BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
[0001] The present invention relates to polyamide compositions. More particularly, the invention
relates to oxygen barrier polyamide compositions exhibiting high oxygen scavenging
capability as well as good coinjection stretch blow moldability with polyethylene
terephthalate (PET), to enable the fabrication of clear, high barrier multilayer PET
bottles for long shelf-life packaging applications. Such containers are useful for
packaging a variety of oxygen-sensitive food and beverage products such as beer, juices
and condiments as well as certain pharmaceutical and health care products.
DESCRIPTION OF THE RELATED ART
[0002] It is well known in the art to provide polyamide based packaging articles such as
films, bottles, containers, and the like, which are useful for food packaging. Many
such articles are made of multiple layers of different plastics in order to achieve
the desired barrier properties. For example,
U.S. patents 5,055,355 and
5,547,765 teach laminates of polyamides and ethylene vinyl alcohol copolymers which have good
oxygen barrier properties.
[0003] In order to enhance freshness preservation, it is a standard practice to package
food and beverage products within a packaging structure composed of laminated sheets
of two or more plastics. Such packaging structures generally include a barrier plastic
layer which has a low permeability to oxygen. The packaging structure can be thin,
in which case it is wrapped around the item being packaged, or it can be thick enough
to form a shaped container body such as a bottle.
[0004] It is known in the art to include an oxygen scavenger in the packaging structure.
An oxygen scavenger reacts with oxygen that is trapped in the package or that permeates
from outside of the package. This is described, for example, in
U.S. patents 4,536,409 and
4,702,966.
U.S. patent 4,536,409 describes cylindrical containers formed from such packaging plastics.
[0005] Various types of oxygen scavengers have been proposed for this purpose.
U.S. patent 4,536,409 recommends potassium sulfite as an oxygen scavenger.
U.S. patent 5,211,875 discloses the use of unsaturated hydrocarbons as oxygen scavengers in packaging films.
It is known in the art that ascorbic acid derivatives as well as sulfites, bisulfites,
phenolics, and the like can be oxidized by molecular oxygen, and can thus serve as
an oxygen scavenging material.
U.S. patent 5,075,362 discloses the use of ascorbate compounds in containers as oxygen scavengers.
U.S. patents 5,202,052 and
5,364,555 describe polymeric material carriers containing oxygen scavenging material. These
polymeric carriers for the oxygen scavenging material include polyolefins, polyvinylchloride
(PVC), polyurethanes, ethylene vinyl acetate (EVA) and polyethylene terephthalate
(PET).
[0006] U.S. Patents 5,021,515,
5,049,624 and
5,639,815 disclose packaging materials and processes therefor which utilize a polymer composition
which is capable of scavenging oxygen. Such compositions include an oxidizable organic
polymer component, preferably a polyamide, such as nylon MXD6, and a metal oxidation
promoter, such as a cobalt compound. These compositions can be used with PET, for
example.
[0007] U.S. Pat. No. 5,529,833 describes the use of a composition comprising an ethylenically unsaturated hydrocarbon
oxygen scavenger which is incorporated into a film layer, and used for making packaging
for oxygen sensitive products. The oxygen scavenger is catalyzed by a transition metal
catalyst and a chloride, acetate, stearate, palmitate, 2-ethylhexanoate, neodecanoate
or naphthenate counterion. Preferred metal salts are selected from cobalt (II) 2-ethylhexanoate
and cobalt (II) neodecanoate. Because water deactivates the oxygen scavenger composition,
the composition can only be used for packaging for dry materials.
[0008] Despite these advances in the art, there still remains a need for a barrier polymer
material which can provide high oxygen scavenging capability in order to reduce the
oxygen permeation into a container. There also is a particular need for oxygen scavenging
polymeric materials which meet the processing requirements for coinjection molding
and reheat stretch blow molding with PET to permit the fabrication of transparent
multilayer barrier PET bottles. For the latter requirement, the material must be (a)
melt processable at high temperatures of up to 280°C without degradation, (b) slow
to crystallize, like PET, during injection molding such that the molded preform is
sufficiently amorphous to permit subsequent reheat, stretch-blow molding into an oriented
bottle and (c) low in crystallinity to give a barrier layer with high clarity and
delamination-resistance (good adhesion) to PET layer.
SUMMARY OF THE INVENTION
[0009] The invention provides a polyamide composition which comprises:
- a) a slow crystallizing polyamide blend comprising (i) an amorphous, semiaromatic
polyamide homopolymer, copolymer or mixture thereof and (ii) a semicrystalline, aliphatic
polyamide homopolymer, copolymer or mixture thereof wherein in the weight ratio of
(i):(ii) ranges from 99:1 to 30:70;
- b) at least one polyamide-compatible, oxidizable polydiene; and
- c) at least one oxidation promoting metal salt catalyst.
[0010] The invention further provides an oxygen barrier film comprising a layer of a polyamide
composition which comprises:
- a) a slow crystallizing polyamide blend comprising (i) an amorphous, semiaromatic
polyamide homopolymer, copolymer or mixture thereof and (ii) a semicrystalline, aliphatic
polyamide homopolymer, copolymer or mixture thereof wherein in the weight ratio of
(i):(ii) ranges from 99:1 to 30:70;
- b) at least one polyamide-compatible, oxidizable polydiene; and
- c) at least one oxidation promoting metal salt catalyst.
[0011] The invention still further provides a multilayer article which comprises:
- a) a polyamide composition layer comprising a slow crystallizing polyamide blend comprising
(i) an amorphous, semiaromatic polyamide homopolymer, copolymer or mixture thereof
and (ii) a semicrystalline, aliphatic polyamide homopolymer, copolymer or mixture
thereof wherein in the weight ratio of (i):(ii) ranges from 99:1 to 30:70; at least
one polyamide-compatible, oxidizable polydiene; and at least one oxidation promoting
metal salt catalyst; and
- b) a thermoplastic polymer layer on one or both sides of the polyamide composition
layer.
[0012] The invention still further provides a shaped article which comprises a polyamide
composition comprising:
- a) a slow crystallizing polyamide blend comprising (i) an amorphous, semiaromatic
polyamide homopolymer, copolymer or mixture thereof and (ii) a semicrystalline, aliphatic
polyamide homopolymer, copolymer or mixture thereof wherein in the weight ratio of
(i):(ii) ranges from 99:1 to 30:70;
- b) at least one polyamide-compatible, oxidizable polydiene; and
- c) at least one oxidation promoting metal salt catalyst.
[0013] The invention still further provides a process for producing a polyamide composition
which comprises:
- a) melting a slow crystallizing polyamide blend comprising (i) an amorphous, semiaromatic
polyamide homopolymer, copolymer or mixture thereof and (ii) a semicrystalline, aliphatic
polyamide homopolymer, copolymer or mixture thereof wherein in the weight ratio of
(i):(ii) ranges from 99:1 to 30:70;
- b) blending the molten polyamide blend with at least one polyamide-compatible, oxidizable
polydiene and at least one oxidation promoting metal salt catalyst to thereby form
a mixture; and
- c) cooling the mixture.
[0014] The invention still further provides a process for producing an oxygen barrier film
which comprises:
- a) melting a slow crystallizing polyamide blend comprising (i) an amorphous, semiaromatic
polyamide homopolymer, copolymer or mixture thereof and (ii) a semicrystalline, aliphatic
polyamide homopolymer, copolymer or mixture thereof wherein in the weight ratio of
(i):(ii) ranges from 99:1 to 30:70;
- b) blending the molten polyamide blend with at least one polyamide-compatible, oxidizable
polydiene and at least one oxidation promoting metal salt catalyst to thereby form
a mixture;
- c) extruding, casting or blowing the mixture into a film; and
- d) cooling the film.
[0015] The invention still further provides a process for producing an oxygen barrier polyamide
film which comprises:
- a) melting a composition which comprises a slow crystallizing polyamide blend comprising
(i) an amorphous, semiaromatic polyamide homopolymer, copolymer or mixture thereof
and (ii) a semicrystalline, aliphatic polyamide homopolymer, copolymer or mixture
thereof wherein in the weight ratio of (i):(ii) ranges from 99:1 to 30:70; at least
one polyamide-compatible, oxidizable polydiene; and at least one oxidation promoting
metal salt catalyst;
- b) extruding, casting or blowing the composition into a film; and
- c) cooling the film.
[0016] The invention still further provides a process for producing a multilayer article
which comprises:
- a) melting a slow crystallizing polyamide blend comprising (i) an amorphous, semiaromatic
polyamide homopolymer, copolymer or mixture thereof and (ii) a semicrystalline, aliphatic
polyamide homopolymer, copolymer or mixture thereof wherein in the weight ratio of
(i):(ii) ranges from 99:1 to 30:70; at least one polyamide-compatible, oxidizable
polydiene; and at least one oxidation promoting metal salt catalyst to thereby form
a mixture;
- b) separately melting a thermoplastic polymer composition;
- c) coextruding, casting, blowing, thermoforming, blow molding or coinjecting the mixture
and thermoplastic polymer composition into a multilayer article; and
- d) cooling the article.
[0017] The invention still further provides a process for producing a multilayer article
which comprises:
- a) melting a slow crystallizing polyamide blend comprising (i) an amorphous, semiaromatic
polyamide homopolymer, copolymer or mixture thereof and (ii) a semicrystalline, aliphatic
polyamide homopolymer, copolymer or mixture thereof wherein in the weight ratio of
(i):(ii) ranges from 99:1 to 30:70; at least one polyamide-compatible, oxidizable
polydiene; and at least one oxidation promoting metal salt catalyst to thereby form
a mixture;
- b) separately melting a thermoplastic polymer composition;
- c) coinjecting molding the mixture and thermoplastic polymer composition into a multilayer
preform;
- d) reheating the perform; and
- e) blow molding the perform into a multilayer article.
[0018] The invention still further provides a multilayer article formed by a process comprising:
- a) melting a slow crystallizing polyamide blend comprising (i) an amorphous, semiaromatic
polyamide homopolymer, copolymer or mixture thereof and (ii) a semicrystalline, aliphatic
polyamide homopolymer, copolymer or mixture thereof wherein in the weight ratio of
(i):(ii) ranges from 99:1 to 30:70; at least one polyamide-compatible, oxidizable
polydiene; and at least one oxidation promoting metal salt catalyst to thereby form
a mixture;
- b) separately melting a thermoplastic polymer composition;
- c) coinjecting molding the mixture and thermoplastic polymer composition into a multilayer
preform;
- d) reheating the perform; and
- e) blow molding the perform into a multilayer article.
[0019] This invention provides a barrier polymer material which can provide high oxygen
scavenging capability in order to reduce the oxygen permeation into the container.
This invention further provides oxygen scavenging polymeric materials which meet the
processability requirements for coinjection moldability and reheat stretch blow moldability
with PET to permit the fabrication of transparent multilayer barrier PET bottles.
The polyamide compositions of this invention are suitable for coinjection stretch-blow
molding with PET, to thereby form a multilayered film which serves as a barrier layer
suitable for bottles for extended shelf-life packaging of oxygen-sensitive food and
beverage products.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
[0020] According to the invention an improved oxygen-scavenging barrier polyamide composition
suitable for coinjection stretch-blow molding with PET is prepared by combining a
slow crystallizing polyamide blend; at least one polyamide-compatible, oxidizable
polydiene; and at least one oxidation promoting metal salt catalyst.
[0021] The polyamide blend component comprises (i) an amorphous, semiaromatic polyamide
homopolymer, copolymer or mixture thereof and (ii) a semicrystalline, aliphatic polyamide
homopolymer, copolymer or mixture thereof wherein in the weight ratio of (i):(ii)
ranges from 99:1 to 30:70. The polyamides used in the polyamide blend of the invention
may be obtained from commercial sources or may be prepared using conventional techniques.
Preferably, the amorphous, non-crystallizable semiaromatic polyamide of the invention
comprises a homopolymer or a random copolymer having a molecular weight of from about
10,000 to about 100,000, a Tg of from about 70° to 200°C and good oxygen barrier property
such as an oxygen permeability of < 0.39 cc.mm/m
2.atm.day (1 cc.mil/100 in
2/atm day) in air. Semiaromatic polyamides comprising aromatic monomer units and linear
aliphatic monomer units, without pendant groups or substituents, are particularly
preferred in this invention since they are known to exhibit intrinsically good gas
barrier properties due to their low free volume or high chain packing density. Examples
of such amorphous, semiaromatic polyamides nonexclusively include PA-6I, PA-6I/6T,
PA-MXDI, PA-6/MXDI, PA-6/6I and the like. PA-6I/6T is commercially available from
EMS corporation of Zurich, Switzerland, under the name Grivory G21, or from DuPont
of Wilmington, Delaware, USA, under the name Selar PA3426. In contrast, semi-aromatic
polyamides composed of monomer units with bulky pendant groups or bulky cycloaliphatic
rings are poor gas barrier materials and hence are not suitable and hence not preferred
for making the high barrier oxygen-scavenging compositions of this invention. An example
of such a polyamide is poly(2,4,4-trimethyl hexamethylene terephthalamide), sold by
Huls of Somerset, New Jersey, USA under the name Trogamid.
[0022] General procedures useful for the preparation of amorphous, semiaromatic polyamides
are well known to the art. Such are the reaction products of diacids with diamines.
Useful diacids for making such polyamides include dicarboxylic acids of the general
formula :
HOOC--Z--COOH
wherein Z is representative of a divalent short chain (<10C) aliphatic diacid such
as adipic acid, azelaic acid, sebacic acid or more preferably an unsubstituted aromatic
dicarboxylic acid such as isophthalic acid, terephthalic acid, 2,6-naphthalene dicarboxylic
acid, and the like. Suitable diamines for making polyamides include aliphatic diamines
having the formula
H
2N(CH
2)
nNH
2
wherein n has an integer value of 1-10, and includes such compounds as trimethylenediamine,
tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, octamethylenediamine,
decamethylenediamine, and the like. Aromatic diamines such as m- or p-xylylene diamine
are particularly suited. Other aromatic diamines such as 4,4'-diaminodiphenyl ether,
4,4'-diaminodiphenyl sulphone, 4,4'-diaminodiphenylmethane are useful only for interfacial
polycondensation, a somewhat expensive and less common method.
[0023] Suitable amorphous semi-aromatic polyamides nonexclusively include poly(hexamethylene
isophthalamide-co-terephthalamide) (PA-6,I/6,T), poly(hexamethylene isophthalamide)
(PA-6,I), poly(tetramethylenediamine-co-isophthalic acid) (PA-4,I), and the like,
and other polyamides abbreviated as PA-MXDI, PA-604XDT/I, PA-6,6/6I, and the like.
Blends of two or more aliphatic/aromatic polyamides and/or aliphatic polyamides can
also be used. Aliphatic/aromatic polyamides can be prepared by known preparative techniques
or can be obtained from commercial sources. Other suitable polyamides are described
in
U.S. patents 4,826,955 and
5,541,267.
[0024] Suitable semi-crystalline aliphatic polyamides nonexclusively include homopolymers
such as poly(6-aminohexanoic acid) (PA-6), also known as poly(caprolactam), poly(hexamethylene
adipamide) (PA-6,6), poly(7-aminoheptanoic acid) (PA-7), poly(10-aminodecanoic acid)
(PA-10), poly(11-aminoundecanoic acid) (PA-11), poly(12-aminododecanoic acid) (PA-12),
poly(hexamethylene sebacamide) (PA 6,10), poly(hexamethylene azelamide) (PA-6,9),
poly(tetramethylene adipamide (PA- 4,6), caprolactam/hexamethylene adipamide copolymer
(PA-6,6/6), hexamethylene adipamide/caprolactam copolymer (PA-6/6,6) and the like,
as well as copolymers and mixtures thereof. Of these, preferred aliphatic polyamides
include polycaprolactam, commonly referred to as nylon 6, and polyhexamethylene adipamide,
commonly referred to as nylon 6,6, and mixtures thereof Of these, polycaprolactam
is most preferred.
[0025] The polyamide components of the polyamide blend used in this invention are non-oxidizable.
Hence, an oxidizable polydiene is used in this invention to serve as an oxygen scavenger
under the intended, ambient conditions of use of the product in packaging applications.
[0026] The amount of the polyamide blend component present in the overall composition preferably
ranges from about 80% to about 99.9% by weight of the overall composition, preferably
from about 90% to about 99% by weight of the overall composition, and more preferably
from about 95% to about 98% by weight of the overall composition. The polyamide blend
itself comprises of a blend of (i) an amorphous, semiaromatic polyamide homopolymer,
copolymer or mixture thereof and (ii) a semicrystalline, aliphatic polyamide homopolymer,
copolymer or mixture thereof wherein in the weight ratio of (i):(ii) ranges from 99:1
to 30:70. A more preferred ratio of (i):(ii) ranges from 80:20 to 35:65, most preferably
from about 70:30 to about 40:60. The most preferred ratio is about 50:50.
[0027] The polyamide blend of this invention preferably exhibits a slow crystallization
behavior similar to that of PET, characterized by no or slow onset of crystallization,
as determined by the differential scanning calorimetry (DSC) crystallization exotherm
(Tcc) peak that occurs upon cooling the melt from 280°C at a programmed cooling rate
of 20°C/min. For PET, Tcc is about 190°C, which is about 70° below its crystalline
melting point (T
m of 260°C. Thus, the polyamide composition of this invention preferably exhibits either
no Tcc (no tendency for crystallization) or a low Tcc or crystallization temperature
of 150°C or less, upon cooling from the melt at a cooling rate of 20°C/min in a DSC
apparatus. At faster cooling rates (80°C/min) the polyamides of this invention exhibit
no or very low Tcc (see Table 1). Example 3 exhibits no detectable Tcc at a cooling
rate of 80°C/min. Example 4 exhibits a low Tcc (121°C). PET exhibits no detectable
Tcc at a cooling rate of 80°C/min.
[0028] The polyamide composition of this invention preferably exhibits a low degree of crystallinity
after injection molding, preferably ranging from about 0 to about 30%, more preferably
from about 5 to about 25% and most preferably from about 10 to about 20% as determined
by differential scanning calorimetry or wide angle X-ray diffraction (WAXD) techniques.
[0029] As mentioned above, the polyamide components of the polyamide blend used in this
invention are non-oxidizable. Hence, an oxidizable polydiene is used in this invention
to serve as an oxygen scavenger under the intended, ambient conditions of use of the
product in packaging applications. The polyamide composition of the invention also
contains at least one functional, polyamide-compatible, oxidizable polydiene which
serves as an oxygen scavenger, which is preferably dispersed as small particles which
are compatible with and uniformly distributed throughout the polyamide blend. Preferably
the polyamide-compatible, oxidizable polydiene comprises an epoxy or anhydride functionality
such that it is compatible with (and may react with) the carboxyl or amino end groups
of the polyamides of the polyamide blend. The functionality in the polydiene component
is also compatible with (and may also react) with amide group in the polyamide backbones
of the polyamides of the polyamide blend. The functionality can be pendant to the
backbone or at the chain ends of the polydiene. The preferred functional polydienes
include functional polyalkadiene oligomers which can have the following general backbone
structure:

where R
1, R
2, R
3 and R
4 can be the same or different and can be selected from hydrogen (-H) or any of the
lower alkyl groups (methyl, ethyl, propyl, butyl etc.). R
2 and R
3 may also be a chloro (-Cl) group. Illustrative of the backbone structure are polybutadiene
(1,4 or 1,2 or mixtures of both), polyisoprene (1,4 or 3,4), poly 2,3 -dimethyl butadiene,
polychloroprene, poly 2,3-dichlorobutadiene, polyallene, polyl,6-hexatriene, etc.
[0030] Specific non-limiting examples of functional, oxidizable polydienes as suitable oxygen
scavengers include epoxy functionalized polybutadiene (1,4 and/or 1,2), maleic anhydride
grafted or copolymerized polybutadiene (1,4 and/ or 1,2), epoxy functionalized polyisoprene,
and maleic anhydride grafted or copolymerized polyisoprene.
[0031] A preferred oxygen scavenger includes an anhydride functional polybutadiene oligomer.
The oxygen scavenger is preferably present in the polyamide composition as a large
number of small particles. The molecular weight of the functional polydiene oligomer
preferably ranges from about 500 about to 8,000, preferably from about 1000 to about
6000 and most preferably from about 1500 to about 5500. It is preferably present in
the overall composition in an amount of from about 0.1 % to about 10 % by weight,
more preferably from about 1 % to about 10% and most preferably from about 2 % to
about 6%. The functional, oxidizable polydiene is preferably present in the form of
particles whose average particle size is in the range of from 10 nm to 1000 nm, and
wherein the particles are substantially uniformly distributed throughout the polyamide
blend. The polyamide composition may comprise either a blend of the polyamide blend
and the polyamide-compatible oxidizable polydiene or a reaction product of the polyamide
blend with the polyamide-compatible oxidizable polydiene.
[0032] The polyamide composition comprises at least one oxidation promoting metal salt catalyst
such as a low molecular weight oxidation promoting metal salt catalyst. Suitable oxidation
promoting metal salt catalysts comprise a counterion which is present in acetates,
stearates, propionates, hexanoates, octanoates, benzoates, salicylates, and cinnamates
and combinations thereof. Preferably the oxidation promoting metal salt catalyst comprises
a cobalt, copper or ruthenium, acetate, stearate, propionate, hexanoate, octanoate,
benzoate, salicylate or cinnamate, or combinations thereof. Preferred metal carboxylates
include cobalt, ruthenium or copper carboxylate. Of these the more preferred is cobalt
or copper carboxylate and the most preferred is cobalt carboxylate. It is preferably
present in the overall composition in an amount of from about 0.001 % to about 1 %
by weight, preferably from about 0.002 % to about 0.5 % and more preferably from about
0.005 % to about 0.1 %. The most preferred range is from about 0.01 % to about 0.05%.
[0033] Preferably the polyamide composition further comprises a nanometer scale dispersed
clay, known in the art as a nanoclay. Suitable clays are described in
U.S. patent 5,747,560. Preferred clays non-exclusively include a natural or synthetic phyllosilicate such
as montmorillonite, hectorite, vermiculite, beidilite, saponite, nontronite or synthetic
flouromica, which has been cation exchanged with a suitable organoammonium salt. A
preferred clay comprises montmorillonite, hectorite or synthetic flouromica, more
preferably montmorillonite or hectorite, and most preferably montmorillonite. A preferred
organoammonium cation for treating the clay comprises N,N' ,N" ,N'"Bis(hydroxyethyl),
methyl, octadecyl ammonium cation or ω- carboxy alkylammonium cation, i.e., the ammonium
cation derived such ω-aminoalkanoic acids as 6-aminocaproic acid, 11-aminoundecanoic
acid, 12-aminododecanoic acid. Preferred fine dispersions of nanometer scale silicate
platelets may be obtained via an in-situ polymerization of polyamide forming monomer(s)
or via-melt compounding of polyamide in the presence of the organoammonium salt treated
clay. The clay preferably has an average platelet thickness ranging from 1 nm to 100
nm, and an average length and average width each ranging from 50 nm to 700 nm. It
is preferably present in the overall polyamide composition in an amount of from about
0 % to about 10% by weight, more preferably from about 0.5 % to about 6 % and most
preferably from about 0.8 % to about 4 %.
[0034] The polyamide composition of the invention may optionally also include one or more
conventional additives whose uses are well known to those skilled in the art. The
use of such additives may be desirable in enhancing the processing of the composition
as well as improving products or articles formed therefrom. Examples of such additives
nonexclusively include oxidative and thermal stabilizers, lubricants, mold release
agents, flame-retarding agents, oxidation inhibitors, dyes, pigments and other coloring
agents, ultraviolet light stabilizers, nucleators, plasticizers, and the like, as
well as other conventional additives known to the art. Such additives may be used
in amounts of up to about 10 % by weight of the overall polyamide composition.
[0035] Preferably the polyamide composition is produced via melt extrusion compounding of
the polyamide blend with the other composition components. The composition may be
formed by dry blending solid particles or pellets of each of the polyamide components
and then melt blending these particles or pellets in a suitable mixing means such
as an extruder, a roll mixer or the like. Typical melting temperatures range from
about 230°C to about 300°C, more preferably from about 235°C to about 280°C and most
preferably from about 240°C to about 260°C for nylon 6 and its copolymers. Blending
is preferably conducted for a period of time suitable to attain a substantially uniform
blend. Such may easily be determined by those skilled in the art. If desired, the
composition may be cooled and cut into pellets for further processing, may be extruded
into a fiber, a filament, or a shaped element, or may be formed into films, such as
oxygen barrier films, which may be optionally uniaxially or biaxially stretched or
oriented by means well known in the art.
[0036] The polyamide composition of this invention may be used to produce various single
layered or multilayered films, articles, bottles, containers, and the like using conventional
processing techniques. Such films and articles may be produced using known extrusion
and blown film techniques Bottles may be produced via extrusion or injection stretch
blow molding, and containers may be produced via thermoforming techniques. Processing
techniques for making films, sheets, containers and bottles are all well known in
the art. For example, the components (i) and (ii) of the polyamide blend may be preblended
and then the blend fed into an infeed hopper of an extruder, or each polyamide component
(i) and (ii) may be fed into infeed hoppers of an extruder and then blended in the
extruder. A melted and plasticated stream from the extruder is fed into a single manifold
die and extruded into a layer. It then emerges from the die as a single layer film
of nylon material. After exiting the die, the film is cast onto a first controlled
temperature casting roll, passes around the first roll, and then onto a second controlled
temperature roll, which is normally cooler than the first roll. The controlled temperature
rolls largely control the rate of cooling of the film after it exits the die. Once
cooled and hardened, the resulting film is preferably substantially transparent.
[0037] Alternatively the composition may be formed into a film using a conventional blown
film apparatus. The film forming apparatus may comprise "blown film" apparatus which
includes a circular die head for bubble blown film through , which a plasticized film
composition is forced and formed into a film "bubble". The "bubble" is ultimately
collapsed and formed into a film.
[0038] The composition may also be used to form a shaped article through any well known
process, including extrusion blow molding and injection stretch-blow molding. An injection
molding process softens the thermoplastic nylon blend in a heated cylinder, injecting
it while molten under high pressure into a closed mold, cooling the mold to induce
solidification, and ejecting the molded preform from the mold. Molding compositions
are well suited for the production of preforms and subsequent reheat stretch-blow
molding of these preforms into the final bottle shapes having the desired properties.
The injection molded preform is heated to suitable orientation temperature, often
in about the 90°C to 120°C range, and is then stretch-blow molded. The latter process
consists of first stretching the hot preform in the axial direction by mechanical
means such as by pushing with a core rod insert followed by blowing high pressure
air (up to about 34.5 Mpa (500 psi)) to stretch in the hoop direction. In this manner,
a biaxially oriented blown bottle is made. Typical blow-up ratios often range from
about 5:1 to about 15:1. The glass transition temperature (Tg) of the polyamide composition
of this invention, as determined by differential scanning calorimetry techniques,
are preferably much less than about 120°C, which is generally the upper temperature
limit for the neat PET's reheat stretch blow moldability into distortion-free bottles.
In addition, in coinjection stretch blow molding processes for making multilayer bottles,
extensive voiding with potential barrier loss might occur if the Tg of the polyamide
composition exceeds about 110°C. The polyamide composition therefore preferably has
a Tg of from about 20°C to about 110 °C , more preferably from about 40°C to about
100 °C and most preferably from about 60°C to about 90° C.
[0039] The polyamide composition of this invention may be formed as an integral layer in
a multilayered film, bottle or container which includes one or more layers of another
thermoplastic polymers such as polyesters; particularly polyethylene terephthalate
(PET) and PET copolymers, polyolefins, ethylene vinyl alcohol copolymers, acrylonitrilecopolymers,
acrylic polymers, vinyl polymers, polycarbonate, polystyrene, and the like. The polyamide
composition of this invention is particularly suitable as a barrier layer in the construction
and fabrication of multilayer bottles and thermoformed containers in which PET or
polyolefin function as structural layers. Such PET/polyamide multilayer bottles can
be made by coinjection stretch-blow molding process similar to the injection-stretch
blow molding process as described above. Similarly, such multilayer bottles can be
made by coextrusion blow molding. The latter process usually employs suitable optional
tie layers for adhesion.
[0040] Useful polyesters for coinjection stretch blow molding process include polyethylene
terephthalate (PET) and its copolymers in the intrinsic viscosity (I.V.) range of
about 0.5 to about 1.2 dl/g, more preferably in the I.V. range of from about 0.6 to
about 1.0 dl/g and most preferably in the I.V. range of from about 0.7 to about 0.9
dl/g. The polyolefins used in the coextrusion blow molding preferably comprise polymers
of alpha-olefin monomers having from about 2 to about 6 carbon atoms, and includes
homopolymers, copolymers (including graft copolymers), and terpolymers of alpha-olefins
and the like. Examples of such homopolymers nonexclusively include ultra low density
(ULDPE), low density (LDPE), linear low density (LLDPE), medium density (MDPE), or
high density polyethylene (HDPE); polypropylene; polybutylene; polybutene-1; poly-3-methylbutene-1;
poly-pentene-1; poly-4-methylpentene-1; polyisobutylene; polyhexene and the like.
Such polyolefins may have a weight average molecular weight of from about 1,000 to
about 1,000,000, and preferably of from about 10,000 to about 500,000. Preferred polyolefins
include polyethylene, polypropylene, polybutylene and copolymers, and blends thereof.
The most preferred polyolefins include polyethylene and polypropylene.
[0041] Suitable copolymers of ethylene and vinyl alcohol suitable for use in the present
invention can be prepared by the methods disclosed in
U.S. patents 3,510,464;
3,560,461;
3,847,845; and
3,585,177. Additional layers may also include adhesive tie layers to tie various layers together.
Non-limiting examples of other optional polymeric layers and adhesive or tie layers
which can be used in the film laminate of the present invention are disclosed in U.S.
Pat.
Nos. 5,055,355;
3,510,464;
3,560,461;
3,847,845;
5,032,656;
3,585,177;
3,595,740;
4,284,674;
4,058,647; and
4,254,169.
[0042] The multilayered barrier articles of this invention can be formed by any conventional
technique for forming films, including lamination, extrusion lamination, coinjection,
stretch-blow molding and coextrusion blow molding and the like. A most preferred method
for making multilayer film is by coextrusion. For example, materials for the individual
layers, as well as any optional layers, are fed into infeed hoppers of the extruders
of like number, each extruder handling the material for one or more of the layers.
The melted and plasticated streams from the individual extruders are fed into a single
manifold co-extrusion die. While in the die, the layers are juxtaposed and combined,
then emerge from the die as a single multiple layer film of polymeric material. After
exiting the die, the film is cast onto a first controlled temperature casting roll,
passes around the first roll, and then onto a second controlled temperature roll,
which is normally cooler than the first roll. The controlled temperature rolls largely
control the rate of cooling of the film after it exits the die. In another method,
the film forming apparatus may be a blown film apparatus and includes a multi-manifold
circular die head for bubble blown film through which the plasticized film composition
is forced and formed into a film bubble which may ultimately be collapsed and formed
into a film. Processes of coextrusion to form film and sheet laminates are generally
known. Alternatively the individual layers may first be formed into sheets and then
laminated together under heat and pressure with or without intermediate adhesive layers.
[0043] Optionally, at least one adhesive layer or "tie" layer, may be formed between each
film layer. Suitable adhesive layers include adhesive polymers such as modified polyolefin
compositions having at least one functional moiety selected from the group consisting
of unsaturated polycarboxylic acids and anhydrides thereof. Such unsaturated carboxylic
acid and anhydrides include maleic acid and anhydride, fumaric acid and anhydride,
crotonic acid and anhydride, citraconic acid and anhydride, itaconic acid and anhydride
and the like. Of these, the most preferred is maleic anhydride. The modified polyolefins
suitable for use in this invention include compositions described in
U.S. patents 3,481,910;
3,480,580;
4,612,155 and
4,751,270. Other adhesive layers non-exclusively include alkyl ester copolymers of olefins
and alkyl esters of α,β-ethylenically unsaturated carboxylic acids such as those described
in
U.S. patent 5,139,878. The preferred modified polyolefin composition comprises from about 0.001 and about
10 weight percent of the functional moiety, based on the total weight of the modified
polyolefin. More preferably the functional moiety comprises from about 0.005 and about
5 weight percent, and most preferably from about 0.01 and about 2 weight percent.
The modified polyolefin composition may also contain up to about 40 weight percent
of thermoplastic elastomers and alkyl esters as described in
U.S. patent 5,139,878.
Alternatively, one or more adhesive polymers may be directly blended or coextruded
into other layers of the film, thus providing adhesion while minimizing the number
of layers in the film.
[0044] Films produced according to the present invention may be oriented by stretching or
drawing the films at draw ratios of from about 1.1:1 to about 10:1, and preferably
at a draw ratio of from about 2:1 to about 5:1. The term "draw ratio" as used herein
indicates the increase of dimension in the direction of the draw. Therefore, a film
having a draw ratio of 2:1 has its length doubled during the drawing process. Generally,
the film is drawn by passing it over a series of preheating and heating rolls. The
heated film moves through a set of nip rolls downstream at a faster rate than the
film entering the nip rolls at an upstream location. The change of rate is compensated
for by stretching in the film.
[0045] The film may be stretched or oriented in any desired direction using methods well
known to those skilled in the art. The film may be stretched uniaxially in either
the longitudinal direction coincident with the direction of movement of the film being
withdrawn from the film forming apparatus, also referred to in the art as the "machine
direction", or in as direction which is perpendicular to the machine direction, and
referred to in the art as the "transverse direction", or biaxially in both the longitudinal
direction and the transverse direction.
[0046] The thickness of the film is preferably from about 0.05 mils (1.3 µm) to about 100
mils (2540 µm), and more preferably from about 0.05 mils (1.3. µm) to about 50 mils
(1270 µm). While such thicknesses are preferred as providing a readily flexible film,
it is to be understood that other film thicknesses may be produced to satisfy a particular
need and yet fall within the scope of the present invention; such thicknesses which
are contemplated include plates, thick films, and sheets which are not readily flexible
at room temperature (approx. 20°C).
[0047] One noteworthy characteristic of articles produced from the composition of this invention
is that they exhibit excellent gas barrier properties, particularly oxygen barrier
properties. Oxygen permeation resistance or barrier may be measured using the procedure
of ASTM D-3985. In general, the films of this invention have an oxygen transmission
rate (OTR) of about less than 0.30 cc.mm/m
2.atm.day (1 cc.mil/100in
2/ day) at 80%RH in air. The OTR in cc.mm/m
2.atm.day (in cc.mil/100 in
2/day) preferably ranges from about 0.00039 (0.001) to about 0.78 (2), more preferably
from about 0.00039 (0.001) to about 0.2 (0.5) and most preferably from about 0.00039
(0.001) to about 0.039 (0.1).
[0048] The following non-limiting examples serve to illustrate the invention. It will be
appreciated that variations in proportions and alternatives in elements of the components
of the invention will be apparent to those skilled in the art and are within the scope
of the present invention.
[0049] The following process and characterizations steps were conducted for the following
examples and comparative examples.
[0050] Process 1 (Preparation of catalyst masterbatch): This masterbatch is used as an additive
in process 2 (preparation of oxygen scavenging resin). A Leistritz 18 mm co-rotating
twin screw extruder equipped with a K-tron volumetric feeder was utilized in preparing
the catalyst masterbatch. The screw used in this process was designed with three mixing
zones and a venting zone. A blend of nylon 6 (Honeywell B73ZP) pellets and cobalt
stearate pastilles (from Shepherd Chemical Co.) was fed into the throat of the extruder
at a rate of ten (10) pounds per hour. The blend ratio was 95 weight percent PA-6
(Honeywell B73ZP) and five (5) weight percent cobalt stearate (Shepherd Chemical).
After mixing in the extruder, the extrudate passed through a die plate and was quenched
in a water bath and finally pelletized.
[0051] Process 2 (Preparation of oxygen scavenging resin): A Leistritz 18-mm co-rotating
twin screw extruder equipped with a K-Tron volumetric feeder was utilized. Polybutadiene
(either epoxy functionalized polybutadiene - Atofina Poly BD 600E or maleated polybutadiene
- Sartomer 131MA5) was pumped with a Nichols-Zenith pump directly in the extruder
(barrel 3) onto a set of forward conveying combing mixers. The polybutadiene was injected
directly into the extruder with a Leistritz liquid injection nozzle. A blend of: (1)
either (a) amorphous nylon (PA-6I/6T, EMS Grivory G21 or DuPont Selar PA 3426), (b)
blend of PA-6 and amorphous nylon (PA-6I/6T, EMS Grivory G21 or DuPont Selar PA 3426)
or (c) blend of PA-6 nanocomposite and amorphous nylon (PA-6I/6T, EMS Grivory G21
or DuPont Selar PA 3426) and (2) catalyst masterbatch was fed into the throat of the
extruder at a rate of 10 pounds per hour. The blend consisted of approximately 98
weight percent of one of the components described in (1) above and two (2) weight
percent catalyst masterbatch. The polybutadiene was pumped at a rate such that weight
percentages of 1% to 6% polybutadiene were achieved. Extruder heating zones were set
at approximately 260° C. The extruder was equipped with two downstream mixing zones
(downstream of the combing mixers) consisting of kneading blocks, paddle and shearing
elements. Subsequent to the final mixing zone and prior to the strand die the extruder
was equipped with a vacuum venting zone. After passing through the strand die, the
extrudate was quenched in a water bath and then pelletized.
[0052] Process 3 (Cast film processing): A ThermoHaake 1.91 cm (0.75 inch) single screw
extruder equipped with a Killion cast take-up roll system and a six-inch wide film
die was flood fed with pellets from process two (2) or other source.
Extruder barrel and die temperatures were set at approximately 260° C. Extrudate passed
through the slit die onto a temperature controlled cast roll (set at ambient temperature).
Film thickness was adjusted via cast roll speed and/or screw speed to prepare a film
with a thickness of 0.0025 cm (0.001 inch) to 0.0076 cm (0.003 inch).
[0053] Process 4 (Co-Injection Stretch Blow Molding): A three or five layer co-injection
stretch blow molding process was used to prepare multilayer beverage bottles with
the following structures (inside layer to outside layer): (1) PET/oxygen scavenger/PET
or (2) PET / oxygen scavenger / PET / oxygen scavenger / PET. The total oxygen scavenger
content was approximately 5-10 weight percent of the total preform weight. Preforms
were prepared with an Engel or Arburg co-injection press equipped with a co-injection
head/manifold and multilayer preform mold. PET extruder temperature settings were
approximately 280° C. Oxygen scavenging nylon compositions extruder barrel temperature
settings were approximately 280° C. Finished bottles were prepared on Sidel stretch
blow molding equipment set at temperatures up to approximately 110-114° C. In each
case standard processing techniques were utilized.
Characterization
[0054] Oxygen Transmission Measurements: Oxygen transmission measurements were conducted
on film samples with a Mocon Oxtran 2/20 apparatus equipped with SL sensors. Tests
were conducted at 80% relative humidity in either air (21% oxygen) or pure oxygen
(100% oxygen). Data were collected as a function of time and recorded in thickness
normalized units: cc mil/100 in
2/atm day.
[0055] Optical Characterization: Barrier layer films that were extracted from bottles were
evaluated for percent haze with a spectrometer.
Thermal Characterization: Glass transition measurements were made using differential
scanning calorimetry (DSC) on samples which were heated above their melting point
and then quenched in liquid nitrogen. The quenched samples were characterized by DSC
to measure the glass transition temperature (onset).
COMPARATIVE EXAMPLES 1-4
[0056] Comparative examples 1-4 and 1A are used as reference points for comparison with
the examples described later.
[0057] Comparative Example 1 uses an amorphous nylon of the type PA(6I, 6T) available from
either EMS (Grivory G21) or E. I. DuPont and Nemours Co. (Selar PA 3462).
[0058] Comparative Example 2 uses a blend of the amorphous nylon described in comparative
one and nylon 6 (Honeywell B73ZP). The blend contains 70 weight percent amorphous
nylon and 30 weight percent nylon 6.
[0059] Comparative Example 3 uses a nylon 6 nanocomposite (Honeywell XA-2908) containing
2 weight percent nanoclay (Nanocor Nanomer 124.T clay).
[0060] Comparative Example 4 uses a blend of the amorphous nylon described in comparative
one and the nylon 6 nanocomposite described in comparative three. The blend contains
50 weight percent amorphous nylon and 50 weight percent nylon 6 nanocomposite.
[0061] The oxygen permeability (measured oxygen transmission rates) of these comparative
examples is listed in Table 1.
[0062] Example 1A is a further comparative example and uses an oxygen scavenging amorphous
nylon. The formulation comprises 94.5 weight percent amorphous nylon, 3 weight percent
Atofina Poly BD600E and 2.5 weight percent catalyst masterbatch. This formulation
was prepared via process steps one and two and later cast into film via process three
and made into bottles (Process 4). The oxygen transmission rate of this oxygen scavenging
amorphous nylon decreases rapidly to near zero and remains near zero for approximately
25 days. Relative to Comparative Example 1 there is a 50 fold reduction in oxygen
transmission rate.
EXAMPLES 2-4
[0063] Examples 2-4 illustrate the effect of the inventive nylon compositions.
[0064] Example 2 is an oxygen scavenging amorphous nylon/nylon 6 blend. The blend comprises
66 weight percent amorphous nylon (EMS Grivory G21), 28.5 weight percent nylon 6 (Honeywell
B73ZP), 3 weight percent Atofina Poly BD600E and 2.5 weight percent catalyst masterbatch.
This formulation was prepared via process steps one and two and later cast into film
via Process 3 and made into bottles (Process 4). The oxygen transmission rate of this
oxygen scavenging blend decreases to near zero (0.006 cc.mm/m
2.atm.day (0.015 cc mil/100 in
2/atm day)) and remains very low for approximately 13 days. Relative to Comparative
Example 2 there is a 25 fold reduction in oxygen transmission rate.
[0065] Example 3 uses an oxygen scavenging amorphous nylon/nylon 6 blend. The blend comprises
66 weight percent amorphous nylon (EMS Grivory G21), 28.5 weight percent nylon 6 (Honeywell
B73ZP), 3 weight percent Ricon 131 MA-5 and 2.5 weight percent catalyst masterbatch.
This formulation was prepared via Processes 1 and 2 and later cast into film via Process
3 and made into bottles (Process 4). The oxygen transmission rate of this oxygen scavenging
blend decreases to near zero (0.0012 cc.mm/m
2.atm.day (0.003 cc mil/100 in
2/atm day)) and remains very low for approximately 45 days. Relative to Comparative
Example 2 there is a 100 fold reduction in oxygen transmission rate.
[0066] Example 4 uses an oxygen scavenging amorphous nylon/nylon 6 nanocomposite blend.
The blend comprises 47.25 weight percent amorphous nylon (EMS Grivory G21), 478.25
weight percent nylon 6 nanocomposite (Honeywell XA-2908), 3 weight percent Ricon 131
MA-5 and 2.5 weight percent catalyst masterbatch. This formulation was prepared via
Processes 1 and 2 and later cast into film via Process 3. The oxygen transmission
rate of this oxygen scavenging blend decreases to near zero (0.0016 cc.mm/m
2.atm.day (0.004 cc mil/100 in
2/atm day))and remains very low for approximately 35 days. Relative to Comparative
Example 4 there is an 80 fold reduction in oxygen transmission rate.
[0067] The oxygen permeability (measured oxygen transmission rates) of films made from these
Comparative Examples is listed in Table 1. The oxygen permeability (measured as parts
per million oxygen ingress into three layer bottles prepared with either Example 3
or Example 4 as the barrier (middle) layer of the 3 layer bottles is given in Table
2.
[0068] The percent haze in barrier layer films extracted from 3 layer bottles which include
Comparative Example 1, and Comparative Example 1A and Examples 3-4 are given in Table
1.
[0069] The glass transition temperature as measured by DSC of Comparative Example 1 and
Examples 2-4 is given in Table 1.
Discussion
[0070] Examples 1-4 each exhibit oxygen scavenging and yield substantially lower oxygen
transmission rates (as measured on thin films) when compared with the comparative
examples (i.e. non-oxygen scavenging examples).
[0071] The high haze level in Comparative Example 1 and Comparative Example 1A indicate
the inherent difficulty in processing amorphous nylon and oxygen scavenging amorphous
nylon into clear (low haze) multilayer bottles. The high haze levels in bottles containing
layers of Comparative Example 1 or Comparative Example 1A are due to crazing (microcavitation)
in the amorphous nylon layers which occurs during the stretch blow molding process.
The upper limit for stretch blow molding processes involving PET (such as multilayer
beverage bottles) is approximately 120°C. Above this temperature an effect know as
"pearl" is observed in the finished bottles. Pearl is a hazy white appearance in the
PET caused by crystallization in the PET layers. This crystallization is likely to
occur at high stretch blow molding temperatures, effectively placing an upper temperature
limit on PET stretch blow molding. Unfortunately, amorphous nylon has a glass transition
temperature as listed in Table 1 of approximately 125°C. Since this temperature is
above the injection stretch blow molding temperature, amorphous nylon is unable to
stretch without defects forming. Consequently, amorphous nylon develops crazes which
result in a high bottle haze level. The crazes and microcracks developed in the pure
amorphous nylon layer can be readily observed by optical microscopy.
[0072] Examples 2-4 of this invention utilize a blend approach to avoid the craze/haze formation
observed in amorphous nylon containing multilayer bottles. These novel blends result
in lower glass transition temperature (shown for Example 2 in Table 1) and consequently
significantly lower haze in multilayer bottles (see Table 1). The combination of oxygen
scavenger and blending results in formulations which have low oxygen permeability
and excellent co-injection stretch blow molding processability. The nylon layer in
the multilayer PET bottle was quite clear and free from any crazes or microdefects
as observed under optical microscopy.
Table 1
| Ex. No. |
Process Steps |
Wt. % PBD |
Wt. % PA (6I,6T) |
Wt. % PA-6 |
Wt. % Nano |
Wt. % Catalyst MB |
OTR* DAY |
1 OTR Day 5 |
OTR Day 10 |
OTR Day 20 |
OTR Day 30 |
Tg/ °C |
Tcc††/° °C |
Haze/ % |
| Comp.1 |
3, 4 |
0 |
100 |
0 |
0 |
0 |
0.08 (0.2) |
0.08 (0.2) |
0.08 (0.2) |
0.08 (0.2) |
0.08 (0.2) |
122 |
|
7.7 |
| Comp. 2 |
3, 4 |
0 |
70 |
30 |
0 |
0 |
0.16 (0.4) |
0.12 (0.3) |
0.12 (0.3) |
0.12 (0.3) |
0.12 (0.3) |
|
|
|
| Comp. 3 |
3 |
0 |
0 |
0 |
100 |
0 |
0.24 (0.6) |
0.24 (0.6) |
0.24 (0.6) |
0.24 (0.6) |
0.24 (0.6) |
|
|
|
| Comp. 4 |
3 |
0 |
50 |
0 |
50 |
0 |
0.096 (0.24) |
0.096 (0.24) |
0.096 (0.24) |
0.096 (0.24) |
0.096 (0.24) |
|
|
|
| Comp. 1A |
1, 2, 3, 4 |
3† |
94.5 |
0 |
0 |
2.5 |
0.0012 (0.003) |
0.002 (0.005) |
0.0032 (0.008) |
0.0036 (0.009) |
0.004 (0.01) |
|
|
81 |
| 2 |
1, 2, 3 |
3† |
66 |
28.5 |
0 |
2.5 |
0.12(0.3) |
0.0048 (0.012) |
0.006 (0.015) |
N/A |
N/A |
85 |
|
|
| 3 |
1, 2, 3, 4 |
3‡ |
66 |
28.5 |
0 |
2.5 |
0.24 (0.6) |
0.24 (0.6) |
0.24 (0.6) |
0.0012 (0.003) |
0.0012 (0.003) |
91 |
No Detect |
0.7 |
| 4 |
1, 2, 3 |
3‡ |
47.25 |
0 |
47.25 |
2.5 |
0.0036 (0.009) |
0.0008 (0.002) |
0.0012 (0.003) |
0.0012 (0.003) |
0.0016 (0.004) |
75 |
121 |
2.15 |
†Atofina Poly BD600E
‡Sartomer 131MA5
* Oxygen Transmission rate in air cc.mm/m2.atm.day (cc. mil/100 in2/atm day). To convert to pure oxygen multiply oxygen transmission
rate by five and divide number of days by five.
††Measured in DSC at cooling rate of 80°C/min. |
Table 2.
| Example |
Description |
Volume /oz |
Conditions |
Oxygen Ingress after 120 days /ppm† |
| 3 |
3 layer beer with |
12 |
100% RH in, |
3 |
| |
champagne base |
|
50% RH out |
|
| 4 |
3 layer beer with |
12 |
100% RH in, |
0.3 |
| |
champagne base |
|
50% RH out |
|
| †Measured on Mocon Oxtran 2/20 |
1. A polyamide composition which comprises:
a) a slow crystallizing polyamide blend comprising (i) an amorphous, semi aromatic
polyamide homopolymer, copolymer or mixture thereof and (ii) a semicrystalline, aliphatic
polyamide homopolymer, copolymer or mixture thereof wherein in the weight ratio of
(i):(ii) ranges from 99:1 to 30:70;
b) at least one polyamide-compatible, oxidizable polydiene; and
c) at least one oxidation promoting metal salt catalyst.
2. The composition of claim 1 wherein said polyamide-compatible, oxidizable polydiene
comprises a polybutadiene.
3. The composition of claim 1 wherein said polyamide-compatible, oxidizable polydiene
comprises an epoxy or anhydride functional polybutadiene.
4. The composition of claim 1 wherein said polyamide-compatible, oxidizable polydiene
is in the form of particles which are substantially uniformly distributed in the polyamide
blend.
5. The composition of claim 1 wherein said polyamide-compatible, oxidizable polydiene
is in the form of particles whose average particle size is in the range of from 10
nm to 1000 nm, and which particles are substantially uniformly distributed in the
polyamide blend.
6. The composition of claim 1 further wherein said oxidation promoting metal salt catalyst
comprises a carboxylate.
7. The composition of claim 1 wherein said oxidation promoting metal salt catalyst is
selected from the group consisting of metal acetates, stearates, propionates, hexanoates,
octanoates, benzoates, salicylates, cinnamates, or combinations thereof.
8. The composition of claim 1 wherein said oxidation promoting metal salt catalyst is
selected from the group consisting of a cobalt, copper or ruthenium, acetate, stearate,
propionate, hexanoate, octanoate, benzoate, salicylate, cinnamate, or combinations
thereof.
9. The composition of claim 1 further comprising a clay.
10. The composition of claim 1 further comprising a clay whose average platelet thickness
is in the range of from 1 nm to 100 nm and whose average length and average width
are each in the range of from 50 nm to 500 nm.
11. The composition of claim 1 wherein said semicrystalline, aliphatic polyamide is selected
from the group consisting of polyamides 6; 6,6; 7; 10; 11; 12; 6,10; 6,9; 4,6; 6,6/6;
and 6/6,6, and mixtures thereof.
12. The composition of claim 1 wherein said amorphous, semiaromatic polyamide is selected
from the group consisting of polyamides 6I; 6I/6T; 6/6I; MXDI; 6/MXDI, and mixtures
thereof.
13. The composition of claim 1 wherein said semicrystalline, aliphatic polyamide comprises
nylon 6.
14. The composition of claim 13 wherein said at least one polyamide-compatible, oxidizable
polydiene comprises polybutadiene.
15. The composition of claim 14 wherein said polybutadiene is a functionalized oligomer.
16. The composition of claim 13 wherein said amorphous, semiaromatic polyamide comprises
poly(hexamethylene isophthalamide-co-terephthalamide).
17. The composition of claim 16 wherein said weight ratio of (i):(ii) ranges from 80:20
to 35:65.
18. The composition of claim 16 wherein said composition further comprises a clay.
19. The composition of claim 1 wherein said semicrystalline, aliphatic polyamide comprises
nylon 6,6.
20. The polyamide composition of claim 1 wherein said polyamide blend exhibits either
no Tcc or a Tcc of 150°C or less upon cooling from the melt at a cooling rate of 20°C/min.
as determined by differential scanning calorimetry.
21. The polyamide composition of claim 1 wherein said composition comprises a blend of
said polyamide blend and said at least one polyamide-compatible, oxidizable polydiene.
22. The polyamide composition of claim 1 wherein said composition comprises a reaction
product of said polyamide blend and said at least one polyamide-compatible, oxidizable
polydiene.
23. An oxygen barrier film comprising a layer of a polyamide composition which comprises:
a) a slow crystallizing polyamide blend comprising (i) an amorphous, semiaromatic
polyamide homopolymer, copolymer or mixture thereof and (ii) a semicrystalline, aliphatic
polyamide homopolymer, copolymer or mixture thereof wherein in the weight ratio of
(i):(ii) ranges from 99:1 to 30:70;
b) at least one polyamide-compatible, oxidizable polydiene; and
c) at least one oxidation promoting metal salt catalyst.
24. The oxygen barrier film of claim 23 which is oriented.
25. The oxygen barrier film of claim 23 further comprising a thermoplastic polymer layer
on one or both sides of the polyamide composition layer.
26. A multilayer article which comprises:
a) a polyamide composition layer comprising a slow crystallizing polyamide blend comprising
(i) an amorphous, semiaromatic polyamide homopolymer, copolymer or mixture thereof
and (ii) a semicrystalline, aliphatic polyamide homopolymer, copolymer or mixture
thereof wherein in the weight ratio of (i):(ii) ranges from 99:1 to 30:70; at least
one polyamide-compatible, oxidizable polydiene; and at least one oxidation promoting
metal salt catalyst; and
b) a thermoplastic polymer layer on one or both sides of said polyamide composition
layer.
27. The multilayer article of claim 26 wherein said thermoplastic polymer layer comprises
a polyolefin or polyester.
28. The multilayer article of claim 26 wherein said thermoplastic polymer layer comprises
a polyethylene terephthalate.
29. The multilayer article of claim 28 wherein said polyamide blend comprises a blend
of nylon 6I/6T and nylon 6.
30. The multilayer article of claim 29 wherein said polydiene is polybutadiene.
31. The multilayer article of claim 30 wherein said oxidation promoting metal salt catalyst
comprises a cobalt carboxylate salt.
32. The multilayer article of claim 31 which is in the form of a bottle or container.
33. The multilayer article of claim 26 wherein said thermoplastic polymer layer and polyamide
composition layer are attached to one another by coextrusion, lamination or coinjection.
34. A shaped article which comprises a polyamide composition comprising:
a) a slow crystallizing polyamide blend comprising (i) an amorphous, semiaromatic
polyamide homopolymer, copolymer or mixture thereof and (ii) a semicrystalline, aliphatic
polyamide homopolymer, copolymer or mixture thereof wherein in the weight ratio of
(i):(ii) ranges from 99:1 to 30:70;
b) at least one polyamide-compatible, oxidizable polydiene; and
c) at least one oxidation promoting metal salt catalyst.
35. The shaped article of claim 34 which is in the form of a bottle or container.
36. The shaped article of claim 35 further comprising at least one layer of polyethylene
terephthalate.
37. A process for producing a polyamide composition which comprises:
a) melting a slow crystallizing polyamide blend comprising (i) an amorphous, semiaromatic
polyamide homopolymer, copolymer or mixture thereof and (ii) a semicrystalline, aliphatic
polyamide homopolymer, copolymer or mixture thereof wherein in the weight ratio of
(i):(ii) ranges from 99:1 to 30:70;
b) blending the molten polyamide blend with at least one polyamide-compatible, oxidizable
polydiene and at least one oxidation promoting metal salt catalyst to thereby form
a mixture; and
c) cooling the mixture.
38. A process for producing an oxygen barrier film which comprises:
a) melting a slow crystallizing polyamide blend comprising (i) an amorphous, semiaromatic
polyamide homopolymer, copolymer or mixture thereof and (ii) a semicrystalline, aliphatic
polyamide homopolymer, copolymer or mixture thereof wherein in the weight ratio of
(i):(ii) ranges from 99:1 to 30:70;
b) blending the molten polyamide blend with at least one polyamide-compatible, oxidizable
polydiene and at least one oxidation promoting metal salt catalyst to thereby form
a mixture;
c) extruding, casting or blowing the mixture into a film; and
d) cooling the film.
39. The process of claim 38 wherein said film is subsequently oriented.
40. A process for producing a multilayer article which comprises:
a) melting a slow crystallizing polyamide blend comprising (i) an amorphous, semiaromatic
polyamide homopolymer, copolymer or mixture thereof and (ii) a semicrystalline, aliphatic
polyamide homopolymer, copolymer or mixture thereof wherein in the weight ratio of
(i):(ii) ranges from 99:1 to 30:70; at least one polyamide-compatible, oxidizable
polydiene; and at least one oxidation promoting metal salt catalyst to thereby form
a mixture;
b) separately melting a thermoplastic polymer composition;
c) coextruding, casting, blowing, thermoforming, blow molding or coinjecting the mixture
and thermoplastic polymer composition into a multilayer article; and
d) cooling the article.
41. The process of claim 40 wherein said article is in the form of a film, a bottle or
a container.
42. The process of claim 40 wherein said article is a film which is subsequently oriented.
43. The process of claim 40 wherein said polyamide is melted prior to blending with said
oxidizable polydiene.
44. The process of claim 40 wherein said polyamide and said oxidizable polydiene are melted
after blending.
45. A process for producing a multilayer article which comprises:
a) melting a slow crystallizing polyamide blend comprising (i) an amorphous, semiaromatic
polyamide homopolymer, copolymer or mixture thereof and (ii) a semicrystalline, aliphatic
polyamide homopolymer, copolymer or mixture thereof wherein in the weight ratio of
(i):(ii) ranges from 99:1 to 30:70; at least one polyamide-compatible, oxidizable
polydiene; and at least one oxidation promoting metal salt catalyst to thereby form
a mixture;
b) separately melting a thermoplastic polymer composition;
c) coinjecting molding the mixture and thermoplastic polymer composition into a multilayer
preform;
d) reheating the perform; and
e) blow molding the perform into a multilayer article.
46. A multilayer article formed by a process comprising:
a) melting a slow crystallizing polyamide blend comprising (i) an amorphous, semiaromatic
polyamide homopolymer, copolymer or mixture thereof and (ii) a semicrystalline, aliphatic
polyamide homopolymer, copolymer or mixture thereof wherein in the weight ratio of
(i):(ii) ranges from 99:1 to 30:70; at least one polyamide-compatible, oxidizable
polydiene; and at least one oxidation promoting metal salt catalyst to thereby form
a mixture;
b) separately melting a thermoplastic polymer composition;
c) coinjecting molding the mixture and thermoplastic polymer composition into a multilayer
preform;
d) reheating the perform; and
e) blow molding the perform into a multilayer article.
1. Polyamidzusammensetzung, welche folgendes umfasst:
a) ein langsam kristallisierende Polyamidmischung, umfassend (i) ein amorphes, halbaromatisches
Polyamid-Homopolymer, -Copolymer oder eine Mischung davon, und (ii) ein halbkristallines,
aliphatisches Polyamid-Homopolymmer, -Copolymer oder eine Mischung davon, wobei das
Gewichtsverhältnis von (i) : (ii) im Bereich von 99:1 bis 30:70 liegt;
b) mindestens ein Polyamid-kompatibles, oxidierbares Polydien; und
c) mindestens einen die Oxidation fördernden Metallsalz-Katalysator.
2. Zusammensetzung gemäß Anspruch 1, wobei das Polyamid-kompatible, oxidierbare Polydien
ein Polybutadien umfasst.
3. Zusammensetzung gemäß Anspruch 1, wobei das Polyamid-kompatible, oxidierbare Polydien
ein Epoxy- oder Anhydrid-funktionelles Polybutadien umfasst.
4. Zusammensetzung gemäß Anspruch 1, wobei das Polyamid-kompatible, oxidierbare Polydien
in Form von Teilchen vorliegt, welche im Wesentlichen einheitlich in der Polyamidmischung
verteilt sind.
5. Zusammensetzung gemäß Anspruch 1, wobei das Polyamid-kompatible, oxidierbare Polydien
in Form von Teilchen vorliegt, deren mittlere Teilchengröße im Bereich von 10 nm bis
1000 nm liegt, und wobei die Teilchen im Wesentlichen einheitlich in der Polyamidmischung
verteilt sind.
6. Zusammensetzung gemäß Anspruch 1, wobei ferner der die Oxidation fördernde Metallsalzkatalysator
ein Carboxylat umfasst.
7. Zusammensetzung gemäß Anspruch 1, wobei der die Oxidation fördernde Metallsalz-Katalysator
aus der Gruppe gewählt wird, die aus Metallacetaten, -stearaten, -propionaten, -hexanoaten,
-octanoaten, benzoaten, -salicylaten, -cinnamaten oder Kombinationen davon besteht.
8. Zusammensetzung gemäß Anspruch 1, wobei ferner der die Oxidation fördernde Metallsalz-Katalysator
aus der Gruppe gewählt wird, die aus Cobalt-, Kupfer- oder Rutheniumacetat, -stearat,
-propionaten, - hexanoat, -octanoat, benzoat, -salicylat, -cinnamat oder Kombinationen
davon besteht.
9. Zusammensetzung gemäß Anspruch 1, die ferner einen Ton umfasst.
10. Zusammensetzung gemäß Anspruch 1, welche ferner einen Ton umfasst, dessen durchschnittliche
Plättchendicke im Bereich von 1 nm bis 100 nm liegt und dessen durchschnittliche Länge
und durchschnittliche Breite im Bereich von 50 nm bis 500 nm liegt.
11. Zusammensetzung gemäß Anspruch 1, wobei das halbkristalline, aliphatische Polyamid
aus der Gruppe gewählt wird, die aus Polyamiden 6; 6,6; 7; 10; 11; 12; 6, 10; 6,9;
4,6; 6,6/6; und 6/6,6 und Mischungen davon besteht.
12. Zusammensetzung gemäß Anspruch 1, wobei das amorphe, halbaromatische Polyamid aus
der Gruppe gewählt wird, die aus Polyamiden 61; 6I/6T; 6/6I; MXDI; 6/MXDI und Mischungen
davon besteht.
13. Zusammensetzung gemäß Anspruch 1, wobei das halbkristalline, aliphatische Polyamid
Nylon 6 umfasst.
14. Zusammensetzung gemäß Anspruch 13, wobei das Polyamid-kompatible, oxidierbare Polydien
Polybutadien umfasst.
15. Zusammensetzung gemäß Anspruch 14, wobei das 1 Polybutadien ein funktionalisiertes Oligomer ist.
16. Zusammensetzung gemäß Anspruch 13, wobei das amorphe, halbaromatische Polyamid Poly(hexamethylen-isophthalamid-co-terephthalamid
umfasst.
17. Zusammensetzung gemäß Anspruch 16, wobei das Gewichtsverhältnis von (i):(ii) im Bereich
von 80:20 bis 35:65 liegt.
18. Zusammensetzung gemäß Anspruch 16, wobei die Zusammensetzung ferner einen Ton umfasst.
19. Zusammensetzung gemäß Anspruch 1, wobei das halbkristalline, aliphatische Polyamid
Nylon 6,6 ist.
20. Polyamidzusammensetzung gemäß Anspruch 1, wobei die Polyamidmischung entweder keine
Tcc oder eine Tcc von 150°C oder weniger beim Kühlen der Schmelze mit einer Kühlrate
von 20°C/min, wie bestimmt durch Differentialscanningkalorimetrie, zeigt.
21. Polyamidzusammensetzung gemäß Anspruch 1, wobei die Zusammensetzung eine Mischung
der Polyamidmischung und des mindestens einen Polyamid-kompatiblen, oxidierbaren Polydiens
umfasst.
22. Polyamidzusammensetzung gemäß Anspruch 1, wobei die Zusammensetzung ein Reaktionsprodukt
von der Polyamidmischung und dem mindestens einen Polyamid-kompatiblen, oxidierbaren
Polydien umfasst.
23. Sauerstoff-Barrierenfolie, umfassend eine Schicht aus einer Polyamidzusammensetzung,
welche folgendes umfasst:
a) ein langsam kristallisierende Polyamidmischung, umfassend (i) ein amorphes, halbaromatisches
Polyamid-Homopolymer, -Copolymer oder eine Mischung davon, und (ii) ein halbkristallines,
aliphatisches Polyamid-Homopolymmer, -Copolymer oder eine Mischung davon, wobei das
Gewichtsverhältnis von (i) : (ii) im Bereich von 99:1 bis 30:70 liegt;
b) mindestens ein Polyamid-kompatibles, oxidierbares Polydien; und
c) mindestens einen die Oxidation fördernden Metallsalz-Katalysator.
24. Sauerstoff-Barrierenfolie gemäß 23, welche orientiert ist.
25. Sauerstoff-Barrierenfolie gemäß 23, ferner umfassend eine thermoplastische Polymerschicht
auf einer oder beiden Seiten der Polyamidzusammensetzungsschicht.
26. Mehrschichtartikel, welcher folgendes umfasst:
a) eine Polyamidzusammensetzungsschicht, umfassend eine langsam kristallisierende
Polyamidmischung, umfassend (i) ein amorphes, halbaromatisches Polyamid-Homopolymer,
-Copolymer oder eine Mischung davon, und (ii) ein halbkristallines, aliphatisches
Polyamid-Homopolymmer, -Copolymer oder eine Mischung davon, wobei das Gewichtsverhältnis
von (i) : (ii) im Bereich von 99:1 bis 30:70 liegt; mindestens ein Polyamid-kompatibles,
oxidierbares Polydien; und mindestens einen die Oxidation fördernden Metallsalz-Katalysator;
und
b) eine thermoplastische Polymerschicht auf einer oder beiden Seiten der Polyamidzusammensetzungschicht.
27. Mehrschichtartikel gemäß Anspruch 26, wobei die thermoplastische Polymerschicht ein
Polyolefin oder Polyester umfasst.
28. Mehrschichtartikel gemäß Anspruch 26, wobei die thermoplastische Polymerschicht ein
Polyethylenterephthalat umfasst.
29. Mehrschichtartikel gemäß Anspruch 28, wobei die Polyamidmischung eine Mischung von
Nylon 6I/6T und Nylon 6 umfasst.
30. Mehrschichtartikel gemäß Anspruch 29, wobei das Polydien Polybutadien ist.
31. Mehrschichtartikel gemäß Anspruch 30, wobei der die Oxidation fördernde Metallsalz-Katalysator
ein Cobaltcarboxylatsalz umfasst.
32. Mehrschichtartikel gemäß Anspruch 31, welcher in Form einer Flasche oder eines Behälters
vorliegt.
33. Mehrschichtartikel gemäß Anspruch 26, wobei die thermoplastische Polymerschicht und
die Polyamidzusammensetungsschicht durch Coextrusion, Laminierung oder Coinjektion
aneinander gefügt wurden.
34. Geformter Artikel, welcher eine Polyamidzusammensetzung umfasst, die folgendes umfasst:
a) eine langsam kristallisierende Polyamidmischung, umfassend (i) ein amorphes, halbaromatisches
Polyamid-Homopolymer, -Copolymer oder eine Mischung davon, und (ii) ein halbkristallines,
aliphatisches Polyamid-Homopolymmer, -Copolymer oder eine Mischung davon, wobei das
Gewichtsverhältnis von (i) : (ii) im Bereich von 99:1 bis 30:70 liegt;
b) mindestens ein Polyamid-kompatibles, oxidierbares Polydien; und
c) mindestens einen die Oxidation fördernden Metallsalz-Katalysator.
35. Geformter Artikel gemäß Anspruch 34, welcher in Form einer Flasche oder eines Behälters
vorliegt.
36. Geformter Artikel gemäß Anspruch 35, welcher ferner mindestens eine Schicht von Polyethylenterephthalat
umfasst.
37. Verfahren zur Herstellung einer Polyamidzusammensetzung, welches folgendes umfasst:
a) das Schmelzen einer langsam kristallisierenden Polyamidmischung, umfassend (i)
ein amorphes, halbaromatisches Polyamid-Homopolymer, -Copolymer oder eine Mischung
davon, und (ii) ein halbkristallines, aliphatisches Polyamid-Homopolymmer, -Copolymer
oder eine Mischung davon, wobei das Gewichtsverhältnis von (i): (ii) im Bereich von
99:1 bis 30:70 liegt;
b) das Mischen der geschmolzenen Polyamidmischung mit mindestens einem Polyamid-kompatiblen,
oxidierbaren Polydien und mindestens einem die Oxidation fördernden Metallsalz-Katalysator,
um dadurch eine Mischung zu bilden; und
c) das Kühlen der Mischung.
38. Verfahren zur Herstellung einer Sauerstoff-Barrierenfolie, welches folgendes umfasst:
a) das Schmelzen einer langsam kristallisierenden Polyamidmischung, umfassend (i)
ein amorphes, halbaromatisches Polyamid-Homopolymer, -Copolymer oder eine Mischung
davon, und (ii) ein halbkristallines, aliphatisches Polyamid-Homopolymmer, -Copolymer
oder eine Mischung davon, wobei das Gewichtsverhältnis von (i) : (ii) im Bereich von
99:1 bis 30:70 liegt;
b) das Mischen der geschmolzenen Polyamidmischung mit mindestens einem Polyamid-kompatiblen,
oxidierbaren Polydien und mindestens einem die Oxidation fördernden Metallsalz-Katalysator,
um dadurch eine Mischung zu bilden; und
c) das Extrudieren, Gießen oder Blasen der Mischung zu einer Folie; und
d) das Kühlen der Folie.
39. Verfahren gemäß Anspruch 38, wobei die Folie anschließend orientiert wird.
40. Verfahren zur Herstellung eines Mehrschichtartikels, welches folgendes umfasst:
a) das Schmelzen einer langsam kristallisierenden Polyamidmischung, umfassend (i)
ein amorphes, halbaromatisches Polyamid-Homopolymer, -Copolymer oder eine Mischung
davon, und (ii) ein halbkristallines, aliphatisches Polyamid-Homopolymmer, -Copolymer
oder eine Mischung davon, wobei das Gewichtsverhältnis von (i): (ii) im Bereich von
99:1 bis 30:70 liegt; mindestens ein Polyamid-kompatibles, oxidierbares Polydien;
und mindestens einen die Oxidation fördernden Metallsalz-Katalysator, um dadurch eine Mischung zu bilden;
b) das separate Schmelzen einer thermoplastischen Polymerzusammensetzung;
c) das Coextrudieren, Gießen, Blasen, Wärmeformen, Blasformen oder Coinjizieren der
Mischung und der thermoplastischen Polymerzusammensetzung zu einem Mehrschichtartikel;
und
d) das Kühlen des Artikels.
41. Verfahren gemäß Anspruch 40, wobei der Artikel in Form einer Folie, einer Flasche
oder eines Behälters vorliegt.
42. Verfahren gemäß Anspruch 40, wobei der Artikel eine Folie ist, welche anschließend
orientiert wird.
43. Verfahren gemäß Anspruch 40, wobei das Polyamid vor dem Mischen mit dem oxidierbaren
Polydien geschmolzen wird.
44. Verfahren gemäß Anspruch 40, wobei das Polyamid und das oxidierbare Polydien nach
dem Mischen geschmolzen werden.
45. Verfahren zur Herstellung eines Mehrschichtartikels, welches Folgendes umfasst:
a) das Schmelzen einer langsam kristallisierenden Polyamidmischung, umfassend (i)
ein amorphes, halbaromatisches Polyamid-Homopolymer, -Copolymer oder eine Mischung
davon, und (ii) ein halbkristallines, aliphatisches Polyamid-Homopolymer, -Copolymer
oder eine Mischung davon, wobei das Gewichtsverhältnis von (i) : (ii) im Bereich von
99:1 bis 30:70 liegt; mindestens ein Polyamid-kompatibles, oxidierbares Polydien;
und mindestens einen die Oxidation fördernden Metallsalz-Katalysator, um dadurch eine
Mischung zu bilden;
b) das separate Schmelzen einer thermoplastischen Polymerzusammensetzung;
c) das Coinjektionsformen der Mischung und der thermoplastischen Polymerzusammensetzung
zu einer Mehrschicht-Vorform;
d) das erneute Erhitzen der Vorform; und
e) das Blasformen der Vorform zu einem Mehrschichtartikel.
46. Mehrschichtartikel, gebildet durch ein Verfahren, welches Folgendes umfasst:
a) das Schmelzen einer langsam kristallisierenden Polyamidmischung, umfassend (i)
ein amorphes, halbaromatisches Polyamid-Homopolymer, -Copolymer oder eine Mischung
davon, und (ii) ein halbkristallines, aliphatisches Polyamid-Homopolymer, -Copolymer
oder eine Mischung davon, wobei das Gewichtsverhältnis von (i) : (ii) im Bereich von
99:1 bis 30:70 liegt; mindestens ein Polyamid-kompatibles, oxidierbares Polydien;
und mindestens einen die Oxidation fördernden Metallsalz-Katalysator, um dadurch eine
Mischung zu bilden;
b) das separate Schmelzen einer thermoplastischen Polymerzusammensetzung;
c) das Coinjektionsformen der Mischung und der thermoplastischen Polymerzusammensetzung
zu einer Mehrschicht-Vorform;
d) das erneute Erhitzen der Vorform; und
e) das Blasformen der Vorform zu einem Mehrschichtartikel.
1. Composition de polyamide qui comprend :
a) un mélange de polyamide à cristallisation lente comprenant (i) un homopolymère
ou copolymère de polyamide semi-aromatique amorphe ou un mélange de ceux-ci, et (ii)
un homopolymère ou copolymère de polyamide aliphatique semi-cristallin ou un mélange
de ceux-ci, dans lequel le rapport pondéral de (i)/(ii) se situe dans une plage allant
de 99/1 à 30/70;
b) au moins un polydiène oxydable compatible avec le polyamide; et
c) au moins un sel métallique catalyseur favorisant l'oxydation.
2. Composition selon la revendication 1, dans laquelle ledit polydiène oxydable compatible
avec le polyamide comprend un polybutadiène.
3. Composition selon la revendication 1, dans laquelle ledit polydiène oxydable compatible
avec le polyamide comprend un polybutadiène à fonction époxy ou anhydride.
4. Composition selon la revendication 1, dans laquelle ledit polydiène oxydable compatible
avec le polyamide est sous la forme de particules qui sont en substance distribuées
uniformément dans le mélange de polyamide.
5. Composition selon la revendication 1, dans laquelle ledit polydiène oxydable compatible
avec le polyamide est sous la forme de particules dont la granulométrie moyenne se
situe dans une plage allant de 10 nm à 1000 nm, lesquelles particules sont en substance
distribuées uniformément dans le mélange de polyamide.
6. Composition selon la revendication 1, dans laquelle en outre ledit sel métallique
catalyseur favorisant l'oxydation comprend un carboxylate.
7. Composition selon la revendication 1, dans laquelle ledit sel métallique catalyseur
favorisant l'oxydation est sélectionné parmi le groupe constitué des acétates métalliques,
des stéarates, des propionates, des hexanoates, des octanoates, des benzoates, des
salicylates, des cinnamates, ou des combinaisons de ceux-ci.
8. Composition selon la revendication 1, dans laquelle ledit sel métallique catalyseur
favorisant l'oxydation est sélectionné parmi le groupe constitué d'un cobalt, d'un
cuivre ou d'un ruthénium, d'un acétate, d'un stéarate, d'un propionate, d'un hexanoate,
d'un octanoate, d'un benzoate, d'un salicylate, d'un cinnamate, ou de combinaisons
de ceux-ci.
9. Composition selon la revendication 1, comprenant en outre une argile.
10. Composition selon la revendication 1, comprenant en outre une argile dont l'épaisseur
moyenne de plaquette se situe dans une plage allant de 1 nm à 100 nm et dont la longueur
moyenne et la largeur moyenne sont chacune située dans une plage allant de 50 nm à
500 nm.
11. Composition selon la revendication 1, dans laquelle ledit polyamide aliphatique semi-cristallin
est sélectionné parmi le groupe constitué des polyamides 6; 6,6; 7; 10; 11; 12; 6,10;
6,9; 4,6; 6,6/6; et 6/6,6, et les mélanges de ceux-ci.
12. Composition selon la revendication 1, dans laquelle ledit polyamide semi-aromatique
amorphe est sélectionné parmi le groupe constitué des polyamides 61; 6I/6T; 6/61;
MXDI; 6/MXDI, et les mélanges de ceux-ci.
13. Composition selon la revendication 1, dans laquelle ledit polyamide aliphatique semi-cristallin
comprend le Nylon 6.
14. Composition selon la revendication 13, dans laquelle ledit au moins un polydiène oxydable
compatible avec le polyamide comprend le polybutadiène.
15. Composition selon la revendication 14, dans laquelle ledit polybutadiène est un oligomère
fonctionnalisé.
16. Composition selon la revendication 13, dans laquelle ledit polyamide semi-aromatique
amorphe comprend le poly(hexaméthylène isophtalamide-co-téréphtalamide).
17. Composition selon la revendication 16, dans laquelle ledit rapport pondéral de (i)/(ii)
se situe dans une plage allant de 80/20 à 35/65.
18. Composition selon la revendication 16, dans laquelle ladite composition comprend en
outre une argile.
19. Composition selon la revendication 1, dans laquelle ledit polyamide aliphatique semi-cristallin
comprend le Nylon 6,6.
20. Composition de polyamide selon la revendication 1, dans laquelle ledit mélange de
polyamide présente soit aucune Tcc, soit une Tcc de 150°C ou moins lors du refroidissement
du mélange à une vitesse de refroidissement de 20°C/min, telle que déterminée par
analyse thermique différentielle.
21. Composition de polyamide selon la revendication 1, dans laquelle ladite composition
comprend un mélange dudit mélange de polyamide et ledit au moins un polydiène oxydable
compatible avec le polyamide.
22. Composition de polyamide selon la revendication 1, dans laquelle ladite composition
comprend un produit de réaction dudit mélange de polyamide et ledit au moins un polydiène
oxydable compatible avec le polyamide.
23. Film barrière contre l'oxygène, comprenant une couche d'une composition de polyamide
qui comprend :
a) un mélange de polyamide à cristallisation lente comprenant (i) un homopolymère
ou copolymère de polyamide semi-aromatique amorphe ou un mélange de ceux-ci, et (ii)
un homopolymère ou copolymère de polyamide aliphatique semi-cristallin ou un mélange
de ceux-ci, dans lequel le rapport pondéral de (i)/(ii) se situe dans une plage allant
de 99/1 à 30/70;
b) au moins un polydiène oxydable compatible avec le polyamide; et
c) au moins un sel métallique catalyseur favorisant l'oxydation.
24. Film barrière contre l'oxygène selon la revendication 23, qui est orienté.
25. Film barrière contre l'oxygène selon la revendication 23, comprenant en outre une
couche de polymère thermoplastique sur l'un ou les deux côtés de la couche de composition
de polyamide.
26. Article multicouches qui comprend:
a) une couche de composition de polyamide comprenant un mélange de polyamide à cristallisation
lente comprenant (i) un homopolymère ou copolymère de polyamide semi-aromatique amorphe
ou un mélange de ceux-ci, et (ii) un homopolymère ou copolymère de polyamide aliphatique
semi-cristallin ou un mélange de ceux-ci, dans lequel le rapport pondéral de (i)/(ii)
se situe dans une plage allant de 99/1 à 30/70; au moins un polydiène oxydable compatible
avec le polyamide; et au moins un sel métallique catalyseur favorisant l'oxydation;
et
b) une couche de polymère thermoplastique sur l'un ou les deux côtés de ladite couche
de composition de polyamide.
27. Article multicouches selon la revendication 26, dans lequel ladite couche de polymère
thermoplastique comprend une polyoléfine ou un polyester.
28. Article multicouches selon la revendication 26, dans lequel ladite couche de polymère
thermoplastique comprend un téréphtalate de polyéthylène.
29. Article multicouches selon la revendication 28, dans lequel ledit mélange de polyamide
comprend un mélange de Nylon 6I/6T et de Nylon 6.
30. Article multicouches selon la revendication 29, dans lequel ledit polydiène est le
polybutadiène.
31. Article multicouches selon la revendication 30, dans lequel ledit sel métallique catalyseur
favorisant l'oxydation comprend un sel carboxylate de cobalt.
32. Article multicouches selon la revendication 31, qui a la forme d'une bouteille ou
d'un récipient.
33. Article multicouches selon la revendication 26, dans lequel lesdites couche de polymère
thermoplastique et couche de composition de polyamide sont fixées l'une à l'autre
par co-extrusion, stratification ou co-injection.
34. Article façonné qui comprend une composition de polyamide comprenant :
a) un mélange de polyamide à cristallisation lente comprenant (i) un homopolymère
ou copolymère de polyamide semi-aromatique amorphe ou un mélange de ceux-ci, et (ii)
un homopolymère ou copolymère de polyamide aliphatique semi-cristallin ou un mélange
de ceux-ci, dans lequel le rapport pondéral de (i)/(ii) se situe dans une plage allant
de 99/1 à 30/70;
b) au moins un polydiène oxydable compatible avec le polyamide; et
c) au moins un sel métallique catalyseur favorisant l'oxydation.
35. Article façonné selon la revendication 34, qui a la forme d'une bouteille ou d'un
récipient.
36. Article façonné selon la revendication 35, comprenant en outre au moins une couche
de téréphtalate de polyéthylène.
37. Procédé pour produire une composition de polyamide qui comprend :
a) la fusion d'un mélange de polyamide à cristallisation lente comprenant (i) un homopolymère
ou copolymère de polyamide semi-aromatique amorphe ou un mélange de ceux-ci, et (ii)
un homopolymère ou copolymère de polyamide aliphatique semi-cristallin ou un mélange
de ceux-ci, dans lequel le rapport pondéral de (i)/(ii) se situe dans une plage allant
de 99/1 à 30/70;
b) le mélange du mélange de polyamide fondu avec au moins un polydiène oxydable compatible
avec le polyamide et au moins un sel métallique catalyseur favorisant l'oxydation,
pour former ainsi un mélange; et
c) le refroidissement du mélange.
38. Procédé pour produire un film barrière contre l'oxygène qui comprend :
a) la fusion d'un mélange de polyamide à cristallisation lente comprenant (i) un homopolymère
ou copolymère de polyamide semi-aromatique amorphe ou un mélange de ceux-ci, et (ii)
un homopolymère ou copolymère de polyamide aliphatique semi-cristallin ou un mélange
de ceux-ci, dans lequel le rapport pondéral de (i)/(ii) se situe dans une plage allant
de 99/1 à 30/70;
b) le mélange du mélange de polyamide fondu avec au moins un polydiène oxydable compatible
avec le polyamide et au moins un sel métallique catalyseur favorisant l'oxydation,
pour former ainsi un mélange;
c) l'extrusion, la coulée ou le soufflage du mélange en un film; et
d) le refroidissement du film.
39. Procédé selon la revendication 38, dans lequel ledit film est subséquemment orienté.
40. Procédé pour produire un article multicouches qui comprend :
a) la fusion d'un mélange de polyamide à cristallisation lente comprenant (i) un homopolymère
ou copolymère de polyamide semi-aromatique amorphe ou un mélange de ceux-ci, et (ii)
un homopolymère ou copolymère de polyamide aliphatique semi-cristallin ou un mélange
de ceux-ci, dans lequel le rapport pondéral de (i)/(ii) se situe dans une plage allant
de 99/1 à 30/70; au moins un polydiène oxydable compatible avec le polyamide ; et
au moins un sel métallique catalyseur favorisant l'oxydation, pour former ainsi un
mélange;
b) la fusion séparée d'une composition de polymère thermoplastique;
c) la co-extrusion, la coulée, le soufflage, le thermoformage, le moulage par soufflée
ou la co-injection du mélange et de la composition de polymère thermoplastique en
un article multicouches; et
d) le refroidissement de l'article.
41. Procédé selon la revendication 40, dans lequel ledit article a la forme d'un film,
d'une bouteille ou d'un récipient.
42. Procédé selon la revendication 40, dans lequel ledit article est un film qui est subséquemment
orienté.
43. Procédé selon la revendication 40, dans lequel ledit polyamide est fondu avant de
le mélanger avec ledit polydiène oxydable.
44. Procédé selon la revendication 40, dans lequel ledit polyamide et ledit polydiène
oxydable sont fondus après le mélange.
45. Procédé pour produire un article multicouches qui comprend :
a) la fusion d'un mélange de polyamide à cristallisation lente comprenant (i) un homopolymère
ou copolymère de polyamide semi-aromatique amorphe ou un mélange de ceux-ci, et (ii)
un homopolymère ou copolymère de polyamide aliphatique semi-cristallin ou un mélange
de ceux-ci, dans lequel le rapport pondéral de (i)/(ii) se situe dans une plage allant
de 99/1 à 30/70 ; au moins un polydiène oxydable compatible avec le polyamide ; et
au moins un sel métallique catalyseur favorisant l'oxydation, pour former ainsi un
mélange ;
b) la fusion séparée d'une composition de polymère thermoplastique ;
c) le moulage par co-injection du mélange et de la composition de polymère thermoplastique
pour donner lieu à une préforme multicouches ;
d) le réchauffage de la préforme ; et
e) le moulage par soufflage de la préforme pour donner lieu à un article multicouches.
46. Article multicouches formé par un procédé comprenant :
a) la fusion d'un mélange de polyamide à cristallisation lente comprenant (i) un homopolymère
ou copolymère de polyamide semi-aromatique amorphe ou un mélange de ceux-ci, et (ii)
un homopolymère ou copolymère de polyamide aliphatique semi-cristallin ou un mélange
de ceux-ci, dans lequel le rapport pondéral de (i)/(ii) se situe dans une plage allant
de 99/1 à 30/70 ; au moins un polydiène oxydable compatible avec le polyamide ; et
au moins un sel métallique catalyseur favorisant l'oxydation, pour former ainsi un
mélange ;
b) la fusion séparée d'une composition de polymère thermoplastique ;
c) le moulage par co-injection du mélange et de la composition de polymère thermoplastique
pour donner lieu à une préforme multicouches ;
d) le réchauffage de la préforme ; et
e) le moulage par soufflage de la préforme pour donner lieu à un article multicouches.