes 5, 1d, 2d wird in beiden Ausführungsformen beispielsweise mit einer Zähnezahl z_3 = 20 ausgeführt.

[0026] Sowohl das Planetengetriebe 5, 1d, 2d als auch das Zwischengetriebe 8, 9 (Figuren 1 und 2) sind in dem Düsenhalter 1 derart angeordnet und ausgestaltet, dass sämtliche Einbauteile von Flüssigkeit umströmt sind, so dass der gesamte Antrieb selbstreinigende Eigenschaften besitzt. Das gleiche gilt für die Lagerung des Düsenhalters 1 auf dem äußeren Lagerträger 2b über die Düsenhalterlager 6a und 6b und auch für die Lagerung der Turbinenwelle 3c im inneren Lagerträger 2c über die Turbinenlager 7a und 7b. Hier übernimmt die Reinigungsflüssigkeit sowohl reinigende als auch schmierende Funktion. Die gesamte erfindungsgemäße Vorrichtung kann in metallischer Ausführung hergestellt sein, wobei die zur Anwendung kommenden metallischen Werkstoffe sowohl gegen Reinigungsmittel beständig als auch mit dem notwendigen Gleit- und Reibverhalten ausgestaltet sein müssen. Die Konstruktion kann auch mittels geeigneter nichtmetallischer Werkstoffe, z.B. geeigneter Kunststoffe, ausgeführt werden. Darüber hinaus ist auch eine Kombination metallischer und nichtmetallischer Werkstoffe vorgesehen.

Patentansprüche

- Vorrichtung zur Innenreinigung von Behältern, z.B. Tanks.
 - mit einem in eine Öffnung eines Tanks einführbaren stationären Gehäuse (2), das über einen rohrförmigen Gehäuseteil (2a) mit einer Zuführleitung für eine Reinigungsflüssigkeit verbunden ist und einen gegenüber dem Gehäuse (2) um eine Drehachse (D) drehbaren Düsenhalter (1) mit wenigstens einer Düse (1a, 1b) aufweist,
 - mit einer im Strömungsweg der zugeführten Reinigungsflüssigkeit angeordneten und von deren Strömungsenergie angetriebenen Turbine (3), die den Düsenhalter (1) umlaufend antreibt,
 - mit dem Düsenhalter (1), der als Hohlkörper ausgebildet ist, wobei dieser Hohlkörper das Gehäuse (2) teilweise in sich aufnimmt und vom rohrförmigen Gehäuseteil (2a) durchdrungen wird,
 - mit der Turbine (3), die im rohrförmigen Gehäuseteil (2a) in unmittelbarer Nähe zu dessen Durchdringungsstelle mit dem Düsenhalter (1) angeordnet ist,
 - mit einer Turbinenwelle (3c), die in den Düsenhalter (1) hineingeführt und dort im Gehäuse (2) gelagert ist,
 - wobei die Drehbewegung der Turbinenwelle (3c) unmittelbar auf einen Lagerarm (3d) über-

20

25

35

40

45

- tragen wird,
- und mit einem auf dem Lagerarm (3d) drehbeweglich angeordneten Planetenrad (5) (Zähnezahl z₃), das einerseits mit einem ersten innen verzahnten Außenrad (1d) am Düsenhalter (1) und andererseits mit einem zweiten innen verzahnten Außenrad (2d) am Gehäuse (2) im Eingriff ist.
- wobei sich die Außenräder (1d, 2d) hinsichtlich ihrer jeweiligen Zähnezahl (z₁, z₂) um wenigstens einen Zahn unterscheiden.
- Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Lagerarm (3d) mittels einer im Gehäuse (2) und koaxial zur Drehachse (D) gelagerten Traverse (4) um die Drehachse (D) drehbar und geführt angeordnet ist.
- Vorrichtung zur Innenreinigung von Behältern, z.B. Tanks,
 - mit einem in eine Öffnung eines Tanks einführbaren stationären Gehäuse (2), das über einen rohrförmigen Gehäuseteil (2a) mit einer Zuführleitung für eine Reinigungsflüssigkeit verbunden ist und einen gegenüber dem Gehäuse (2) um eine Drehachse (D) drehbaren Düsenhalter (1) mit wenigstens einer Düse (1a, 1b) aufweist,
 - mit einer im Strömungsweg der zugeführten Reinigungsflüssigkeit angeordneten und von deren Strömungsenergie angetriebenen Turbine (3), die den Düsenhalter (1) umlaufend antreibt.
 - mit dem Düsenhalter (1), der als Hohlkörper ausgebildet ist, wobei dieser Hohlkörper das Gehäuse (2) teilweise in sich aufnimmt und vom rohrförmigen Gehäuseteil (2a) durchdrungen wird,
 - mit der Turbine (3), die im rohrförmigen Gehäuseteil (2a) in unmittelbarer Nähe zu dessen Durchdringungsstelle mit dem Düsenhalter (1) angeordnet ist,
 - mit einer Turbinenwelle (3c), die in den Düsenhalter (1) hineingeführt und dort im Gehäuse (2) gelagert ist,
 - wobei die Drehbewegung der Turbinenwelle
 (3c) mittelbar auf einen Lagerarm (3d) übertragen wird, der mittels einer im Gehäuse (2) und koaxial zur Drehachse (D) gelagerten Traverse
 (4) um die Drehachse (D) drehbar und geführt angeordnet ist,
 - und mit einem auf dem Lagerarm (3d) drehbeweglich angeordneten Planetenrad (5) (Zähnezahl z₃), das einerseits mit einem ersten innen verzahnten Außenrad (1d) am Düsenhalter (1) und andererseits mit einem zweiten innen verzahnten Außenrad (2d) am Gehäuse (2) im Eingriff ist,

- wobei sich die Außenräder (1d, 2d) hinsichtlich ihrer jeweiligen Zähnezahl (z₁, z₂) um wenigstens einen Zahn unterscheiden.
- 4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Düsenhalter (1) als Hohlkugel ausgeführt und vom rohrförmigen Gehäuseteil (2a) zentrisch durchdrungen ist.
- 5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass der als Hohlkugel ausgebildete Düsenhalter (1) in einer auf der Längsachse (L) des rohrförmigen Gehäuseteils (2a) senkrecht stehenden Meridianebene geteilt ausgeführt ist.
 - 6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Drehachse (D) mit der Längsachse (L) des rohrförmigen Gehäuseteils (2a) zusammenfällt.
 - 7. Vorrichtung nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass die Drehbewegung der Turbinenwelle (3c) auf den Lagerarm (3d) über ein Zwischengetriebe (8, 9) übertragen wird.
 - 8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Turbinenwelle (3c) an ihrem dem Laufrad (3a) abgewandten Ende ein Ritzel (8) (Zähnezahl z₄) trägt, das mit einem mit dem Lagerarm (3d) fest verbundenen dritten innen verzahnten Außenrad (9) (Zähnezahl z₅) im Eingriff steht.
 - Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass das Zwischengetriebe (8, 9) ein Übersetzungsverhältnis i₁ > 1, vorzugsweise i₁ ≥ 4:1 aufweist.
 - 10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das erste innen verzahnte Außenrad (1 d) eine Zähnezahl z₁ = 91 und das zweite innen verzahnte Außenrad (2d) eine Zähnezahl z₂ = 90 aufweisen.

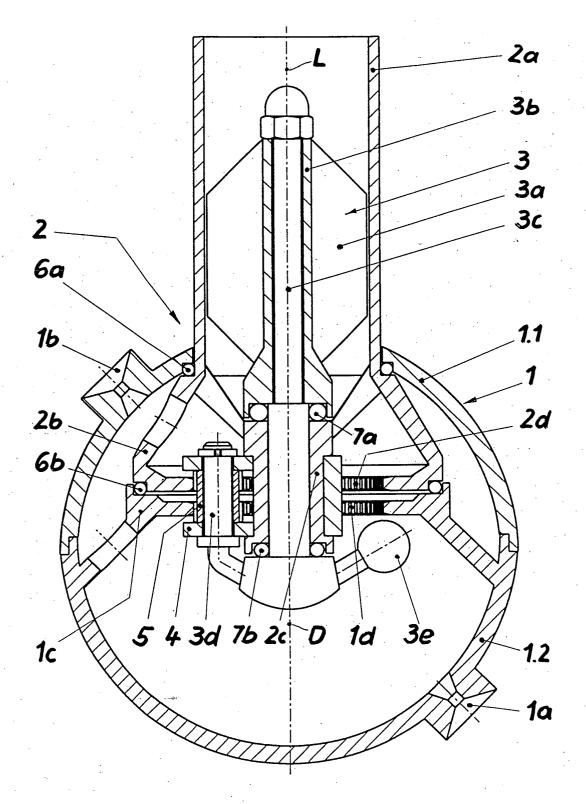


Fig. 1

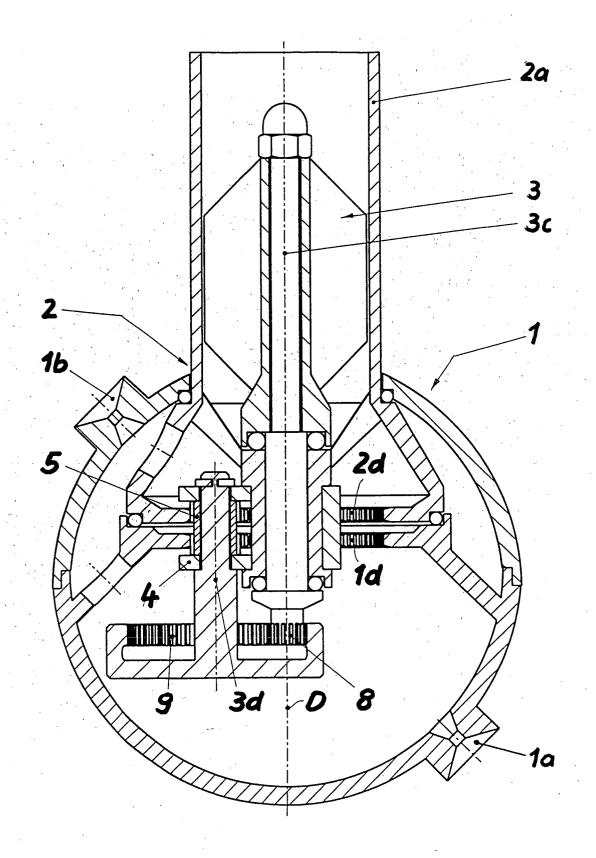


Fig. 2

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 03 00 3476

	EINSCHLÄGIGE				
Kategorie	Kennzeichnung des Dokun der maßgeblich		eit erforderlich,	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.CI.7)
A	GB 1 196 511 A (BRI 24. Juni 1970 (1970 * Seite 2, Zeile 12 * Seite 3, Zeile 99 * Seite 5, Zeile 89 * Abbildungen 1,4 *)-06-24) 24 - Zeile 130 9 - Seite 4, Ze 9 - Zeile 112 *	eile 3 *	1,2	B05B3/04 B08B9/093
D,A	DE 198 11 421 A (AL 23. September 1999 * Spalte 4, Zeile 2 3 *	(1999-09-23)		1,2	
D,A	US 5 333 630 A (JEP 2. August 1994 (199 * Spalte 3, Zeile 5 Abbildung 2 *	94- 08-02)		1,2	
			į		
					RECHERCHIERTE SACHGEBIETE (Int.CI.7)
					B05B B08B
Der vo	orliegende Recherchenbericht wu	rde für alle Patentanspr	üche erstellt		
	Recherchenort	Abschlußdatum	der Recherche		Prüfer
	DEN HAAG	20. M ai	2003	Jug	uet, J
X : von Y : von ande A : tech O : nich	ATEGORIE DER GENANNTEN DOK besonderer Bedeutung allein betrach besonderer Bedeutung in Verbindung eren Veröffentlichung derselben Kate inologischer Hintergrund ntschriftliche Offenbarung schenliteratur	tet g mit einer D gorie L	: älteres Patentdok nach dem Anmeld : in der Anmeldung : aus anderen Grün	ument, das jedo ledatum veröffen g angeführtes Do nden angeführtes	itlicht worden ist kument

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 03 00 3476

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben. Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

20-05-2003

Im Recherchenbericht angeführtes Patentdokument			Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
GB	1196511	Α	24-06-1970	DK	121901	В	20-12-1971
DE	19811421	A	23-09-1999	DE	19811421	A1	23-09-1999
				WO	9947271	A1	23-09-1999
				EΡ	1062049	A1	27-12-2000
				US	6460553	B1	08-10-2002
US	5333630	- 	02-08-1994	DK	227490	A	21-03-1992
				ΑT	141064	T	15-08-1996
				ΑU	8615491	Α	15-04-1992
				DE	69121248	D1	12-09-1996
				DE	69121248	T2	06-03-1997
				WO	9204994	A1	02-04-1992
				EP	0560778	A1	22-09-1993
				ES	2090354	T3	16-10-1996
				JP	2992834	B2	20-12-1999
				JP	6501197	T	10-02-1994

EPO FORM P0461

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr. 12/82