BACKGROUND OF THE INVENTION
[0001] The present invention relates to improving the quality of products produced by plastic
resin extrusion lines and to the production of blown film.
[0002] When blown film is extruded, it typically is in the form of a continuous, vertically
oriented tube. The tube, which is in a molten state as it exits a die, expands in
diameter as it is pulled continuously upward. The diameter stabilizes to a more or
less constant value when the tube cools sufficiently to solidify. This solidification
occurs a short distance from the die at what is called the frost line. Air cooling
systems such as air rings outside of the tube and internal bubble cooling (IBC) systems
within the tube are provided close to the exit of the die to ensure that the tube
cools quickly enough to remain stable.
[0003] After solidifying, the tube passes through stabilizers of various designs and into
a flattening device, known as a collapsing frame, to convert the inflated tube into
a flattened out film with no air inside. This film is pressed together by motorized
nip rolls that continually draw the film upward and away from the extrusion process
to form what is call "layflat." The die and nip roll act as seals, which in steady
state, form a trapped, column of air with constant volume inside the tube.
[0004] As the film is extruded, thickness variations occur around the circumference of the
bubble. It is recognized that these variations are caused by such factors as circumferential
nonuniformity in flow distribution channels (ports and spirals) within the die, melt
viscosity non-uniformity, and inconsistent annular die gaps through which the polymer
exits the die. Additionally, variability of the cooling air and non-uniformity of
air aspirated into the cooling air stream from the atmosphere surrounding the extrusion
line are major contributors to film thickness variation.
[0005] Many film processors rely on conventional blown film equipment to determine the film
thickness. This approach typically yields an average variation of +/-10%-20% in film
thickness, overall. The presence of such thickness variations creates problems that
limit the throughput of downstream conversion equipment, such as printing presses,
laminators, or bag machines. In processes where the film is not converted in-line,
but is wound onto a roll prior to converting, the thicker and thinner areas of many
layers on the roll create hills and valleys on the roll surface, thus deforming the
film and magnifying the subsequent converting problem.
[0006] A widely practiced method for controlling blown film thickness variation is the use
of fans and barriers placed strategically around the process to correct for ambient
air variability. This is usually done in combination with manual operator adjustment
of the annular die gap through which the liquid polymer melt exits to help minimize
the die gap and the effects of variation in the melt viscosity. The main problem with
this approach is that the ambient conditions surrounding the process constantly change
and require continuous monitoring and barrier and/or fan repositioning. This approach
also does not take care of the relatively narrow thickness bands associated with the
die ports and spirals, but does allow the processor to use the highest performance
equipment available on the market to maximize throughput on the line.
[0007] Thickness improvement over such manual adjustments is found in current systems that
actively measure the thickness of the film on-line. Employing closed loop control,
these systems use computers to track thickness variations as they occur in the still-inflated
bubble and to calculate corrections to individual control zones within the die or
cooling systems. These zones impart localized thickness variations which are opposite
to those measured and thus to some extent correct for thickness deviations circumferentially
around the bubble, including to differing degrees those variations caused by the ports
and spirals within the die. Many such systems presently in use require the use of
control equipment which improves thickness control but at the expense of throughput
rate. A problem associated with all automatic systems is the necessary complexity
which creates high cost and requires the use of skilled operators and maintenance
personnel.
[0008] One approach seeks to control blown film thickness variation by direct mechanical
adjustment and deformation of the die lip. In these systems, localized, circumferentially
variable, mechanical adjustments to the die lip cause detrimentally large hoop stress
and elastic forces to develop in the die lip, thereby resisting deformation and spreading
the effect of the adjustment over a larger area than that intended. These problems
limit the effective resolution. These systems have correspondingly poor control over
thickness variation but do not preclude the use of high performance cooling systems
which maximize throughput rate.
[0009] Another approach utilizes direct, circumferentially variable, heating of the exit
lip from the die. In these systems, individual heaters embedded in the die lip locally
heat the lips. Since heat spreads outward in all directions through the steel, the
effect is not as locally concentrated as desired and resolution is reduced. Also,
heat that is added to the die lip transfers this heat to the molten polymer, thereby
raising its local temperature. This extra heat must be removed by the cooling systems,
forcing the throughput rate of film production to be lowered.
[0010] Yet another approach employs circumferentially variable heating of the cooling air
which flows from the primary cooling ring surrounding the blown film bubble. Individual
actuators control the local temperature of the cooling air and affect the thickness
of the film. Due to the large volumes of air and associated turbulence involved, mixing
occurs and significantly degrades the performance of this type of system. Also, heat
that is added to the cooling air have the drawback of losing cooling capacity since
overall temperature is raised, thus forcing the throughput rate of film production
to be lowered.
[0011] A more commonly used approach alters in a circumferentially variable way, the flow
of air exiting the primary cooling ring surrounding the exterior of the blown film
bubble. Individual low pressure actuators mechanically alter the flow of cooling air
through associated control zones by using an air blade to section off and bleed air
out and away from the air ring which starve feeds the local air flow without causing
appreciable pressure drop across the actuator as is described in
US Patent No. 5,281,375. The thickness of the film is affected because more or less heat is removed due to
the presence of more or less cooling air. Typically, single flow designs of air rings
that use this approach produce acceptable thickness control capability, but have a
drawback in that the reduced cooling capability lowers processing throughput rate.
[0012] Air blades more recently have been fitted to high performance dual lip air rings,
such as those manufactured by Addex, Inc. Multiple radially oriented channels located
within the plenum are used to evenly distribute and direct the air flow to the air
blades where the low pressure drop air blades section off some of the air that is
delivered to the lips the same as with a single flow air ring. This approach has a
significant limitation in that there is limited control range capability and can only
partially compensate for variations present on a typical blown film process. These
systems suffer from the additional disadvantage of added complexity which adds significantly
to cost and reduced resolution due to the size of the air blade actuators which limits
the ability to control narrow thickness variations commonly present. These systems
retain their high throughput capabilities.
[0013] A further approach controls in a circumferentially variable way the flow of air exiting
the internal bubble cooling (IBC) ring contained within the blown film bubble. This
approach does not affect bubble stability since the tube does not lock on the internal
cooler and has excellent control of thickness variation. Further, it allows the use
of any high performance cooling system exterior to the bubble that is desired and
therefore allows for maximum throughput rate. One drawback, however, is that the system
cannot be fitted to smaller die diameters, i.e., less than about 10 inches (250mm),
due to space constraints. Additionally, not all processors of film want to employ
IBC systems within their process.
[0014] It is highly desirable to produce higher quality film during the extrusion process
so that the downstream equipment can be run faster and produce better end use products
with more consistent thickness while at the same time maximizing the throughput rate
of the extrusion line through the use of high performance dual flow air rings and
without size restrictions or the requirement to use IBC. It is further desirable to
accomplish this using a simpler design to minimize cost and labor.
[0015] Other relevant prior art includes
US 3,835,209,
US 5,562,926,
US 4,209,475 and
US 5,804,221.
SUMMARY OF THE INVENTION
[0016] The invention is defined in independent claims 1 and 9.
[0017] The present invention includes an external air ring thickness profile control system
on a blown film extrusion line. The external thickness profiler of the present invention
includes a simple to use and inexpensive manual actuation system as well as an automatic
actuation system. Rather than trying to minimize pressure drop with an actuating zone,
the system of the present invention employs a high pressure drop actuator which acts
locally to alter air flow without affecting critical relative flows to lips where
the air is provided to the blown film.
[0018] According to one embodiment of the present invention, air is provided through radial
channels and then to the lips, in which case cross-sections at actuation points are
varied in one or more channels to locally alter air flow such that there is a high
pressure drop before reaching the lips. This drop allows the air flow to normalize
within the channel after actuation and thus to develop into uniform pipe flow. Upon
exiting the radially inward end of the multiple channels, the air flows are under
semi-laminar flow conditions inwardly through the lip section; thus preventing appreciable
mixing with air from other channels. After the actuator, the length of the radial
channel should be of sufficient length, e.g., about 8 times the effective channel
diameter or greater, to fully generate pipe flow and create the desired pressure drop.
Shorter lengths channels would reduce the effect on local thickness. Further, it is
preferred to deliver the air to the lips as soon as possible after it clears the radial
channels so that the pressure drop in the lips does not become large compared to the
pressure drop through the radial channels, a situation that would also serve to dilute
the local effect on thickness.
[0019] Manually controllable barriers can be used as actuators to provide a low cost alternative
to automatic control. These barriers can be provided as screws that are handled in
a similar fashion to die adjustment bolts commonly used by operators when adjusting
die lips for thickness optimization, or as blocks to block portions of an annular
region between air inlet and lips. The thickness adjustment can be well pronounced
and fine-tunable using procedures that are generally understood by operating personnel
in other contexts. A further advantage is that the resolution attainable is high because
there can be over 120 control zones even on very small processes and hoop stresses
are not an issue.
[0020] Other embodiments add automatically controllable barriers, such as pistons, to allow
for automatic closed loop control of thickness variation.
[0021] In a dual external ring, locate the actuator before the air flows separates to the
two lips. About 10% of air flows to a lower lip, typically located outwardly concentric
with an exit point of the molten tube from the die. The remaining 90% passes to a
main lip located concentrically above and generally outward from the lower lip, as
is readily know in present dual lip air rings. By actuating well before this lip section,
semi-laminar flow air acts locally to divert at the same relative proportions to the
lower and main lip and thus not affect bubble stability as long as a certain minimum
air flow is present to develop Bernoulli forces strong enough to just "lock" the tube
into the lips.
[0022] Other features and advantages will become apparent from the following detailed description,
drawings, and claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0023]
FIG. 1 is a schematic side view showing a blown film extrusion apparatus including
an external thickness profiler according to the present invention.
FIG. 2 is a schematic cross sectional view of the external thickness profiler of FIG.
1.
FIG. 3 is a perspective cross sectional view of the external thickness profiler without
the outer plenum portion.
FIG. 4 is a partially cut away perspective view of the radial channels and actuator
section of the manual thickness profiler of FIG. 3.
FIG. 5a is a graphical representation of the thickness profile resulting on a blown
film extrusion line taken with the manual thickness profiler in the neutral position.
FIG. 5b is a graphical representation of the thickness profile resulting on a blown
film extrusion line taken with the manual thickness profiler inducing thickness bands
at four equally spaced positions.
FIG. 6 is a cross sectional perspective view on an enlarged scale of the thickness
profiler of the present invention incorporating automatic positioning of actuators.
FIG. 7 is a partially cut away perspective view of an actuator section of the manual
thickness profiler according to another embodiment of the present invention.
DETAIL DESCRIPTION
[0024] FIG. 1 illustrates a known system for extrusion of molten plastic resin to form blown
film. Plastic pellets are fed into a feed hopper 2 and transferred into an extruder
4 where the pellets are melted, mixed, and pressurized by the action of an extruder
screw. The melt exits extruder 4 and is conveyed through a die block 6 where it is
directed upwardly through a vertical neck 8 into the bottom of a blown film die 10.
The plastic melt flow is designed to form an annular, cylindrical plastic melt flow
12 which is extruded from an annular orifice at the top of die 10. This annular melt
flow is continually drawn away from die 10 in a manner generally concentric with a
process centerline 14. The annular diameter of the cylindrical plastic melt flow 12
enlarges as it progresses from the die until it reaches a frost line 16 (indicated
diagrammatically by a saw-tooth line) to form a cooled, solidified plastic tubular
film bubble 18.
[0025] Primary cooling air for the process is supplied to an external thickness profiler
20 from an air source (not shown). External thickness profiler 20 functions as the
primary cooling air ring for the process. The air is applied to contact the extruding
plastic melt adjacent a base portion of the bubble by air ring lips 22. The air flows
in circumferentially controlled annular air streams 24 along an outside expanding
surface of the bubble.
[0026] Inside the bubble and concentric with centerline 14 is an internal bubble cooling
(IBC) system 26. System 26 provides internal cooling air to contact an inside surface
of the extruding plastic melt adjacent the base portion of the bubble and flows in
annular air streams 28 along the inside expanding surface of the bubble. The plastic
melt is cooled sufficiently to solidify into tubular bubble 18 at frost line 16.
[0027] Internal cooling air is provided through air passages 30 located in die 10 to IBC
system 26. Bubble 18 is sealed at the top by nip rolls 32, 32a and at the bottom by
die 10, and thus has a closed volume. To maintain a constant bubble volume, air is
exhausted out of bubble 18 at the same rate that it is pumped in through air passages
34 located in die 10 according to known techniques, enabling the annular dimension
of bubble 18 to remain constant.
[0028] Also, according to known techniques, tubular bubble 18 is continually drawn upward
through stabilizer 35 and collapsing frames 36 and 36a where it is compressed into
a flat sheet of film 38, also known as "layflat," as it passes through a nipping point
between nip rolls 32 and 32a. These nip rolls are driven to continually pull the film
through the extrusion process. Layflat film 38 is then converted and/or wound into
finished product by downstream processing equipment.
[0029] Non-uniformities in the extrusion system, for instance non-uniformities in resin
flow produced by the discrete flow passages commonly used in die 10, cause circumferential
thickness variations in bubble 18. Thickness variations are measured by sensor 40,
e.g., of the know capacitive or nuclear back-scatter types, which is scanned around
the circumference of bubble 18 by circularly rotatable track 42. Thickness information
and respective position information of the thickness sensor are continually provided
to thickness monitoring console 44 which provides operator 46 with feedback of the
magnitude and location of cicumferential thickness variations in bubble 18. In response
to feedback from thickness monitoring console 44, operator 46 changes circumferentially
controlled annular air streams 24 to achieve the desired thickness profile around
the circumference of bubble 18.
[0030] FIGS. 2 and 3 are schematic and perspective cross sectional views of the external
thickness profiler 20 (FIG. 1) and the sets of air ring lips. Primary cooling air
enters the external thickness profiler through multiple air inlets 48 formed integrally
with an outer plenum 50. Air passes more or less tangentially from inlets 48 into
annular plenum chamber 56 formed by outer plenum 50, top plenum wall 52 and bottom
plenum wall 54. This structure is generally known. Multiple air inlets 48 extend partially
along the circumference, and connect through large open passages (not shown) as part
of plenum 56.
[0031] Referring also to FIG. 4, tangential air flow patterns are converted to radial air
flow patterns by passing air into multiple radial channels 58 formed monolithically
in bottom plenum wall 54 and enclosed by top plenum wall 52. Multiple radial channels
58 are arranged outwardly and circumferentially equally spaced around the air ring
lips to provide air flow to the air ring lips. FIG. 2 shows a series of the inner
radial ends of channels 58.
[0032] Local air flow through each radial channel 58 can be independently modified and controlled
by using manually actuated barriers, shown here as screws 60, with one actuating screw
60 associated with each radial channel 58, thereby allowing for circumferentially
variable air flow to be delivered to the air ring lips. Barriers could potentially
be provided for only some of the channels.
[0033] Circumferentially variable air flow enters lip plenum 62. An air dam 64 (FIG. 3)
deflects a portion of this air (about 10%) through a back-pressure generated by the
air ring lips 22, through multiple lower lip feed holes 66 and directs this air to
lower lip 68. Referring also to FIG. 1, lip 68 is coaxially spaced just outwardly
of a base of cylindrical plastic melt flow 12 and typically just above die 10. This
air begins to flow upwardly as part of circumferentially controlled annular air stream
24 along the outside of the expanding cylindrical plastic melt flow 12. Referring
mainly to FIG. 3, a majority of the circumferentially variable air, typically about
90%, passes under air dam 64 and exits through main lip 70 where it rejoins air from
lower lip 68. The balance of air flow exiting lower lip 68 and main lip 70 is critical
to maintaining bubble stability.
[0034] Air exiting from main lip 70 forcefully acts due to Bernoulli forces on cylindrical
plastic melt flow 12 to hold it closely spaced, about ¼ inch (6mm) concentrically
inward from main lip 70. The local flow volume of controlled annular air stream 24
must remain above a certain minimum, such as an equivalent to a flow that creates
about two inches of water pressure drop through lips 22 under normal operating conditions;
otherwise, insufficient holding force will be present and bubble 18 will become unstable.
[0035] Manual actuating screws 60 should be located in an air flow region of pressure drop
large enough to be significant compared to the pressure drop of lips 22 and be constrained
sufficiently to flow laminarly to minimize mixing effects which would act to erase
the effects of circumferentially variable air flow. It has been found through experimentation
that radial channels 58 account for slightly more pressure drop than the pressure
drop from lips 22, making radial channels 58 a good location for manual actuating
screws 60. Further, it is desirable that radial channels 58 are made to be at least
8 times longer than their effective diameter to generate semi-laminar pipe flow as
is commonly understood within industry for air flow in a pipe. Manual actuating screws
60 are preferably placed at or near the inlet to radial channels 58 to allow radial
channels 58 to be long after such flow regulation by manual actuating screws 60 to
generate semi-laminar pipe flow and thus help prevent appreciable mixing effects when
the air exits the radial channels. Unlike some devices in which a diverting blade
is used to slice and divert a significant portion of air flow out and away from the
air ring lips, in this embodiment, the air that is provided to the radial channels
all goes to the lips without being diverted through exit slots or other intentional
means.
[0036] The barriers can actually be placed anywhere along the radial channels provided that
the pressure drop across these barriers is significant compared to the pressure drop
across the lips such that back pressure and air mixing at the inner end of the radial
channels are not significant. The desired relationship is for the pressure drop across
the barriers to be 50% or more of the pressure drop across the lips and preferably
at least equal to that pressure drop.
[0037] To allow desired control of the thickness at desired locations, a change in the barrier
in one or more nearby radial channels should have a predictable effect at that same
circumferential position in the bubble. It would be most desirable, for example, if
control could be achieved such that a change over a 10% range of the radial channels
would yield a change in just 10% of the resulting bubble, thus allowing fine control.
There generally will be at least some side-to-side mixing of air as it exits the radial
channels and some mixing due to back pressure from the lips. As long as the pressure
drop is substantial compared to the lips, however, the attempt to localize the change
will be reasonably effective; if the pressure drop is insignificant, however, back
pressure will create significant mixing and churning and effectively wash out the
effect of the change in the barriers in the radial channels.
[0038] FIGS. 5a and 5b together show the ability of external thickness profiler to affect
the thickness profile around the circumference of bubble 18. FIG. 5a depicts an actual
process producing 2 mil (50 micron) thick film with the resulting profile indicating
a total thickness variation of about 8 to 10 percent for 0° to 360° around a circumference
of bubble 18 with all manual actuating screws 60 being in a neutral 100% fully open
position. The same process without changing any operating conditions is shown in FIG.
5b, this time with manual actuating screws 60 being repositioned to 20% open over
a width of 25° at four equally space locations of 0°, 90°, 180°, and 360°. Thickness
bands 72A, 72B, 72C, and 72D are clearly evident with a width commensurate to the
25° spread of actuation and with total magnitude of about 25% of nominal thickness,
which is 2 ½ to 3 times more than is required to offset the natural variation present
in FIG. 5a. As overall film thickness varies, typical process variations as a percentage
are magnified roughly inversely proportionally to the overall thickness; similarly,
the response magnitude of thickness control varies as well. For example, a 1 mil (25
micron) film might exhibit 16% to 20% variation and the actuation response under similar
conditions described above would be a magnitude of about 50% again, which is more
than large enough to compensate.
[0039] FIG. 6 is a cross sectional perspective view of external thickness profiler 20 of
the present invention incorporating automatic positioning of actuators. All components
function the same as before except that manual actuating screws 60 are replaced by
automatic actuator pistons. Automatic actuator pistons 74 are frictionally held in
place by o-rings (not shown) in top plenum wall 52. Piston adjusting grooves 76 are
cut into automatic actuator pistons 74 and aligned to allow a servo wedge 78, to fully
engage. A servo positioner 80 vertically adjusts the position of servo wedge 78 which
in turn locally adjusts one of the multiple automatic actuator pistons 74. Rotatable
annular ring 82 is driven and positioned by motor 84 and is sandwiched using ball
bearings between top plenum wall 52 and a top plenum clamping plate 52a to allow for
rotation. Servo positioner 80 together with integral servo wedge 78 are attached to
a rotatable annular ring 82 to allow for the positioning of servo wedge 78 to align
with any one of the multiple automatic actuator pistons 74 located circumferentially
within external thickness profiler 20, thereby allowing for individual adjustment
of each automatic actuator piston 74 one at a time. Servo control cable 86 is connected
on one end to the fixed top plenum clamping plate 52a at position 86a and is connected
at the other end to rotatable annular ring 82 at position 86b such that signals and
power can be brought to and from servo positioner 80.
[0040] FIG. 7 is a view similar to FIG. 4 but showing an alternative embodiment. Unlike
FIG. 4 which shows radial channels with sidewalls that prevent side-to-side mixing
from one channel to the next, FIG. 7 is for an embodiment in which there are no such
radial channels but rather a continuous annular region. In this embodiment, bolts
60A extend through nuts and through a top wall and are rigidly connected to elongated
and radially oriented blocks 61. Block 61 effectively controls the top wall of the
annular region and thus can be used to allow or restrict air flow in a controllable
manner. If the pressure drop is sufficiently large across the blocks even when fully
open, the side-to-side mixing and churning effects at the inner end of the annular
region will be sufficiently small such that the operator can achieve the desired control
over the cooling air on the bubble. The system of FIG. 7 can be made automatic in
a manner similar to that shown in FIG. 6.
[0041] The present invention has been described in connection with certain structural embodiments
and it will be understood that various modifications (such as individual automatic
actuators) can be made to the above-described embodiments.
1. A method of controlling the thickness of a blown film by providing air to the blown
film when in liquid form and provided from an extrusion die using a thickness control
system comprising:
an inlet (56) for receiving air;
a main lip (70) and a lower lip (68) for providing air to an external surface of the
blown film as the blown film exits the die, the main and lower lips (68,70) arranged
to be around the blown film as the blown film exits the die;
radially oriented channels (58) arranged in a first plane for directing air inwardly
from the inlet to the main and lower lips (68, 70); and
a plurality of barriers (60) moveable along a direction perpendicular to the first
plane of radially oriented channels, with at least one barrier in each of a number
of the channels for altering the flow of air through the radial channels, the barriers
moveable along a range of positions;
wherein in use all the air provided into the radially orientated channels is passed
through to the main and lower lips (68, 70) over the ranges of positions along which
the barriers are moveable without being diverted through exit slots or other intentional
means,
characterized by:
using the barriers to vary the cross-section at actuation points and locally alter
airflow within the radially orientated channels such that there is a high level of
pressure drop in the airflow across the barriers relative to the pressure drop across
the lips and the back pressure and side-to-side mixing of the air as the air exits
the radial channels are not significant.
2. The method of claim 1, further comprising using a sensor (40) for sensing thickness
of the blown film after the film solidifies, and a mechanical mover to move the barriers
in response to measurements from the sensor.
3. The method of claim 2, wherein the barriers are pistons (74), and the mover includes
a servo-controlled motor (84) for moving circumferentially a round the blown film,
the mover selectively adjusting the pistons.
4. The method of claim 1, wherein the each of the barriers is threaded and manually screwable
to allow more or less air flow.
5. The method of any preceding claim wherein the radially orientated channels are formed
by walls.
6. The method of claim 5, wherein the radial orientated channels are defined by a top
wall (52), a bottom wall (54), and side walls, the barrier being mounted in the top
wall.
7. The method of any preceding claim, wherein the barrier is located and configured such
that a pressure drop within the radial channel across the barrier is at least 50%
of the pressure drop across the lips.
8. The method of claim 7, wherein the pressure drop within the radial channel across
the barrier is at least 100% of the pressure drop across the main and lower lips (68,70).
9. A method of controlling the thickness of a blown film by providing air to the blown
film when in liquid form and provided from an extrusion die using a thickness control
system comprising:
an inlet (56) for receiving air;
a main lip (70) and a lower lip (68) for providing air to an external surface of the
blown film as the blown film exits the die, the main and lower lips (68,70) arranged
to be around the blown film as the blown film exits the die;
an annular region arranged in a first plane for providing air inwardly from the inlet
to the main and lower lips (68,70) such that all the air provided into the annular
region is passed through to the main and lower lips (68,70); and
a plurality of radially orientated blocks (61) moveable along a direction perpendicular
to the first plane of the annular region, for controlling a cross-section of air flow
through the annular region, the blocks moveable along a range of positions;
wherein all the air provided into the annular region is passed through to the main
(70) and lower lips (68) over the range of positions which the blocks are moveable
without being diverted through exit slots or other intentional means,
characterized by:
using the blocks to vary the cross-section at actuation points and locally alter airflow
within the annular region such that there is a high level of pressure drop in the
airflow across the blocks relative to the pressure drop across the main and lower
lips (68,70) and the back pressure and side-to-side mixing of the air as the air exits
the annular region are not significant.
10. The method of claim 9, wherein the each of the barriers has a threaded rod (60A) that
can be manually turned to move the elongated block.
1. Verfahren zur Steuerung der Dicke einer Blasfolie, indem Luft der Blasfolie zugeführt
wird, wenn sie in flüssiger Form ist und von einer Extrusionsform ausgegeben wird,
unter Verwendung eines Dickensteuerungssystems, umfassend:
einen Einlass (56) zur Aufnahme von Luft;
eine Hauptlippe (70) und eine Unterlippe (68) zum Zuführen von Luft zu einer Außenoberfläche
der Blasfolie, wenn die Blasfolie die Form verlässt, wobei die Haupt- und Unterlippen
(68, 70) um die Blasfolie herum angeordnet sind, wenn die Blasfolie die Form verlässt;
radial orientierte Kanäle (58), die in einer ersten Ebene angeordnet sind, um Luft
einwärts von dem Einlass auf die Haupt- und Unterlippen (68, 70) zu richten; und
eine Mehrzahl von Barrieren (60), die entlang einer Richtung senkrecht zur ersten
Ebene der radial orientierten Kanäle beweglich ist, mit zumindest einer Barriere in
jeder einer Anzahl von Kanälen zum Verändern des Luftflusses durch die radialen Kanäle,
wobei die Barrieren entlang einem Bereich von Positionen beweglich sind;
worin im Gebrauch die gesamte, in die radial orientierten Kanäle zugeführte Luft zu
den Haupt- und Unterlippen (68, 70) über die Bereiche von Positionen, entlang denen
die Barrieren beweglich sind, durchgeleitet wird, ohne durch Auslassschlitze oder
andere beabsichtigte Mittel abgelenkt zu werden,
gekennzeichnet durch:
Verwenden der Barrieren, um den Querschnitt an Betätigungspunkten zu variieren und
die Luftströmung innerhalb der radial orientierten Kanäle lokal zu verändern, so dass
es ein hohes Maß an Druckabfall in der Luftströmung über die Barrieren relativ zu
dem Druckabfall über die Lippen gibt und der Gegendruck und Seite-zu-Seite-Mischung
der Luft, wenn die Luft die radialen Kanäle verlässt, nicht signifikant sind.
2. Das Verfahren nach Anspruch 1, das ferner Verwenden eines Sensors (40) umfasst, um
die Dicke der Blasfolie nach Verfestigung der Folie zu sensieren, sowie einen mechanischen
Antrieb, um die Barrieren in Antwort auf Messungen von dem Sensor zu bewegen.
3. Das Verfahren nach Anspruch 2, worin die Barrieren Kolben (74) sind und der Antrieb
einen servogesteuerten Motor (84) enthält, zur Bewegung um dem Umfang der Blasfolie,
wobei der Antrieb die Kolben selektiv einstellt.
4. Das Verfahren nach Anspruch 1, worin jede der Barrieren mit Gewinde versehen ist und
manuell schraubbar ist, um mehr oder weniger Luftströmung zu erlauben.
5. Das Verfahren nach einem der vorangehenden Ansprüche, worin die radial orientierten
Kanäle durch Wände gebildet sind.
6. Das Verfahren nach Anspruch 5, worin die radial orientierten Kanäle durch eine obere
Wand (52), eine Bodenwand (54) und Seitenwände definiert sind, wobei die Barriere
in der oberen Wand angebracht ist.
7. Das Verfahren nach einem der vorangehenden Ansprüche, worin die Barriere derart angeordnet
und konfiguriert ist, dass ein Druckabfall innerhalb des radialen Kanals über die
Barriere zumindest 50 % des Druckabfalls über die Lippen beträgt.
8. Das Verfahren nach Anspruch 7, worin der Druckabfall in dem radialen Kanal über die
Barriere zumindest 100 % des Druckabfalls über die Haupt- und Unterlippen (68, 70)
beträgt.
9. Verfahren zur Steuerung der Dicke einer Blasfolie, indem Luft der Blasfolie zugeführt
wird, wenn sie in flüssiger Form ist und von einer Extrusionsform ausgegeben wird,
unter Verwendung eines Dickensteuerungssystems, umfassend:
einen Einlass (56) zur Aufnahme von Luft;
eine Hauptlippe (70) und eine Unterlippe (68) zum Zuführen von Luft zu einer Außenoberfläche
der Blasfolie, wenn die Blasfolie die Form verlässt, wobei die Haupt- und Unterlippen
(68, 70) um die Blasfolie herum angeordnet sind, wenn die Blasfolie die Form verlässt;
einen ringförmigen Bereich, der in einer ersten Ebene angeordnet ist, zum Zuführen
von Luft einwärts von dem Einlass zu den Haupt- und Unterlippen (68, 70), so dass
die gesamte, in den ringförmigen Bereich zugeführte Luft zu den Haupt- und Unterlippen
(68, 70) durchgeleitet wird; und
eine Mehrzahl von radial orientierten Blöcken (61), die entlang einer Richtung senkrecht
zur ersten Ebene des ringförmigen Bereichs beweglich sind, um einen Querschnitt des
Luftflusses durch den ringförmigen Bereich zu steuern/zu regeln, wobei die Blöcke
entlang einem Bereich von Positionen beweglich sind;
worin die gesamte, in den ringförmigen Bereich zugeführte Luft zu den Haupt-(70) und
Unterlippen (68) über den Bereich von Positionen, denen die Blöcke bewegbar sind,
durchgeleitet wird, ohne durch Auslassschlitze oder andere beabsichtigte Mittel abgelenkt
zu werden,
gekennzeichnet durch:
Verwenden der Blöcke, um den Querschnitt an Betätigungspunkten zu variieren und die
Luftströmung innerhalb des ringförmigen Bereichs lokal zu verändern, so dass es ein
hohes Maß an Druckabfall in der Luftströmung über die Blöcke relativ zu dem Druckabfall
über die Haupt- und Unterlippen (68, 70) gibt und der Gegendruck und Seite-zu-Seite-Mischung
der Luft, wenn die Luft den ringförmigen Bereich verlässt, nicht signifikant sind.
10. Das Verfahren nach Anspruch 9, worin jede der Barrieren eine Gewindestange (60A) aufweist,
die manuell gedreht werden kann, um den langgestreckten Block zu bewegen.
1. Procédé de régulation de l'épaisseur d'un film soufflé en fournissant de l'air au
film soufflé lorsqu'il est sous forme liquide et qu'il est fourni par une filière
d'extrusion en utilisant un système de régulation d'épaisseur comprenant :
une entrée (56) pour la réception d'air ;
une lèvre principale (70) et une lèvre inférieure (68) pour fournir de l'air a une
surface externe du film soufflé alors que le film soufflé sort de la filière, les
lèvres principale et inférieure (68, 70) étant agencées pour entourer le film soufflé
lorsque le film soufflé sort de la filière ;
des canaux à orientation radiale (58) disposés dans un premier plan pour diriger de
l'air vers l'intérieur de l'entrée jusqu'aux lèvres principale et inférieure (68,
70) ; et
une pluralité de barrières (60) déplaçables le long d'une direction perpendiculaire
au premier plan des canaux à orientation radiale, avec au moins une barrière dans
chacun d'un nombre des canaux pour modifier le flux d'air à travers les canaux radiaux,
les barrières étant mobiles dans une plage de positions ;
dans lequel, durant l'utilisation, tout l'air fourni dans les canaux à orientation
radiale est acheminé aux lèvres principale et inférieure (68, 70) dans les plages
de positions dans lesquelles les barrières sont mobiles sans être déviées à travers
des fentes de sortie ou d'autres moyens prévus à cet effet,
caractérisé par :
l'utilisation des barrières pour faire varier la section transversale aux points d'actionnement
et localement modifier le flux d'air dans les canaux à orientation radiale de sorte
qu'il y ait un niveau élevé de chute de pression dans le flux d'air en travers des
barrières par rapport à la chute de pression en travers des lèvres et que la contre-pression
et le mélange côte à côte de l'air lorsque l'air sort des canaux radiaux ne soient
pas importants.
2. Procédé selon la revendication 1, comprenant en outre l'utilisation d'un capteur (40)
pour la détection de l'épaisseur du film soufflé après la solidification du film et
un moteur mécanique pour déplacer les barrières en réponse aux mesures provenant du
capteur.
3. Procédé selon la revendication 2, dans lequel les barrières sont des pistons (74)
et le moteur comporte un moteur à servocommande (84) pour se déplacer de manière circonférentielle
autour du film soufflé, le moteur réglant sélectivement les pistons.
4. Procédé selon la revendication 1, dans lequel chacune des barrières est filetée et
peut être vissée manuellement pour laisser passer plus ou moins de flux d'air.
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel les canaux
à orientation radiale sont formés par des parois.
6. Procédé selon la revendication 5, dans lequel les canaux à orientation radiale sont
définis par une paroi supérieure (52), une paroi inférieure (54) et des parois latérales,
la barrière étant montée dans la paroi supérieure.
7. Procédé selon l'une quelconque des revendications précédentes, dans lequel la barrière
est placée et configurée de sorte qu'une chute de pression dans le canal radial en
travers de la barrière soit d'au moins 50 % de la chute de pression en travers des
lèvres.
8. Procédé selon la revendication 7, dans lequel la chute de pression dans le canal radial
en travers de la barrière soit d'au moins 100 % de la chute de pression en travers
des lèvres principale et inférieure (68, 70).
9. Procédé de régulation de l'épaisseur d'un film soufflé en fournissant de l'air au
film soufflé lorsqu'il est sous forme liquide et qu'il est fourni par 'une filière
d'extrusion en utilisant un système de régulation d'épaisseur comprenant :
une entrée (56) pour la réception d'air ;
une lèvre principale (70) et une lèvre inférieure (68) pour fournir de l'air a une
surface externe du film soufflé alors que le film soufflé sort de la filière, les
lèvres principale et inférieure (68, 70) étant agencées pour entourer le film soufflé
lorsque le film soufflé sort de la filière ;
une région annulaire agencée dans un premier plan pour fournir de l'air vers l'intérieur
de l'entrée jusqu'aux lèvres principale et inférieure (68, 70) de sorte que tout l'air
fourni dans la région annulaire soit acheminé jusqu'aux lèvres principale et inférieure
(68, 70) ; et
une pluralité de blocs à orientation radiale (61) déplaçables le long d'une direction
perpendiculaire au premier plan de la région annulaire pour réguler une section transversale
du flux d'air à travers la région annulaire, les blocs pouvant être déplacés dans
une plage de positions ;
dans lequel tout l'air fourni dans la région annulaire est acheminé aux lèvres principale
(70) et inférieure (68) dans la plage de positions dans lesquelles les blocs sont
mobiles sans être déviés à travers des fentes de sortie ou d'autres moyens prévus
à cet effet,
caractérisé par :
l'utilisation des blocs pour faire varier la section transversale aux points d'actionnement
et localement modifier le flux d'air dans la région annulaire de sorte qu'il y ait
un niveau élevé de chute de pression dans le flux d'air en travers des blocs par rapport
à la chute de pression en travers des lèvres principale et inférieure (68, 70) et
que la contre-pression et le mélange côte à côte de l'air lorsque l'air sort de la
région annulaire ne soient pas importants.
10. Procédé selon la revendication 9, dans lequel chacun des barrières a une tige filetée
(60A) qui peut être tournée manuellement pour déplacer le bloc allongé.