| (19) |
 |
|
(11) |
EP 1 345 713 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
22.02.2006 Bulletin 2006/08 |
| (22) |
Date of filing: 23.11.2001 |
|
| (51) |
International Patent Classification (IPC):
|
| (86) |
International application number: |
|
PCT/SE2001/002595 |
| (87) |
International publication number: |
|
WO 2002/043889 (06.06.2002 Gazette 2002/23) |
|
| (54) |
HYDRAULIC PRESS WITH PRESSURE CELL WITH A TRAY WHICH CONSISTS OF PRESTRESSED LAMELLAS
HYDRAULISCHE PRESSE MIT DRUCKZELLE MIT EINEM AUS VORGESPANNTEN LAMELLEN BESTEHENDEN
TABLETT
PRESSE HYDRAULIQUE A CELLULE DE COMPRESSION COMPORTANT UN PLATEAU FORME DE LAMELLES
PRECOMPRIMEES
|
| (84) |
Designated Contracting States: |
|
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
| (30) |
Priority: |
28.11.2000 SE 0004369
|
| (43) |
Date of publication of application: |
|
24.09.2003 Bulletin 2003/39 |
| (73) |
Proprietor: Avure Technologies AB |
|
721 66 Västeras (SE) |
|
| (72) |
Inventor: |
|
- HELLGREN, Keijo
S-722 41 Västeras (SE)
|
| (74) |
Representative: Lind, Urban Arvid Oskar et al |
|
AWAPATENT AB,
P.O. Box 11394 404 28 Göteborg 404 28 Göteborg (SE) |
| (56) |
References cited: :
SE-B- 338 756 SE-B- 452 436
|
SE-B- 440 995 US-A- 4 514 245
|
|
| |
|
|
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
Field of the Invention
[0001] The present invention relates to a press of pressure cell type, a tray for use in
a press of pressure cell type and a method for manufacturing such a tray, (see for
example SE-B-452 436).
Background Art
[0002] A press of pressure cell type generally comprises a force-absorbing press body which
defines a press chamber. In the upper part of the press chamber, a press plate and
a diaphragm of rubber or another resilient material are arranged, which together form
a pressure cell. The pressure cell communicates with a source of pressure and expands
when a pressure medium is supplied. In the lower part of the press chamber, a structural
support or a tray is arranged, which comprises a bottom plate having a tray frame.
The tray supports a working tool or a forming tool, a workpiece, a mat of rubber or
another resilient material, covering the forming tool and the workpiece.
[0003] Presses of pressure cell type are used, among other things, when forming sheet-shaped
blanks, for example sheets of steel or aluminium, for short series products within
the aircraft industry and the motor industry. The sheet is placed in the press in
such a manner that one of its sides faces a forming tool. The resilient diaphragm
is arranged on the other side of the sheet. A closed space between the diaphragm and
the press plate located above the diaphragm constitutes the pressure cell and this
space is filled during the forming process with a pressure medium. By pumping additional
pressure medium into the pressure cell, the pressure is increased in the pressure
cell and the resilient diaphragm is pressed during stretching against the sheet which,
in its turn, is formed round or in the forming tool. When the sheet completely fits
to the tool, the pressure in the pressure cell is released and the diaphragm is removed
from the sheet, after which the formed component can be taken out of the press.
[0004] Another field in which presses of pressure cell type are used is wood compaction
when a workpiece of wood is exposed to high pressure, either in a forming tool or
on its own. Reasons for compacting wood are, for example, that it is desirable to
increase the hardness of the wood, decrease the moisture content or to obtain a phase
in pressure impregnation.
[0005] In traditional presses of pressure cell type, use has been made of a forged tray,
in which at least the short sides of the tray are provided integrally with the bottom
of a tray. The short sides and the radius transition to the bottom of the tray have
to be dimensioned in such a manner that they can manage high working pressures. This
means that the tray becomes unnecessarily thick and heavy.
[0006] SE 452 436 discloses a press of pressure cell type which was developed with the purpose
of solving the above-mentioned problem. Said patent specification discloses a press
plant having a forged, cylindrical press body which defines a press chamber. A tray
which supports a forming tool and a workpiece is inserted into the press chamber.
A large annular support which is arranged round the press body is adapted to absorb
load being induced on the tray during a pressing operation. Each time the tray is
to be taken out or inserted, the annular support has to be elevated in order to make
the press chamber accessible. This is a complicated and time-consuming method.
Summary of the Invention
[0007] The object of the present invention is to provide a press of pressure cell type which
reduces the above-mentioned problems.
[0008] Another object of the invention is to provide a tray which, in comparison with prior-art
technique, gives advantages when handling a press of pressure cell type.
[0009] These and other objects which will be evident from the following description are
achieved by a press of pressure cell type and a tray, which have the features indicated
in claims 1 and 13 respectively.
[0010] In the following specification, it should be understood that a "tray" according to
the present invention means a device with the purpose of including a forming tool
and/or a workpiece. In the traditional sense, it may thus comprise walls and a bottom
plate. However, it should also comprise an essentially annular configuration which
is adapted to be arranged in a detachable manner on a separate bottom plate; for example,
the tray can rest on a bottom plate belonging to a press body, or a bottom plate which
can be pushed in and pulled out of the press. In the detachable variant, the tray
is thus tubular and has a through aperture which is defined by an annular wall configuration.
[0011] In the present application, terms describing position and direction, such as "vertical"
and "horizontal" are used. In the application, these terms are defined with respect
to the tray arrangement. Consequently, the circumference of the tray arrangement runs
horizontally, whereas its height has an extension vertically. In the application,
it should also be understood that "over/upwards/above" and "under/downwards/below"
are defined with respect to the main direction of the pressing, i.e. so that a press
plate is located above a diaphragm which, in its turn, is located above a bottom plate,
which means that it is vertically defined as perpendicular to the press plate and
horizontally as parallel to the press plate. The plane of a tray is thus a horizontal
plane. The above-mentioned definitions have been indicated for the sake of clarity
since the press of pressure cell type can be inclined in different manners and, due
to this fact, the relative directions can vary.
[0012] According to one aspect of the invention, a press of pressure cell type is provided.
The press comprises a force-absorbing press body which encloses a press chamber, in
which press chamber a tray is arranged. The tray defines a space for arranging a forming
tool and/or a workpiece. According to the invention, prestressing means are arranged
on the external surface of the tray and induce a compressing prestress which acts
in planes parallel to the plane of the tray, i.e. essentially horizontal planes.
[0013] According to another aspect of the invention, a tray is provided for use in a press
of pressure cell type, prestressing means that induce a compressing prestress, which
acts in planes parallel to the plane of the tray, being arranged on the external surface
of the tray.
[0014] The present invention is thus based on the understanding that considerable improvements
regarding handling and time expenditure can be provided by moving the force-absorbing
function closer to the actual tray, without needing to use forged, thick trays. Consequently,
the invention does not apply the known principle of improving the technique by having
external means, such as an annular support, which are arranged outside the press body
in order to absorb forces which are induced in the tray during the pressing. On the
contrary, such external means are excluded in the present invention by prestressing
means instead being integrated with the tray. According to the invention, the tray
is thus adapted to independently absorb or withstand axial load unlike the prior-art
press having the annular support. The prestressing means according to the invention
allow a considerable decrease of the thickness of the tray as regards short sides
and radius transitions compared with a traditionally forged tray. This means that
the tray according to the invention allows a greater working depth in relation to
previously known forged trays and also that aspects such as manufacturing and transport
of the tray are improved.
[0015] The prestressing means are adapted to induce a compressing prestress on the tray
in planes which are parallel to the plane of the tray, i.e. planes which are perpendicular
to the main direction of the pressing. Preferably, the prestressing means are arranged
on the external circumferential surface of the tray in the form of wound prestressing
elements.
[0016] According to an advantageous embodiment of the press of pressure cell type, the tray
comprises a number of plate-shaped lamellar means which abut against one another.
Each lamellar means is annular and has a central through hole. The lamellar means
which are plate-shaped are thus arranged on one another in different planes of the
tray or planes of the plate and are arranged concentrically with the central holes.
A workpiece, such as a metal sheet or a piece of wood, is intended to be machined
in the space that is mutually formed by the holes of the concentric lamellar means.
[0017] Advantageously, the tray is prestressed in such a manner that each lamellar means
is individually prestressed. This is preferably provided by a prestressing element
being arranged on each lamellar means. It has turned out to be particularly advantageous
to use and wind by means of a prestressing element that is band-shaped and has essentially
the same width as the thickness of a lamellar means.
[0018] It is made clear by that mentioned above that the invention is also based on the
understanding that, by dividing the tray arrangement into several annular parts, the
manufacturing and transport of a tray are facilitated, and the handling is made easier
when the press of pressure cell type is in operation. These parts or lamellar means
can be assembled to a tray at the location where the press is to be used and can also
be dismounted individually for further transport or storage. The dismountability also
has advantages when a press plant is in operation, which will be made evident by the
following description.
[0019] The tray can have a tool-holding function. In the lower portion of the space, a forming
tool can be arranged having a workpiece arranged thereon. In the case of wood compaction,
the forming tool can be excluded.
[0020] As already mentioned, a preferred embodiment of the invention comprises the features
that the tray is divisible because of the fact that it comprises lamellar means of
the above-described type which are dismountably arranged on one another. In connection
with a pressing operation, the lowest lamellar means is preferably detachably arranged
on a bottom plate in the press chamber. A diaphragm support is preferably arranged
above the uppermost lamellar means, and a press plate is, in its turn, arranged above
the diaphragm support. The holes in the lamellar means thus together form a space
which is defined by the inner wall of the internal lamellar means, the bottom plate
and a diaphragm which is placed in the diaphragm support. Depending on, for instance,
working depth, one or more lamellar means can be arranged between the lowest lamellar
means and the diaphragm support. Alternatively, the tray comprises only one lamellar
means.
[0021] Preferably, the divisible tray is arranged in a press chamber in such a manner that
the diaphragm support placed above the tray can be lifted in the direction towards
the press plate. This allows a practical insertion and removal of the tray as will
be described in the following. Actuating means, such as hydraulic pistons, are suitably
adapted to lift the diaphragm support (and possibly also one or more lamellar means).
At its upper portion, the inner diameter of the diaphragm support essentially corresponds
to the circumference or diameter of the press plate and, due to this fact, the diaphragm
support can be made to enclose the press plate when it is lifted upwards. It is convenient
that the diaphragm support is so high that it encloses the press plate also in a non-lifted
state so that satisfactory sealing is obtained during pressing.
[0022] The diaphragm support is preferably formed as a lamellar means, which as regards
its appearance is essentially similar to the lamellar means comprised in the tray,
and is adapted to hold a diaphragm which forms a pressure cell together with the press
plate. Since the diaphragm is generally not removed or replaced as often as the workpiece
is, it is an advantage if it is not necessary to remove the diaphragm support from
the press when a workpiece or forming tool is to be removed from the press.
[0023] A considerable advantage of the lifting function in the press chamber as described
above is that the replacement of a workpiece or a forming tool is facilitated. Instead
of lifting a heavy annular support, which is arranged outside the press, relatively
high up in order to obtain access to the tray in the press chamber, it is thus sufficient
to lift the diaphragm support so that a gap is provided (which does not exist when
a pressing operation is carried out), the underlying lamellar means being easy to
remove in the direction of the main axis of the press chamber, since there is no friction
against the diaphragm support. The direction of the main axis of the press chamber
is in a horizontal plane. An alternative is that the diaphragm support and one or
more lamellar means are lifted up and the lamellar means which is/are positioned therebelow
are taken out whereas the remaining ones are left in the press. Subsequently, the
remaining lamellar means can be lowered (with or without the diaphragm support) by
means of the actuating means to the bottom of the press chamber and, in a corresponding
manner, these lamellar means can be lifted up to the intended position before a pressing
operation.
[0024] The internal lamellar means are advantageously loosely arranged on the bottom plate
and on one another; however, a type of control elements are arranged in order to ensure
correct placements. Due to the fact that the internal structure of the press comprises
lamellar means which are loosely arranged on one another, it is possible to easily
take these out separately or several at the same time.
[0025] The divisibility of the tray arrangement results in several advantages in that the
lamellar means can have several purposes; on the one hand, they may constitute a direct
or indirect support for a working tool or forming tool on which for example, a metal
sheet is to be shaped and, on the other, they can support or fasten various parts
which are active in the press. For instance, a diaphragm which together with the press
plate forms a pressure cell can be clamped between two lamellar means or the uppermost
lamellar means and the press plate. Alternatively, the diaphragm can rest loosely
against a shelf which protrudes from the uppermost lamellar means which corresponds
to the above-described diaphragm support. A mat which is used to protect the diaphragm
and is placed below the same can be fastened between two lamellar means. In a corresponding
manner, the metal sheet can be fastened with the aid of suitable means.
[0026] Due to the advantageous embodiment having prestressed lamellar means, no external
force absorber is needed on the short sides of the press chamber. The press structure
can therefore be made relatively open by the short sides of the press chamber wall,
i.e. the external sides of the lamellar means being accessible with the aim of inserting
and removing the internal lamellar means. In the assembled press, part of the internal
lamellar means will preferably protrude at the ends of the press beyond the actual
press body.
[0027] The lamellar means which advantageously are used to form a tray are essentially oval
as regards their shape. According to one embodiment, each annular lamellar means has
a wall configuration which defines a central hole and can be compared to a closed
running track in a stadium. Thus, the wall configuration has two parallel sides which
at the respective ends are connected to one another by a convex semicircular portion
in such a manner that a closed track is formed. On certain occasions, it can be advantageous
if the holes have an essentially rectangular or square cross-section in the horizontal
plane. Advantageously, this is provided by means of filling blocks of resilient material,
such as rubber, which are arranged on the inside of the tray inside the semi-circular
portions of the lamellar means which are arranged on one another. The purpose of the
filling blocks is, among other things, to serve as support for a forming tool. If
the forming tool is large enough, the filling blocks can be excluded. It is also suitable
to use filling blocks in wood compaction since a workpiece has the shape of a right-angled
block. In addition, the purpose of the filling blocks is to absorb and distribute
forces and stress which are generated during a pressing operation.
[0028] During a pressing operation, the tray according to the invention is exposed to an
internal overpressure, which results in the tray then tending to expand and high tension
being generated in the inner circumference of the tray. It may therefore be desirable
to control the deformations in the tray. One way is to arrange force-transmitting
means or force generators separate from the tray which generate a force in the horizontal
plane. Preferably, such force-transmitting means are adapted to "actively" apply to
the tray one or more radially prestressing and/or radially predeforming forces. Alternatively,
these forces can be applied to one or more lamellar means if the tray comprises such
lamellar means. For example, the force-transmitting means comprise hydraulic pistons
or other suitable devices having a corresponding function. Due to these force-transmitting
means, tensile stress and compressive stress which arise in the tray in connection
with the pressing are counteracted. The distribution of stress in the tray is thus
controlled in this manner. The purpose of said means may also be to eliminate any
initial clearance between lamellar means and side walls which are located next to
them in the press chamber.
[0029] The lamellar means in the tray according to the invention can be given the desired
shape by milling or cutting. Different types of cutting are possible, a few examples
being water cutting, plasma cutting and flame cutting. Those skilled in the art will
realise that this is a considerably simpler process than forming the traditional compact
tray by forging. There will also be a great simplification as regards transport of
the lamellar means which are each relatively light, in comparison with transport of
trays according to prior-art technique. Preferably, the tray or the lamellar means
are made of hot-rolled steel sheet which subsequently is easily given the desired
shape. In the present invention, it has been found that it is suitable to use a sheet
thickness of 80-200 mm, preferably 100-150 mm, especially 100-120 mm.
[0030] Due to the fact that the lamellar means are separate units which, by degrees, together
are to form a tray, manufacture of them can be accelerated considerably. Thus, various
lamellar means blanks can be machined in the respective stations at the same time.
A first lamellar means blank can be machined in a certain station and when this lamellar
means blank has been moved on to a subsequent station for further machining, a second
lamellar means blank can be machined at the same time in said certain station. This
parallel performing of different manufacturing steps thus turns out to be very beneficial.
It is also distinctly easier to move a relatively thin lamellar means in comparison
with a large traditional tray. Preferably, some stations can machine several lamellar
means blanks simultaneously.
[0031] The lamellar means are easily transported to the location where the press of pressure
cell type is intended to be used and assembled in situ. It has been found that the
tray structure according to the invention having integrated prestressing means functions
excellently at typical working pressures (such as 1200 bar) for presses of pressure
cell type. Instead of making a large and heavy tray, it is possible to divide the
structure into several plates which each weigh less and thus are easier to handle.
[0032] Although the tray according to the invention advantageously is used in a press chamber
which is enclosed by a traditional, forged press body, it has been found to be practical
to make also the press body of force-absorbing lamellar means, and because of this
fact the main part of the press can be manufactured in the same way and is easy to
transport in parts which are subsequently assembled at the location where the press
is to be used.
[0033] It is also possible to assemble each lamellar means from two or more parts, which
then by said winding of a band are connected to a coherent unit.
Brief Description of the Drawings
[0034]
Fig. 1 is a side view, partly in cross-section, of a press of pressure cell type according
to one embodiment of the present invention.
Fig. 2A shows the press of pressure cell type in cross-section along the line A-A
in Fig. 1.
Fig. 2B is a top plan view of a component in Fig. 2A.
Figs 3A-3E are end views of different variants of presses of pressure cell type according
to the invention.
Figs 4A-4C illustrate the function of a detached force generator.
Detailed Description of the Drawings
[0035] Fig. 1 is a side view (of the long side), partly in cross-section, of a press of
pressure cell type 10 according to one embodiment of the present invention. A central
portion of the press of pressure cell type 10 is cut out of the Figure, an ordinary
side view of the press being shown to the left of the central portion and a side view
in cross-section of the press being shown to the right of the central portion. The
press of pressure cell type 10 is essentially made up of plate-shaped lamellar means.
A force-absorbing press body is formed of external lamellar means 12 which are vertically
arranged at a distance from one another. Each external lamellar means 12 has a central
hole, the press body thus enclosing a press chamber in which the actual pressing operation
takes place. An upper press plate 14 and a bottom plate 16 run through the central
holes of the external lamellar means 12. Between these plates, a diaphragm support
18 and an internal horizontal lamellar means 20, which abut against one another, are
arranged. The diaphragm support 18 is plate-shaped and annular and thus has a shape
that essentially corresponds to the internal lamellar means 20. The internal lamellar
means 20 rests detachably on the bottom plate 16, whereas the diaphragm support 18
is arranged so that it partly encloses the press plate 14 (shown in the right part
of the figure) with the purpose of ensuring sufficient sealing.
[0036] The circumference of both the internal and the external lamellar means 12, 20 (also
the diaphragm support 18) is defined by a relatively narrow, circumferential, external
edge surface 22. A plurality of turns of a band 24 of spring steel are wound round
the external edge surface 22 of the lamellar means 12, 20 and the diaphragm support
18, the band 24 having a width which essentially corresponds to the thickness of a
lamellar means 12, 20 and a diaphragm support 18, respectively. The height of the
band layer 24 of the lamellar means 12, 20 and of the diaphragm support 18 is about
100 mm and the layer can consist of one single long band or a plurality of joined
pieces of band. When a lamellar means 12, 20, is being manufactured, the band 24 is
wound round the same under resistance so that a compressing prestress is permanently
induced in the lamellar means 12, 20. Fig. 1 shows that the tray according to the
invention, i.e. the internal lamellar means 20, is without external support at the
short sides of the press of pressure cell type 10 since the turns of the band 24 replace
that function satisfactorily. For the same reason, the diaphragm support 18 does not
have an external support.
[0037] The right part in Fig. 1 is as mentioned a side view in cross-section of the press
of pressure cell type 10. The cross-section is made at the middle of the press, i.e.
along the main axis of the press chamber. The right part of Fig. 1 clearly shows that
both the lamellar means 12, 20 and the diaphragm support 18 are wound with a band
24 on the respective external edge surface 22. The turns of the band 24 of the internal
tray-forming lamellar means 20 and the diaphragm support 18 are, according to the
invention, intended to essentially permanently limit the expansion of these, i.e.
they should be able to resist the forces that are formed in the press chamber. The
internal lamellar means 20 is annular, which thus means that it defines an internal,
open space 26, being comprised in the press chamber. A diaphragm 28 is arranged in
the open space of the diaphragm support 18. The diaphragm has a seal 30 against the
press plate 14 and forms a pressure cell with the same. When in operation, the pressure
medium is supplied to the pressure cell in such a manner that the diaphragm 28 expands.
The open space 26 of the internal lamellar means 20, which is placed below the diaphragm
18, is adapted to contain a forming tool or working tool. A metal sheet which is to
be pressed against the working tool is arranged in a suitable manner above the working
tool, the diaphragm 28 in connection with pressurisation being expanded and shaped
on the working tool, which means that the metal sheet located therebetween also is
shaped on the working tool. In addition, the Figure shows a mat 32 which is arranged
just below the diaphragm 28. The mat 32 takes part in the shaping of the metal sheet
and protects at the same time the diaphragm 28 against wear and tear. Adjacent to
the inner wall of the lower internal lamellar means 20, a filling block 34 of rubber
is arranged with the purpose of distributing forces and of supporting the working
tool. A piece of wood can arranged and be pressed either directly against the bottom
plate 16 or against a working tool which is arranged on the bottom plate.
[0038] The external lamellar means 12 are, apart from the central hole, each provided with
four circular apertures, two above and two below the hole. The apertures are adapted
to receive coupling means. Through the circular apertures in all the external lamellar
means included in the press body run coupling means 36 (two of which are shown), for
example a steel rod having threaded ends. The press-body-forming lamellar means 12
are kept at a distance from one another by the fact that round each coupling means
36, between the lamellar means 12, there are distance means 38 having a thickness
that is as large as the desired distance between the lamellar means. The distance
means 38 are made of a relatively rigid material and their inner diameter is larger
than that of the coupling means 36 at the same time as their external measures are
essentially larger than the apertures arranged in the lamellar means 12. At the two
external ends of the coupling means 36, outside the respective external lamellar means
12 which are included in the press body, there are stop devices 40 of which at least
one has a fixing and clamping mechanism which is complementary to the coupling means
36. In the case when the coupling means comprises a rod being threaded at its ends,
the attaching and stressing mechanism can comprise a washer and a nut, the washer
having external measures which are essentially larger than the coupling apertures
of the external lamellar means. The four coupling means 36 are thus tightened to a
predetermined prestress condition. This eliminates play and motion in the construction
and at the same time contributes to the structural stability of the construction as
regards flexural rigidity, torsional rigidity and resistance to extension in all dimensions.
[0039] Fig. 2A shows the press of pressure cell type in cross-section along the line A-A
in Fig. 1. The Figure shows that an external lamellar means 12 is plate-shaped. The
central through holes of the external lamellar means 12 are defined by an internal
edge surface. The hole is essentially quadrangular, but without actual corners. The
"corner regions" are instead rounded and bend inwards into the wall so that a larger
hole area is obtained. The radii of these inward bends are made relatively large with
the aim of minimising the stress concentration that arises in the corner regions.
[0040] The external lamellar means 12 is essentially quadrangular and has rounded corners.
The shape of the lamellar means 12 is adapted to the expected thrust which arises
in connection with the pressing. Thus, the material quantity or the distance between
the internal and the external edge surface is larger vertically than horizontally
since the main direction of pressing is vertical.
[0041] A plurality of turns of a band 24 of spring steel are wound round the external edge
surface of the external lamellar means 12, the internal lamellar means 20 and the
diaphragm support 18 which are shown in Fig. 2A, the band 24 having a width which
essentially corresponds to the thickness of the respective lamellar means 12, 20 (or
diaphragm support 18). Each band can be one single long band or a plurality joined
pieces of band.
[0042] Fig. 2A also shows side walls 50 which are arranged on one side each of the internal
lamellar means 20 and the diaphragm support 18 and extend in the direction of the
main axis of the press chamber. The side walls 50 have a height which essentially
corresponds to the distance between the upper press plate 14 and the bottom plate
16. The internal lamellar means 20 and the diaphragm support 18 are during pressing
exposed to an internal overpressure, and because of this fact the lamellar means and
the diaphragm support aim at expanding, whereby high tensile stress in their inner
circumference is generated. For this reason, a hydraulic compensator or a generator
52 of horizontal force is arranged adjacent to the left side wall 50 in the figure.
This generator affects the internal lamellar means 20 and the diaphragm support 18
horizontally and predeforms and prestresses the deformation zones thereof. Unlike
the integrated wound bands 24, this generator 52 is separate from the internal tray-forming
lamellar means 20 and the diaphragm support 18, and is adapted to apply these radially
prestressing or predeforming forces. Conveniently, the generator 52 comprises hydraulic
pistons.
[0043] Fig. 2B is a partial top plan view of the internal lamellar means 20 in Fig. 2A.
Thus, it is shown that this lamellar means 20 has the shape of a "running track",
i.e. its wall is defined by two parallel straight portions which at the ends are connected
to one another by convex semicircles. In the space just inside the respective semicircles,
a semi-circular filling block or end block 54 of resilient material, such as rubber,
is fitted so that the remaining free space is quadrangular. The purpose of the end
blocks 54 is to serve as support for the forming tool or working tool. Straight resilient
supports 56 which are parallel to the direction of the main axis of the press chamber
can also be arranged adjacent to the straight wall portions. These supports 56 and
end blocks 54 (which correspond to the filling element 34 in Fig. 1) also have a protecting
function in the sense of protecting and prolonging the life of the internal lamellar
means 20. Since the internal lamellar means 20 and the diaphragm support 18 are prestressed
by the turns of the band 24, no external limiting means are required and therefore,
for example, the semi-circular portions can protrude from the short sides of the press
body as shown in Fig. 1. Since the internal tray-forming lamellar means 20 protrudes,
it is relatively easily accessible, which is time-saving when metal sheets are removed,
tools are replaced, diaphragms are replaced etc.
[0044] Figs 3A-3E show end views of different variants of presses of pressure cell type
according to the invention. The Figures thus show that the size of the external press
body as well as the internal press chamber with a tray can vary. The tray can be made
of different numbers of internal lamellar means, and the thickness of the lamellar
means can vary.
[0045] Figs 3A-3C illustrate some variants where an internal lamellar means 60 is arranged
between a diaphragm support 62 and a bottom plate 64. A press plate 66 is arranged
above the diaphragm support 62. As these Figures show, an external press-body-forming
lamellar means 68 can be made in different sizes and have different shapes. The size
of the internal lamellar means 60 can also vary. In Fig. 3A the dimensions of the
load space are 100 X 200 X 2500 mm
3 and the tray is suitable for a working pressure of 1200 bar. In Fig. 3B and Fig.
3C the dimensions of the load space are 125 X 500 X 1500 mm
3 and 200 X 710 X 2000 mm
3, respectively.
[0046] Fig. 3D shows another variant having a tray which comprises two lamellar means 60a,
60b that are arranged between the diaphragm support 62 and the bottom plate 64. The
dimensions of the load space are 200 X 1100 2000 mm
3.
[0047] Fig. 3E shows a variant having a tray which comprises four lamellar means 60a, 60b,
60c, 60d that are arranged between the diaphragm support 62 and the bottom plate 64.
The dimensions of the load space are 400 X 1600 X 4000 mm
3.
[0048] Figs 4A-4C show the function of a detached force generator 80. An essentially oval
tray 82 (or a lamellar means included in the tray) according to the invention is exposed
to an internal overpressure during a pressing operation. High tensile stress is generated
in the inner circumference of the tray. It can therefore, among other things, be desirable
to control possible deformations. The generator 80 applying the force F in the horizontal
direction eliminates initial clearance I between the tray 82 and the side wall 84,
which is schematically illustrated in Fig. 4A that is a cross-sectional view as Fig.
2A.
[0049] Fig. 4B is a partial top plan view of a lamellar means or tray 82 as Fig. 2B. In
the front portion or tip 86 of the tray 82, stress concentration may.arise during
pressing operations due to peeling. Owing to the generator of the horizontal force
F, compressive stress is provided in the tip 86 so that the peeling is reduced or
eliminated.
[0050] Fig. 4C is a top plan view of a lamellar means or a tray 82 and side walls 84. In
the transition zones 88 between the straight long sides of the tray 82 and two semi-circular
wall portions, stress concentration can arise. By predeforming the tray 82, compressive
stress is thus generated in the transition or deformation zones 88. As illustrated
in the Figure, the transition zones 88 are excessively bent to reduce the tensile
stress.
[0051] Although some preferred embodiments have been described above, the invention is not
limited thereto. For example, separate lamellar means and the diaphragm support can
be varied in accordance with the current needs. It should thus be understood that
a plurality of modifications and variations can be provided without deviating from
the scope of the present invention which is defined in the appended claims.
1. A press (10) of pressure cell type, which comprises a force-absorbing press body (12,
68) which encloses a press chamber, in which press chamber a tray (20, 60, 60a, 60b,
60c, 60d, 82) is arranged, which defines a space (26) for arranging a forming tool
and/or a workpiece, characterised in that the tray comprises an annular configuration having an internal surface which defines
said space, and an external surface (22), wherein prestressing means (24) which induce
a compressing prestress which acts in planes parallel to the plane of the tray are
arranged on the external surface.
2. A press of pressure cell type as claimed in claim 1, wherein said prestressing means
comprises at least one prestressing element which is wound round the external surface.
3. A press of pressure cell type as claimed in claim 2, wherein said annular configuration
comprises at least one plate-shaped, annular lamellar means (20, 60, 60a, 60b, 60c,
60d, 82) which has a central hole, a workpiece being adapted to be machined in the
space which is formed by the central hole.
4. A press of pressure cell type as claimed in any one of claims 1-3, wherein the tray
comprises a number of concentric, plate-shaped, annular lamellar means which abut
against one another, each have a central through hole and are located in planes that
are parallel to the plane of the tray, a workpiece being adapted to be machined in
the space which is mutually formed by the holes of the concentric lamellar means.
5. A press of pressure cell type as claimed in any one of claims 3-4 combined with claim
2, wherein the prestressing element is band-shaped and has essentially the same width
as the thickness of a lamellar means, each lamellar means being provided with a prestressing
element.
6. A press of pressure cell type as claimed in claim 4 or 5 combined with claim 4, wherein
the lamellar means are detachable from one another.
7. A press of pressure cell type as claimed in any one of claims 3-6, wherein the lowest
lamellar means (20, 60, 60b, 60d) is detachably arranged on a bottom plate (16, 64)
in the press chamber.
8. A press of pressure cell type as claimed in any one of claims 3-7, wherein a diaphragm
support (18, 62) for holding a diaphragm (28) is arranged above and, when pressing
the workpiece, in abutment against the uppermost lamellar means (20, 60, 60a) in such
a manner that the diaphragm together with a press plate (14, 66) which is arranged
in the upper portion of the press chamber forms a pressure cell, the diaphragm in
connection with the supply of pressure medium to the pressure cell being adapted to
exert a forming pressure on the workpiece arranged below.
9. A press of pressure cell type as claimed in claim 8, which is designed with such dimensions
that at least the diaphragm support, and optionally one or more lamellar means, is
liftable with the purpose of uncovering the underlying lamellar means inside the press
chamber, one or more of said underlying lamellar means being removable from the press
chamber while the diaphragm support and any remaining lamellar means are left inside
the press chamber.
10. A press of pressure cell type as claimed in claim 9, wherein the remaining lamellar
means are removable from the press chamber when the press chamber is free from said
underlying lamellar means.
11. A press of pressure cell type as claimed in any one of claims 3-10, which comprises
at least one force-transmitting means (52, 80), such as hydraulic pistons, which is
adapted to actively apply to one or more of the lamellar means, and preferably the
diaphragm support, one or more prestressing and/or predeforming forces in the plate-plane
of the lamellar means so that tensile stress and compressive stress which arise in
connection with pressing are counteracted.
12. A press of pressure cell type as claimed in any one of the preceding claims, wherein
the tray is made of hot-rolled steel plate.
13. A tray (20, 60, 60a, 60b, 60c, 60d, 82) for use in a press of pressure cell type (10),
which tray defines a space (26) with the purpose of arranging a forming tool and/or
a workpiece, characterised in that the tray comprises an annular configuration having an internal surface which defines
said space, and an external surface (22), wherein prestressing means (24) which induce
a compressing prestress which acts in planes parallel to the plane of the tray are
arranged on the external surface.
14. A tray as claimed in claim 13, wherein said prestressing means comprises at least
one prestressing element which is wound round the external surface.
15. A tray as claimed in claim 14, wherein said annular configuration comprises at least
one plate-shaped, annular lamellar means (20, 60, 60a, 60b, 60c, 60d, 82) which has
a central hole, a workpiece being adapted to be machined in the space which is formed
by the central hole.
16. A tray as claimed in any one of claims 13-15, which comprises a number of concentric,
plate-shaped, annular lamellar means which abut against one another, each have a central
through hole and are located in planes that are parallel to the plane of the tray,
a workpiece being adapted to be machined in the space which is mutually formed by
the holes of the concentric lamellar means.
17. A tray as claimed in any one of claims 15-16 combined with claim 14, the prestressing
element being band-shaped and having essentially the same width as the thickness of
a lamellar means, each lamellar means being provided with a prestressing element.
18. A tray as claimed in any one of claims 13-17, preferably for use in a press of pressure
cell type as claimed in any one of claims 1-12, wherein said space has a rectangular
or square cross-section in planes which are parallel to the plane of the tray.
19. A tray as claimed in claim 18, wherein said rectangular or square cross-section is
provided by means of filling elements (34, 54) which are arranged on the inside of
the tray, which inside has an essentially oval shape, preferably defined by two parallel
straight sides which are connected to one another at the ends by means of semi-circular
portions.
20. A tray as claimed in claim 16, wherein two lamellar means which abut against one another
are formed in such a manner that a workpiece, such as a metal sheet, which extends
transversely to said space, is kept in position when these two lamellar means have
been joined.
21. A tray as claimed in any one of claims 13-20, wherein the tray is made of hot-rolled
steel plate.
22. A method for manufacturing a tray according to claim 13 for use in a press of pressure
cell type, comprising the steps of
forming the tray of steel plate, and
inducing a remaining compressing prestress in the tray, the prestress acting in planes
parallel to the plane of the tray.
23. A method as claimed in claim 22, wherein the step of forming the tray comprises forming
plate-shaped lamellar means of steel plate, preferably hot-rolled steel-plate, and
providing each of them with a through hole, and arranging each lamellar means with
the plane of the plate oriented parallel to the plane of the plate of a concentrically
abutting lamellar means, a workpiece being adapted to be machined in the space which
is mutually formed by the holes of the concentric lamellar means.
24. A method as claimed in claim 23, wherein prestressing elements are wound round the
external edge surface of the lamellar means with the purpose of providing said prestressing.
25. A method as claimed in claim 24, wherein a prestressing element is used, which is
band-shaped and has essentially the same width as the thickness of a lamellar means.
26. A method as claimed in any one of claims 23-25, which comprises giving the lamellar
means the desired shape by milling or cutting, such as water cutting, plasma cutting,
flame cutting, etc.
27. A method as claimed in any one of claims 23-26, which comprises making the lamellar
means of steel plate having a thickness of 80-200 mm, preferably 100-150 mm, especially
100-120 mm.
1. Presse (10) von Druckzellenart, die einen kraftabsorbierenden Körper (12, 68) aufweist,
der eine Presskammer umschließt, in welcher Presskammer ein Tablett (20, 60, 60a,
60b, 60c, 60d, 82) angeordnet ist, das einen Raum (26) zum Anordnen eines Formwerkzeugs
und/oder eines Werkstücks definiert,
dadurch gekennzeichnet,
dass das Tablett eine ringförmige Auslegung mit einer Innenfläche, die den Raum definiert,
und eine Außenfläche (22) aufweist, wobei vorspannende Mittel (24), die eine verdichtende
Vorspannung veranlassen, die in Ebenen parallel zu der Ebene des Tabletts wirkt, auf
der Außenseite angeordnet sind.
2. Presse von Druckzellenart nach Anspruch 1, wobei das vorspannende Mittel wenigstens
ein vorspannendes Element aufweist, das rund um die Außenfläche gewunden ist.
3. Presse von Druckzellenart nach Anspruch 2, wobei die ringförmige Auslegung wenigstens
ein plattenförmiges, ringförmiges Lamellenmittel (20, 60, 60a, 60b, 60c, 60d, 82)
aufweist, das ein in der Mitte gelegenes Loch besitzt, wobei ein zu bearbeitendes
Werkstück in den Raum, der durch das mittige Loch ausgebildet wird, eingepasst wird.
4. Presse von Druckzellenart nach irgendeinem der Ansprüche 1 - 3, wobei das Tablett
eine Anzahl von konzentrischen, plattenförmigen, ringförmigen Lamellenmitteln aufweist,
die aneinander angrenzen, wobei alle eine mittige Durchbrechung aufweisen und in Ebenen
angeordnet sind, die parallel zu der Ebene des Tabletts verlaufen, wobei ein zu bearbeitendes
Werkstück in den Raum eingepasst wird, der gemeinsam von den Löchern der konzentrischen
Lamellenmittel ausgebildet wird.
5. Presse von Druckzellenart nach irgendeinem der Ansprüche 3 - 4 in Kombination mit
Anspruch 2, wobei das vorspannende Element bandförmig ist und im Wesentlichen die
gleiche Breite wie die Dicke eines Lamellenmittels aufweist, wobei jedes Lamellenmittel
mit einem vorspannenden Element versehen ist.
6. Presse von Druckzellenart nach Anspruch 4 oder 5 in Kombination mit Anspruch 4, wobei
die Lamellenmittel voneinander lösbar sind.
7. Presse von Druckzellenart nach irgendeinem der Ansprüche 3 - 6, wobei das unterste
Lamellenmittel (20, 60, 60b, 60d) lösbar an einer Bodenplatte (16, 64) in der Presskammer
angeordnet ist.
8. Presse von Druckzellenart nach irgendeinem der Ansprüche 3 - 7, wobei eine Membranhalterung
(18, 62) zum Halten einer Membran (28) über und beim Pressen des Werkstücks angrenzend
an die obersten Lamellenmittel (20, 60, 60a) so angeordnet ist, dass die Membran zusammen
mit einer Pressplatte (14, 66), die in dem oberen Abschnitt der Presskammer angeordnet
ist, eine Druckzelle ausbildet, wobei die Membran in Verbindung mit der Zufuhr von
Druckmedium zu der Druckzelle so ausgelegt ist, dass sie einen formenden Druck auf
das darunter angeordnete Werkstück ausübt.
9. Presse von Druckzellenart nach Anspruch 8, die mit solchen Abmessungen ausgelegt ist,
dass wenigstens die Membranhalterung und optional ein oder mehrere Lamellenmittel
zu dem Zweck anhebbar sind, die darunter liegenden Lamellenmittel in der Presskammer
freizulegen, wobei ein oder mehrere der darunter liegenden Lamellenmittel aus der
Presskammer entfernt werden können, während die Membranhalterung und alle restlichen
Lamellenmittel in der Presskammer gelassen werden.
10. Presse von Druckzellenart nach Anspruch 9, wobei die restlichen Lamellenmittel aus
der Presskammer herausnehmbar sind, wenn die Presskammer von den darunter liegenden
Lamellenmitteln frei ist.
11. Presse von Druckzellenart nach irgendeinem der Ansprüche 3 - 10, welche mindestens
ein kraftübertragendes Mittel (52, 80), wie beispielsweise hydraulische Kolben, umfasst,
welches so ausgelegt ist, dass es aktiv an eines oder mehrere der Lamellenmittel und
vorzugsweise an die Membranhalterung eine oder mehrere vorspannende und/oder vorverformende
Kräfte in der Plattenebene der Lamellenmittel anlegt, so dass einer Zugbelastung und
einer Druckbelastung, die im Zusammenhang mit dem Pressen entstehen, entgegengewirkt
wird.
12. Presse von Druckzellenart nach irgendeinem der vorhergehenden Ansprüche, wobei das
Tablett aus einer warmgewalzten Stahlplatte gefertigt ist.
13. Tablett (20, 60, 60a, 60b, 60c, 60d, 82) zur Verwendung in einer Presse (10) von Druckzellenart,
welches Tablett einen Raum (26) zu dem Zweck definiert, ein Formwerkzeug und/oder
ein Werkstück anzuordnen,
dadurch gekennzeichnet,
dass das Tablett eine ringförmige Auslegung mit einer Innenfläche, die den Raum definiert,
und eine Außenfläche (22) aufweist, wobei vorspannende Mittel (24), die eine verdichtende
Vorspannung veranlassen, die in Ebenen parallel zu der Ebene des Tabletts wirkt, auf
der Außenseite angeordnet sind.
14. Tablett nach Anspruch 13, wobei das vorspannende Mittel wenigstens ein vorspannendes
Element aufweist, das rund um die Außenfläche gewunden ist.
15. Tablett nach Anspruch 14, wobei die ringförmige Auslegung wenigstens ein plattenförmiges,
ringförmiges Lamellenmittel (20, 60, 60a, 60b, 60c, 60d, 82) aufweist, das ein in
der Mitte gelegenes Loch besitzt, wobei ein zu bearbeitendes Werkstück in den Raum,
der durch das mittige Loch ausgebildet wird, eingepasst wird.
16. Tablett nach irgendeinem der Ansprüche 13 - 15, welches eine Anzahl von konzentrischen,
plattenförmigen, ringförmigen Lamellenmitteln aufweist, die aneinander angrenzen,
wobei alle eine mittige Durchbrechung aufweisen und in Ebenen angeordnet sind, die
parallel zu der Ebene des Tabletts sind, wobei ein zu bearbeitendes Werkstück in den
Raum eingepasst wird, der gemeinsam von den Löchern der konzentrischen Lamellenmittel
ausgebildet wird.
17. Tablett nach irgendeinem der Ansprüche 15 - 16 in Kombination mit Anspruch 14, wobei
das vorspannende Element bandförmig ist und im Wesentlichen die gleiche Breite wie
die Dicke eines Lamellenmittels aufweist, wobei jedes Lamellenmittel mit einem vorspannenden
Element versehen ist.
18. Tablett nach irgendeinem der Ansprüche 13 - 17, vorzugsweise zur Verwendung in einer
Presse von Druckzellenart nach irgendeinem der Ansprüche 1 - 12, wobei der Raum einen
rechtwinkligen oder quadratischen Querschnitt in Ebenen aufweist, die parallel zu
der Ebene des Tabletts sind.
19. Tablett nach Anspruch 18, wobei der rechtwinklige oder quadratische Querschnitt mittels
Füllelementen (34, 54) bereitgestellt wird, die auf der Innenseite des Tabletts angeordnet
sind, welche Innenseite eine im Wesentlichen ovale Form aufweist, die vorzugsweise
durch zwei parallele gerade Seiten definiert ist, die an den Enden mittels halbkreisförmiger
Abschnitte miteinander verbunden sind.
20. Tablett nach Anspruch 16, wobei zwei Lamellenmittel, die aneinander angrenzen, so
ausgebildet sind, dass ein Werkstück, wie beispielsweise ein Metallblech, das sich
quer zu dem Raum erstreckt, in der Position gehalten wird, wenn diese zwei Lamellenmittel
zusammengeführt worden sind.
21. Tablett nach irgendeinem der Ansprüche 13 - 20, wobei das Tablett aus einer warmgewalzten
Stahlplatte gefertigt ist.
22. Verfahren zum Herstellen eines Tabletts gemäß Anspruch 13 zur Verwendung in einer
Presse von Druckzellenart, umfassend die Schritte zum
Ausbilden des Tabletts aus einer Stahlplatte und
Zuführen einer restlichen Druck-Vorbelastung zu dem Tablett, wobei die Vorspannung
in Ebenen wirkt, die zu der Ebene des Tabletts parallel sind.
23. Verfahren nach Anspruch 22, wobei der Schritt zum Ausbilden des Tabletts das Ausbilden
von plattenförmigen Lamellenmitteln aus einer Stahlplatte, vorzugsweise einer warmgewalzten
Stahlplatte und das Versehen von jedem von ihnen mit einer Durchbrechung und das Anordnen
jedes Lamellenmittels umfasst, wobei die Ebene der Platte parallel zu der Ebene der
Platte eines konzentrisch angrenzenden Lamellenmittels ausgerichtet ist, wobei ein
zu bearbeitendes Werkstück in den Raum eingepasst ist, der gemeinsam von den Löchern
der konzentrischen Lamellenmittel ausgebildet wird.
24. Verfahren nach Anspruch 23, wobei vorspannende Elemente rund um die Außenkantenoberfläche
der Lamellenmittel gewunden sind zu dem Zweck, die Vorspannung bereitzustellen.
25. Verfahren nach Anspruch 24, wobei ein vorspannendes Element verwendet wird, das bandförmig
ist und im Wesentlichen die gleiche Breite wie die Dicke eines Lamellenmittels aufweist.
26. Verfahren nach irgendeinem der Ansprüche 23-25, welches umfasst, den Lamellenmitteln
die gewünschte Form durch Fräsen oder Schneiden zu geben, wie beispielsweise Wasserschneiden,
Plasmaschneiden, Brennschneiden usw.
27. Verfahren nach irgendeinem der Ansprüche 23 - 26, welches die Herstellung der Lamellenmittel
aus einer Stahlplatte mit einer Dicke von 80 - 200 mm, vorzugsweise 100 - 150 mm,
insbesondere 100 - 120 mm umfasst.
1. Presse (10) du type à cellule sous pression, qui comprend un corps (12, 68) de presse
absorbant les forces qui enferme une chambre de presse, chambre de presse dans laquelle
est placé un plateau (20, 60, 60a, 60b, 60c, 60d, 82) qui définit un espace (26) pour
mettre un outil de formage et/ou une pièce, caractérisée en ce que le plateau comporte une configuration annulaire ayant une surface interne qui définit
l'espace et une surface (22) externe, des moyens (24) de précontrainte qui induisent
une précontrainte de compression agissant dans des plans parallèles au plan du plateau
étant prévus sur la surface externe.
2. Presse du type à cellule sous pression telle que revendiquée à la revendication 1,
dans laquelle les moyens de précontrainte comprennent au moins un élément de précontrainte,
qui est enroulé sur la surface extérieure.
3. Presse du type à cellule sous pression suivant la revendication 2, dans laquelle la
configuration annulaire comprend au moins un moyen (20, 60, 60a, 60b, 60c, 60d, 82)
lamellaire annulaire en forme de plaque qui a un trou central, une pièce étant conçue
pour être usinée dans l'espace qui est formé par le trou central.
4. Presse du type à cellule sous pression suivant l'une quelconque des revendications
1 à 3, dans laquelle le plateau comprend un certain nombre de moyens lamellaires annulaires
concentriques en forme de plaques qui sont en butée les uns contre les autres, ayant
chacun un trou central traversant et qui sont disposés dans des plans qui sont parallèles
au plan du plateau, une pièce étant conçue pour être usinée dans l'espace qui est
formé mutuellement par les trous des moyens lamellaires concentriques.
5. Presse du type à cellule sous pression suivant l'une quelconque des revendications
3 ou 4 combinée à la revendication 2, dans laquelle l'élément de précontrainte est
en forme de bande et a sensiblement la même largeur que l'épaisseur d'un moyen lamellaire,
chaque moyen lamellaire étant muni d'un élément de précontrainte.
6. Presse du type à cellule sous pression suivant l'une quelconque des revendications
4 ou 5 combinée à la revendication 4, dans laquelle les moyens lamellaires peuvent
être détachés les uns des autres.
7. Presse du type à cellule sous pression suivant l'une quelconque des revendications
3 à 6, dans laquelle le moyen lamellaire (20, 60, 60b, 60d) le plus bas est disposé
de manière amovible sur une plaque (16, 64) de fond de la chambre de presse.
8. Presse du type à cellule sous pression suivant l'une quelconque des revendications
3 à 7, dans laquelle un support (18, 62) de diaphragme pour maintenir un diaphragme
(28) est placé au-dessus et, lorsque l'on comprime la pièce, en butée sur le moyen
(20, 60, 60a) lamellaire le plus haut, de façon à ce que le diaphragme ensemble avec
une plaque (14, 66) de presse qui est disposée dans la partie supérieure de la chambre
de presse forme une cellule sous pression, le diaphragme en liaison avec l'alimentation
en fluide sous pression de la cellule sous pression étant conçu pour appliquer une
pression de formage à la pièce disposée en dessous.
9. Presse du type à cellule sous pression suivant la revendication 8, qui est conçue
en ayant des dimensions telles qu'au moins le support de diaphragme et éventuellement
un ou plusieurs moyens lamellaires peuvent être soulevés en vue de découvrir le moyen
lamellaire sous-jacent à l'intérieur de la chambre de presse, un ou plusieurs des
moyens lamellaires sous-jacents pouvant être retirés de la chambre de presse alors
que le support de diaphragme et tout moyen lamellaire restant sont laissés à l'intérieur
de la chambre de presse.
10. Presse du type à cellule sous pression suivant la revendication 9, dans laquelle les
moyens lamellaires restants peuvent être retirés de la chambre de presse lorsque la
chambre de presse n'a pas le moyen lamellaire sous-jacent.
11. Presse du type à cellule sous pression suivant l'une quelconque des revendications
3 à 10, qui comprend au moins un moyen (52, 80) de transmission de force, tel que
des pistons hydrauliques, qui est conçu pour appliquer activement à un ou à plusieurs
des moyens lamellaires, et de préférence au support de diaphragme, une ou plusieurs
forces de précontrainte et/ou de prédéformation dans le plan de plaque des moyens
lamellaires, de manière à contrarier des contraintes de traction et des contraintes
de compression qui se produisent en liaison avec la compression.
12. Presse du type à cellule sous pression suivant l'une quelconque des revendications
précédentes, dans laquelle le plateau est fait d'une plaque d'acier laminée à chaud.
13. Plateau (20, 60, 60a, 60b, 60c, 60d, 82) à utiliser dans une presse du type (10) à
cellule sous pression, ce plateau définissant un espace (26) en vue d'y mettre un
outil de formage et/ou une pièce, caractérisé en ce que le plateau comprend une configuration annulaire ayant une surface interne qui définit
l'espace et une surface (22) externe, des moyens (24) de précontrainte qui induisent
une contrainte de compression agissant dans des plans parallèles au plan du plateau
étant prévus sur la surface externe.
14. Plateau suivant la revendication 13, dans lequel les moyens de précontrainte comprennent
au moins un élément de précontrainte qui est enroulé sur la surface externe.
15. Plateau suivant la revendication 14, dans lequel la configuration annulaire comprend
au moins un moyen (20, 60, 60a, 60b, 60c, 60d, 82) lamellaire annulaire en forme de
plaque qui a un trou central, une pièce étant conçue pour être usinée dans l'espace
qui est formé par le trou central.
16. Plateau suivant l'une quelconque des revendications 13 à 15, qui comprend un certain
nombre de moyens lamellaires annulaires concentriques en forme de plaques qui sont
en butée les uns contre les autres, ayant chacun un trou central traversant et qui
sont disposés dans des plans qui sont parallèles au plan du plateau, une pièce étant
conçue pour être usinée dans l'espace qui est formé mutuellement par les trous des
moyens lamellaires concentriques.
17. Plateau suivant l'une quelconque des revendications 15 ou 16 combinée à la revendication
14, l'élément de précontrainte étant en forme de bande et ayant sensiblement la même
largeur que l'épaisseur d'un moyen lamellaire, chaque moyen lamellaire étant muni
d'un élément de précontrainte.
18. Plateau suivant l'une quelconque des revendications 13 à 17, à utiliser de préférence
dans une presse du type à cellule sous pression telle que revendiquée à l'une quelconque
des revendications 1 à 12, dans lequel l'espace a une section transversale rectangulaire
ou carrée dans des plans qui sont parallèles au plan du plateau.
19. Plateau suivant la revendication 18, dans lequel la section transversale rectangulaire
ou carrée est formée au moyen d'éléments (34, 54) de remplissage qui sont disposés
à l'intérieur du plateau, cet intérieur ayant une forme sensiblement ovale, définie
de préférence par deux côtés rectilignes parallèles qui sont reliés l'un à l'autre
aux extrémités au moyen de parties hémicirculaires.
20. Plateau suivant la revendication 16, dans lequel deux moyens lamellaires qui sont
en butée l'un contre l'autre sont formés de façon à ce qu'une pièce, telle qu'un feuillard
métallique, qui s'étend transversalement à l'espace est maintenue en position lorsque
ces deux moyens lamellaires ont été réunis.
21. Plateau suivant l'une quelconque des revendications 13 à 20, dans lequel le plateau
est fait en une plaque en acier laminée à chaud.
22. Procédé de fabrication d'un plateau suivant la revendication 13 à utiliser dans une
presse du type à cellule sous pression, comprenant les stades dans lesquels
on forme le plateau en une plaque d'acier, et
on induit une précontrainte rémanente de compression dans le plateau, la précontrainte
agissant dans des plans parallèles au plan du plateau.
23. Procédé suivant la revendication 22, dans lequel le stade de formation du plateau
comprend la formation de moyens lamellaires en forme de plaques d'une plaque d'acier,
de préférence d'une plaque d'acier laminée à chaud, et le fait de munir chacun d'eux
d'un trou traversant et de disposer chaque moyen lamellaire de sorte que le plan de
la plaque soit orienté parallèlement au plan de la plaque de moyens lamellaires en
butée concentriquement, une pièce étant conçue pour être usinée dans l'espace qui
est formé mutuellement par les trous des moyens lamellaires concentriques.
24. Procédé suivant la revendication 23, dans lequel des éléments de précontrainte sont
enroulés sur la surface de bord externe des moyens lamellaires en vue de donner la
précontrainte.
25. Procédé suivant la revendication 24, dans lequel on utilise un élément de précontrainte
qui est en forme de bande et qui a sensiblement la même largeur que l'épaisseur d'un
moyen lamellaire.
26. Procédé suivant l'une quelconque des revendications 23 à 25, qui consiste à donner
aux moyens lamellaires la forme souhaitée par laminage ou par coupe, telle qu'une
coupe à l'eau, une coupe au plasma, une coupe à la flamme, etc.
27. Procédé suivant l'une quelconque des revendications 23 à 26, qui consiste à faire
les moyens lamellaires en une plaque d'acier d'une épaisseur de 80 à 200 mm, de préférence
de 100 à 150 mm, et tout particulièrement de 100 à 120 mm.