| (19) |
 |
|
(11) |
EP 1 363 088 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
26.07.2006 Bulletin 2006/30 |
| (22) |
Date of filing: 08.05.2002 |
|
| (51) |
International Patent Classification (IPC):
|
|
| (54) |
Receiver drier
Sammler Trockner
Accumulateur sécheur
|
| (84) |
Designated Contracting States: |
|
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
| (43) |
Date of publication of application: |
|
19.11.2003 Bulletin 2003/47 |
| (73) |
Proprietor: Finber S.p.A |
|
43100 Scarzara (Parma) (IT) |
|
| (72) |
Inventor: |
|
- Bernini, Michele,
c/o SKG Italiana S.P.A.
43040 Scarzara (Parma) (IT)
|
| (74) |
Representative: Grünecker, Kinkeldey,
Stockmair & Schwanhäusser
Anwaltssozietät |
|
Maximilianstrasse 58 80538 München 80538 München (DE) |
| (56) |
References cited: :
EP-A- 0 276 943 DE-A- 3 601 342 US-A- 5 038 582
|
EP-A- 0 816 779 US-A- 2 893 563 US-A- 5 910 165
|
|
| |
|
|
- PATENT ABSTRACTS OF JAPAN vol. 1998, no. 08, 30 June 1998 (1998-06-30) & JP 10 073346
A (MITSUBISHI HEAVY IND LTD), 17 March 1998 (1998-03-17)
- PATENT ABSTRACTS OF JAPAN vol. 1995, no. 05, 30 June 1995 (1995-06-30) & JP 07 043049
A (DAIKIN IND LTD), 10 February 1995 (1995-02-10)
- PATENT ABSTRACTS OF JAPAN vol. 015, no. 057 (M-1080), 12 February 1991 (1991-02-12)
& JP 02 287066 A (NIPPONDENSO CO LTD), 27 November 1990 (1990-11-27)
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The invention relates to a receiver drier for an automotive air-conditioning system
according to the preamble part of claim 1.
[0002] The receiver drier of an automotive air-conditioning system (or generally in a refrigerating
system) has the task to extract any water contained in the refrigerant, to store a
predetermined amount of the refrigerant during operation of the system, and to filter
out impurities from the refrigerant circulating through the receiver drier. The water
is extracted by at least one charge of a desiccant material placed inside the casing.
Impurities are caught by a filter structure.
[0003] In the receiver drier of DE 36 06 029 A desiccant material is placed directly in
the refrigerant flow path inside the casing and between two spaced apart strainer
walls each fixed to the inner casing wall. All of the refrigerant entering the receiver
drier has to pass through the charge.
[0004] In the receiver drier of DE 39 710 638 U the desiccant material is contained in a
permeable bag placed on top of a bell-shaped strainer fixed to a free end of a central
refrigerant tube. The filter structure is placed in the strainer. All of the refrigerant
entering the receiver drier has to pass through the desiccant material.
[0005] It is a drawback of conventional receiver driers that the entire refrigerant flow
has to pass through the desiccant material which in time constitutes a flow obstacle
of considerable flow resistance generating an undesirably large pressure drop. In
operation the diameter of the drier receiver tends to decrease and the interspaces
between the pearls of the desiccant material become clogged gradually. The density
of the charge increases resulting in increasing flow resistance as well as in an increasing
pressure drop which finally may jeopardise the operation of the entire refrigeration
system. Moreover, the charge occupies a significant volume in the drier receiver wherein
a large useful free volume would be very desirable. Placing the charge in the drier
receiver is labour intensive and costly, because several installation steps and additional
structural measures are needed.
[0006] In the receiver drier of EP 0 276 943 A the charge is contained in an axially insertable
refrigerant processing cartridge in an upper region of the casing. The cartridge is
penetrated by an outlet tube and is sub-divided into two compartments separated by
a strainer. The bottom surface of the cartridge as well is defined by a permeable
strainer. Only a part of the refrigerant passing the drier receiver has to pass the
charge.
[0007] The desiccant charge of the receiver drier of DE 36 01 342 A is a mixture of the
active desiccant and a binding substance directly pressed into the lower casing part.
The mixture is hardened in an oven such that it adheres to the inner casing wall.
[0008] Further prior art is contained in JP 10073346 A, US 2,893,563 A, US 5,038,582 A,
US 5,910,165 A, EP 0 816 779 A, JP 07043049 A and JP 02287066 A.
[0009] It is a task of the invention to provide a receiver drier of the kind as disclosed
which can be manufactured for fair costs, allows to comfortably place the charge of
desiccant during assembly, and which contributes to increase the operational safety
of the system by a reduced pressure drop in the refrigerant flow through the receiver
drier.
[0010] This task is solved by the features of claim 1.
[0011] The charge of desiccant material is placed outside of the direct refrigerant flow
path and occupies only a small part of the volume of the casing. The charge fulfils
its function, so to speak, at a static level, and does not influence the pressure
drop for the refrigerant flow negatively. The only pressure drop which is to be overcome
by the refrigerant flow is caused by the cross-sections of the flow facilities and
the filter structure. Preferably, the charge is directly received in the casing end
closed by a port-free end part. No bag is necessary to confine the charge, however,
if desired a permeable bag may be used. In the simplest way the desiccant material
can be filled in directly into the casing, before the strainer is inserted and confines
the charge, preferably under light compression, in a well defined manner outside of
the direct refrigerant flow path. No further labour intensive installation steps are
necessary. The accommodation of the desiccant charge assures that only a part of the
refrigerant contained in the receiver drier will enter the charge in a static manner,
even if the direct refrigerant flow is lively and strong. The arrangement of the charge
outside of the direct flow path reflects the recognition that the desiccant material
by nature generates a very strong attraction for any water contained in the refrigerant
and reliably extracts water out of the refrigerant even if the refrigerant contacts
the desiccant material in a static manner only. The charge is confined in an end part
of the casing remote from the inlet/outlet ports. This occupies only a small part
of the volume of the receiver drier. The remaining volume may desirably be used to
enhance the sub-cooling effect of the receiver drier.
[0012] For physical and thermal reasons the charge of desiccant material changes its volume
during operation of the system. For this reason it is expedient to hold the charge
under light compression and such that it may expand or contract. Expediently, the
strainer is placed with a slide-fit contact at the casing inner wall such that it
is able to move with the charge when the charge expands or contracts. A compression
spring loads the strainer and compresses the charge via the strainer. Advantageously,
the compression spring is seated on the positioning holder.
[0013] Of advantage is to define a refrigerant flow deflection chamber between the filter
structure and the strainer. In the chamber a desirable turbulent flow dynamic condition
occurs when the refrigerant seeks its way to the outlet port and such that any water
reliably is extracted by the charge.
[0014] Expediently, the inlet/outlet ports are commonly provided in one end part of the
casing, while the deflection chamber is located with axial distance from the port-equipped
end part. A substantially central refrigerant tube extends from one port of the port-equipped
end part into the deflection chamber. The filter structure is placed at or adjacent
to the free end of the refrigerant tube. The only significant flow obstacle is created
by the filter structure, while the charge of desiccant material fulfils its task in
a static manner.
[0015] The filter structure needs some support, because it is arranged separately. Expediently,
the filter structure is secured to a positioning holder which may be mounted to the
free end of the refrigerant tube and/or may be supported by the inner casing wall.
[0016] To facilitate the assembly of the receiver drier the refrigerant tube is stabilised
by an adapter part of the port-equipped end part of the receiver drier. Via the adapter
part the reaction force from the positioning holder and/or the strainer is backed
up by the end part of the casing.
[0017] A pot-shaped strainer is easy to insert into the casing and is well guided by its
contact to the inner wall of the receiver drier.
[0018] As an additional or alternative structure a layer of a gap recovering material may
be placed between the strainer and the charge and/or between the port-free end part
and the charge. The layer has to be permeable when positioned at the strainer. At
the port-free end part the layer only needs to be resilient. Volume changes of the
charge are taken up or compensated for by the layer. The charge remains under a relatively
constant compression and, as a consequence, occupies only the minimum volume in the
receiver drier.
[0019] Expediently, the refrigerant pipe, the positioning holder and the strainer coupled
to the positioning holder by the compression spring may form one prefabricated unit
which can be inserted comfortably into the casing. The structural unit even may be
completed by the charge and/or the adapter part.
[0020] Embodiments of the invention will be explained with the help of the drawing. In the
drawing is:
- Fig. 1
- a longitudinal sectional view of a receiver drier,
- Fig. 2
- a longitudinal sectional view of a welded embodiment of a receiver drier,
- Fig. 3
- a longitudinal sectional view of another embodiment of a receiver drier integrated
into a condenser, and
- Fig. 4
- a schematic illustration of a condenser casing combined with a receiver drier, e.g.
the receiver drier shown in Fig. 3.
[0021] The receiver drier R in Fig. 1 has a substantially cylindrical, relatively slim casing
2 of aluminium or steel material. The casing 2 is closed at the left end by an integrated
end part 1, and is closed at the opposite, open end by an inserted and rigidly coupled
end part 3. End part 3 is a so-called connector head H which serves to establish fluid-tight
connections with a not shown connecting structure to which the receiver drier is to
be mounted. The receiver drier R e.g. will operate in a position with the connector
head H oriented downwardly.
[0022] The left end of casing 2 contains a charge D of a desiccant material. The material
may be filled into the casing directly from the open casing end. The charge D is held
in place and in contact with the casing inner wall and the end part 1 by a strainer
4. The strainer 4 has the shape of a pot with a perforated pot bottom wall 9 and a
circumferentially continuous guiding wall 10. Guiding wall 10 may engage the inner
casing wall with a slide-fit. Distant from strainer 4 a positioning holder 7 is installed
in contact with the inner wall. The holder 7 has the shape of a pot with a perforated
or partly open pot bottom wall carrying a net filter structure 11 and a circumferential
guiding wall 12 which may contact the casing inner wall. The drier receiver R is equipped
with a central longitudinally extending refrigerant tube 13 inserted by an adapter
port A into port-equipped end part 3, and extending to the holder 7. The holder 7
may have a central tubular projection 14 which is inserted into the free end of the
refrigerant tube 13. The holder 7 defines flow paths 6 for a refrigerant circulating
through the receiver drier R.
[0023] The refrigerant enters the receiver drier R through an inlet port 15 in end part
4, the adapter part A and further through the refrigerant tube 13 from which it reaches
a flow deflection chamber C commonly defined by strainer 4 and holder 7. A part of
the refrigerant in chamber C also enters the charge D. The charge D extracts any water
contained in the refrigerant. From chamber C the refrigerant passes through net filter
structure 11 and then into the remaining part of the casing 2 until it leaves the
receiver drier R through an outlet port 16. The chamber C and the remaining free space
in the casing 2 provides a relatively big volume desirable for an effective sub-cooling
effect of the receiver drier.
[0024] The connector head H as the port-equipped end part 3 is inserted into the free end
of casing 2 and is rigidly coupled to casing 2 by a radial inward deformation 18,
e.g. a circular crimping, of the casing wall. The connection region between the connector
head H and the casing 2 additionally is sealed by O-rings 17. Other suitable connecting
principles may be used instead.
[0025] A compression spring 5 is inserted between the strainer 4 and the holder 7 such that
the strainer 4 is slightly pressed against the charge D. The part of the refrigerant
entering the charge D is indicated by an arrow 8. The compression spring 5 allows
the strainer 4 to move axially in case that the volume of the charge D should decrease
due to a certain setting effect, or should increase for other reasons. In all operating
conditions, however, the charge D may remain under a slight axial pre-load by the
first strainer 4 and the compression spring 5.
[0026] The refrigerant tube 13, the holder 7, and strainer 4 coupled to the holder 7 by
compression spring 5 may be prefabricated as a structural unit which can be inserted
into the casing 2 comfortably after the charge D has been filled in. The structural
unit even can be pre-mounted to the connector head H such that it can be placed by
one installation step when inserting the connector head H.
[0027] The structure as described above allows to reduce the costs to manufacture and assemble
the receiver drier in comparison with conventional ones and considerably improves
the system operational functionality by reducing the pressure drop for the refrigerant
flow. The charge D, e.g. constituting a molecular sieve, is applied at a static level
close to the upper bottom of the casing, e.g. in case of an upright operating position
of the drier receiver in the system. In operation and in time the diameter of the
receiver drier tends to decrease. Then the pressure difference of the refrigerant
flow between the inlet port and the outlet port increases considerably such that the
performance of the receiver drier and of the entire system may be jeopardised. After
some hours of operation of the receiver drier in the air-conditioning system, the
risk of a flow obstruction increases proportionally to the diameter decrease, because
also the cross-sectional area for the filtering action is decreasing. With the arrangement
as disclosed above, the filter structure is separated from the charge absorbing the
water. This is not only useful for receiver driers which will be installed in a stand
alone location in the system, but also for receiver driers which are integrated to
or into the condenser of the system. The integration into the condenser does not cause
problems because the charge of desiccant material resists temperatures of up to 750°C
and more when soldering the condenser and the receiver drier at the same time. The
quality, pearl size, volume, and the like of the charge D easily can be adapted to
the demand of the customer using the receiver drier. The same is true for the filter
structure. The port-equipped end part 3 can be secured in place also by welding or
the like.
[0028] The receiver drier of Fig. 2 is designed similar to the receiver drier of Fig. 1.
The charge D of the desiccant material is received in the closed end of the casing
2 in direct contact with integrated end part 1. Between strainer 4 which is guided
at the inner casing wall, and the charge D a layer 19 of a gap recovering material
is provided which is permeable for the refrigerant but not for the desiccant material
and which compensates for any volume variations of the charge D. The central refrigerant
tube 13 is secured to end part 3 (connector head H) via adapter part A and abuts against
the, in this case, bell-shaped positioning holder 7 resting on a projecting boss of
strainer 4. The open end of holder 7 is equipped with the net filter structure 11.
The chamber C is defined in part inside holder 7. In this case refrigerant tube 13
may be connected to outlet port 16. The connector head H is welded to the casing 2
via adapter part A.
[0029] The receiver drier R of Fig. 3 is intended to be integrated with a condenser casing
20 (Fig. 4) of the system. The tube-like, cylindrical casing 2 is closed at both ends
by plug-shaped fixed end parts 1, 3. The charge D of the desiccant material is received
directly in the end of the casing 2 closed by end part 1. At both ends of charge D
layers 19 of a gap recovering material are provided. Strainer 4 with its perforated
bottom wall 9 is installed with a press-fit contact with the casing inner wall. The
positioning holder 7 is placed with axial distance from strainer 4 and carries the
net filter structure 11. The refrigerant flow deflection chamber C is defined between
the strainer 4 and the holder 7. In the region of chamber C inlet port 15 is formed
in the casing wall 2, while the outlet port 16 is formed in the casing wall 2 about
midway between the holder 7 and the other end part 3. The operating position of the
receiver drier R may be selected such that the charge D will be at the top.
[0030] In Fig. 4 the receiver drier of Fig. 3 is mounted to the side of the condenser casing
20 such that the receiver drier R is supported by the casing 20 and such that the
inlet and outlet ports 15, 16 establish the necessary flow connections with the interior
of the casing 20.
1. Receiver drier (R) for an automotive air-conditioning system, comprising a casing
(2) of substantially cylindrical shape with end parts (1, 3) closing both casing ends,
inlet/outlet ports (15, 16), a charge (D) of a desiccant material fixed in place inside
the casing (2), and a filter structure (11) provided within a direct flow path extending
inside the casing (2) from the inlet port (15) to the outlet port (16), whereby the
charge (D) of the desiccant material is placed outside the direct refrigerant flow
path in an end part of the casing (2) remote from the inlet/outlet ports (15, 16)
characterised in that the charge of the desiccant material is separated from the direct flow path by a
permeable strainer (4) which secures the charge (D) in its place, that the filter
structure (11) is separated from the charge (D), that the strainer (4) is placed with
a slide-fit contact at the inner casing wall, and that a compression spring (5) is
inserted between a positioning holder (7) mounted to the free end of a refrigerant
tube (13) and the strainer (4) to yieldably compress the charge (D) via the strainer
(4).
2. Receiver drier as in claim 1, characterised in that the filter structure (11) and the strainer (4) commonly define a refrigerant flow
deflection chamber (C) which communicates directly with the inlet port (15) and which
communicates indirectly via the filter structure (11) with the outlet port (16) and
which communicates via the strainer (4) with the casing part containing the charge
(D), respectively
3. Receiver drier as in claim 2, characterised in that the inlet/outlet ports (15, 16) are provided in one end part (3) of the casing (2),
that the flow deflection chamber (C) is located with axial distance from the port-equipped
end part (3) that the substantially central refrigerant tube (13) extends from one
port (15, 16) of the port-equipped part (3) int the chamber (C), and that the filter
structure (11) is placed at or adjacent to the free end of the refrigerant tube (13).
4. Receiver drier as in at least one of the preceding claims, characterised in that the filter structure (11) is secured to the positioning holder (7) which either is
supported by the inner casing wall and/or is mounted to the free end of the refrigerant
tube (13).
5. Receiver drier as in claim 1, characterised in that the refrigerant tube (13) is stabilised by an adapter part (A) of the port-equipped
end part (3).
6. Receiver drier as in at least one of the preceding claims, characterised in that the strainer (4) is pot-shaped and has a perforated pot bottom wall (9) and a peripheral
guiding wall (10).
7. Receiver drier as in at least one of the preceding claims, characterised in that a layer (19) of a liquid permeable gap recovering material is placed between the
strainer (4) and the charge (D) and/or between the port-free end part (1) and the
charge (D).
8. Receiver drier as in at least one of the preceding claims, characterised in that the refrigerant tube (13), the strainer (4) and the positioning holder (7) and the
compression spring (5) define a prefabricated structural unit.
1. Trocknungsbehälter (R) für das Klimatisierungssystem eines Fahrzeuges, umfassend:
ein im Wesentlichen zylinderförmiges Gehäuse (2) mit Endteilen (1, 3), die jeweils
beide Endbereiche des Gehäuses abschließen, Einlass/Auslassanschlüsse (15, 16), eine
Kartusche (D) eines Trocknungsmittels, die fest innerhalb des Gehäuses (2) angeordnet
ist, und eine Filterstruktur (11), die in einem direkten Strömungsweg angeordnet ist,
der sich innerhalb des Gehäuses (2) vom Einlassanschluss (15) zum Auslassanschluss
(16) erstreckt, wobei die Kartusche (D) des Trocknungsmittels außerhalb des direkten
Strömungsweges des Kühlungsmittels in einem Endteil des Gehäuses (2), der entfernt
von den Einlass/Auslassanschlüssen (15, 16) angebracht ist, angeordnet ist, dadurch gekennzeichnet, dass die Kartusche des Trocknungsmittels vom direkten Strömungsweg durch ein durchlässiges
Sieb (4) abgetrennt ist, das die Kartusche (D) in Position hält, dass die Filterstruktur
(11) von der Kartusche (D) getrennt ist, dass das Sieb (4) an der inneren Gehäusewand
durch einen Schiebekontakt angeordnet ist, und dass eine Druckfeder (5) zwischen einer
am freien Ende eines Kühlmittelrohrs (13) angebrachten Positionshaltevorrichtung (7)
und dem Sieb (4) eingesetzt ist, um somit nachgebend die Kartusche (D) durch das Sieb
(4) zu drücken.
2. Trocknungsbehälter gemäß Anspruch 1, dadurch gekennzeichnet, dass die Filterstruktur (11) und das Sieb (4) zusammen einen Kühlmittelstromumleitekammer
(C) definieren, die direkt mit dem Einlassanschluss (15) kommuniziert, wobei diese
Kammer indirekt durch die Filterstruktur (11) mit dem Auslassanschluss (16) kommuniziert,
und wobei diese Kammer durch das Sieb (4) mit dem Gehäuseteil kommuniziert, der die
Kartusche (D) enthält.
3. Trocknungsbehälter gemäß Anspruch 2, dadurch gekennzeichnet, dass die Einlass/Auslassanschlüsse (15, 16) in einem Endteil (3) des Gehäuses (2) angeordnet
sind, dass die Stromumleitekammer (C) mit einem axialen Abstand von dem mit Anschluss
ausgestatteten Endteil (3) angeordnet ist, dass das im Wesentlichen mittlere Kühlmittelrohr
(13) sich von einem Anschluss (15, 16) des mit Anschluss ausgestatteten Teils (3)
in die Stromumleitekammer (C) erstreckt, und dass die Filterstruktur (11) entweder
am oder nahe am freien Ende des Kühlmittelrohrs (13) angeordnet ist.
4. Trocknungsbehälter gemäß zumindest einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Filterstruktur (11) mit der Positionshaltevorrichtung (7) fest verbunden ist,
wobei diese Vorrichtung entweder von der inneren Gehäusewand gestützt oder am freien
Ende des Kühlmittelrohrs (13) angebracht ist.
5. Trocknungsbehälter gemäß Anspruch 1, dadurch gekennzeichnet, dass das Kühlmittelrohr (13) durch einen Adapterteil (R) des mit Anschluss ausgestatteten
Endteils (3) stabilisiert ist.
6. Trocknungsbehälter gemäß zumindest einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Sieb (4) topfförmig ist und eine gelochte Bodenwand (9) sowie eine periphere
Führungswand (10) aufweist.
7. Trocknungsbehälter gemäß zumindest einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass eine Schicht (19) zwischen dem Sieb (4) und der Kartusche (D) und/oder zwischen dem
anschlussfreien Endteil (1) und der Kartusche (D) angeordnet ist, wobei diese Schicht
aus einem Material ist, das flüssigkeitsdurchlässig und spaltfüllend ist.
8. Trocknungsbehälter gemäß zumindest einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Kühlmittelrohr (13), das Sieb (4) und die Positionshaltevorrichtung (7) und die
Druckfeder (5) eine vorgefertigte, strukturelle Einheit bilden.
1. Accumulateur sécheur (R) pour un système de climatisation d'automobile, comprenant
un boîtier (2) d'une forme sensiblement cylindrique avec des parties d'extrémités
(1, 3) fermant les deux extrémités du boîtier, des orifices d'entrée/de sortie (15,
16), une charge (D) d'un matériau de dessiccation fixée en place à l'intérieur du
boîtier (2), et une structure de filtre (11) prévue à l'intérieur d'une voie d'écoulement
direct s'étendant à l'intérieur du boîtier (2) à partir de l'orifice d'entrée (15)
jusqu'à l'orifice de sortie (16), moyennant quoi la charge (D) du matériau de dessiccation
est placée à l'extérieur de la voie d'écoulement réfrigérant direct dans une partie
d'extrémité du boîtier (2) loin des orifices d'entrée/de sortie (15, 16), caractérisé en ce que la charge du matériau de dessiccation est séparée de la voie d'écoulement direct
par un tamis perméable (4) qui fixe la charge (D) à sa place, en ce que la structure de filtre (11) est séparée de la charge (D), en ce que le tamis (4) est placé avec un contact par glissement au niveau de la paroi interne
du boîtier, et en ce qu'un ressort de compression (5) est inséré entre un support de positionnement (7) monté
au niveau de l'extrémité libre d'un tube réfrigérant (13) et le tamis (4) afin de
comprimer de manière élastique la charge (D) par le biais du tamis (4).
2. Accumulateur sécheur selon la revendication 1, caractérisé en ce que la structure de filtre (11) et le tamis (4) définissent conjointement une chambre
de déflection (C) d'un flux réfrigérant, laquelle communique directement avec l'orifice
d'entrée (15) et communique indirectement avec par le biais de la structure de filtre
(11) avec l'orifice de sortie (16) et communique par le biais du tamis (4) avec la
partie du boîtier contenant la charge (D), respectivement.
3. Accumulateur sécheur selon la revendication 2, caractérisé en ce que les orifices d'entrée/de sortie (15, 16) sont prévus dans une partie d'extrémité
(3) du boîtier (2), en ce que la chambre de déflection (C) de flux est située à une distance axiale de la partie
d'extrémité (3) équipée d'un orifice, en ce que le tube réfrigérant (13) sensiblement central s'étend à partir d'un orifice (15,
16) de la partie d'extrémité (3) équipée d'un orifice dans la chambre (C), et en ce que la structure de filtre (11) est placée au niveau de ou de manière adjacente à l'extrémité
libre du tube réfrigérant (13).
4. Accumulateur sécheur selon au moins l'une quelconques des revendications précédentes,
caractérisé en ce que la structure de filtre (11) est fixée au support de positionnement (7), lequel est
soutenu par la paroi interne du boîtier et/ou monté à l'extrémité libre du tube réfrigérant
(13).
5. Accumulateur sécheur selon la revendication 1, caractérisé en ce que le tube réfrigérant (13) est stabilisé par une partie d'adaptateur (A) de la partie
d'extrémité (3) équipée d'un orifice.
6. Accumulateur sécheur selon au moins l'une quelconque des revendications précédentes,
caractérisé en ce que le tamis (4) est en forme de pot et comporte une paroi de fond de pot perforée (9)
et une paroi de guidage périphérique (10).
7. Accumulateur sécheur selon au moins l'une quelconque des revendications précédentes,
caractérisé en ce qu'une couche (19) d'un matériau de récupération d'écart perméable au liquide est placé
entre le tamis (4) et la charge (D) et/ou entre la partie d'extrémité (1) libre d'orifice
et la charge (D).
8. Accumulateur sécheur selon au moins l'une quelconque des revendications précédentes,
caractérisé en ce que le tube réfrigérant (13), le tamis (4) et le support de positionnement (7) et le
ressort de compression (5) définissent une unité structurelle préfabriquée.

