

EP 1 373 713 B2 (11)

(12)

NEUE EUROPÄISCHE PATENTSCHRIFT

Nach dem Einspruchsverfahren

(45) Veröffentlichungstag und Bekanntmachung des Hinweises auf die Entscheidung über den Einspruch:

03.07.2013 Patentblatt 2013/27

(45) Hinweis auf die Patenterteilung: 01.07.2009 Patentblatt 2009/27

(21) Anmeldenummer: 02726070.2

(22) Anmeldetag: 22.03.2002

(51) Int Cl.: **F02M 61/16** (2006.01) F02M 61/10 (2006.01)

(86) Internationale Anmeldenummer: PCT/DE2002/001040

(87) Internationale Veröffentlichungsnummer: WO 2002/077443 (03.10.2002 Gazette 2002/40)

(54) KRAFTSTOFF-EINSPRITZVORRICHTUNG, INSBESONDERE INJEKTOR, FÜR **BRENNKRAFTMASCHINEN**

FUEL INJECTION DEVICE, ESPECIALLY INJECTOR, FOR INTERNAL COMBUSTION ENGINES DISPOSITIF D'INJECTION DE CARBURANT, NOTAMMENT INJECTEUR, POUR MOTEURS A **COMBUSTION INTERNE**

(84) Benannte Vertragsstaaten: **DE FR IT**

(30) Priorität: 28.03.2001 DE 10115325

(43) Veröffentlichungstag der Anmeldung: 02.01.2004 Patentblatt 2004/01

(73) Patentinhaber: ROBERT BOSCH GMBH 70442 Stuttgart (DE)

(72) Erfinder:

 KURZ, Michael 70839 Gerlingen (DE)

· WAHR, Gerd 75392 Deckenpfronn (DE) (56) Entgegenhaltungen:

EP-A- 0 985 821 EP-A- 0 890 734 EP-A1- 0 969 203 CH-A- 296 118 DE-A- 19 523 243 DE-A- 19 705 227 DE-A1- 1 776 012 DE-A1- 2 032 005 DE-A1- 19 608 574 DE-C- 490 743 GB-A- 669 110 DE-C2- 19 600 403 GB-A- 2 034 315 GB-A- 2 311 558 GB-A- 2 340 885 US-A- 5 746 181 US-A- 5 954 343

 PATENT ABSTRACTS OF JAPAN vol. 012, no. 064 (M-672), 26. Februar 1988 (1988-02-26) & JP 62 210258 A (AGENCY OF IND SCIENCE & TECHNOL), 16. September 1987 (1987-09-16)

Stand der Technik

[0001] Die Erfindung betrifft eine Kraftstoff-Einspritzvorrichtung, insbesondere Injektor, für Brennkraftmaschinen, mit einem Basiskörper, mit einem Einspritzgehäuse, mit einer Spanneinrichtung, welche mindestens eine Spannmutter mit einem Ringsteg und eine Ringschulter am Einspritzgehäuse umfasst und welche das Einspritzgehäuse axial mit dem Basiskörper verspannt, mit einem Kraftstoff-Einlass und mit mindestens einem Ventilelement.

1

[0002] Eine derartige Kraftstoff-Einspritzvorrichtung ist aus der DE 197 29 843 A1 bekannt. Dort ist ein Kraftstoffeinspritzventil für Brennkraftmaschinen gezeigt, welches eine Spannmutter aufweist, die mit einem inneren, konisch ausgebildeten Ringsteg an einer Ringschulter eines Einspritzgehäuses anliegt. Auf diese Weise wird das Einspritzgehäuse gegen den Basiskörper verspannt. Die Ringschulter ist auf ihrer dem Ringsteg zugewandten Seite derart gekrümmt ausgebildet, dass sich in einem vorgegebenen Abstand von der Längsachse der Kraftstoff-Einspritzvorrichtung ein ringförmig umlaufender Auflagepunkt ergibt, an dem der konische Ringsteg im montierten Zustand anliegt.

[0003] EP 0 890 734 A2 beschreibt eine Kraftstoff-Einspritzvorrichtung, bei der eine Ringfläche der Spanneinrichtung in der Art eines Bereichs eines Ringes mit kreisförmigem Querschnitt gebildet ist.

[0004] Die vorliegende Erfindung hat die Aufgabe, bei einer Kraftstoff-Einspritzvorrichtung der eingangs genannten Art die Abdichtung zwischen dem Einspritzgehäuse und dem Basiskörper zu verbessern. Ferner sollen die Streuungen der Einspritzmenge verringert werden. Zudem wird durch die gleichmäßige axiale Verspannnung der Verschleiss an der Düsennadelführung5 sowie am Düsennadelsitz verringert.

[0005] Diese Aufgabe wird bei einer Kraftstoff-Einspritzvorrichtung der eingangs genannten Art dadurch gelöst, dass die Spanneinrichtung mindestens eine dem Ringsteg der Spannmutter zugewandte Ringfläche aufweist, die in der Art einer Kugelsegmentfläche konvex gekrümmt ist, deren Mittelpunkt auf einer Längsachse der Kraftstoff-Einspritzvorrichtung angeordnet ist.

Vorteile der Erfindung

[0006] Erfindungsgemäß wurde festgestellt, dass gewisse Undichtigkeiten zwischen dem Einspritzgehäuse und dem Basiskörper dadurch auftreten können, dass die Anpresskraft an der Kontaktfläche zwischen Basiskörper und Einspritzgehäuse nicht gleichmäßig verläuft. Sind Stellen vorhanden, an denen die Anpresskraft nur gering ist, ist an diesen Stellen auch die Abdichtung nur relativ gering. An anderen Stellen kann es dagegen zu Kraftspitzen kommen, welche zu einer Verformung des Einspritzgehäuses führen. Dies kann wiederum die Ur-

sache sein für Streuungen bei der Einspritzmenge von einer Kraftstoff-Einspritzvorrichtung zur anderen. Die Ursache für die ungleichmäßige Kraftverteilung liegt in Planlauftoleranzen einerseits am Körpergewinde des Basiskörpers und andererseits am Gewinde der Spannmutter selbst.

[0007] Derartige Ungleichmäßigkeiten der axialen Spannkraft zwischen Basiskörper und Einspritzgehäuse werden bei der erfindungsgemäßen Kraftstoff-Einspritzvorrichtung weitgehend vermieden. Dies wird dadurch erreicht, dass sich das Einspritzgehäuse aufgrund der vorhandenen Kugelsegmentfläche bei der Montage automatisch so ausrichtet, dass die Kraft über den Umfang der Spanneinrichtung im Wesentlichen gleichmäßig verteilt ist. Durch die Kugelsegmentfläche wird also eine Art Gelenkfunktion bereitgestellt, welche ein selbsttätiges und optimales Ausrichten des Einspritzgehäuses gegenüber Basiskörper bei der Montage der Kraftstoff-Einspritzvorrichtung ermöglicht.

20 [0008] Da die Flächenpressung im Kontaktbereich zwischen Basiskörper und Einspritzgehäuse vergleichmäßigt ist, ist das Auftreten von undichten Stellen in diesem Kontaktbereich weniger wahrscheinlich. Darüber hinaus ist die Wahrscheinlichkeit von Verformungen des
25 Einspritzgehäuses ebenfalls geringer, so dass die Einspritzmenge von einer Kraftstoff-Einspritzvorrichtung zur anderen - wenn überhaupt - weniger variiert.

[0009] Vorteilhafte Weiterbildungen der Erfindung sind in Unteransprüchen angegeben.

[0010] Bei einem nicht erfindungsgemäßen Einspritzventil umfasst die Spanneinrichtung eine zu der konvexen Kugelsegmentfläche komplementäre konkave Kugelsegmentfläche, an der die konvexe Kugelsegmentfläche flächig anliegt. Hierdurch wird eine Art "Kugelpfannen-Kugelkopf-Gelenk" geschaffen. In diesem Fall erfolgt das Ausrichten des Einspritzgehäuses gegenüber dem Basiskörper bei der Montage der Kraftstoff-Einspritzvorrichtung besonders kraftarm und leicht. Dies führt zu einer besonders gleichmäßigen Flächenpressung an der Verbindungsstelle zwischen Basiskörper und Einspritzgehäuse.

[0011] Möglich ist aber auch, dass die Spanneinrichtung eine der konvexen Kugelsegmentfläche zugewandte schräge und ebene Ringfläche aufweist, an der die Kugelsegmentfläche linienhaft anliegt. Eine derartige schräge Ringfläche ist leicht herzustellen und ermöglicht die preiswerte Fertigung der erfindungsgemäßen Kraftstoff-Einspritzvorrichtung.

[0012] Besonders bevorzugt ist dabei, dass die schräge Ringfläche einen Winkel von ungefähr 120° einschließt. Bei einem solchen Winkel werden die für eine sichere Verbindung und Abdichtung erforderlichen axialen Kräfte noch gut übertragen, und andererseits bietet eine solche Schräge einen guten Sitz für die konvexe Kugelsegmentfläche.

[0013] Besonders bevorzugt ist, wenn die Spanneinrichtung eine Ringscheibe umfasst, welche zwischen dem Einspritzgehäuse und der Spannmutter angeordnet

40

5

15

20

ist, wobei entweder die konvexe Kugelsegmentfläche oder die schräge Ringfläche an der Ringscheibe ausgebildet ist. Eine derartige Ringscheibe ermöglicht beispielsweise die Verwendung einer üblichen Spannmutter, was die Herstellkosten der erfindungsgemäßen Kraftstoff-Einspritzvorrichtung niedrig hält. Alternativ kann aber auch das Einspritzgehäuse eine übliche Ringschulter aufweisen, an der also weder eine Schräge noch eine Kugelsegmentfläche vorhanden ist, wenn die erfindungsgemäße Ringscheibe vorgesehen wird.

3

[0014] Bevorzugt ist jedoch, wenn die konvexe Kugelsegmentfläche an der Ringschulter des Einspritzgehäuses ausgebildet ist. Beim Einspritzgehäuse handelt es sich ohnehin um ein relativ komplexes Teil, an dem der zusätzliche Bearbeitungsschritt einen vergleichsweise nur geringen Zusatzaufwand bedeutet.

[0015] Das Ausrichten des Einspritzgehäuses gegenüber dem Basiskörper wird nochmals erleichtert, wenn die konvexe Kugelsegmentfläche und die mit dieser zusammenarbeitende schräge Ringfläche mit einer reibungsarmen Schicht, vorzugsweise Teflon, versehen sind.

Zeichnung

[0016] Nachfolgend werden Ausführungsbeispiele der Erfindung unter Bezugnahme auf die beiliegende Zeichnung im Detail erläutert. In der Zeichnung zeigen:

- Fig. 1: einen teilweisen Längsschnitt durch eine nicht erfindungsgemäße Kraftstoff- Einspritzvorrichtung mit einer Spannmutter und einer Ringscheibe;
- Fig. 2: einen Schnitt durch die Ringscheibe der Kraftstoff-Einspritzvorrichtung von Fig. 1;
- Fig. 3: eine Draufsicht auf die Spannmutter der Kraftstoff-Einspritzvorrichtung von Fig. 1;
- Fig. 4: einen teilweisen Längsschnitt bzw. eine Seitenansicht der Spannmutter der Kraftstoff- Einspritzvorrichtung von Fig. 1;
- Fig. 5: einen Schnitt längs der Linie V-V von Fig. 4;
- Fig. 6: eine Ansicht ähnlich Fig. 1 eines Ausführungsbeispiels einer erfindungsgemäßen Kraftstoff-Einspritzvorrichtung mit einer Spannmutter und einer Ringscheibe;
- Fig. 7: eine Draufsicht auf die Ringscheibe der Kraftstoff-Einspritzvorrichtung von Fig. 6;
- Fig. 8: einen Schnitt längs der Linie IX-IX von Fig. 7; und
- Fig. 9: einen Längsschnitt durch einen Bereich der

Spannmutter der Kraftstoff-Einspritzvorrichtung von Fig. 6.

Beschreibung der Ausführungsbeispiele

[0017] In Fig. 1 trägt eine nicht erfindungsgemäße Kraftstoff-Einspritzvorrichtung insgesamt das Bezugszeichen 10. Sie unmfasst einen Basiskörper 12, ein Einspritzgehäuse 14 sowie eine Spannmutter 16. Am Basiskörper 12 ist ein Gewinde 18 vorhanden, mit dem die Spannmutter 16 verschraubt ist. Im Einspritzgehäuse 14 ist eine in dessen Längsrichtung verlaufende Ausnehmung 20 vorhanden, in der eine Ventilnadel 22 angeordnet ist. Ein Kraftstoff-Einlass 24 versorgt einen Ringraum 26 zwischen Ventilnadel 22 und Ausnehmung 20 mit Kraftstoff. Durch eine axiale Bewegung der Ventilnadel 22 können in der Figur nicht dargestellte Kraftstoff-Austrittsöffnungen mit dem Ringraum 26 verbunden werden, so dass von der Kraftstoff-Einspritzvorrichtung 10 Kraftstoff abgegeben wird.

[0018] Die Kraftstoff-Einspritzvorrichtung 10 dient im Allgemeinen zum Einspritzen von Kraftstoff direkt in den Brennraum einer Brennkraftmaschine. Mit ihr kann Benzin- oder Dieselkraftstoff eingespritzt werden.

[0019] Bei der Spannmutter 16 (vgl. Fig. 3 - 5) handelt es sich um ein hohlzylindrisches Teil, welches einen Wandabschnitt 30 und einen an dessen in Fig. 1 unterem Ende angeformten radial nach innen weisenden Ringsteg 32 umfasst. Die in Fig. 1 obere Oberfläche 33 des Ringstegs 32 und die innere Oberfläche des Wandabschnitts 30 liegen in einem Winkel von ungefähr 90° zueinander.

[0020] Das Einspritzgehäuse 14 weist einen Abschnitt 34 mit größerem und einen Abschnitt 36 mit kleinerem Durchmesser auf. Der Durchmesser des Abschnitts 36 mit kleinerem Durchmesser ist etwas kleiner als der Durchmesser der vom Ringsteg 32 der Spannmutter 16 begrenzten Öffnung 38. Der Durchmesser des Abschnitts 34 des Einspritzgehäuses 14 ist etwas kleiner als der Innendurchmesser des Wandabschnitts 30 der Spannmutter 16.

[0021] Zwischen dem Abschnitt 34 und dem Abschnitt 36 des Einspritzgehäuses 14 ist eine Ringschulter 40 gebildet. Die Ringschulter 40 ist in der Art einer Kugelsegmentfläche 41 konvex gekrümmt. Der Mittelpunkt M der Kugelsegmentfläche 41 liegt auf der Längsachse 42 der Kraftstoff-Einspritzvorrichtung 10. Der Radius der Kugel, aus welcher die Kugelsegmentfläche 41 ausgeschnitten ist, beträgt R.

[0022] Zwischen dem Ringsteg 32 der Spannmutter 16 und der Ringschulter 40 am Einspritzgehäuse 14 ist eine Ringscheibe 44 vorhanden (vgl. Fig. 2). Der Innendurchmesser der Ringscheibe 44 ist etwas größer als der Außendurchmesser des Abschnitts 36 des Einspritzgehäuses 14, wohingegen der Außendurchmesser der Ringscheibe 44 etwas kleiner ist als der Innendurchmesser des Wandabschnitts 30 der Spannmutter 16. Die Oberseite 45 der Ringscheibe 44 ist als konkave Kugel-

50

20

25

30

35

40

45

50

55

segmentfläche 46 ausgebildet, welche zu der konvexen Kugelsegmentfläche 41 am Einspritzgehäuse 14 komplementär ist. Die Unterseite der Ringscheibe 44 weist eine konische Einsenkung auf.

[0023] Der Radius der Kugel, aus welcher die konkave Kugelsegmentfläche 46 ausgeschnitten ist, beträgt somit ebenfalls R, und der Mittelpunkt M dieser Kugel liegt ebenfalls auf der Längsachse 42 der Kraftstoff-Einspritzvorrichtung 10. Beide Kugelsegmentflächen 41 und 46 sind mit einer reibungsarmen Teflonschicht (nicht sichtbar) versehen. Die Kugelsegmentflächen 41 und 46 arbeiten somit in der Art eines Kugelpfannen-Kugelkopf-Gelenks zusammen. Die Spannmutter 16 mit dem Ringsteg 32, die Ringschulter 40 am Einspritzgehäuse 14 und die Ringscheibe 44 bilden insgesamt eine Spanneinrichtung 48.

[0024] Die Montage der Kraftstoff-Einspritzvorrichtung 10 mittels der Spanneinrichtung 48 geht folgendermaßen vor sich:

[0025] Zunächst wird die Ringscheibe 44 von unten über den Abschnitt 36 des Einspritzgehäuses 14 übergeschoben. Dabei weist die konkave Kugelsegmentfläche 46 der Ringscheibe 44 nach oben, also auf die Ringschulter 40 des Einspritzgehäuses 14 zu. Dann wird die Spannmutter 16 über das Einspritzgehäuse 14 übergeschoben, wobei der Ringsteg 32 unten angeordnet ist. Die Spannmutter 16 wird nun mit dem Gewinde 18 am Basiskörper 12 verschraubt.

[0026] Dabei kommt ein in Fig. 1 von der Spannmutter 16 verdeckter Bereich des Einspritzgehäuses 14 an einen in Fig. 1 ebenfalls verdeckten Bereich des Basiskörpers 12 in Anlage. Gegebenenfalls kann zwischen beiden Teilen auch ein Dichtelement, beispielsweise ein O-Ring, vorhanden sein. Beim Festziehen der Spannmutter 16 am Basiskörper 12 richtet sich das Einspritzgehäuse 14 gegenüber dem Basiskörper 12 so aus, dass die Flächenpressung an der Dichtfläche zwischen Einspritzgehäuse 14 und Basiskörper 12 ungefähr gleichmäßig ist. [0027] Dies ist dadurch möglich, dass die Kugelsegmentfläche 46 einerseits und die Kugelsegmentfläche 41 andererseits in der Art eines Kugelpfannen-Kugelkopf-Gelenks zusammenarbeiten und somit die axiale Ausrichtung der Spannmutter 16 und des Einspritzgehäuses 14 voneinander entkoppelt ist. Planlauftoleranzen am Gewinde 18 des Basiskörpers 12 sowie an dem in Fig. 1 nicht sichtbaren Innengewinde der Spannmutter 16 haben somit keine Auswirkungen mehr auf die Ausrichtung des Einspritzgehäuses 14.

[0028] Nun wird auf ein Ausführungsbeispiel einer erfindungsgemäßen Kraftstoff-Einspritzvorrichtung Bezug genommen, welches in den Fig. 6 - 9 dargestellt ist. Dabei tragen solche Teile und Elemente, welche äquivalente Funktionen zu der in den Fig. 1 - 5 dargestellten Kraftstoff-Einspritzvorrichtung aufweisen, die gleichen Bezugszeichen und sind nicht nochmals im Detail erläutert. [0029] Im Unterschied zu der in den Fig. 1 - 5 dargestellten Kraftstoff-Einspritzvorrichtung 10 ist die in Fig. 6 nach oben weisende Oberfläche des Ringstegs 32 der

Spannmutter 16 als schräge Ringfläche 50 ausgebildet. Die schräge Ringfläche 50 schließt dabei einen Winkel von ungefähr 120° ein (vgl. Fig. 9). Die Ringschulter 40 des Einspritzgehäuses 14 ist in dem vorliegenden Ausführungsbeispiel nicht konvex gekrümmt, sondern erstreckt sich vom Abschnitt 36 mit kleinerem Durchmesser des Einspritzgehäuses 14 geradlinig und in einem Winkel von ungefähr 90° radial nach außen. Die Ringscheibe 44 wiederum weist auf ihrer Unterseite eine Ringfläche auf, die in der Art einer Kugelsegmentfläche 41 konvex gekrümmt ist. Die Oberseite 45 der Ringscheibe 44 weist eine Einsenkung auf.

[0030] Bei dem in den Fig. 6 - 9 dargestellten Ausführungsbeispiel wird die Entkopplung der Ausrichtung der Spannmutter 16 einerseits und der Ausrichtung des Einspritzgehäuses 14 andererseits also durch die schräge Ringfläche 50 und die mit dieser zusammenarbeitenden konvexen Kugelsegmentfläche 41 erzielt.

Patentansprüche

- Kraftstoff-Einspritzvorrichtung (10), insbesondere Injektor, für Brennkraftmaschinen, mit einem Basiskörper (12), mit einem Einspritzgehäuse (14), mit einer Spanneinrichtung (48), welche mindestens eine Spannmutter (16) mit einem Ringsteg (32) und eine Ringschulter (40) am Einspritzgehäuse (14) umfasst und welche das Einspritzgehäuse (14) axial mit dem Basiskörper (12) verspannt, mit einem Kraftstoff-Einlass (24), und mit mindestens einem Ventilelement (22), wobei die Spanneinrichtung (48) mindestens eine dem Ringsteg (32) der Spannmutter (16) zugewandte Ringfläche aufweist, die in der Art einer Kugelsegmentfläche (41) konvex gekrümmt ist, deren Mittelpunkt (M) auf einer Längsachse (42) der Kraftstoff-Einspritzvorrichtung (10) angeordnet ist, wobei die Spanneinrichtung (48) eine der konvexen Kugelsegmentfläche (41) zugewandte schräge und ebene Ringfläche (50) aufweist, an der die Kugelsegmentfläche (41) linienhaft anliegt.
- Kraftstoff-Einspritzvorrichtung (10) nach Anspruch 1, dadurch gekennzeichnet, dass die schräge Ringfläche (50) einen Winkel von ungefähr 120° einschließt.
- 3. Kraftstoff-Einspritzvorrichtung (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Spanneinrichtung (48) eine Ringscheibe (44) umfasst, welche zwischen dem Einspritzgehäuse (14) und der Spannmutter (16) angeordnet ist, wobei entweder die konvexe Kugelsegmentfläche (41) oder die schräge Ringfläche an der Ringscheibe (44) ausgebildet ist.
- Kraftstoff-Einspritzvorrichtung (10) nach einem der vorhergehenden Ansprüche, dadurch gekenn-

5

10

15

20

25

30

35

40

45

50

zeichnet, dass die konvexe Kugelsegmentfläche (41) an der Ringschulter (40) des Einspritzgehäuses (14) ausgebildet ist.

5. Kraftstoff-Einspritzvorrichtung (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die konvexe Kugelsegmentfläche (41) und die mit dieser zusammenarbeitende schräge Ringfläche (50) mit einer reibungsarmen Schicht, vorzugsweise aus Teflon, versehen sind.

Claims

- 1. Fuel injection device (10), in particular injector, for internal combustion engines, having a basic body (12), having an injection housing (14), having a clamping device (48), which comprises at least one clamping nut (16) with an annular web (32) and an annular shoulder (40) on the injection housing (14) and which clamps the injection housing (14) axially to the basic body (12), having a fuel inlet (24) and having at least one valve element (22), with the clamping device (48) having at least one annular surface which faces towards the annular web (32) of the clamping nut (16), which annular surface is convexly curved in the manner of a spherical segment surface (41) whose central point (M) is arranged on a longitudinal axis (42) of the fuel injection device (10), with the clamping device (48) having an oblique and planar annular surface (50) which faces towards the convex spherical segment surface (41) and against which the spherical segment surface (41) bears with linear contact.
- 2. Fuel injection device (10) according to Claim 1, **characterized in that** the oblique annular surface (50) encloses an angle of approximately 120°.
- 3. Fuel injection device (10) according to one of the preceding claims, **characterized in that** the clamping device (48) comprises an annular disc (44) which is arranged between the injection housing (14) and, the clamping nut (16), with either the convex spherical segment surface (41) or the oblique annular surface being formed on the annular disc (44).
- **4.** Fuel injection device (10) according to one of the preceding claims, **characterized in that** the convex spherical segment surface (41) is formed on the annular shoulder (40) of the injection housing (14).
- 5. Fuel injection device (10) according to one of the preceding claims, **characterized in that** the convex spherical segment surface (41) and the oblique annular surface (50) which interacts therewith are provided with a low-friction layer, preferably composed of Teflon.

Revendications

- 1. Dispositif d'injection de carburant (10), notamment injecteur, pour moteurs à combustion interne, avec un corps de base (12), avec un boîtier d'injection (14), avec un dispositif de serrage (48), qui comprend au moins un écrou de serrage (16) avec une nervure annulaire (32) et un épaulement annulaire (40) sur le boîtier d'injection (14), et qui serre le boîtier d'injection (14) axialement avec le corps de base (12), avec une entrée de carburant (24), et avec au moins un élément de soupape (22), le dispositif de serrage (48) présentant au moins une surface annulaire tournée vers la nervure annulaire (32) de l'écrou de serrage (16), qui a une courbure convexe du type d'une surface de segment de sphère (41), dont le centre (M) est disposé sur un axe longitudinal (42) du dispositif d'injection de carburant (10) le dispositif de serrage (48) présentant une surface annulaire oblique et plane (50) tournée vers la surface de segment de sphère convexe (41), contre laquelle s'applique linéairement la surface de segment de sphère convexe (41).
- 2. Dispositif d'injection de carburant (10) selon la revendication 1, caractérisé en ce que la surface annulaire oblique (50) inclut un angle d'environ 120°.
- 3. Dispositif d'injection de carburant (10) selon l'une quelconque des revendications précédentes, caractérisé en ce que le dispositif de serrage (48) comprend une rondelle annulaire (44) qui est disposée entre le boîtier d'injection (14) et l'écrou de serrage (16), la surface de segment de sphère convexe (41) ou la surface annulaire oblique étant réalisée sur la rondelle annulaire (44).
- 4. Dispositif d'injection de carburant (10) selon l'une quelconque des revendications précédentes, caractérisé en ce que la surface de segment de sphère convexe (41) est réalisée sur l'épaulement annulaire (40) du boîtier d'injection (14).
- 5. Dispositif d'injection de carburant (10) selon l'une quelconque des revendications précédentes, caractérisé en ce que la surface de segment de sphère convexe (41) et la surface annulaire oblique (50) coopérant avec elle sont pourvues d'une couche antifriction, de préférence en téflon.

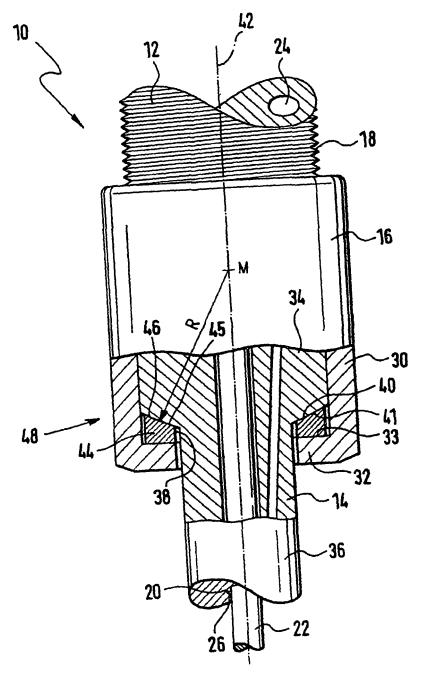
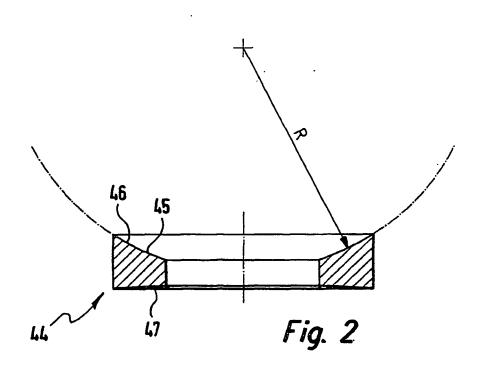
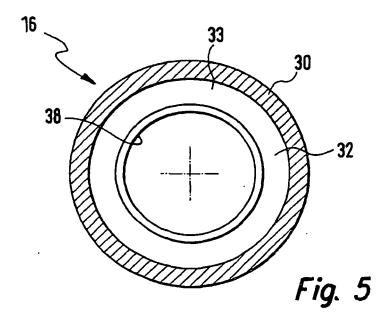
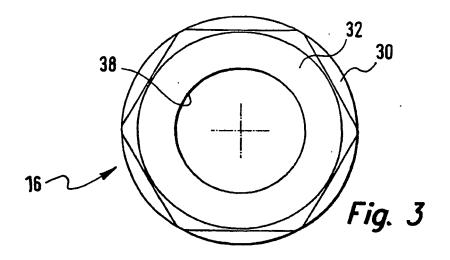
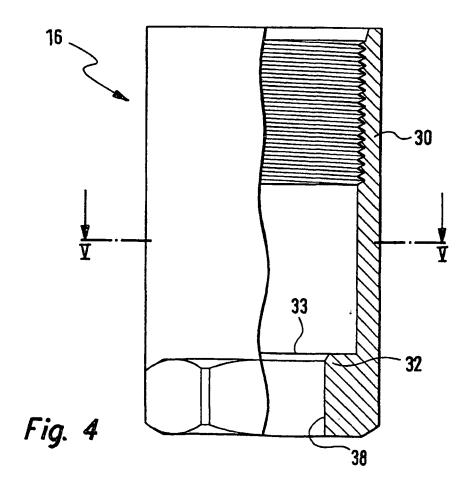






Fig. 1

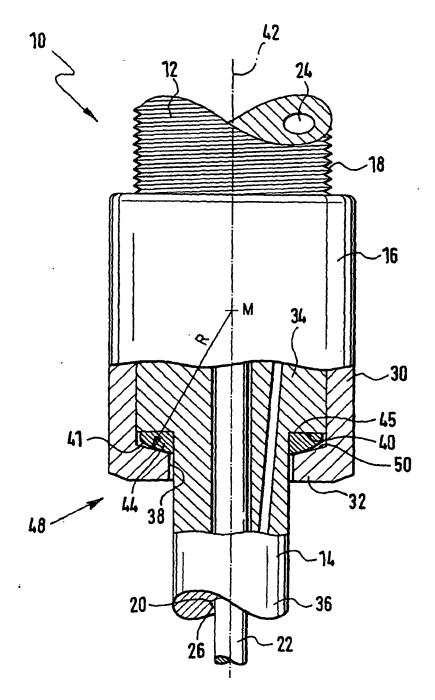
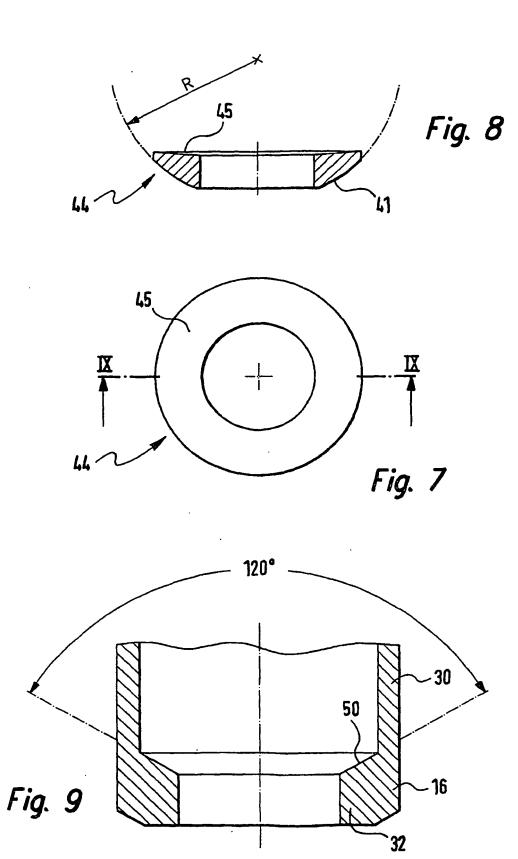



Fig. 6

EP 1 373 713 B2

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

• DE 19729843 A1 **[0002]**

• EP 0890734 A2 [0003]