(19)
(11) EP 1 344 589 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
17.09.2003  Patentblatt  2003/38

(21) Anmeldenummer: 03003899.6

(22) Anmeldetag:  21.02.2003
(51) Internationale Patentklassifikation (IPC)7B22D 1/00, B22D 17/00, C22C 1/00
(84) Benannte Vertragsstaaten:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR
Benannte Erstreckungsstaaten:
AL LT LV MK RO

(30) Priorität: 13.03.2002 DE 10212349

(71) Anmelder: Sterling, Evgenij, Dr.
73728 Esslingen (DE)

(72) Erfinder:
  • Sterling, Evgenij, Dr.
    73728 Esslingen (DE)

(74) Vertreter: Patentanwälte Ruff, Wilhelm, Beier, Dauster & Partner 
Postfach 10 40 36
70035 Stuttgart
70035 Stuttgart (DE)

   


(54) Verfahren und Vorrichtung zum Aufbereiten einer Schmelze einer Legierung für einen Giessvorgang


(57) Zum Aufbereiten einer Schmelze für einen Gießvorgang wird die Schmelze mit einer Temperatur oberhalb der Schmelztemperatur in einen Kristallisationsbehälter (14) gebracht, der auf eine unterhalb der Schmelztemperatur liegende Temperatur beheizt ist. Dieser Schmelze wird in dem Kristallisationsbehälter (14) Legierung in Pulverform zugegeben, wobei die Schmelze mittels elektrischer und/oder magnetischer Kräfte innerhalb des Kristallisationsbehälter bewegt wird.




Beschreibung


[0001] Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Aufbereiten einer Schmelze einer Legierung für einen Gießvorgang, die in einen teilerstarrten Zustand gebracht wird und über ihr Volumen verteilte Kristallisationskeime enthält.

[0002] Das Herstellen von halberstarrter Legierungen ist beispielsweise aus einem Beitrag von J.-P. Gabathuler und J. Erling "Thixocasting: ein moderndes Verfahren zur Herstellung von Formbauteilen" bekannt, der in dem Tagungsband "Aluminium als Leichtbaustoff in Transport und Verkehr", ETH Zürich, S. 63 bis 77 vom 27.05.1994 bekannt.

[0003] Der Erfindung liegt die Aufgabe zugrunde, eine Schmelze einer Legierung so aufzubereiten, dass eine möglichst feine und homogene Verteilung der Kristallisationskeime über das Volumen der Schmelze vorliegt, bevor diese in eine Gießform eingebracht wird.

[0004] Diese Aufgabe wird dadurch gelöst, dass Schmelze, die eine oberhalb der Schmelztemperatur der Legierung liegende Temperatur aufweist, in einen auf eine unterhalb der Schmelztemperatur liegende Temperatur beheizten Kristallisationsbehälter gebracht wird, dass dieser Schmelze in dem Kristallisationsbehälter Legierung als Pulver zugegeben wird und dass mittels elektrischer und/oder magnetischer Kräfte Schmelze und Pulver in dem Kristallisationsbehälter miteinander vermischt werden.

[0005] Insbesondere die pulverförmigen Partikel der Legierung, die von der Schmelze sofort umhüllt werden, bilden Kristallisationskeime, die mittels der elektrischen und/oder magnetischen Kräfte innerhalb der Schmelze homogen verteilt werden.

[0006] In vorteilhafter Ausgestaltung der Erfindung wird vorgesehen, dass die Schmelze als Strahl in den Kristallisationsbehälter eingebracht wird, der sich zwischen zwei Elektroden erstreckt, an die eine elektrische Spannung angelegt wird. Aufgrund des sogenannten Pinch-Effektes wird der Strahl verengt und zusammengepresst, der während des Einströmens schon teilweise in einzelne, flüssige Tropfen aufgespalten wird. Der Kristallisationsbehälter wird somit nicht mit einem kompakten Strahl gefüllt, sondern mit einem dispergierten Strahl. Damit erhöht sich die Fläche des Schmelzenvolumens deutlich, wobei auch eine Entgasung stattfindet.

[0007] Wenn die Schmelze vollständig in den Kristallisationsbehälter eingeströmt ist, verschwindet der Schmelzenstrahl, so dass dann auch der Stromfluss unterbrochen wird. Um weiter eine Dispergierung zu erreichen und auch ein elektrisches Feld zu erzeugen, wird dann in weiterer Ausgestaltung der Erfindung vorgesehen, dass nach Einbringen der Schmelze zwischen der Schmelze und einer Elektrode ein Lichtbogen gezündet wird.

[0008] Um weiter das Durchmischen der in dem Kristallisationsbehälter befindlichen Schmelze zu fördern und dabei die Kristallisationskeime fein zu verteilen, wird in dem Kristallisationsbehälter ein Magnetfeld gebildet. Das Magnetfeld und das elektrische Feld wirken auf die Schmelze und die darin befindlichen Partikel unterschiedlich ein, so dass der Vermischungseffekt gefördert wird.

[0009] In weiterer Ausgestaltung der Erfindung wird vorgesehen, dass die Schmelze in den unter Unterdruck gesetzten Kristallisationsbehälter eingesaugt wird. Durch die Erzeugung eines Vakuums in dem Kristallisationsbehälter wird weiter erreicht, dass der einströmende Strahl aus Schmelze weiter dispergiert und sich in einzelne Tropfen auflöst. Auch damit wird die Bildung von Kristallisationskeimen gefördert.

[0010] In weiterer Ausgestaltung der Erfindung wird vorgesehen, dass die Schmelze unter Zufuhr von Schutzgas dem Kristallisationsbehälter zugeführt wird. Insbesondere wenn das Schutzgas unter Druck zugeführt wird, wird der Prozess weiter verbessert. Darüber hinaus verhindert das Schutzgas chemische Reaktionen der Legierung mit der Atmosphäre, was den anschließenden Gießvorgang nachteilig beeinflussen könnte.
Bei einer Vorrichtung zum Durchführen des Verfahrens wird ein Kristallisationsbehälter mit einem Einlass für die Schmelze und einem Einlass für Legierung in Pulverform vorgesehen, der eine Heizeinrichtung aufweist und der im Bereich seines Bodens und seines Einlasses mit an eine Spannungsquelle angelegten Elektroden versehen ist.

[0011] Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung der in der Zeichnung dargestellten Ausführungsformen.
Fig. 1
zeigt eine erfindungsgemäße Vorrichtung im Schnitt in schematischer Darstellung, die direkt an einen Ofen angeschlossen ist,
Fig. 2
eine abgewandelte Ausführungsform einer erfindungsgemäßen Vorrichtung,
Fig. 3
eine erfindungsgemäße Vorrichtung mit einer Zusatzeinrichtung zur Übernahme der aufbereiteten Schmelze und
Fig. 4
ein Nomogramm zur Voraussage des thermokinetischen Ablaufs.


[0012] In einem Ofen 10 wird eine Schmelze 11 einer Metalllegierung, beispielsweise AlSi 9, auf einer Temperatur gehalten, die oberhalb der Schmelztemperatur dieser Legierung liegt. Der Ofen 10 ist vakuumdicht verschlossen und mittels einer Absaugung 12 unter Vakuum gehalten.

[0013] Der Ofen 10 ist über eine Gießleitung 13 mit einem Kristallisationsbehälter 14 verbunden. Der Kristallisationsbehälter 14 besteht aus einem Zylinder 15 aus elektrisch nicht leitendem Material, das eine Wärmeleitfähigkeit zwischen 0,20 und 1,5W/mk besitzt. Der Zylinder 15 ist oben mit einem Deckel 16 verschlossen, der ebenfalls aus elektrisch nicht leitendem Material besteht. An den Deckel schließt die Leitung 13 an. Hierzu ist der Deckel mit einem Einlassstück 17 aus elektrisch leitendem Material verbunden. Das Einlassstück 17 besitzt eine sich konisch erweiternde Einlassöffnung. An den Deckel 16 schließt eine Absaugleitung 18 an, die mit einer Absaugung 19 verbunden ist. Der Deckel 16 ist weiter mit einem Einfüllstutzen 20 versehen, durch welchen hindurch Legierung in Pulverform in den Kristallisationsbehälter 14 eingegeben werden kann.

[0014] Als Boden des Kristallisationsbehälters 14 dient ein Kolben 21, der ebenfalls aus einem elektrisch nicht leitenden Material besteht. Der Kolben 21 ist in einem an den Kristallisationsbehälter 14 anschließenden Zylinder 22 geführt, der mit einer nicht dargestellten Abflussöffnung versehen ist. Der Zylinder 15 des Kristallisationsbehälters 14 ist im Bereich seines Bodens mit einer Elektrode 23 versehen. Wie schon erwähnt wurde, ist das Einlassstück 17 aus elektrisch leitendem Material. Zwischen der Elektrode 23 und dem Einlassstück 17 ist eine Spannungsquelle 24 angeordnet, deren Spannung und vor allem auch deren Stromstärke mittels einer Verstelleinrichtung 25 einstellbar ist.

[0015] Dem Kristallisationsbehälter 14 ist eine vorzugsweise elektrische Heizeinrichtung 26 zugeordnet, die vorzugsweise regelbar ist und die den Kristallisationsbehälter 14 auf einer vorwählbare Temperatur aufheizt und auf dieser Temperatur hält. Des weiteren ist dem Kristallisationsbehälter 14 eine Magnetspule 27 zugeordnet, mit welcher im Innern des Zylinders 15 des Kristallisationsbehälters 14 ein Magnetfeld aufbaubar ist.

[0016] Der Gießkanal 13 ist mit einem Absperrschieber 28 ausgerüstet, über welchen die Verbindung zwischen dem Ofen 19 und dem Kristallisationsbehälter 14 freigegeben und abgesperrt werden kann. An den Gießkanal 13 schließt eine Zuführleitung 29 an, über welche Schutzgas mit Überdruck zugeführt werden kann, beispielsweise Argon.

[0017] Zum Aufbereiten einer Schmelze wird zunächst Schmelze 11 in den Ofen 10 eingefüllt. Der Ofen 10 wird mittels der Absaugung 12 auf ein Vakuum von 0,5mbar bis 3mbar gebracht. Der Kristallisationsbehälter 14 wird mittels der Heizeinrichtung 26 auf eine Temperatur aufgeheizt, die 3% bis 50% niedriger als die Schmelztemperatur der betreffenden Legierung ist. In dem Kristallisationsbehälter 14 wird mittels der Absaugung 19 ein Vakuum erzeugt, das stärker ist als das Vakuum in dem Ofen 10.

[0018] Sobald der Schieber 28 geöffnet wird, wird Schmelze 11 in den Kristallisationsbehälter 14 eingesaugt. Dabei wird Schutzgas über die Leitung 29 zugeführt. Aufgrund der Saugwirkung wird auch Legierung in Pulverform über den Einlassstutzen 20 angesaugt. Das Pulver wird in die Schmelze eingeschlossen und verteilt.

[0019] An die Elektrode 23 und das Einlassstück 17 wird eine Spannung angelegt, so dass in dem Strahl der Schmelze ein Strom fließt, dessen Größe weniger als 10A beträgt. Um ein möglichst homogen dispergiertes Gemisch zu erhalten, wird mittels der Magnetspule 27 im Innern des Kristallisationsbehälters 14 ein Magnetfeld erzeugt, das zu einer radialen Bewegung der Schmelze führt.

[0020] Nachdem die gesamte Schmelze in den Kristallisationsbehälter eingeströmt ist, ist zunächst der Stromkreis unterbrochen. Jetzt wird die Spannung auf Werte von 150V bis 400V erhöht, so dass ein Lichtbogen gezündet wird, in welchem ein Strom mit einer Stärke bis zu 1300A strömen kann. Um eine gerichtete Kristallisation zu vermeiden, wird das elektromagnetische Feld, das mit der Magnetspule 27 erzeugt wird, variiert und beispielsweise in Richtung der Füllung kontinuierlich erhöht.

[0021] Nachdem die Schmelze in dieser Weise aufbereitet worden ist, wird der Kolben 21 abgesenkt, so dass die Schmelze über den Zylinder und dessen Abflussöffnung ausfließt und in geeigneter Weise weiter verarbeitet wird. Dabei können alle bekannten Gussverfahren angewandt werden.

[0022] Bei einer abgewandelten Ausführungsform wird vorgesehen, dass die Elektrode 23 in den Kolben 21 integriert ist, der den Boden des Kristallisationsbehälters 14 bildet.

[0023] Bei dem Ausführungsbeispiel nach Fig. 2 ist die Spannungsquelle 24 an zwei Elektroden 30 und 31 des Zylinders 15 des Kristallisationsbehälters 14 angeschlossen. Der zweite Anschluss erfolgt an den Gießkanal 13. Bei dieser Ausführung bewegt sich der Kolben 21 während des Einfüllens der Schmelze kontinuierlich nach unten, wobei dann nacheinander die Elektroden 30 und 31 zum Einsatz kommen, die mit der Kolbenbewegung über Schalter 32 und 33 zu- und abgeschaltet werden.

[0024] Bei dem Ausführungsbeispiel nach Fig. 3 wird die in den Kristallisationsbehälter 14 aufbereitete Schmelze in einen Aufbewahrungs- oder Transportbehälter 34 weitergegeben, in welchem sie in dem aufbereiteten Zustand gehalten wird. Dieser Behälter 34 ist mit einer Absaugung 35 versehen, so dass an ihn ein Unterdruck angelegt werden kann. Er ist mit einer Heizeinrichtung 36 und einer Magnetspule 37 versehen. Ebenso ist er mit einer Elektrode 38 ausgerüstet. Die beiden Stirnwände des Behälters 34 werden von Kolben 39 und 40 gebildet. Der Behälter 34 kann auch zur Formgebung eingesetzt werden.

[0025] Mit dem in Fig. 4 dargestellten Nomogramm lässt sich der thermokinetische Ablauf voraussagen. Das dargestellte Nomogramm gilt für die Legierung AlSi9Cu3. Die Menge an pulverförmiger Legierung, die mit einer Korngröße von etwa 125µm bis etwa 400µm zugegeben wird, ist in Mengenprozentanteilen aufgetragen. Die Temperaturdifferenz ΔT in [C°] ist der Unterschied zwischen der Gießtemperatur und der Schmelztemperatur der Legierung. Wenn eine Menge an pulverförmiger Legierung zugegeben wird, die in dem Nomogrammbereich A liegt, so bewirkt diese nur eine Reduzierung der Temperatur der Schmelze. Die Schmelze wird damit in einem halberstarrten Zustand versetzt, ohne dass die pulverförmigen Partikel Kristallisationskeime bilden. Wenn jedoch eine Menge an pulverförmiger Legierung zugegeben wird, so dass der Nomogrammbereich B erreicht wird, so wirken die pulverförmigen Partikel als zusätzliche, nicht geschmolzene Kristallisationskeime. Erfolgt die Zugabe von pulverförmigen Partikeln in dem Nomogrammbereich C, so werden die beiden Vorgänge nebeneinander ablaufen, d.h. eine Verringerung der Überhitzungstemperatur und eine Keimbildung aufgrund nicht geschmolzener Partikel.

[0026] Selbstverständlich müssen unterschiedliche Nomogramme für unterschiedliche Legierungen gebildet werden.


Ansprüche

1. Verfahren zum Aufbereiten einer Schmelze einer Legierung für einen Gießvorgang, die in einen teilerstarrten Zustand gebracht wird und über ihr Volumen verteilte Kristallisationskeime enthält, dadurch gekennzeichnet, dass die Schmelze, die eine oberhalb der Schmelztemperatur der Legierung liegende Temperatur aufweist, in einen auf eine unterhalb der Schmelztemperatur liegende Temperatur beheizten Kristallisationsbehälter gebracht wird, dass dieser Schmelze in den Kristallisationsbehälter Legierung als Pulver zugegeben wird, und dass mittels elektrischer und/oder magnetischer Kräfte Schmelze und Pulver in dem Kristallisationsbehälter miteinander vermischt werden.
 
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Schmelze als Strahl in den Kristallisationsbehälter eingebracht wird, der sich zwischen zwei Elektroden erstreckt, an die eine elektrische Spannung angelegt wird.
 
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass nach Einbringen der Schmelze zwischen der Schmelze und eine Elektrode ein Lichtbogen gezündet wird.
 
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in dem Kristallisationsbehälter ein Magnetfeld gebildet wird.
 
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Schmelze in den unter Unterdruck gesetzten Kristallisationsbehälter eingesaugt wird.
 
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Schmelze unter Zufuhr von Schutzgas dem Kristallisationsbehälter zugeführt wird.
 
7. Vorrichtung zum Durchführen des Verfahrens nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass ein Kristallisationsbehälter (14) mit einem Einlass (17) für die Schmelze und einem Einlass (20) für Legierung in Pulverform vorgesehen ist, der eine Heizeinrichtung (26) aufweist und der im Bereich seines Bodens und seines Einlasses mit an eine Spannungsquelle (24) angelegten Elektroden (17, 23; 17, 30, 31) versehen ist.
 
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass der Kristallisationsbehälter (14) an Mittel (19) zum Erzeugen von Unterdruck angeschlossen ist.
 
9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass der Kristallisationsbehälter (14) mit Mitteln (27) zum Erzeugen eines in seinem Inneren wirksamen Magnetfeldes versehen ist.
 
10. Vorrichtung nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass der Kristallisationsbehälter (14) über eine Leitung (13) mit einem Ofen (10) verbunden ist, die mit einem Zuführanschluss (29) für Schutzgas versehen ist.
 




Zeichnung