[0002] The present invention relates to communications systems imploring code division multiple
access (CDMA) techniques. More particularly, the present invention relates to a transmission
diversity scheme which can be applied to a CDMA communication system.
[0003] Spacial diversity has been proposed for support of very high data rate users within
third generation wide band code division multiple access systems. Using multiple antennas,
the systems achieve better gains and link quality, which results in increased system
capacity. Classically, diversity has been exploited through the use of either beam
steering or through diversity combining.
[0004] More recently, it has been realized that coordinated use of diversity can be achieved
through the use of space-time codes. Such systems can theoretically increase capacity
by up to a factor equaling the number of transmit and receive antennas in the array.
Space-time block codes operate on a block of input symbols producing a matrix output
over antennas and time.
[0005] In the past, space-time transmit diversity systems have transmitted consecutive symbols
simultaneously with their complex conjugates. This type of system, though may result
in symbol overlap at the receiving end, with the amount of overlap being dependent
on the length of the impulse response of the propagation channel. In time division
duplex (TDD) mode, this symbol overlap will have to be accounted for in the joint
detection receiver. The joint detector will have to estimate the transmitted symbols
and their conjugates, resulting in an increase in complexity of the joint detection.
[0006] In order to alleviate this increase in joint detection, systems have been created
which transmit two similar but different data fields. The first data field, having
a first portion, D
11, and a second portion, D
12, is transmitted by the first antenna. A second data field is produced by modifying
the first data field. The negation of the conjugate of D
12, -D
12*, is the first portion of the second data field and the conjugate of D
11, D
11*, is the second portion. The second data field is simultaneously transmitted by the
second antenna. This type of system results in the joint detection implemented at
the receiver needing only to estimate the same amount of symbols as in the case of
a single transmit antenna. A block diagram of this system is illustrated in Figure
1.
[0007] Neglecting the cross interference between the blocks the received signal model can
be approximated as

where

are the vector forms of the transmit symbol sequences.
Aij and
Bij are the sub-matrices of the banded propagation matrices A and B according to the
channels from antenna 1 and 2 to a specific user respectively. They are rewritten
by the following (2 x 2) block matrix representations:

Each column of the matrices A and B is the shifted versions of the convolution of
the spreading code and the channel impulse response from the first and diversity antennas
respectively.
[0008] The model of Equation 1 can be solved using a MMSE BLE by

where

is the variance of the additive white Gaussian noise. It can be simplified using
the sub-block matrix manipulations and banded Toeplitz approximations.
[0009] The problem with the above-transmit diversity system is that the first and second
portions, D
11, D
12 of the first data field requires the same number of symbols in each of the portions.
Some TDD data fields include an odd number of symbols. Therefore, when the data field
is split into two portions, the portions have a different number of symbols. A method
to deal with this inequality must be implemented. One approach duplicates the first
symbol to alleviate this problem. Other approaches are known in the art. Utilizing
one of these methods results in additional computations for joint detection at the
receiver. In particular, the first symbol is not STTD encoded, and hence the STTD
encoder output becomes;

[0010] Furthermore, the initial approximation by eliminating the center elements of Equation
1 introduces a small error in the joint detection process.
[0011] Accordingly, there exists a need for other transmit diversity systems.
EP 0 993 129 discloses a space-time block coded transmit antenna diversity in a CDMA-system.
facilitating channel estimation for signal decoding.
WO 02/47278 discloses blocks spaces time transmit diversity using multiple spreading
codes, said publication falling under the provisions of Art. 54(3) EPC requiring absolute
novelty of the present claims.
[0013] The present invention is a system and method for transmitting data symbols in a CDMA
communication system including a transmitter having an antenna array and a receiver.
The system generates a first and second data field of symbols, then encodes them to
produce complex conjugates of the respective symbols. A first communication burst
including the first and second data fields, which are separated by a midamble, over
a first antenna, and a second communication burst produced using said complex conjugates
of said first and second data fields, which are separated by a midamble, over a second
antenna are then transmitted by the transmitter. The receiver then receives and decodes
the first and second communication bursts to recover the first and second data fields.
[0014] BRIEF DESCRIPTION OF THE DRAWINGS
[0015] Figure 1 is a block diagram of a prior art communication, system employing space-time
transmit diversity.
[0016] Figure 2 is a block diagram of a transmitter and receiver in a communication system
in accordance with the preferred embodiment of the present invention.
[0017] Figure 3 is a flow diagram of the transmit diversity system of the present invention
[0018] Figure 4 is a graphical illustration of the performance of the present invention.
[0019] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0020] Figure 2 is a block diagram of a transmitter 10, preferably located at a base station,
and a receiver 20, preferably located at a user equipment (UE), in a CDMA communication
system in accordance with the preferred embodiment of the present invention. Although
it is preferable to have the transmitter located at a base station and the receiver
located at the UE, the receiver and transmitter may switch locations and the present
invention operate on an uplink communication. The transmitter 10 comprises a block
encoder 11, a plurality of channelization devices 8, 9, a plurality of spreading sequence
insertion devices 12, 13, and a plurality of antennas 15, 16. Although Figure 1 illustrates
a transmitter comprising two (2) antennas, it should be apparent to those having skill
in the art that more than two (2) antennas may be used, such as N antennas.
[0021] A typical communication burst has two data fields separated by a midamble sequence.
Data to be transmitted by the transmitter 10 is produced by a data generator (not
shown). The resulting data symbols (S
11, S
12, ...S
1x) of the first data field and (S
21, S
22, ... S
2x) of the second data field, represented as d
1 and d
2 respectively, are forwarded to the first channelization device 8 and the block encoder
11. Preferably, the block encoder 11 is a block space time transmit diversity (BSTTD)
encoder. The block encoder 11, encodes the input symbols of both data fields d
1, d
2 and generates the complex conjugate of d
1 and the negation of the complex conjugate of d
2: d
1*, -d
2*. The encoder 11 also changes the order of the data fields so that -d
2* is ahead of d
1*.
[0022] Once the complex conjugates have been generated and the order changed, the encoder
11 forwards the two data fields -d
2*, d
1* to a second channelization device 9. The first and second channelization devices
8, 9 spread their respective data fields using the same channelization code. The first
channelization device spreading data fields d
1, d
2 and the second channelization device spreading data fields -d
2*, d
1 *. The spread data fields from each of the channelization devices 8, 9 are then scrambled
using a scrambling code associated with the transmitter 10.
[0023] After each spread data field is scrambled, they are forwarded to a first and second
training sequence insertion device 12, 13, respectively. Spread data fields d
1, d
2 are forwarded to the first training sequence device 12 and spread data fields - d
2*, d
1* are forwarded to the second training sequence device 13. The training sequence devices
12, 13 insert between the spread data fields associated with each respective sequence
device 12, 13 a first and second midamble, respectively. The first midamble is associated
with a first of the plurality of antennas 15 and the second midamble is associated
with a second of the plurality of antennas 15. The insertion of the midamble between
the spread data fields produces two communication bursts 17, 18, respectively. A typical
communication burst 17 has the midamble, a guard period, and two data fields d
1, d
2, as shown in Figure 2. The two bursts 17, 18 are modulated and simultaneously transmitted
to the receiver 20 over antenna 15 and diversity antenna 16, respectively.
[0024] Referring back to Figure 2, the receiver 20 comprises two joint detection devices
(JD) 24, a BSTTD decoder 22, a channelization device 23, and an antenna 26. The antenna
26 of the UE receives various RF signals including the communication bursts 12,18
from the transmitter 10. The RF signal are then demodulated to produce a baseband
signal.
[0025] The baseband signal is then forwarded to the JD 24 and the channel estimation device
23. The channel estimation device 23 provides channel information, such as channel
impulse responses, to the JD 24. The JD 24 are coupled to the channel estimation device
23 and the BSTTD decoder utilizes the channel information and the channelization codes
to detect the data fields d
1, d
2, -d
2*, d
1* of the transmitted communication bursts 17, 18 in the received signal. The exact
received signal model in accordance with the preferred embodiment of the present invention
can be represented by:

where r
1 and r
2 are the received signals, and d
1 and d
2 are the transmitted symbol sequence of the first and second data fields, respectively.
As those skilled in the art know, A and B are the banded propagation matrices according
to the channels from antennas 15 and 16. Since the d1 and d2 are bordered by the guard
period and the midamble, which is typically cancelled, the middle terms of the within
a data field encoding drop out. Accordingly, Equation 3 is not an approximation.
[0026] The JDs 24, 25 may use any type of data detection method and, preferably, which utilizes
the above representation of the received signal. Preferably, a minimum means square
encoder block linear equalizer (MMSE BLE) method is used for data detection. The MMSE
BLE based data detection is written by

where

with

(·)
T, (·)
H and (·)* denote the transpose, complex conjugate transpose and complex conjugate
functions, respectively. Using the cycle reduction for the Cholesky decomposition
of the banded Toeplitz matrix together with some sub-matrix manipulation, the data
fields d
1, d
2, -d
2* , d
1* are estimated by the JD 24 using the block STTD BLE-JD algorithm, for example.
[0027] The flow diagram of the communication system the present invention is illustrated
in Figure 3. A data generator generates data to be transmitted to the receiver 20
(Step 301). The data fields d
1, d
2 are forwarded to the block encoder 11 and the first channelization device 8 (Step
302). The sub-data fields forwarded to the block encoder 11 are encoded (Step 303)
and forwarded to the second channelization device 9 (Step 304). Each channelization
device 8, 9 spreads their respective data field input using a channelization code
(Step 305). The two spread signals are then scrambled, using the scrambling code associated
with the transmitter 10 (Step 306) and transmitted to the receiver 20 over diversity
antennas 15, 16 (Step 307).
[0028] The receiver 20 receives an RF communication signal including the two spread signals
from the diversity antennas 15, 16 (Step 308), demodulates the signal and forwards
the demodulated signal to the channel estimation device 23 and joint detection device
24 (Step 309). The received signal is processed by the channel estimation device 23
(Step 310) and the channel information is applied by the joint detection devices 24,
25 along with the channelization codes, to estimate and decode the transmit symbols
from the diversity antennas 15, 16 (Step 311), yielding the data fields soft symbols.
[0029] The system of the preferred embodiment provides an efficient method of transmitting
data using block space time transmit diversity over a CDMA communication system. Figure
4 is a graphical illustration of the performance of the system of the present invention,
BSTTD based on two data fields, versus the conventional BSTTD based on one data field.
The improved performance of the present invention is partly due to the fact that the
interference between the two data fields is not introduced, due to the midamble and
guard period separation between them. The present invention also eliminates the need
for the receiver to compensate for the unequal data field portion encoding by using
the first symbol twice or implementing some other method of compensation providing
a less complex system when transmitting a data field with an odd number of symbols.
1. A method for transmitting data symbols in a CDMA communication system including a
transmitter (10) having an antenna array and a receiver (20), the method comprising
the steps of:
generating (301) a first and second data field of symbols;
encoding (303) said first and second data field producing complex conjugates of the
symbols of said first and second data field,
transmitting (307) from the said transmitter a first communication burst (17) including
said first and second data fields separated by a first midamble over a first antenna
(15) and a second communication burst (18) including two data fields which are produced
using the complex conjugate of the first data field and the negation of the complex
conjugate of the second data field, respectively, which produced two data fields are
separated by a second midamble, over a second antenna (16), wherein the first midamble
is associated with the first antenna (15) and the second midamble is associated with
the second antenna (16) , and
receiving (308) and decoding (311) at said receiver said first and second communcation
bursts to recover said first and second data fleids.
2. The method of claim 1 wherein said receiving and decoding step comprises:
estimating a channel response of said first and second communication bursts (17, 18)
using said bursts' midambles; and
detecting the symbols of said first and second communication bursts (17, 18) in response
to said channel response.
3. The method of claim 2 wherein a base station includes said receiver (20) and a user
equipment includes said transmitter (10).
4. The method of claim 2 wherein a user equipment includes said receiver (20) and a base
station includes said transmitter (10).
5. A CDMA communication system including a base station and a user equipment said system
comprising:
an encoder (11) which encodes a first and second data field of symblols to produce
complex conjugates of the symbols of said first and second data fields;
a first and second antenna (15 and 16) of a transmitter (10) which transmits RF signals
including a first and second communication burst, wherein said first communication
burst (17) including said first and second data fields separated by a first midamble
is transmitted by said first antenna (15) and said second communication burst (18)
including two data fields which are produced using the complex a conjugate of the
first data field and the negation of the complex conjugate of the second data field,
respectively, which two produced data fields are separated by a second midamble, is
transmitted by said second antenna (16), wherein the first midamble is associated
with the first antenna (15) and the second midamble is associated with the second
antenna (16); and
a receiver (20) comprising a decoder which decodes said RF signals to recover said
first and second data fields.
6. The system of claim 5 wherein said transmitter (10) further comprises:
a first burst generator, associated with said first antenna (15), which generates
the first communication burst (17); and
a second burst generator, associated with said second antenna (16), which generates
the second communication burst (18).
7. The system of claim 6 wherein said base staton includes said receiver (20) and said
user equipment includes said transmitter (10).
8. The system of claim 6 wherein said user equipment includes said receiver (20) and
said base station includes said transmitter (10).
9. A transmitter (10) which transmits data symbols in a CDMA communication system including
a base station and a user equipment said transmitter comprising:
an encoder (11) which encodes a first and second data field of symbols to produce
complex conjugates of the symbols of said first and second data fields; and
a first and second antenna (15 and 16) which transmit RF signals including a first
and second communication burst, wherein said first communication burst (17) including
said first and second data fields separated by a first midamble is transmitted by
said first antenna (15) and said second comminucation burst (18) including two data
fields which are produced using the complex conjugate of the first data field and
the negation of the complex conjugate of the second data field, respectively, which
two produced data fields are separated by a second midamble, is transmitted by said
second antenna (16), wherein the first midamble is associated with the first antenna
(15) and the second midamble is associated with the second antenna (16)
10. The transmitter (10) of claim 9 further comprising;
a first burst generator, associated with said first antenna (15), wich generates said
first communication burst (17); and a second burst generator, associated with said
second antenna (16), which generates said second communication burst (18).
11. The transmitter (10) of claim 10 wherein said base station includes said transmitter.
12. The transmitter (10) of claim 10 wherein said user equipment includes said transmitter.
1. Procédé pour transmettre des symboles de données dans un système de communication
à AMRC (accès multiple à répartition par code) incluant un émetteur (10) ayant un
ensemble d'antennes et un récepteur (20), le procédé comprenant les étapes consistant
à :
générer (301) un premier et un second champ de données de symboles ;
encoder (303) ledit premier champ de données et ledit second champ de données produisant
des conjugués complexes des symboles dudit premier champ de données et dudit second
champ de données ;
transmettre (307) à partir dudit émetteur une première rafale de communication (17)
incluant lesdits premier et second champs de données séparés par un premier midamble
sur une première antenne (15) et une seconde rafale de communication (18) incluant
deux champs de données qui sont produits en utilisant les conjugués complexes du premier
champ de données et la négation des conjugués complexes du second champ de données,
respectivement, lesquels deux champs de données produits sont séparés par un second
midamble, sur une seconde antenne (16), dans lequel le premier midamble est associé
à la première antenne (15) et le second midamble est associé à la seconde antenne
(16) ; et
recevoir (308) et décoder (311) au dit récepteur les dites première et seconde rafales
de communication pour récupérer lesdits premier et second champs de données.
2. Procédé selon la revendication 1, dans lequel la dite étape de réception et de décodage
comprend les étapes consistant à :
estimer une réponse de canal desdites première et seconde rafale de communication
(17 ; 18) en utilisant lesdits midambles des rafales ; et
détecter les symboles desdites première et seconde rafales de communication (17 ;
18) en réponse à ladite réponse de canal.
3. Procédé selon la revendication 2, dans lequel une station de base inclut ledit récepteur
(20) et un équipement d'utilisateur inclut ledit émetteur (10).
4. Procédé selon la revendication 2, dans lequel un équipement d'utilisateur inclut ledit
récepteur (20) et une station de base inclut ledit émetteur (10).
5. Système de communication à AMRC incluant une station de base et un équipement d'utilisateur,
ledit système comprenant :
un encodeur (11) qui encode un premier champ de données et un second champ de données
des symboles pour produire des conjugués complexes des symboles desdits premier et
second champs de données ;
une première antenne et une seconde antenne (15 ; 16) d'un émetteur (10) qui émet
des signaux RF incluant une première rafale de communication et une seconde rafale
de communication, dans lequel ladite première rafale de communication (17) incluant
lesdits premier et second champs de données séparés par un premier midamble est transmise
par ladite première antenne (15) et ladite seconde rafale de communication (18) incluant
deux champs de données qui sont produits en utilisant les conjugués complexes du premier
champ de données et la négation des conjugués complexes du second champ de données,
respectivement, lesquels deux champs de données produits sont séparés par un second
midamble, est transmise par ladite seconde antenne (16), dans lequel le premier midamble
est associé à la première antenne (15) et le second midamble est associé à la seconde
antenne (16) ; et
un récepteur (20) comprenant un décodeur qui décode lesdits signaux RF pour récupérer
lesdits premier et second champs de données.
6. Système selon la revendication 5, dans lequel ledit émetteur (10) comprend en outre
:
un premier générateur de rafale, associé à ladite première antenne (15), qui génère
la première rafale de communication (17) ; et
un second générateur de rafale, associé à ladite seconde antenne (16), qui génère
la seconde rafale de communication (18).
7. Système selon la revendication 6, dans lequel ladite station de base inclut ledit
récepteur (20) et ledit équipement d'utilisateur inclut ledit émetteur (10).
8. Système selon la revendication 6, dans lequel ledit équipement d'utilisateur inclut
ledit récepteur (20) et ladite station de base inclut ledit émetteur (10).
9. Emetteur (10) qui émet des symboles de données dans un système de communication à
AMRC incluant une station de base et un équipement d'utilisateur, ledit émetteur comprenant
:
un encodeur (11) qui encode un premier champ de données et un second champ de données
des symboles pour produire des conjugués complexes des symboles desdits premier et
second champs de données ; et
une première antenne et une seconde antenne (15 ; 16) qui transmettent des signaux
RF incluant une première rafale de communication et une seconde rafale de communication,
dans lequel ladite première rafale de communication (17) incluant lesdits premier
et second champs de données séparés par un premier midamble est transmise par ladite
première antenne (15) et ladite seconde rafale de communication (18) incluant deux
champs de données qui sont produits en utilisant les conjugués complexes du premier
champ de données et la négation des conjugués complexes du second champ de données,
respectivement, lesquels deux champs de données produits sont séparés par un second
midamble, est transmise par ladite seconde antenne (16), dans lequel le premier midamble
est associé à la première antenne (15) et le second midamble est associé à la seconde
antenne (16).
10. Emetteur (10) selon la revendication 9, comprenant en outre :
un premier générateur de rafale, associé à ladite première antenne (15), qui génère
la première rafale de communication (17) ; et
un second générateur de rafale, associé à ladite seconde antenne (16), qui génère
la seconde rafale de communication (18).
11. Emetteur (10) selon la revendication 10, dans lequel ladite station de base inclut
ledit émetteur.
12. Emetteur (10) selon la revendication 10, dans lequel ledit équipement d'utilisateur
inclut ledit émetteur.
1. Verfahren zur Übermittlung von Datensymbolen in einem CDMA-Kommunikationssystem mit
einem Sender (10) mit Antennenanordnung und einem Empfänger (20), wobei das Verfahren
die Schritte umfasst:
Erzeugung (301) eines ersten und eines zweiten Datenfeldes von Symbolen;
Kodierung (303) des ersten und zweiten Datenfeldes, wobei die komplex Konjugierten
der Symbole des ersten und zweiten Datenfeldes erzeugt werden,
vom Sender über eine erste Antenne (15) Übermittlung (307) eines ersten Kommunikationsbursts
(17), der das durch eine erste Midamble getrennte erste und zweite Datenfeld einschliesst,
und über eine zweite Antenne (16) Übermittlung eines zweiten Kommunikationsbursts
(18), der zwei Datenfelder einschliesst, die unter Verwendung der komplex Konjugierten
des ersten Datenfeldes bzw. der Negation der komplex Konjugierten des zweiten Datenfeldes
erzeugt worden sind, wobei die beiden erzeugten Datenfelder durch eine zweite Midamble
getrennt sind und wobei die erste Midamble mit der ersten Antenne (15) und die zweite
Midamble mit der zweiten Antenne (16) assoziiert ist; und
Empfang (308) am Empfänger und Dekodierung (311) des ersten und zweiten Kommunikationsbursts,
um das erste und zweite Datenfeld zurückzugewinnen.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass der Empfangs- und Dekodierschritt umfasst:
Abschätzung einer Kanalantwort des ersten und zweiten Kommunikationsbursts (17, 18)
unter Verwendung der Burst-Midambeln; und
Auffindung der Symbole des ersten und zweiten Kommunikationsbursts (17, 18) als Reaktion
auf die Kanalantwort.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass eine Basisstation den Empfänger (20) und ein Benutzergerät den Sender (10) einschliesst.
4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass ein Benutzergerät den Empfänger (20) und eine Basisstation den Sender (10) einschliesst.
5. CDMA-Kommunikationssystem mit einer Basisstation und einem Benutzergerät, wobei das
System umfasst:
einen Kodierer (11), der ein erstes und zweites Datenfeld von Symbolen kodiert, um
komplex Konjugierte der Symbole des ersten und zweiten Datenfeldes zu erzeugen;
eine erste und eine zweite Antenne (15, 16) eines Senders (10), der HF-Signale übermittelt,
die einen ersten und einen zweiten Kommunikationsburst einschliessen, wobei der erste
Kommunikationsburst (17), der das durch eine erste Midamble getrennte erste und zweite
Datenfeld einschliesst, durch die erste Antenne (15) übermittelt wird, während der
zweite Kommunikationsburst (18), der zwei Datenfelder einschliesst, die unter Benutzung
der komplex Konjugierten des ersten Datenfeldes bzw. der Negation der komplex Konjugierten
des zweiten Datenfeldes erzeugt worden sind, durch die zweite Antenne (16) übermittelt
wird, wobei die beiden erzeugten Datenfelder durch eine zweite Midamble getrennt sind
und wobei die erste Midamble mit der ersten Antenne (15) und die zweite Midamble mit
der zweiten Antenne (16) assoziiert ist; und
einen Empfänger (20) mit einem Dekodierer, der die HF-Signale dekodiert, um das erste
und zweite Datenfeld zurückzugewinnen.
6. System nach Anspruch 5,
dadurch gekennzeichnet, dass der Sender (10) weiter umfasst:
einen mit der ersten Antenne (15) assoziierten ersten Burstgenerator, der den ersten
Kommunikationsburst (17) erzeugt; und
einen mit der zweiten Antenne (16) assoziierten zweiten Burstgenerator, der den zweiten
Kommunikationsburst (18) erzeugt.
7. System nach Anspruch 6, dadurch gekennzeichnet, dass die Basisstation den Empfänger (20) und das Benutzergerät den Sender (10) einschliesst.
8. System nach Anspruch 6, dadurch gekennzeichnet, dass das Benutzergerät den Empfänger (20) und die Basisstation den Sender (10) einschliesst.
9. Sender (10), der in einem CDMA-Kommunikationssystem mit Basisstation und Benutzergerät
Datensymbole übermittelt, wobei der Sender umfasst:
einen Kodierer (11), der ein erstes und ein zweites Datenfeld von Symbolen kodiert,
um komplex Konjugierte der Symbole des ersten und zweiten Datenfeldes zu erzeugen;
und
eine erste und eine zweite Antenne (15, 16), die HF-Signale übermitteln, die einen
ersten und einen zweiten Kommunikationsburst einschliessen, wobei der erste Kommunikationsburst
(17), der das durch eine erste Midamble getrennte erste und zweite Datenfeld einschliesst,
durch die erste Antenne (15) übermittelt wird, während der zweite Kommunikationsburst
(18), der zwei Datenfelder einschliesst, die unter Benutzung der komplex Konjugierten
des ersten Datenfeldes bzw. der Negation der komplex Konjugierten des zweiten Datenfeldes
erzeugt worden sind, durch die zweite Antenne (16) übermittelt wird, wobei die beiden
erzeugten Datenfelder durch eine zweite Midamble getrennt sind und wobei die erste
Midamble mit der ersten Antenne (15) und die zweite Midamble mit der zweiten Antenne
(16) assoziiert ist.
10. Sender (10) nach Anspruch 9, weiter umfassend:
einen mit der ersten Antenne (15) assoziierten ersten Burstgenerator, der den ersten
Kommunikationsburst (17) erzeugt; und
einen mit der zweiten Antenne (16) assoziierten zweiten Burstgenerator, der den zweiten
Kommunikationsburst (18) erzeugt.
11. Sender (10) nach Anspruch 10, dadurch gekennzeichnet, dass die Basisstation den Sender einschliesst.
12. Sender (10) nach Anspruch 10, dadurch gekennzeichnet, dass das Benutzergerät den Sender einschliesst.