| (19) |
 |
|
(11) |
EP 1 347 825 B9 |
| (12) |
CORRECTED EUROPEAN PATENT SPECIFICATION |
|
Note: Bibliography reflects the latest situation |
| (15) |
Correction information: |
|
Corrected version no 1 (W1 B1) |
|
Corrections, see
|
| (48) |
Corrigendum issued on: |
|
13.07.2005 Bulletin 2005/28 |
| (45) |
Mention of the grant of the patent: |
|
09.03.2005 Bulletin 2005/10 |
| (22) |
Date of filing: 21.12.2001 |
|
| (86) |
International application number: |
|
PCT/EP2001/015271 |
| (87) |
International publication number: |
|
WO 2002/053276 (11.07.2002 Gazette 2002/28) |
|
| (54) |
CATALYTIC REACTOR WITH HEAT EXCHANGER FOR EXOTHERMIC AND ENDOTHERMIC HETEROGENEOUS
CHEMICAL REACTIONS
KATALYTISCHER REAKTOR MIT WÄRMETAUSCHER FÜR ENDOTHERMISCHER UND EXOTHERMISCHER CHEMISCHER
REAKTIONEN
REACTEUR CATALYTIQUE A ECHANGEUR THERMIQUE POUR REACTIONS CHIMIQUES HETEROGENES ENDOTHERMIQUES
ET EXOTHERMIQUES
|
| (84) |
Designated Contracting States: |
|
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
| (30) |
Priority: |
05.01.2001 EP 01100363
|
| (43) |
Date of publication of application: |
|
01.10.2003 Bulletin 2003/40 |
| (73) |
Proprietor: METHANOL CASALE S.A. |
|
6900 Lugano-Besso (CH) |
|
| (72) |
Inventors: |
|
- FILIPPI, Ermanno
CH-6976 Castagnola (CH)
- RIZZI, Enrico
I-22070 Grandate (IT)
- TAROZZO, Mirco
CH-6853 Ligornetto (CH)
|
| (74) |
Representative: Zardi, Marco |
|
M. Zardi & Co.
Via Pioda, 6 6900 Lugano 6900 Lugano (CH) |
| (56) |
References cited: :
EP-A- 0 995 491 US-A- 2 898 383 US-A- 3 796 547 US-A- 3 982 901 US-A- 4 732 918
|
DE-A- 19 723 977 US-A- 3 666 423 US-A- 3 958 629 US-A- 4 594 227 US-A- 5 564 370
|
|
| |
|
|
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
Field of application
[0001] In its broader aspect, the present invention relates to a pseudo-isothermal reactor
for carrying out exothermic and endothermic heterogeneous reactions, comprising a
substantially cylindrical shell closed at its opposite ends by respective bottoms,
at least one thereof is provided with at least one manhole of predetermined dimensions,
a reaction zone in the shell in order to contain a catalytic bed and a heat exchange
unit placed in said reaction zone.
[0002] More in particular, this invention relates to a heat exchange unit for pseudo-isothermal
reactors of the aforesaid type, which comprises at least one heat exchanger intended
to be submerged in said catalytic bed.
Prior Art
[0003] As known, in order to carry out catalytic exothermic or endothermic reactions, chemical
reactors, called adiabatic, have been largely used, that is to say, reactors in which
the reaction occurs without any heat exchange and the reaction temperature increases
or decreases according to said reaction being exothermic or endothermic.
[0004] Reactors of this type are economical and easy to construct in that they do not require
the use of particular equipment and/or devices beside those normally provided for
the construction and support of the catalytic bed.
[0005] However, for this kind of reactors a severe drawback is recognized, that is to say,
when any control of the reaction temperature is required, for example in case the
temperature has to be oscillating within a rather narrow range of values or, even,
it has to be remaining constant at a predetermined value, it is not possible to intervene
in any manner.
[0006] In order to overcome this drawback, particularly felt for strongly exothermic or
endothermic reactions, adiabatic reactors have been designed in which the catalytic
bed is split into a plurality of adiabatic stages, aligned along the reactor axis
and separated by heat exchange systems or units.
[0007] Through these units a substantial re-alignment of the temperature of the gaseous
reactants and of the reaction products exiting from each adiabatic stage at a predetermined
value is allowed, and hence a certain control of the temperature of each single adiabatic
stage. However, this does not allow, anyway, an optimal exploitation of the catalyst,
because it operates far from the maximum reaction rate.
[0008] With the expression "maximum reaction rate", it is meant the reaction rate to which
corresponds the maximum yield of the catalyst, so that, the conversion yield being
the same, a minimum volume of catalyst is used.
[0009] A so called isothermal or pseudo-isothermal catalytic reactor has been therefore
proposed, that is to say a reactor in which the reaction temperature is controlled
by means of a suitable and continuous heat exchange realized within the catalytic
bed. To this end, for the reactors of the aforesaid type, the use of large shell-and-tube
exchangers submerged inside the catalyst, has been largely adopted. A.suitable exchange
fluid then traverses the tubes of the exchangers. As an alternative suggestion, it
has been proposed to arrange the catalyst inside the tubes of a large tube bundle,
impinged from outside by a selected heat exchange fluid.
[0010] Although advantageous under some aspects, in particular and above all that of a reaction
carried out at an almost constant temperature, the pseudo-isothermal reactors proposed
by the prior art have a relevant constructive complexity and further an additional
recognized drawback, which will be explained hereinbelow, also shared by the adiabatic
reactors even by a larger extent.
[0011] It is known that after a certain period of activity the reactors, in particular the
adiabatic ones, must be completely scrapped, because of worn out or technologically
obsolete internal equipment and devices, whereas they still have, for example, substantially
sound and technologically valid outer shells.
[0012] Taken into account that in a catalytic reactor, whether adiabatic or pseudo-isothermal,
it is recognized that the most expensive, the most valuable and appreciated part to
be manufactured, from a technical and technological point of view, is the outer shell
thereof, together with the respective closing bottoms, the requirement or better the
desire exists of recovering and re-using the outer shell of a reactor, once its internals
are at the end of their lifetime, by rendering it free of the existing equipment and
re-equipping it with other new and more modern ones both from the structural and functional
point of view.
[0013] Furthermore, as far as pseudo-isothermal reactors are concerned, the requirement
is ever and ever felt of increasing the capacity, yield and efficiency of the existing
reactors, so that the need exists of replacing the internal equipment already in use
with technologically more improved ones.
[0014] In other words, it has always existed the need of revamping catalytic reactors of
the aforesaid kind (both adiabatic and pseudo-isothermal), otherwise destined to a
complete scrapping or anyway being not satisfying any more from the operating point
of view, by transforming them advantageously in respective pseudo-isothermal reactors
at high-efficiency.
[0015] However, this recovery or transformation has not been realized to now because, as
a matter of common knowledge, it is of difficult, not economical and substantially
impossible realization.
[0016] In fact, the equipment and the devices intended for replacing those worn out or obsolete
contained in said reactor, such as, particularly, the heat exchange units of the type
comprising a huge number of tubes supported by opposed large tube plates, forming
an as large and complex tube bundle, have such a dimension that in order to place
them inside a recovered shell, it would be needed, for example, the preliminary removal
of at least one of the bottoms and then an arduous and difficult repositioning of
the removed bottom, with the possible prejudice of the functionality and of the structural
features of the reactor so obtained.
Summary of the invention
[0017] The technical problem underlying the present invention is that of obtaining a heat
exchange unit for pseudo-isothermal catalytic reactors, having structural and functional
features such to allow the aforesaid requirements to be fulfilled.
[0018] The aforesaid technical problem is solved according to the invention by a heat exchange
unit for pseudo-isothermal reactors including a substantially cylindrical shell closed
at its opposite ends by respective bottoms, at least one thereof is provided with
at least one manhole of predetermined dimensions, a reaction zone inside the shell
in order to contain a catalytic bed, characterized in that it comprises at least two
modular and assembly heat exchangers, having predetermined cross dimensions smaller
than those of the manhole opening, each heat exchanger comprising at least one heat
exchange element, preferably comprising a pair of juxtaposed metallic plates, mutually
adjoined in predetermined spaced relationship by means of welds, so as to define a
gap of predetermined width between them.
[0019] The features and the advantages of a heat exchange unit according to the invention
will become clearer from the following description of an indicative and not limiting
example of an embodiment thereof provided with reference to the attached drawings.
Brief description of the drawings.
[0020]
Figure 1 shows schematically an axonometric view of a pseudo-isothermal reactor comprising
a heat exchange unit according to the present invention.
Figure 2 shows schematically and in perspective enlarged view a detail of the heat
exchange unit of figure 1.
Figure 3 shows schematically and in perspective enlarged view a detail of figure 2.
Figure 4 shows schematically an axonometric view of a pseudo-isothermal reactor comprising
a heat exchange unit according to an alternative embodiment of the present invention.
Detailed description of the figures
[0021] With reference to the aforesaid figures, reference numeral 1 indicates in its whole
and schematically a pseudo-isothermal reactor comprising a cylindrical shell 2, closed
at its opposite ends by respective bottoms, lower 3 and upper 4.
[0022] The upper bottom 4 is provided with a so-called manhole opening 5 of predetermined
cross dimensions.
[0023] Inside the shell 2 a reaction zone 6 is arranged, which in the figures is comprised
between an upper line 7 and a lower line 8, in order to contain a catalytic bed, which
is not described in detail as being per se known.
[0024] In the reaction zone 6 a heat exchange unit is supported, referred to in its whole
with numeral 10, intended for being submerged in a volume of a suitable catalyst,
not shown.
[0025] Said heat exchange unit 10 has a cylindrical shape having an outer diameter substantially
equal to the inner diameter of said shell 2 and is axially crossed by a cylindrical
passage 30, which preferably has a diameter large enough to be a manhole.
[0026] In the embodiment shown in figure 1, said heat exchange unit 10 comprises three pluralities
9a, 9b, 9c of heat exchangers 11, all having a cylindrical configuration, supported
the one within the other, in an arrangement having coaxial and concentric elements.
[0027] According to the present invention, the exchangers 11 of each of said pluralities
9a, 9b, 9c of exchangers are advantageously modular and can be assembled and have
predetermined cross dimensions, which are smaller than those of the manhole 5.
[0028] According to this embodiment, the exchangers 11 are further arranged distributed
inside the reactor, having an orientation according to respective radial generating
lines and supported in the manner described hereinafter.
[0029] For sake of clarity of representation of the reactor of figure 1, each heat exchanger
11 is represented as comprising three heat exchange elements 12, represented in greater
detail in figures 2 and 3.
[0030] Preferably, each heat exchange element 12 has substantially the shape of a plate
and is formed (figure 3) by a pair of juxtaposed metallic plates 13a, 13b, mutually
adjoined in a predetermined spaced relationship by perimetrical welds 14. A gap 15
of predetermined width is than defined between said plates 13a, 13b, which is intended
for being passed through by a heat exchange operating fluid.
[0031] In particular and according to a feature of the present invention, the plates 13a
and 13b are, mutually adjoined also by a plurality of welding spots 16, regularly
distributed, preferably according to a so-called quincunx and/or square pitch, which
provide the heat exchange element 12 with a substantially "quilted" aspect.
[0032] Each element 12 is provided, preferably on opposed sides, with inlet and outlet junctions
17, 18, respectively, for said heat exchange fluid.
[0033] It has to be noted that, because of the presence of the aforesaid welding spots 16,
the passage of said fluid through the gap 15 of a heat exchange element 12 of the
present invention occurs along tortuous paths, all in fluid communication between
themselves and with the junctions 17, 18, respectively. These paths can continuously
and randomly change, with a substantial contribution to the heat exchange efficiency
of the exchangers 11 and hence to the optimization of the control of the reaction
temperature.
[0034] The inlet and outlet junctions 17 and 18, respectively, of the heat exchange elements
12, are connected and fastened to upper and lower ducts 19, 20, respectively (fig.
2), through which they are stiffened in a single structure so to form a corresponding
exchanger 11.
[0035] All upper ducts 19 of all exchangers 11 of the pluralities 9a, 9b and 9c of exchangers
are connected with a respective annular distributor duct 21, by means of a corresponding
plurality of junction ducts generally indicated with numeral 22. This annular distributor
is coaxial to the heat exchange unit 10 and supported thereon.
[0036] Advantageously said annular distributor 21, used for the inlet of a heat exchange
fluid into the exchangers 11, comprises a plurality of curved portions, each of which
is of dimensions such as to be adapted to pass through the aforesaid manhole 5.
[0037] The lower ducts 20 of the exchangers 11 are connected, through junctions 29, to respective
manifolds 26 and 39.
[0038] The manifolds 26 are rectilinear and radially extended from the inner wall of said
shell 2 up to said axial passage 30. The manifolds 39 are in turn formed as an arc
of circle, all of them being concentric with respect to the axis of the shell 2, and
extended between adjacent manifolds 26 with which they are in fluid communication.
[0039] The exchangers 11 of the pluralities 9a, 9b, 9c arranged inside the reactor aligned
along a same radial generating line are arranged onto the radial manifolds 26. On
the contrary, the other exchangers 11 are arranged onto the manifolds 39 (this last
arrangement is not shown).
[0040] Advantageously and according to a preferred embodiment, the pluralities of manifolds
26 and 39 are used in order to form a substantially plane and grid-shaped structure,
adapted to support the entire heat exchange unit 10, inside the shell 2. To this end,
each manifold 26, suitably dimensioned, is fastened on one end onto an annular abutment
28 provided in the inner wall of the shell 2, at the lower end of the reaction zone
6, and on the other end to the wall of a central cylindrical duct 27, positioned and
extending into the axial passage 30, of said heat exchange unit 10. The manifolds
39 are instead fastened at their ends to the manifolds 26. In figure 1, three manifolds
39 are shown, which are fastened at an end thereof to a manifold 26.
[0041] Advantageously, all the manifolds 26 and 39 are in fluid communication through openings
31 with said duct 27, towards which they convey the heat exchange fluid collected
from the respective exchangers 11.
[0042] The annular distributor 21 and the manifolds 26 and 39 are in fluid communication
with the outside of the reactor and, more in particular, the annular distributor 21
is in fluid communication with an inlet nozzle 23 by means of a feeding duct 24, whereas
the manifolds 26 and 39 are in fluid communication with a nozzle 25.
[0043] The exchangers 11 are mounted and fastened in groups to the manifolds 26 and 39,
only after having been inserted one-by-one into the shell 2, through the above mentioned
manhole 5. A perforated protection element 32 entirely covers the nozzle 25.
[0044] The central duct 27 is supported inside the reactor by a plurality of supports 33
that lean onto the protection element 32 and, at the opposite end thereof, to the
closing bottom 43 of the duct 27.
[0045] According to a further feature of the present invention, in the exchangers 11, the
respective heat exchange elements 12 are arranged according to a mutual predetermined
convergence, whereas inside the shell 2 and, more precisely, in the reaction zone
6, said exchangers 11 are advantageously positioned in such a way that the respective
elements 12 are arranged according to a radial pattern (Fig. 1).
[0046] In the embodiment of figure 1, the heat exchange fluid that flows inside the exchangers
11 is formed by the gaseous reactants themselves that flow inside the central duct
27. The duct 27 is suitably intended for putting the junction 18 in fluid communication
with the upper part of said reaction zone 6 by the openings 31. In fact, the reactants
fed through the feeding duct 24 inside the heat exchange unit 10, as previously described,
exit through respective outlet junctions 18 and are conveyed into the ducts 20 and
the junctions 29 and then, through the radial manifolds 26, into the central duct
27.
[0047] From the ducts 27 the suitably heated or cooled gaseous reactants reach the reaction
zone 6, they cross it for its entire length, and they exit the reactor 1 from the
outlet nozzle 25.
[0048] The catalytic bed contained inside the zone 6 is supported by a granular layer of
inert material. The aforesaid protection element 32 is arranged onto the bottom 3
in proximity of the nozzle 25 and allows the passage of the gases and at the same
time it holds the grains of inert material.
[0049] Advantageously the lower bottom 3 of the shell is equipped with at least one opening
34 to which a respective nozzle 40 is connected for discharging the catalyst, once
exhausted.
[0050] In particular, thanks to the presence of the openings 34 and of the nozzles 40, the
discharge operation of the catalyst from the reactor 1 is extremely easy and quick,
not requiring any more the time-consuming catalyst suction interventions from above
according to the prior art.
[0051] With reference to figure 4, the heat exchange fluid, which passes inside the exchangers
11 is a different fluid from the reacting fluid, such as water, water and steam or
diathermic fluids. The heat exchange fluid is fed from an inlet nozzle 35 into a duct
36 and follows the fluid path from the annular distributor 21 to the central duct
27, already described in the foregoing. From the central duct 27, the heat exchange
fluid exits the reactor by means of a suitable duct 37 and an outlet nozzle 38.
[0052] According to this alternative embodiment, the reactants are fed from the inlet nozzle
23 and after having passed through the reaction zone 6 for its entire length, exits
from the reactor 1 through the outlet nozzle 25.
[0053] It has to be noted that the above described shell 2 can be designed
ex novo or can consist of the shell of an already existing pseudo-isothermal reactor, that
has been recovered upon removal of the internal equipment (revamping of a reactor
intended for being scrapped). Or, the same can consist of the shell of an already
existing adiabatic reactor, which also has been freed of the internal equipment (transformation
of a reactor from adiabatic to pseudo-isothermal).
[0054] In fact, the exchangers 11 of the present invention can be easily inserted and mounted
in order to replace each equipment removed from the inside of the recovered shell.
[0055] It has to be further noted that the heat exchange optimization reached in a reactor
realized ex-novo with an exchange unit according to the present invention, it is also
obtained in the above mentioned revamped and transformed reactors.
[0056] The number of elements 12 in each exchanger 11 can vary according to the cross dimensions
of the manhole 5, of those of the single elements 12 as well as of the distance between
the elements 12 of an exchanger 11.
[0057] Further on, in the same reactor exchangers 11 can also be present which comprise
a different number of elements 12, as well as elements 12 of different dimensions.
[0058] The arrangement of the spots 16 in an element 12 can also be irregular, for example
concentrated in some areas and absolutely absent in others.
[0059] The manifolds 39, shown in figures 1 and 4 as an arc of circle, can be realized as
a straight line, extending between adjacent manifolds 26, or according to a branched
configuration. In the last case, the manifolds 39 extend both between manifolds 26
and manifolds 39 as well as between manifolds 26 and manifolds 29.
[0060] A not shown alternative embodiment of the reactor of figure 1, provides the feed
of the reactants from the nozzle 23 to the central duct 27 by means of the feeding
duct 24 suitably modified, in such a way that the heat exchange fluid, by passing
through the openings 31, circulates inside the unit 10 from the junctions 29 towards
the junctions 17, from which it exits in order to pass through the reaction zone 6
and to outflow from the nozzle 25.
[0061] Another alternative of use of the reactor of figure 4, provides the feeding of the
cooling or heating fluid into the heat exchange unit 10 through the nozzle 38, the
duct 37 and the central duct 27; the outflow of this fluid is hence carried out through
the duct 36 and the nozzle 35.
[0062] In both said alternatives, the fluid inside the heat exchange unit 10 is directed
counter current with respect to that in the reaction zone.
1. Pseudo-isothermal reactor including a substantially cylindrical shell (2), closed
at its opposed ends by respective bottoms (3, 4), at least one thereof is provided
with at least one manhole opening (5) of diameter smaller than the diameter of said
shell (2), a reaction zone (6) within the shell (2) in order to contain a catalytic
bed, characterized in that it comprises at least two modular and assembled heat exchangers (11), extending in
said reaction zone (6) and having cross dimensions smaller than those of said manhole
opening (5), each heat exchanger (11) comprising at least one plate heat exchange
element (12).
2. Reactor according to claim 1, characterized in that said at least one heat exchange element (12) comprises a pair of juxtaposed metallic
plates (13a, 13b), mutually adjoined in spaced relationship by welds (14, 16), so
as to define between them a gap (15) of predetermined width.
3. Reactor according to claim 1, characterized in that it comprises a heat exchange unit (10) comprising said at least two exchangers (11),
having a cylindrical configuration provided with an outer diameter equal to the inner
diameter of said shell (2) and axially crossed by an axial passage (30), which has
a diameter adapted to form a manhole.
4. Reactor according to claim 3, characterized in that it comprises a central duct (27), arranged and extending into said axial passage
(30) of said heat exchange unit (10).
5. Reactor according to claim 3, characterized in that said heat exchange unit (10) comprises at least two pluralities (9a, 9b, 9c) of heat
exchangers (11), all having a cylindrical configuration, supported the one within
the other, wherein the elements are arranged coaxial and concentric between them.
6. Reactor according to claim 2, characterized in that said plates (13a, 13b) are mutually adjoined by a plurality of welding spots (16)
defining inside the gap (15) of respective heat exchange elements (12), a plurality
of tortuous paths for an operating fluid, all in fluid communication with respective
inlet and outlet junctions (17, 18) of said operating fluid, provided on opposed sides
of said elements (12).
7. Reactor according to claim 6, characterized in that each exchanger (11) comprises a plurality of heat exchange elements (12), connected
and stiffened in a single structure.
8. Reactor according to claim 7, characterized in that said junctions (17, 18) of said heat exchange elements (12) are connected and fastened
to respective upper and lower ducts (19, 20).
9. Reactor according to claim 7, characterized in that the heat exchange elements (12) are arranged within each heat exchanger (11) according
to a radial pattern
10. Reactor according to claim 8, characterized in that it comprises a plurality of manifolds (26, 39) in fluid communication with said lower
ducts (20) and arranged so as to form a plane and grid-shaped structure, adapted to
support said heat exchange unit (10) inside said shell (2).
11. Heat exchange unit for pseudo-isothermal reactors including a substantially cylindrical
shell (2) closed at its opposite ends by respective bottoms (3, 4), at least one thereof
is provided with at least one manhole opening (5) of diameter smaller than the diameter
of said shell (2), a reaction zone (6) inside the shell (2) in order to contain a
catalytic bed, characterized in that it comprises at least two modular and assembled heat exchangers (11) according to
claim 1.
12. Heat exchange unit according to claim 11, characterized in that said at least one heat exchange element (12) comprises a pair of juxtaposed metallic
plates (13a, 13b), mutually adjoined in spaced relationship by means of welds (14,
16), so as to define between them a gap (15) of predetermined width.
13. Heat exchange unit according to claim 12, characterized in that said plates (13a, 13b) are mutually adjoined by a plurality of welding spots (16)
defining within the gap (15) of respective heat exchange elements (12) a plurality
of tortuous paths for an operating fluid, all in fluid communication with respective
inlet and outlet junctions (17, 18) of said operating fluid, provided on opposed sides
of said elements (12).
14. Heat exchange unit according to claim 13, characterized in that said welding spots (16) are distributed according to a quincunx and/or square pitch.
15. Heat exchange unit according to claim 13, characterized in that each exchanger (11) comprises a plurality of heat exchange elements (12), connected
and stiffened in a single structure.
16. Heat exchange unit according to claim 15, characterized in that said junctions (17, 18) of said heat exchange elements (12), are connected and fastened
to respective upper and lower ducts (19, 20).
17. Heat exchange unit according to claim 15, characterized in that the elements (12) are arranged within each exchanger (11) according to a radial pattern.
18. Heat exchange unit according to claim 16, characterized in that it comprises a plurality of manifolds (26, 39) in fluid communication with said lower
ducts (20) and arranged so as to form a plane and grid-shaped structure, adapted to
support said heat exchange unit (10), inside said shell (2).
1. Pseudo-isothermer Reaktor, der eine im Wesentlichen zylindrische Hülle (2) aufweist,
die an ihren gegenüberliegenden Enden durch entsprechende Böden (3, 4) geschlossen
ist, wobei zumindest einer davon mit zumindest einer Mannlochöffnung (5) von einem
geringeren Durchmesser als den Hüllendurchmesser ausgestattet ist, eine Reaktionszone
(6) innerhalb der Hülle (2), um ein katalytisches Bett aufzunehmen, dadurch gekennzeichnet, dass er umfasst zumindest zwei modulare und zusammengesetzte Wärmetauscher (11), die sich
in die Reaktionszone (6) erstrecken und Querabmessungen aufweisen, die geringer sind
als jene der Mannlochöffnung (5), wobei jeder Wärmetauscher (11) zumindest ein Plattenwärmeaustauschelement
(12) umfasst.
2. Reaktor nach Anspruch 1, dadurch gekennzeichnet, dass das zumindest eine Wärmeaustauschelement (12) ein Paar nebeneinander gestellter Metallplatten
(13a, 13) umfasst, die gegenseitig durch Schweißnähte (14, 16) so in einen Abstand
nebeneinander gesetzt sind, dass zwischen ihnen ein Spalt (15) von vorbestimmter Weite
festgelegt wird.
3. Reaktor nach Anspruch 1, dadurch gekennzeichnet, dass er eine Wärmeaustauscheinheit (10) umfasst, die die zumindest zwei Austauscher (11)
umfasst, die eine zylindrische Form mit einem äußeren Durchmesser aufweisen, der gleich
dem inneren Durchmesser der Hülle (2) ist, und axial durchquert werden von einem axialen
Durchgang (30), der einen Durchmesser hat, der angepasst ist, um ein Mannloch zu bilden.
4. Reaktor nach Anspruch 3, dadurch gekennzeichnet, dass er eine zentrale Leitung (27) umfasst, angeordnet und sich erstreckend in den axialen
Durchgang (30) der Wärmeaustauscheinheit (10).
5. Reaktor nach Anspruch 3, dadurch gekennzeichnet, dass die Wärmeaustauscheinheit (10) zumindest zwei Vielzahlen (9a, 9b, 9c) von Wärmeaustauschern
(11) umfasst, die alle eine zylindrische Konfiguration haben, eine innerhalb der anderen
gestützt ist, wobei die Elemente koaxial und konzentrisch zwischen ihnen angeordnet
sind.
6. Reaktor nach Anspruch 2, dadurch gekennzeichnet, dass die Platten (13a, 13b) gegenseitig durch eine Vielzahl von Schweißpunkten (16) so
nebeneinander gesetzt sind, dass innerhalb des Spalts (15) der entsprechenden Wärmeaustauschelemente
(12) eine Vielzahl von gewundenen Pfaden für eine Betriebsflüssigkeit festgelegt werden,
wobei alle in Flüssigverbindung mit entsprechenden Ein- und Auslassanschlüssen (17,
18) der Betriebsflüssigkeit sind, die an den gegenüberliegenden Seiten der Elemente
(12) bereitgestellt werden.
7. Reaktor nach Anspruch 6, dadurch gekennzeichnet, dass jeder Austauscher (11) eine Vielzahl von Wänneaustauschelementen (12), verbunden
und versteift in einer einzigen Struktur, umfasst.
8. Reaktor nach Anspruch 7, dadurch gekennzeichnet, dass die Anschlüsse (17, 18) der Wärmeaustauschelemente (12) mit entsprechenden oberen
und unteren Leitungen (19, 20) verbunden und befestigt sind.
9. Reaktor nach Anspruch 7, dadurch gekennzeichnet, dass die Wärmeaustauschelemente (12) innerhalb von jedem Wärmeaustauscher (11) nach einem
radialen Muster angeordnet sind.
10. Reaktor nach Anspruch 8, dadurch gekennzeichnet, dass er eine Vielzahl von Röhren (26, 39) umfasst, die in Flüssigverbindung mit den unteren
Leitungen (20) und so angeordnet, dass eine planare und gitterformige Struktur gebildet
wird, sowie angepasst sind, um die Wärmeaustauscheinheit (10) innerhalb der Hülle
(2) zu stützen.
11. Wärmeaustauscheinheit für pseudo-isotherme Reaktoren aufweisend eine im Wesentlichen
zylindrische Hülle (2), die an ihren gegenüberliegenden Enden durch entsprechende
Böden (3, 4) geschlossen ist, wobei zumindest einer davon mit zumindest einer Mannlochöffnung
(5) von einem geringeren Durchmesser als den Hüllendurchmesser ausgestattet ist, eine
Reaktionszone (6) innerhalb der Hülle (2), um ein katalytisches Bett aufzunehmen,
dadurch gekennzeichnet, dass er umfasst zumindest zwei modulare und zusammengesetzte Wärmetauscher (11) nach Anspruch
1.
12. Wärmeaustauscheinheit nach Anspruch 11, dadurch gekennzeichnet, dass das zumindest eine Wärmeaustauschelement (12) ein Paar nebeneinander gestellter Metallplatten
(13a, 13) umfasst, die gegenseitig durch Schweißnähte (14, 16) so in einem Abstand
nebeneinander gesetzt sind, dass zwischen ihnen ein Spalt (15) von vorbestimmter Weite
festgelegt wird.
13. Wärmeaustauschelement nach Anspruch 12, dadurch gekennzeichnet, dass die Platten (13a, 13b) gegenseitig durch eine Vielzahl von Schweißpunkten (16) so
nebeneinander gesetzt sind, dass innerhalb des Spalts (15) der entsprechenden Wärmeaustauschelemente
(12) eine Vielzahl von gewundenen Pfade für eine Betriebsflüssigkeit festgelegt werden,
die alle in Flüssigverbindung mit entsprechenden Ein- und Auslassanschlüssen (17,
18) der Betriebsflüssigkeit sind, die an den gegenüberliegenden Seiten der Elemente
(12) bereitgestellt werden.
14. Wärmeaustauscheinheit nach Anspruch 13, dadurch gekennzeichnet, dass Schweißpunkte (16) nach einem quincunx und/oder quadratischen Feld angeordnet sind.
15. Wärmeaustauscheinheit nach Anspruch 13, dadurch gekennzeichnet, dass jeder Austauscher (11) eine Vielzahl von Wärmeaustauschelementen (12), verbunden
und versteift in einer einzigen Struktur, umfasst.
16. Wärmeaustauscheinheit nach Anspruch 15, dadurch gekennzeichnet, dass die Anschlüsse (17, 18) der Wärmeaustauschelemente (12) mit entsprechenden oberen
und unteren Leitungen (19, 20) verbunden und befestigt sind.
17. Wärmeaustauscheinheit nach Anspruch 15, dadurch gekennzeichnet, dass die Elemente (12) innerhalb von jedem Austauscher (11) nach einem radialen Muster
angeordnet sind.
18. Wärmeaustauscheinheit nach Anspruch 16, dadurch gekennzeichnet, dass es eine Vielzahl von Röhren (26, 39), die in Flüssigverbindung mit den unteren Leitungen
(20) umfasst und so angeordnet sind, dass eine planare und gitterförmige Struktur
gebildet wird, sowie angepasst sind, um die Wärmeaustauscheinheit (10) innerhalb der
Hülle (2) zu stützen.
1. Réacteur pseudo-isotherme comprenant une paroi sensiblement cylindrique (2) fermée
à ses extrémités opposées par des fonds respectifs (3,4), au moins l'un de ceux-ci
étant doté d'au moins une ouverture de visite (5) d'un diamètre inférieur au diamètre
de ladite paroi (2), une zone de réaction (6) à l'intérieur de la paroi (2) afin de
contenir un lit catalytique, caractérisé en ce qu'il comprend au moins deux échangeurs de chaleur modulaires et assemblés (11), s'étendant
dans ladite zone de réaction (6) et ayant des dimensions transversales inférieures
à celles de ladite ouverture de visite (5), chaque échangeur de chaleur (11) comprenant
au moins un élément échangeur de chaleur à plaques (12).
2. Réacteur selon la revendication 1, caractérisé en ce que le ou lesdits éléments échangeurs de chaleur (12) comprennent une paire de plaques
métalliques juxtaposées (13a,13b), mutuellement jointes en disposition espacée par
des soudures (14,16), de façon à délimiter entre elles un intervalle (15) de largeur
prédéterminée.
3. Réacteur selon la revendication 1, caractérisé en ce qu'il comprend un dispositif d'échange de chaleur (10) comprenant le ou lesdits échangeurs
(11), ayant une configuration cylindrique avec un diamètre extérieur égal au diamètre
intérieur de ladite paroi (2) et traversé axialement par un conduit axial (30), ayant
un diamètre adapté à former une ouverture de visite.
4. Réacteur selon la revendication 3, caractérisé en ce qu'il comprend une conduite centrale (27), disposée et s'étendant dans ledit conduit
axial (30) dudit dispositif d'échange de chaleur (10).
5. Réacteur selon la revendication 3, caractérisé en ce que ledit dispositif d'échange de chaleur (10) comprend au moins deux séries (9a, 9b,
9c) d'échangeurs de chaleur (11), ayant chacun une configuration cylindrique, l'une
étant maintenue dans l'autre, dans lequel les éléments sont disposés coaxialement
et concentriquement les uns aux autres.
6. Réacteur selon la revendication 2, caractérisé en ce que lesdites plaques (13a,13b) sont mutuellement jointes par plusieurs points de soudure
(16) en délimitant à l'intérieur de l'intervalle (15) des éléments échangeurs de chaleur
respectifs (12), plusieurs trajets tortueux pour un fluide de service, tous en communication
de fluide avec des raccords d'entrée et de sortie respectifs (17,18) dudit fluide
de service, prévus sur des côtés opposés desdits éléments (12).
7. Réacteur selon la revendication 6, caractérisé en ce que chaque échangeur (11) comprend plusieurs éléments échangeurs de chaleur (12) reliés
et rigidifiés en une seule structure.
8. Réacteur selon la revendication 7, caractérisé en ce que lesdits raccords (17,18) desdits éléments échangeurs de chaleur (12) sont raccordés
et fixés à des conduites supérieures et inférieures respectives (19,20).
9. Réacteur selon la revendication 7, caractérisé en ce que les éléments échangeurs de chaleur (12) sont disposés à l'intérieur de chaque échangeur
de chaleur (11) selon un schéma radial.
10. Réacteur selon la revendication 8, caractérisé en ce qu'il comprend plusieurs collecteurs (26,39) en communication de fluide avec lesdits
conduites inférieures (20) et disposés de façon à former une ossature plane et réticulée,
adaptée à supporter ledit dispositif d'échange de chaleur (10) à l'intérieur de ladite
paroi (2).
11. Dispositif d'échange de chaleur pour réacteurs pseudo-isothermes comprenant une paroi
à peu près cylindrique (2) fermée à ses extrémités opposées par des fonds respectifs
(3,4), au moins l'un de ceux-ci étant doté d'au moins une ouverture de visite (5)
d'un diamètre inférieur au diamètre de ladite paroi (2), une zone de réaction (6)
à l'intérieur de la paroi (2) afin de contenir un lit catalytique, caractérisé en ce qu'il comprend au moins deux échangeurs de chaleur modulaires et assemblés (11) selon
la revendication 1.
12. Dispositif d'échange de chaleur selon la revendication 11, caractérisé en ce que le ou lesdits éléments échangeurs de chaleur (12) comprennent une paire de plaques
métalliques juxtaposées (13a,13b), mutuellement jointes en disposition espacée à l'aide
de soudures (14,16), de façon à délimiter entre elles un intervalle (15) de largeur
prédéterminée.
13. Dispositif d'échange de chaleur selon la revendication 12, caractérisé en ce que lesdites plaques (13a,13b) sont mutuellement jointes par plusieurs points de soudure
(16) délimitant dans l'intervalle (15) des éléments échangeurs de chaleur respectifs
(12) plusieurs trajets tortueux pour un fluide de service, tous en communication de
fluide avec des raccords d'entrée et de sortie respectifs (17,18) dudit fluide de
service, prévus sur des côtés opposés desdits éléments (12).
14. Dispositif d'échange de chaleur selon la revendication 13, caractérisé en ce que lesdits points de soudure (16) sont répartis selon un schéma en quinconce et/ou en
carrés.
15. Dispositif d'échange de chaleur selon la revendication 13, caractérisé en ce que chaque échangeur (11) comprend plusieurs éléments échangeurs de chaleur (12) reliés
et rigidifiés en une seule structure.
16. Dispositif d'échange de chaleur selon la revendication 15, caractérisé en ce que lesdits raccords (17,18) desdits éléments échangeurs de chaleur (12), sont reliés
et fixés à des conduites supérieures et inférieures respectives (19,20).
17. Dispositif d'échange de chaleur selon la revendication 15, caractérisé en ce que les éléments (12) sont disposés dans chaque échangeur (11) selon un schéma radial.
18. Dispositif d'échange de chaleur selon la revendication 16, caractérisé en ce qu'il comprend plusieurs collecteurs (26,39) en communication de fluide avec lesdits
conduites inférieures (20) et disposés de façon à former une ossature plane et réticulée,
adaptée à supporter ledit dispositif d'échange de chaleur (10) à l'intérieur de ladite
paroi (2).