(19)
(11) EP 1 342 953 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
10.09.2003  Patentblatt  2003/37

(21) Anmeldenummer: 02005137.1

(22) Anmeldetag:  07.03.2002
(51) Internationale Patentklassifikation (IPC)7F23M 13/00, F23R 3/50
(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(71) Anmelder: SIEMENS AKTIENGESELLSCHAFT
80333 München (DE)

(72) Erfinder:
  • Flohr, Patrick
    45478 Mülheim (DE)
  • Krebs, Werner, Dr.
    45481 Muelheim A.D. Ruhr (DE)
  • Prade, Bernd, Dr.
    45478 Mülheim (DE)

   


(54) Gasturbine


(57) Die Erfindung betrifft eine Gasturbine (51), mit einem Brenner (1), der in eine Brennkammer (55) mündet, wobei diese Mündung ringförmig von einem Helmholtzresonator (19) umgeben ist. Hierdurch werden Verbrennungsschwingungen durch engen Kontakt zur Flamme effektiv gedämpft, wobei gleichzeitig Temperaturungleichmäßigkeiten vermieden werden.




Beschreibung

Gasturbine



[0001] Die Erfindung betrifft eine Gasturbine mit einem Brenner, der in eine Brennkammer mündet. Insbesondere ist die Brennkammer als Ringbrennkammer ausgebildet.

[0002] In Verbrennungssystemen wie Gasturbinen, Flugtriebwerken, Raketenmotoren und Heizungsanlagen kann es zu thermoakustisch induzierten Verbrennungsschwingungen kommen. Diese entstehen durch eine Wechselwirkung der Verbrennungsflamme und der damit verbundenen Wärmefreisetzung mit akustischen Druckschwankungen. Durch eine akustische Anregung kann die Lage der Flamme, die Flammenfrontfläche oder die Gemischzusammensetzung schwanken, was wiederum zu Schwankungen der Wärmefreisetzung führt. Bei konstruktiver Phasenlage kann es zu einer positiven Rückkopplung und Verstärkung kommen. Eine so verstärkte Verbrennungsschwingung kann zu erheblichen Lärmbelastungen und Schädigungen durch Vibrationen führen.

[0003] Wesentlich beeinflusst werden diese thermoakustisch hervorgerufenen Instabilitäten durch die akustischen Eigenschaften des Brennraumes und die am Brennraumeintritt und Brennraumaustritt sowie an den Brennkammerwänden vorliegenden Randbedingungen. Die akustischen Eigenschaften können durch den Einbau von Helmholtzresonatoren verändert werden.

[0004] Die WO 93/10401 A1 zeigt eine Einrichtung zur Unterdrückung von Verbrennungsschwingungen in einer Brennkammer einer Gasturbinenanlage. Ein Helmholtzresonator ist mit einer Brennstoffzuführleitung strömungstechnisch verbunden. Die akustischen Eigenschaften der Zuführleitung bzw. des akustischen Gesamtsystems werden hierdurch so verändert, dass Verbrennungsschwingungen unterdrückt werden. Es hat sich allerdings gezeigt, dass diese Maßnahme nicht in allen Betriebszuständen ausreicht, da es auch bei einer Unterdrückung von Schwingungen in der Brennstoffleitung zu Verbrennungsschwingungen kommen kann.

[0005] Die US-A-6 058 709 schlägt zur Vermeidung von Verbrennungsschwingungen vor, Brennstoff an axial unterschiedlichen Positionen im Brennkanal eines Brenners einzuleiten. Hierdurch werden hinsichtlich der Ausbildung von Verbrennungsschwingungen konstruktive Phasenlagen in der Gemischzusammensetzung durch destruktive überlagert, so dass es insgesamt zu niedrigeren Schwankungen und damit zu einer verringerten Neigung zur Ausbildung von Verbrennungsschwingungen kommt. Diese Maßnahme ist allerdings apparativ im Vergleich zur rein passiven Maßnahme der Verwendung von Helmholtzresonatoren vergleichsweise aufwendig.

[0006] In der EP 0 597 138 A1 ist eine Gasturbinen-Brennkammer beschrieben, die im Bereich der Brenner luftgespülte Helmholtzresonatoren aufweist. Die Resonatoren sind alternierend an der Stirnseite der Brennkammer zwischen den Brennern angeordnet. Durch diese Resonatoren wird Schwingungsenergie von in der Brennkammer auftretenden Verbrennungsschwingungen absorbiert und die Verbrennungsschwingungen werden hierdurch gedämpft.

[0007] Eine weitere Maßnahme zur Dämpfung von Verbrennungsschwingungen ist in der EP 1 004 823 A2 gezeigt. Hier ist ein Helmholtzresonator unmittelbar mit dem Mischbereich des Brenners verbunden. Der Resonator ist stromauf der Brennstoffzuführung anzubringen, da durch den Resonator im Brenner entstehende und auch durch die Zuführleitungen hervorgerufene Verbrennungsschwingungen absorbiert werden sollen.

[0008] Aufgabe der Erfindung ist die Angabe einer Gasturbine mit einer besonders geringen Neigung zur Ausbildung von Verbrennungsschwingungen.

[0009] Erfindungsgemäß wird diese Aufgabe gelöst durch Angabe einer Gasturbine mit einer Brennkammer und einem in die Brennkammer an einer Brennermündung mündenden Brenner, wobei die Brennermündung ringförmig von einem Helmholtzresonator umgeben ist.

[0010] Erstmals wird somit vorgeschlagen, einen Helmholtzresonator um die Mündung eines Brenners herum anzuordnen. Nach Erkenntnis der Erfindung kann die Dämpfung von Verbrennungsschwingungen durch einen Resonator zu lokalen Temperaturunterschieden führen, wenn der Resonator ungleichmäßig auf das Verbrennungsgebiet einwirkt. Durch die symmetrische, ringförmige Anordnung um die Brennerflamme herum wird dies vermieden. Die daraus folgende Temperaturvergleichmäßigung erhöht die dämpfende Wirkung und führt gleichzeitig zu einer Verminderung der Stickoxidbildung. Zudem kann durch die Anordnung des Resonators unmittelbar um die Flamme herum intensiv direkt auf den Ort der höchsten Wärmefreisetzung eingewirkt werden. Auch dieser verbesserte Kontakt zur Hauptquelle von Verbrennungsschwingungen erhöht die Wirkung des Resonators.

[0011] Bevorzugt weist der Helmholtzresonator ein Resonatorvolumen auf und mündet an einer Resonatormündung in die Brennkammer, wobei die Resonatormündung mit einem Röhrchen in das Resonatorvolumen hinein fortgesetzt ist. Weiter bevorzugt ist die Resonatormündung durch mehrere Öffnungen gebildet, die jeweils über ein Röhrchen in das Resonatorvolumen hinein fortgesetzt sind. Die Röhrchen ragen also in das Resonatorvolumen hinein. Durch diese Ausführung ist es möglich, die Baugröße des Resonators klein zu halten. Üblicherweise besteht ein Resonator aus einem Volumen V und Bohrungen einer bestimmten Länge I sowie Querschnitt A. Diese Geometrie bestimmt zusammen mit der Schallgeschwindigkeit c die Resonanzfrequenz nach der vereinfachten Formel fres=c/(2π)√[A/(V·l)]. Um tiefe Frequenzen zu bekämpfen, benötigt man dementsprechend ein sehr großes Volumen. Das ist in der Praxis aufgrund des geringen zur Verfügung stehenden Platzangebotes allerdings mit großen Schwierigkeiten verbunden. In der hier beschriebenen Vorrichtung wird nun die Länge der Bohrungen wesentlich vergrößert. Dies wird erreicht, indem die Bohrungen als Röhrchen ausgeführt werden, die in das Volumen hineinragen. Das innere Volumen des Resonators wird dabei kaum geändert. Die äußeren Abmessungen des Resonators können somit klein gehalten werden. Die Röhrchen können dabei verwunden ausgeführt werden, um genügend Abstand zu den Wänden zu haben. Durch Veränderung der Länge der Röhrchen kann die Dämpfungsvorrichtung auf jede beliebige Frequenz, die im Verbrennungssystem auftritt, eingestellt werden. Dabei müssen die äußeren Abmessungen des Resonators und damit des Brennereinsatzes sowie die offene Gesamtquerschnittsfläche nicht geändert werden. Der Hauptvorteil: um tiefe Frequenzen zu dämpfen, kann mit Hilfe der hineinragenden Röhrchen auf eine Volumenvergrößerung des Resonators verzichtet werden.

[0012] Vorzugsweise ist das Röhrchen oder sind die Röhrchen gekrümmt oder verwunden geformt, so dass die Röhrchenlänge vergrößert ist, ohne dabei einen Mindestabstand zur Resonatorwand zu unterschreiten.

[0013] Bevorzugtermassen ist das Resonatorvolumen einstellbar, etwa durch eine kolbenartige Verschiebung einer Resonatorwand. Hierdurch können die akustischen Eigenschaften, insbesondere die Impedanz, angepasst und eingestellt werden.

[0014] In bevorzugter Ausgestaltung ist die Brennkammer als Ringbrennkammer ausgebildet ist. Gerade bei Ringbrennkammern können Verbrennungsschwingungen durch ein vergleichsweise großes Brennkammervolumen und darin miteinander gekoppelter Brenner zu sehr störenden und schädigenden Verbrennungsschwingungen führen. Zudem sind die akustischen Eigenschaften einer solchen Brennkammer kaum zu berechnen.

[0015] Vorzugsweise ist der Helmholtzresonator in einen Brennereinsatz integriert, wobei über den Brennereinsatz der Brenner mit der Brennkammer verbunden ist. Der Brennereinsatz kann ein eigenes Bauteil sein, der mit der Brennkammerwand z.B. verschraubt wird und in den dann der eigentliche Brenner eingesetzt wird. Er kann aber auch mit dem Brenner verbunden sein, so dass z.B. der Brennereinsatz einen Flansch am Brenner bildet, mit dem der Brenner mit der Brennkammerwand verbunden wird. Durch die Integration des Resonators in den Brennereinsatz sind keine baulichen Maßnahmen an der Brennkammerwand erforderlich und der Resonator kann bei Bedarf in einfacher Weise ausgebaut werden.

[0016] Bevorzugtermaßen ist der Helmholtzresonator luftdurchströmbar ausgebildet. Hierdurch lässt sich die Impedanz des Resonators in einfacher Weise ändern und anpassen. Zudem wird eine Kühlung des Resonators und im Falle der Integration des Resonators in den Brennereinsatz auch eine Kühlung des gesamten Brennereinsatzes erreicht.

[0017] Die Erfindung wird beispielhaft und teilweise schematisch anhand der Zeichnung erläutert. Es zeigen:
Figur 1:
eine Gasturbine
Figur 2:
einen an einer Brennkammerwand angeordneten Brenner


[0018] Gleiche Bezugszeichen haben in den verschiedenen Figuren die gleiche Bedeutung.

[0019] In Figur 1 ist eine Gasturbine 51 abgebildet. Die Gasturbine 51 weist einen Verdichter 53, eine Ringbrennkammer 55 und ein Turbinenteil 57 auf. Luft 58 aus der Umgebung wird dem Verdichter 53 zugeleitet und dort hoch zu Verbrennungsluft 9 verdichtet. Anschließend wird die Verbrennungsluft 9 der Ringbrennkammer 55 zugeleitet. Über Gasturbinenbrenner 1 wird sie dort mit Brennstoff 11 zu einem Heißgas 59 verbrannt. Das Heißgas 59 treibt das Turbinenteil 57 an.

[0020] In der Ringbrennkammer 55 kann es, aus weiter oben beschriebenen Gründen, zur Ausbildung von Verbrennungsschwingungen kommen, die den Betrieb der Gasturbine 51 erheblich beeinträchtigen können. Zur Dämpfung solcher Verbrennungsschwingungen können Helmholtzresonatoren zum Einsatz kommen, wobei eine besonders wirksame Bauart im folgenden beschrieben wird:

[0021] In Figur 2 ist ein Gasturbinenbrenner 1 dargestellt, der über einen Brennereinsatz 2 mit einer Brennkammerwand 56 einer Brennkammer 55 verbunden ist und an einer Brennermündung 4 in die Brennkammer 55 mündet. Ein Brennerkanal 3 des Gasturbinenbrenners 1 umgibt als ein Ringkanal 30 einen Zentralkanal 41. Der Ringkanal 30 ist als ein Vormischkanal ausgeführt, in dem Brennstoff 11 und Verbrennungsluft 9 vor der Verbrennung intensiv vermischt werden. Dies wird als Vormischverbrennung bezeichnet. Der Brennstoff 11 wird über hohl ausgeführte Drallschaufeln 13 in den Ringkanal 30 eingeleitet. Der Zentralkanal 41 mündet in die Verbrennungszone 27 zusammen mit einer zentralen Brennstofflanze 45, die Brennstoff 47, insbesondere Öl, über eine Dralldüse 47 zuführt. In diesem Fall werden Brennstoff 11 und Verbrennungsluft 9 erst in der Verbrennungszone 27 gemischt und man spricht von einer Diffusionsverbrennung. In den Zentralkanal 41 kann aber auch stromauf der Verbrennungszone 27 Brennstoff 11, insbesondere Erdgas, über einen Brennstoffeinlass 43 zugegeben werden.

[0022] In den Brennereinsatz 2 ist ein Helmholtzresonator 19 integriert, der ein Resonatorvolumen 23 aufweist und über eine aus Bohrungen bestehende Resonatormündung 21 in die Brennkammer 55 mündet. An jede der Bohrungen schließt sich in das Resonatorvolumen 23 hinein ein Röhrchen 61 an, dass verwunden geformt ist. Der Helmholtzresonator 19 umgibt die Brennermündung 4 ringförmig.

[0023] Die ringförmige Umschließung der Brennermündung 4 durch den Resonator 19 führt zu einer gleichmäßigen Einwirkung auf die Verbrennungszone 27. Hierdurch kommt es nicht zu Temperaturungleichmäßigkeiten durch den Resonator 19. Zudem wirkt der Resonator 19 sehr effektiv unmittelbar auf die Zone größter Wärmefreisetzung ein.

[0024] Die Röhrchen 61 ermöglichen eine vergleichsweise geringe Baugröße für den Resonator 19, so dass dieser in den Brennereinsatz 2 integrierbar ist. Über Lufteinlässe 63 wird Luft in den Resonator 19 eingeleitet, wodurch dieser einerseits in seiner Impedanz anpassbar, andererseits auch kühlbar ist.

Bezugszeichenliste



[0025] 

1 Brenner

3 Brennerkanal

5 Brennkammer

7 Lufteinleitungsposition

9 Verbrennungsluft

10 Brennstoffeinleitungsposition

11 Brennstoff

13 Drallschaufeln

15 Auslassöffnungen

17 Gemisch

19 Helmholtzresonator

20 Helmholtzresonator Zentralkanal

22 Resonatormündung Zentralkanal

21 Resonatormündung

23 Resonatorvolumen

25 Kolben

26 Resonatorposition

27 Verbrennungszone

29 Verbrennungsschwingung

30 Ringkanal

31 Zusatzresonator

41 Zentralkanal

43 Brennstoffeinlass

45 Brennstofflanze

47 Dralldüse

39 Mündung Brennstofflanze

41 Brennermaterial

51 Gasturbine

53 Verdichter

55 Ringbrennkammer

57 Turbinenteil

58 Luft

59 Heißgas




Ansprüche

1. Gasturbine (51) mit einer Brennkammer (55) und einem in die Brennkammer (55) an einer Brennermündung (4) mündenden Brenner (1),
dadurch gekennzeichnet,
dass die Brennermündung (4) ringförmig von einem Helmholtzresonator (19) umgeben ist.
 
2. Gasturbine nach Anspruch 1, bei der der Helmholtzresonator (19) ein Resonatorvolumen (23) aufweist und an einer Resonatormündung (21) in die Brennkammer (55) mündet, wobei die Resonatormündung (21) mit einem Röhrchen (61) in das Resonatorvolumen (23) hinein fortgesetzt ist.
 
3. Gasturbine (51) nach Anspruch 1 oder 2, bei dem das Röhrchen (61) gekrümmt oder verwunden geformt ist.
 
4. Gasturbine (51) nach Anspruch 1,2 oder 3, bei der das Resonatorvolumen (23) einstellbar ist.
 
5. Gasturbine (51) nach einem der vorhergehenden Ansprüche, bei der die Brennkammer (55) als Ringbrennkammer ausgebildet ist.
 
6. Gasturbine (51) nach einem der vorhergehenden Ansprüche, bei dem der Helmholtzresonator (19) in einen Brennereinsatz (2) integriert ist, wobei über den Brennereinsatz (2) der Brenner (1) mit der Brennkammer (55) verbunden ist.
 
7. Gasturbine (51) nach einem der vorhergehenden Ansprüche, bei dem der Helmholtzresonator (19) luftdurchströmbar ausgebildet ist.
 




Zeichnung










Recherchenbericht