EP 1 380 948 A2

Europdisches Patentamt

European Patent Office

(19) g)

(12)

Office européen des brevets

(43) Date of publication:
14.01.2004 Bulletin 2004/03

(21) Application number: 03008484.2

(22) Date of filing: 11.04.2003

(11) EP 1 380 948 A2

EUROPEAN PATENT APPLICATION

(51) IntCL”: GO6F 9/46

(84) Designated Contracting States:
AT BEBG CHCY CZDE DKEE ES FIFR GB GR
HU IE IT LI LU MC NL PT RO SE SI SK TR
Designated Extension States:
AL LT LV MK

(30) Priority: 12.04.2002 US 121428

(71) Applicant: 724 Solutions Software Inc.
Santa Barbara, CA 93101 (US)

(72) Inventors:
* Molloy, Mark Edward
Otley, lowa 50214 (US)
¢ Pattison, lan Mclean
Edinburgh (GB)

(74) Representative: Liesegang, Eva
Forrester & Boehmert,
Pettenkoferstrasse 20-22
80336 Miinchen (DE)

(54) Process group resource manager

(57) A process group resource manager (116), for
managing protected resources during transaction
processing, comprises a primary process (200) config-
ured to provide access to a protected resource during
one or more transactions, and further configured to con-
struct a transaction record (212) for each transaction,
wherein each transaction record (212) includes each re-
quest message received by the primary process (200)
and each response message sent by the primary proc-
ess (200) during a particular transaction. The process
group resource manager (116) further comprises an in-

tegrity process (202) configured to serially replay the
transactions in which the primary process (200) partici-
pates, the integrity process (202) configured to cause a
transaction to rollback if the replay of that transaction
does not match the transaction record (212) constructed
by the primary process (200). The process group re-
source manager (116) also comprises a backup process
(222) configured to store a durable image (210) of the
backup process (222) for use in reconstructing either the
primary process (200) or the integrity process (202).

Printed by Jouve, 75001 PARIS (FR)

1 EP 1 380 948 A2 2

Description
FIELD OF THE INVENTION

[0001] The present invention relates generally to
transaction processing in fault-tolerant computer sys-
tems. More specifically, the present invention is a sys-
tem, method and apparatus for protecting the state of a
logical computer process during transaction processing,
such that the logical computer process fulfills the re-
quirements of a resource manager.

BACKGROUND OF THE INVENTION

[0002] The conceptofa "transaction"is an abstraction
used in reliable computer systems to protect certain re-
sources, such as databases. Fundamentally, a transac-
tion is generally defined as a unit of work that is 1) "atom-
ic," 2) "consistent," 3) "isolated," and 4) "durable" (more
commonly, it is said that transactions have "ACID" prop-
erties). To initiate a transaction, an application program
performs a "begin transaction" operation. Subsequently,
the application program accesses and potentially mod-
ifies one or more protected resources. At the end of the
transaction, the application program executes either a
"commit transaction" or a "rollback transaction" opera-
tion.

[0003] To be "atomic," a transaction must complete in
an all-or-none fashion. This means that protected re-
sources must reflect all changes associated with the
transaction made between the begin transaction oper-
ation initiating the transaction and the corresponding fol-
lowing commit transaction operation. Protected re-
sources must also reflect none of the changes associ-
ated with a transaction made between the begin trans-
action operation initiating that transaction and the cor-
responding following rollback transaction operation. In
addition, a transaction that is interrupted by any failure
that interferes with its successful completion is rolled
back by the transaction system and the application is
informed of this result. Again in this case, protected re-
sources must reflect none of the changes made to them
by the rolled-back transaction.

[0004] To be "consistent," a transaction must move
protected resources from one consistent state to anoth-
er. More specifically, in systems that use the transaction
abstraction, the application program and other systems
components that participate in a transaction are allowed
to specify integrity constraints. Resource managers
may also specify their own integrity constraints. For ex-
ample, in a product inventory database, a typical appli-
cation-specified integrity constraint would prevent any
transaction that would result in a negative quantity of
any product. In a genealogy database, an application-
specified integrity constraint might be used to prevent
any transaction that would result in a child having more
than two genetic parents. To be "consistent," each such
integrity constraint must be evaluated before the trans-

10

15

20

25

30

35

40

45

50

55

action is committed. If any of the integrity constraints are
not met, the transaction must be rolled back. In this way,
transactions are guaranteed to move protected resourc-
es from one consistent state to another.

[0005] To be "isolated," the changes made to protect-
ed resources must be invisible to threads and processes
that are not associated with the transaction until the
transaction has committed. Typically, isolation is
achieved by locking the changed resource. Application
programs that attempt to read or write the locked re-
source are forced to wait until the transaction holding
the lock has completed.

[0006] Finally, to be "durable," the changes made to
protected resources must not be lost or corrupted, even
in the case of a catastrophic system failure. In this con-
text, durability is not used in the absolute sense. For ex-
ample, physically destroying the transaction processing
computer system and all of its backup records will vio-
late the durability property.

[0007] In most systems that use the transaction ab-
straction, application programs are prevented from di-
rectly accessing protected resources. Instead, a re-
source manager is provided for each protected re-
source. Application programs access and modify pro-
tected resources by sending messages to the corre-
sponding resource manager. In many cases, a single
transaction will involve a number of different resources
located on a number of different computer systems. In
order to preserve ACID properties in distributed trans-
actions of this type, a two-phase commit protocol is
used. In the two-phase commit protocol, a transaction
manager is used to coordinate the actions of the re-
source managers involved in a transaction. The trans-
action manager is also the final arbiter of whether a
transaction has committed or not.

[0008] To use the two-phase commit protocol an ap-
plication program sends a begin transaction message
to the transaction manager. In response, the transaction
manager creates a unique identifier associated with the
transaction. Subsequently, the transaction processing
system includes the transaction identifier in all messag-
es sent by the application program until the transaction
is committed or rolled back.

[0009] After performing the begin transaction opera-
tion, the application program may send messages to
one or more resource managers to access or modify se-
lected resources. Resource managers so contacted
may in turn send messages to other resource manag-
ers, and so on. Each resource manager contacted in this
fashion sends a join message to the transaction man-
ager. The transaction manager uses the join message
to add the sending resource manager to a list of re-
source managers participating in the transaction.
[0010] To complete the transaction, the application
program sends a commit transaction message to the
transaction manager. In response, the transaction man-
ager sends a prepare message to each resource man-
ager that has joined the transaction. The prepare mes-

3 EP 1 380 948 A2 4

sage asks each resource manager to vote on the out-
come of the transaction. In response to the prepare
message, each resource manager sends a message
back to the transaction manager. The message must ei-
ther vote "commit," or "rollback." Resource managers
voting to rollback the transaction must undo the changes
that have been made to their associated resources and
abandon the transaction. Resource managers voting to
commit, on the other hand, are promising that they can
either commit or rollback the transaction, even if a failure
occurs after they have voted.

[0011] The transaction manager tabulates all of the
votes received from the participating resource manag-
ers. If each resource manager votes to commit, the
transaction manager records the fact that the transac-
tion has committed on durable storage and sends a
commit message to each resource manager. The com-
mit message tells the resource managers to commit the
changes that have been made to their associated re-
sources. The commit message also tells the resource
managers to expose (i.e., make visible) all of the chang-
es that have been made to their associated resources.
[0012] Alternatively, if one or more resource manag-
ers votes to rollback, the transaction manager sends a
rollback message to each resource manager. The roll-
back message tells the resource managers to rollback
the changes that have been made to their associated
resources on behalf of the transaction that rolled back.
The resource managers respond by undoing the chang-
es that have been made to their associated resources
and abandoning the transaction.

[0013] The ACID properties of a transaction apply to
the protected resources that are located on durable me-
dia (e.g., magnetic disks). These same ACID properties
do not, however, generally apply to the internal state of
processes participating in a transaction. As a result, in
the event of a rolled back transaction, the internal state
of participating processes may have to be manually
reconfigured into a pre-transaction condition, or may be
lost altogether. Reconfiguration, when possible, may be
both complex and time consuming; loss may be com-
pletely unacceptable.

[0014] U.S. Patent No. 6,105,147 (the "147 Patent")
discloses a resource manager for protecting the internal
state of processes involved in transactions. The re-
source manager disclosed in the '147 Patent is con-
structed as a process pair having a "concurrent aspect"
process and a "serial aspect" process. The '147 Patent
also requires that the "serial aspect" process periodical-
ly create a durable or "passivated" serial image of the
"serial aspect" process, which is maintained on durable
media, such as a disk file. The '147 Patent also requires
that, during processing of a transaction, the concurrent
aspect wait to find out the outcome of the relevant an-
tecedent transaction, if any, prior to voting to commit a
transaction.

10

15

20

25

30

35

40

45

50

55

SUMMARY OF THE INVENTION

[0015] A disadvantage to the resource manager dis-
closed in the '147 Patent is that transaction processing
must be interrupted while the passivated serial image is
created, thereby reducing the availability of the services.
This disadvantage has the effect of severely limiting the
amount of state that can be protected by a resource
manager as described in the 147 Patent, because the
more state is protected, the longer it takes to produce
the passivated recovery image, and transaction prepa-
ration and commit processing is suspended during this
entire period. Furthermore, the availability of the re-
source manager described in the 147 Patent is vulner-
able to failure by either its "concurrent aspect" process
orits "serial aspect” process. That is, in the event of fail-
ure of either of these two processes, the resource rep-
resented by the resource manager is unavailable until
the failed process has been restarted, and its state re-
covered, from durable media.

[0016] An additional disadvantage to the resource
manager disclosed in the '147 Patent is that "prepare"
processing of a transaction by the concurrent aspect
process must wait for the outcome of the relevant ante-
cedent transaction voted on by that concurrent aspect.
This disadvantage has the effect of severely limiting the
transaction throughput of a resource manager as de-
scribed in the 147 Patent.

[0017] A need has therefore arisen for a system and
method that overcomes the limitations of the prior art
and protects the internal state of processes involved in
transactions and also provides substantially improved
availability, the ability to protect larger amounts of state,
and the ability to process transactions with a significant-
ly higher rate of throughput. Accordingly, the present in-
vention provides a process group resource manger for
use in a distributed transaction processing system.
More specifically, the process group resource manager
of the present invention provides for a process group
resource manager having a primary process, an integ-
rity process, and a backup process.

[0018] The inventive process group resource manag-
er comprises a first process configured to provide ac-
cess to a protected resource during one or more trans-
actions, the first process being further configured to con-
struct a transaction record for each respective transac-
tion, wherein each transaction record includes each re-
quest message received by the first process, each re-
sponse message sent by the first process, each request
message sent by the first process, and each response
message received by the first process, during a partic-
ular transaction. The process group resource manager
further comprises a second process configured to seri-
ally replay the transactions in which the first process par-
ticipates, the second process being configured to cause
a particular transaction to rollback if the replay of that
transaction does not match the transaction record con-
structed by the first process for that transaction. The

5 EP 1 380 948 A2 6

process group resource manager also comprises a third
process configured to replay each transaction proc-
essed and voted upon to commit by the first process, if
and only if the orchestrating transaction manager
records the transaction has having been committed,
each such replay occurring serially in said third process,
in the exact order in which said first process performed
prepare processing. This third process is also config-
ured to store a durable image of the third process for
use in reconstructing either the first process or the sec-
ond process.

[0019] The presentinvention further provides a meth-
od for transaction processing which overcomes the dis-
advantages of the prior art. The inventive method com-
prises the step creating a record of each request re-
ceived, response sent, request sent, or response re-
ceived by a first process as part of the transaction, in
the order sent or received by the first process. The meth-
od further comprises the step of serially replaying, by a
second process, the transaction that corresponds to the
record constructed by the first process. The method fur-
ther comprises the step of causing, by the second proc-
ess, a transaction to rollback if the replay of that trans-
action does not match the record constructed by the first
process for that transaction. The method further com-
prises the step of having a third process perform trans-
action replay of each and every transaction that the first
process votes to commit, if and when the transaction
manager records that the transaction has committed.
The method further comprises the step of occasionally
storing onto durable storage media, by this third proc-
ess, an image of the third process in a between-trans-
action state, said image for use in reconstructing either
the first process or the second process.

[0020] The method may also comprise the step of re-
storing the first process to its pre-transaction state, in
the event of a rollback. The method may also comprise
the step of restoring a new instance of the second proc-
ess toits pre-transaction state, in the event of a rollback.
The method may also comprise the step of evaluating,
by both the first and the second process, integrity con-
straints for the transaction. The method may also com-
prise the step of creating a log of successfully processed
transactions.

[0021] Advantages of the invention will be set forth, in
part, in the description that follows and, in part, will be
understood by those skilled in the art from the descrip-
tion or may be learned by practice of the invention. The
advantages of the invention will be realized and attained
by means of the elements and combinations particularly
pointed out in the appended claims and equivalents.
[0022] Further features of the invention will be de-
scribed or will become apparent in the course of the fol-
lowing detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] In order that the invention may be more clearly

10

15

20

25

30

35

40

45

50

55

understood, the preferred embodiment thereof will now
be described in detail by way of example, with reference
to the accompanying drawings, in which:

FIG. 1is a block diagram of a host computer system
in accordance with the present invention.

FIG. 2 is a block diagram of a process group re-
source manager in accordance with the present in-
vention.

FIGS. 3A, 3B, 3C and 3D are process flow diagrams
depicting the steps associated with processing a
transaction in accordance with the present inven-
tion.

FIG. 4 is a process flow diagram depicting the steps
associated with rollback of a transaction.

FIG. 5is a process flow diagram depicting the steps
associated with determining to vote to commit or
rollback a transaction.

FIG. 6 is a process flow diagram depicting the steps
associated with determining if an antecedent trans-
action has committed.

FIG. 7 is a process flow diagram depicting the steps
associated with recovery from durable media.
FIG. 8 is a process flow diagram depicting the syn-
chronization and role change for the backup proc-
ess.

DETAILED DESCRIPTION OF THE INVENTION

[0024] Reference will now be made in detail to pre-
ferred embodiments of the invention, examples of which
are illustrated in the accompanying drawings. Wherever
possible, the same reference numbers will be used
throughout the drawings to refer to the same or like
parts.

[0025] While the making and using of various embod-
iments of the present invention are discussed in detail
below, it should be appreciated that the present inven-
tion provides many applicable inventive concepts which
can be embodied in a wide variety of specific contexts.
The specific embodiments discussed herein are merely
illustrative of specific ways to make and use the inven-
tion and do not delimit the scope of the invention.
[0026] Reference is now made to FIG. 1, in which a
host computer system 100 is shown as a representative
environment for the present invention. Structurally, the
host computer system 100 includes one or more proc-
essors 102, and a memory 104. Further included in host
computer system 100 are an input device 106 and an
output device 108, which are connected to processor
102 and to memory 104, and which represent a wide
range of varying 1/0O devices such as disk drives, key-
boards, modems, network adapters, printers, displays
and the like. Host computer system 100 also includes a
suitable durable storage medium 110 of any suitable
type such as a disk drive or flash memory, for example.
A transaction manager 112, a log manager 118, an ap-
plication program 114, a process group resource man-

7 EP 1 380 948 A2 8

ager 116 and a resource manager 120 are shown to be
resident in memory 104 of host computer system 100.
[0027] InFIG. 2, the process group resource manager
116 of the present invention is shown in further detail
and comprises a primary process 200, an integrity proc-
ess 202, and a backup process 222. The primary proc-
ess 200, integrity process 202, and backup process 222
are computer processes, are preferably separate in-
stances of the same program and execute subsets of
the same program instructions. During initialisation, the
three processes assume the role of the primary process
200, the integrity process 202, and the backup process
222. Afterinitialisation and recovery, however, the integ-
rity process 202, the primary process 200, and the back-
up process 222 assume different functional roles.
[0028] Importantly, primary process 200, integrity
process 202, and backup process 222 may execute in
the same, or in different processors; they may also be
resident in separate memories during this execution.
[0029] The primary process 200 functions as an ob-
ject-like interface to a protected resource 206. Copies
of the protected resource 206, referred to as protected
resource copy 208 and protected resource copy 218,
are assigned to integrity process 202 and backup proc-
ess 222, respectively. The integrity process 202 and
backup process 222 do not, however, provide the same
object-like interface. The object-like interface of the pri-
mary process 200 includes one or more methods for ac-
cessing or modifying a protected resource 206. Appli-
cation programs, such as application program 114 of
FIG. 1, access these methods by sending request mes-
sages to the primary process 200. In turn, and when re-
quired, the primary process 200 sends response mes-
sages to the application program 114. Primary process
200 may also send request messages to other resource
managers 120 (which may or may not be other instanc-
es of process group resource managers 116), and when
required, receive responses from them.

[0030] A communications link 204 connects the pri-
mary process 200 and the integrity process 202. A com-
munications link 220 connects the primary process 200
and the backup process 222. Typically, communications
link 204 and communications link 220 are established
during initialisation of primary process 200, integrity
process 202, and backup process 222.

[0031] The backup process 222 from time to time
stores a durable image that is known as a "passivated
recovery image" 210 and may be used as the starting
point for reconstructing either the primary process 200
or integrity process 202 into complete and consistent
states. The process group resource manager 116 also
includes a durable transaction record log 214, also used
for reconstruction of the backup process 222.

[0032] The process group resource manager 116 fur-
therincludes a durable, or "passivated," recovery image
210. The passivated recovery image 210 is an image of
the backup process 222 in a between-transaction state
thatis maintained on durable media, such as a computer

10

15

20

25

30

35

40

45

50

55

disk or flash memory. The passivated recovery image
210 may be reconstructed at various between-transac-
tion times. When needed, the passivated recovery im-
age 210 may be used in combination with transaction
record log 214 to reconstruct the backup process 222
in the particular between-transaction state which re-
flects all committed transactions.

[0033] The process group resource manager 116 also
includes a transaction record 212 (also shown as items
213,216 and 218, at a different point in processing), and
a transaction record log 214. The transaction record
212, 213, 216, and 218 include each request message
received by the primary process 200, each response
message sent by the primary process 200, each request
message sent by the primary process 200, and each re-
sponse received by the primary process 200 during the
course of a single transaction in the order they were re-
ceived, sent, sent, and received, respectively. There is
therefore one transaction record 212 for each transac-
tion in progress with which process group resource
manager 116 is involved. The transaction record log 214
includes, in order, the transaction record 212 of each
transaction that has been successfully processed by the
primary process 200 after the most recent construction
of the passivated recovery image 210.

[0034] During a transaction, the primary process 200
provides an object-like interface between the applica-
tion program 114 participating in the transaction and a
protected resource 206. The object-like interface in-
cludes one or more publicly available operations, or
methods, for accessing or modifying the protected re-
source 206. The application program 114 participating
in the transaction sends messages to the primary proc-
ess 200 to invoke these operations. In response, the pri-
mary process 200 performs the requested operation
and, when required, returns a message including the op-
eration's result. The primary process 200 adds an entry
describing each message received, response sent, re-
quest sent, or response received, to transaction record
212, 213, 216, or 218, which is uniquely identified with
the transaction associated with the message. In this
way, the transaction record 212, 213, 216, or 218 is up-
dated to include all inputs and outputs from the process
associated with that transaction. Requests received, re-
sponses sent, requests sent, and responses received,
are kept in sequential order within the transaction
record. This record is logically segregated on a per-
transaction basis, although a practical implementation
will allow them to be physically intermingled in the same
sequence of buffers written to the log manager either
when a buffer is full, or when the semantics of a write
operation require confirmation either that the transac-
tion log manager 214 has received a buffer, or that the
buffer has been securely written to durable media. Log-
ical segregation of distinct sequences whose members
are allowed to be intermingled within the buffers used
for actual 1/O operations can be done using any of sev-
eral techniques which will be familiar to those of skill in

9 EP 1 380 948 A2 10

the art, and will not be discussed further here.

[0035] The primary process 200 also functions as the
interface between the process group resource manager
116 and the transaction manager 112 shown in FIG. 1.
More specifically, when the application program 114
sends a first request under the protection of a particular
transaction (or such a first request is received indirectly
via another process, and so on), the primary process
200 sends a join request to the transaction manager 112
for that transaction so that the transaction manager 112
will treat it as a participating resource manager with re-
gard to that transaction. As a result, after the application
program 114 has requested that the transaction man-
ager 112 commit the transaction, the transaction man-
ager 112 sends a prepare message to the primary proc-
ess 200.

[0036] In processingthe prepare message sentby the
transaction manager, the primary process 200 sends a
copy of the corresponding transaction record 212 to the
integrity process 202. The elements of the transaction
record may be contained within some sequence of buff-
ers also containing elements of other transactions, with
the elements of the transaction under consideration only
logically segregated from those of other transactions. In
this case, it will only be a "prepare" element that must
be sent to the integrity process 202, and the "prepare"
element will act as a trigger for the integrity process 202
to process the transaction as described below. Receipt
of the transaction record acts as an implicit prepare
message to the integrity process 202.

[0037] In response to the implicit prepare message,
the integrity process 202 performs, in sequence, the
processing required by each request received as re-
corded in the transaction record 212. The response sent
for each such operation is compared by the integrity
process 202 to the corresponding response as recorded
in the transaction record 212. Likewise, each time that
replay of a request received requires a request in turn
to be made of another resource manager outside the
integrity process 202, that request is compared to the
transaction record, and must exactly match a request
recorded there by the primary process 200, at that same
point in processing. Finally, each response received by
the primary process 200 and recorded in the transaction
record is retrieved and used as the response to the cor-
responding request sent during replay processing in the
integrity process 202.

[0038] If either a response sent or request sent by the
integrity process 202 differs from the recorded result,
the transaction cannot commit, as this constitutes a "se-
rialization failure" - the transaction had a visibly different
outcome when replayed from its recorded inputs and
outputs than during original, or concurrent, processing.
As a result of such a difference being detected, the in-
tegrity process 202 sends a message to the primary
process 200 indicating that the transaction should be
rolled back. In turn, the primary process 200 sends a
message to the transaction manager 112 voting to roll-

10

15

20

25

30

35

40

45

50

55

back the transaction.

[0039] Alternatively, if each response sent and re-
quest sent matches the corresponding responses and
requests sent by the primary process 200 and recorded
in the transaction record, and no other errors are detect-
ed during this processing, the integrity process 202 also
performs commit processing. That s, it exposes (makes
visible) all of the changes that have been made to its
associated resource within the process. After exposing
changes, the integrity process 202 responds to the im-
plicit prepare message by sending a response message
to the primary process 200 indicating that the transac-
tion should commit. If any error is encountered during
commit processing within the integrity process 202, this
will also prevent the integrity process 202 from respond-
ing to the primary process 200 that the transaction
should commit.

[0040] Concurrently with sending a copy of the trans-
action record to the integrity process 202, the primary
process 200 appends the record to the transaction
record log 214 with which the primary process 200 is
associated. Confirmation of the successful completion
of this write operation to the durable media where the
transaction record log is kept must be received before
the primary process 200 may vote to commit the trans-
action. It this write operation fails (including by timing
out), the primary process 200 will vote to roll back the
transaction, irrespective of whether the integrity process
202 has approved the commit or not.

[0041] Alternatively, if the primary process 200 and
the transaction manager 112 are recording their results
in the same transaction record log, and it is known that
any transaction "commit" record written later by the
transaction manager 112 will "flush" the primary proc-
ess's transaction record to durable media used by the
log manager, then the primary process 200 does not
have to wait until the transaction record is securely on
disk, but must only wait until the log manager has ac-
knowledged receipt of the transaction record. Thus, if
the transaction manager 112 successfully writes a com-
mit record durably to the log, it is ensured that the pri-
mary process's transaction record has also been dura-
bly recorded there.

[0042] A third requirement exists for the primary proc-
ess 200 to be able to vote "commit" without further con-
ditions. This requirement is that all transactions for
which the integrity process 202 has voted to commit,
since the integrity process 202 was last recovered to a
point reflecting only committed transactions, must them-
selves be committed. This requirement is necessary be-
cause the effects of these "antecedent" transactions are
"exposed" in the integrity process 202 as it performs se-
rialization of each subsequent transaction. As a result,
the state of the integrity process 202 might depend on
the changes made by such other transactions. After re-
ceiving the commit vote from the integrity process 202,
and confirmation of the write to the transaction record
log, and verifying that all transactions that the integrity

11 EP 1 380 948 A2 12

process 202 may be depending on have committed, the
primary process 200 sends a message to the transac-
tion manager 112 voting to commit the transaction.
[0043] An alternative to having the primary process
200 wait to learn the outcome of each antecedent trans-
action is to have the primary process 200 identify the
immediate antecedent transaction that a transaction
may depend upon, if any, to the transaction manager,
when the primary process 200 votes. In such a case,
the transaction manager 112 must track the chain of de-
pendencies identified by each resource manager for
each transaction. In the event that a depended-upon
transaction rolls back, the transaction manager 112
must also either a) unilaterally roll back all transactions
that have established dependency, directly or indirectly,
upon it, or b) issue a "re-prepare"” instruction as shown
in step 361 to all joined resource managers with regard
to each directly or indirectly dependent transaction. If
the primary process 200 receives a "re-prepare" request
with regard to a transaction (described below), it simply
forwards this request to the integrity process 202, which
then executes the sequence of actions (described
above) necessary to prepare the transaction, and again
returns its vote to the primary process 200, which in turn
again forwards the vote to the transaction manager; the
effect is that the transaction has been reserialized, with
no possibility of dependence upon the rolled-back trans-
action. Integrity process 202 is not shown receiving a
re-prepare request, because it is handled exactly the
same as replay transaction request.

[0044] Ifaprimary process 200 receives a rollback re-
quest, it undoes the effects of the rolled back transaction
within its own state, and also notifies the integrity proc-
ess 202, which in turn must clear its state completely of
the effects of the rolled back transaction, and of the ef-
fects of all dependent transactions as well.

[0045] If each resource manager involved in a trans-
action votes to commit the transaction, the transaction
manager 112 will record the outcome of the transaction
as "commit" on durable media, and will then send a com-
mit message to each joined resource manager. By hav-
ing sent a join request to the transaction manager 112
with respect to this transaction, the primary process 200
becomes a recipient of this commit message. In re-
sponse to the commit message, the primary process
200 exposes (i.e., makes visible) all of the changes that
have been made to its associated protected resource.
The primary process 200 also records the commit deci-
sion, at its convenience, in the transaction record log.
The primary process 200 also transfers the transaction
record for this transaction to the backup process 222.
[0046] The backup process 222, upon receiving this
transaction record, forward-plays the transaction that it
represents, in the same manner as has already been
performed by the integrity process 202. The backup
process 222 then sends a "forget" message to the pri-
mary process 200. Meanwhile, the primary process 200
writes the transaction's outcome to the transaction

10

15

20

25

30

35

40

45

50

55

record log 214. When both this write of the transaction's
outcome to the transaction record log 214, and the back-
up process 222's replay of the transaction, have com-
pleted, the primary process 200 sends a "forget" mes-
sage to the transaction manager 112 with regard to this
transaction, and the transaction manager, upon having
received such a "forget" from all resource managers that
had joined that transaction, may remove all record of the
transaction from its internal tables, since it knows all par-
ties to the transaction have been informed of, and have
durably recorded, the transaction's outcome.

[0047] Alternatively, if one or more resource manag-
ers involved in a transaction vote to rollback the trans-
action, the transaction manager 112 will send a rollback
message to each involved resource manager. By having
joined the transaction with the transaction manager 112,
the primary process 200 becomes a recipient of this roll-
back message.

[0048] In response to the rollback message sent by
the transaction manager, the primary process 200 first
notifies the integrity process 202 that the transaction
must be rolled back. The integrity process 202 then ex-
its. This termination of the integrity process 202 is de-
tected by the process monitor, which instructs the back-
up process 222 to assume the role of the integrity proc-
ess 202 (discussed more with respect to FIG. 3D) within
this process group resource manager. Monitoring proc-
esses, detecting when a process fails, and starting up
a new process in response to such detection of a proc-
ess failure, is a well-understood capability by those of
skill in the art, and will not be described further here.A
new instance of the backup process 222 is started and
is recovered to the point of the last committed transac-
tion by first reinstating the most recent passivated re-
covery image, and then forward-playing all transactions
affecting that process group resource manager which
have committed since the point in time when that pas-
sivated recovery image was created. The state of both
the new integrity process 202 and the new backup proc-
ess 222 thus reflect all previously committed transac-
tions, and only those that have committed. The primary
process 200 may then rollback its own changes by un-
doing the changes in memory.

[0049] Alternatively, the primary process 200 may al-
so be aborted, with an instance of the backup process
222 being instructed to assume the role of the primary
process 200 (discussed more with respect to FIG. 3D),
and a new backup process 222 being started and recov-
ered, similarly arriving at a state reflecting all, and only,
committed transactions.

[0050] An additional level of "interposition" may also
be used, such that there are multiple logical object re-
sources contained within the protected state of the proc-
ess group resource manager 116. This is helpful to allow
more powerful and efficient modeling within the process
group resource manager 116. To accomplish this, each
object contained within the three processes 200, 202,
and 222 constituting the process group resource man-

13 EP 1 380 948 A2 14

ager 116, that is, each object within the primary process
200, each object within the integrity process 202, and
each object within the backup process 222, are treated
as though they are individual resource managers.
These intra-process resource managers register with an
intra-process transaction manager. This intra-process
transaction manager acts as a transaction manager to
objects within the process, but acts as a resource man-
ager to the external transaction manager.

[0051] Thus, when the primary process 200 receives
a request, the intra-process transaction manager joins
the transaction on behalf of all the objects within the
process. The intra-process transaction manager then
keeps track of which objects within the process join the
transaction at the intra-process level. When the external
transaction manager sends a "prepare" request to the
primary process 200, the intra-process transaction man-
ager within the primary process 200 distributes this re-
quest to all of the objects within the process that have
joined the transaction, collects their votes, and summa-
rizes the votes of all the objects within the process to a
single vote. That is, if any intra-process resource man-
ager votes to rollback, then the summarized vote is to
rollback; otherwise the summarized vote is to commit.
When the primary process 200 eventually receives a re-
quest to commit or rollback the transaction from the
transaction manager, it distributes this request to the in-
tra-process resource managers within the primary proc-
ess 200 that have joined the transaction. Similarly, the
intra-process transaction manager within the integrity
process 202 tracks join operations, distributes prepare
requests, summarizes prepare votes, and distributes
the transaction outcome (commit or rollback) to the in-
tra-process resource managers within the integrity proc-
ess 202. Similarly, the intra-process transaction manag-
er within the backup process 222 tracks join operations,
distributes prepare requests, summarizes prepare
votes, and distributes the transaction outcome (commit
or rollback) to the intra-process resource managers
within the backup process 222.

[0052] The responsibilities of each intra-process re-
source manager object with regard to processing a
transaction are as follows: 1) to call the intra-process
transaction manager to join any transaction on behalf of
which it does work; 2) to isolate via programmatic means
any changes made on behalf of the transaction so that
they are not visible to executing program threads asso-
ciated with different transactions until and unless the
transaction has committed; 3) to perform end-transac-
tion integrity constraints when asked to prepare a trans-
action, and vote to commit if and only if all such con-
straints are met; 4) to expose changes made on behalf
of a transaction when and if the intra-process transac-
tion manager requests that they commit changes, so
that programming threads associated with other trans-
actions become able to access those changes; 5) to re-
store the state of resources affected by the transaction
to their pre-transaction state in the event that the intra-

10

15

20

25

30

35

40

45

50

55

process transaction manager requests them to rollback
the transaction.

[0053] Reference is now made to FIGS. 3A through
3D, which collectively depict the process flow for trans-
action processing using the process group resource
manager 116 of FIGS. 1 and 2. In step 302 of FIG. 3A,
the application program 114 of FIG. 1 initiates a trans-
action by sending a "begin transaction" message to the
transaction manager 112 of FIG. 1. In step 304, the
transaction manager 112 responds to the begin trans-
action message by generating a transaction ID that
identifies the new transaction. In step 306, transaction
manager 112 returns the transaction ID to the applica-
tion program 114. In step 308, the application program
114 receives the transaction ID.

[0054] After initiating the transaction, the application
program 114 may contact one or more resource man-
agers to access or modify protected resources. For the
present invention, the resource managers contacted
may include both traditional resource managers as well
as the process group resource manager 116 shown in
FIG. 2. An example of the latter begins with step 310 of
FIG. 3B. In step 310, the application program 114 sends
a message to the primary process 200 of the process
group resource manager 116. The message sentin step
310 invokes one of the methods provided by the object-
like interface of the primary process 200. This message
is received by the primary process 200 in step 312. In
step 314, the primary process 200 reacts to the mes-
sage received in step 312 by sending a join request
message to the transaction manager 112. The join re-
quest message causes the transaction manager 112, in
step 316, to include the primary process 200 as a par-
ticipant in the transaction initiated in steps 300 through
308 of FIG. 3A.

[0055] After registering the current transaction, the
transaction manager 112 sends, in step 318, a notifica-
tion message to the primary process 200. In step 320,
the notification message is received by the primary proc-
ess 200. The notification message informs the primary
process 200 that it has been registered as a participant
in the current transaction.

[0056] In step 322, the primary process 200 performs
the work that the application program 114 has request-
ed. Importantly, the primary process 200 maintains any
changes made to the protected resource 206 in isolation
(i.e., these changes are only detectable by the primary
process 200, and only by threads of execution within the
primary process 200 that are associated with the current
transaction). Typically, to provide this isolation, the pri-
mary process 200 locks all or part of the protected re-
source 206 to deny access to other threads within the
processes. Normally, the state of the primary process
200 is isolated from other processes because process-
es don't share memory. However, on computer systems
which do allow processes to share memory, this lock al-
so protects the modified portion of protected resource
206 from other processes.

15 EP 1 380 948 A2 16

[0057] In step 324, the primary process 200 updates
the transaction record 212 to include a description of the
message sent by the application program bin step 310.
The primary process 200 also updates the transaction
record 212 to include a description of any response
message sent by the primary process 200. The primary
process 200 also includes a description of any external
messages sent by the primary process 200, and any re-
sponses to those external messages that the primary
process 200 receives.

[0058] Asanexample, it may be assumed that object-
like interface provided by the primary process 200 pro-
vides a method for incrementing a counter by a given
amount. For this example, the method would return the
value of the counter after being incremented. In this
case, the primary process 200 will add a description of
the requested increment operation to the transaction
record 200 including the amount that the counter is be-
ing incremented. The primary process 200 will also add
a description of the result message sent by the primary
process 200 as a result of the increment operation (i.e.,
the value of the numerical value after being increment-
ed).

[0059] In FIG. 3B, the primary process 200 registers
with the transaction manager 112 (steps 314 through
320) and then performs requested work (steps 322 and
324). Additionally, it will generally be the case that the
steps shown in FIG. 3B may be repeated one or more
times during a single transaction. This allows the appli-
cation program 114 to manipulate the protected re-
source 206 to an arbitrary degree. In these cases, it is
not necessary for the primary process 200 to repeatedly
join the transaction with the transaction manager 112.
Therefore, steps 314 through 320 are only executed in
response to the first message sent by the application
program 114 to the primary process 200. It should also
be appreciated that any number of process group re-
source managers 116 and any number of protected re-
sources 206 may be involved a single transaction. Thus,
the steps shown in FIG. 3B may be repeated separately
for separate instances of the primary process 200 as
part of a single transaction.

[0060] Furthermore, work request 310 may be per-
formed by the primary process 200 or other resource
manager on behalf of the application program 114, as
well as directly by the application program 114. In step
326, the primary process 200 returns the result of the
request sent by the application program 114 in step 310.
This result is received by the application program 114
in step 328.

[0061] Thus, in FIGS. 3A and 3B, the application pro-
gram 114 first initiated a transaction and then manipu-
lated protected resources 206. The next phase in a typ-
ical transaction scenario is shown at step 330 of FIG.
3C, in which the application program 114 sends a mes-
sage to the transaction manager 112 requesting that the
transaction be committed. In step 332, the transaction
manager 112 processes the request by sending a pre-

10

15

20

25

30

35

40

45

50

55

pare message to each resource manager that has
joined as a participant in the current transaction. In the
case of process group resource manager 116, this mes-
sage is received by the primary process 200.

[0062] In response to the prepare message, in step
334, the primary process 200 evaluates any application-
specified or resource-manager-specified integrity con-
straints that are required for the current transaction. In
step 336, the integrity constraints are examined by the
primary process 200 for errors or exceptions. If errors
or exceptions are found, the primary process 200 per-
forms the processing required to rollback the current
transaction. This processing is described in more detail
in later sections of this disclosure. After performing the
rollback processing of step 339, the primary process
200 determines in step 340, that it must respond "roll-
back" to "prepare" request 332; this response is then
sent to the transaction manager 112 in step 342. Step
340 is described in more detail with respect to FIG. 5.
[0063] Alternatively, step 338 is reached when the pri-
mary process 200 determines that no errors or excep-
tions have occurred in the evaluation of the integrity con-
straints at step 226. In this case, the primary process
200 adds the transaction record 212 to the transaction
record log 214. For the purposes of the present inven-
tion, it is assumed that the addition of the transaction
record 212 to the transaction record log 214 is verified.
For example, in a preferred embodiment of the present
invention, the primary process 200 is notified of the suc-
cess or failure of the addition of the transaction record
212 to the transaction record log 214. Typically, this type
of verification may be provided by encapsulating the
transaction record log 214 in a record log manager. The
record log manager sends a message to the primary
process 200 indicating the success or failure of the ad-
dition of the transaction record 212. As the transaction
record 212 is being added to the transaction record log
214, the primary process 200 transfers a copy of the
transaction record 212 to the integrity process 202.
[0064] Alternatively, if itis known that primary process
200 and transaction manager 112 make use of the same
log manager 118 for their transaction records and trans-
action outcomes, respectively, then as shown in FIG.
3C, primary process 200 may send the transaction
record to log manager 118, requesting that the record
be placed into the log manager's output buffers and as-
signed a log sequence number (LSN) in step 341, which
is then returned in step 343 to primary process 200. This
alternative method of processing avoids having two
physical writes to durable media by log manager 118,
because it is known that if the transaction manager's
write outcome operation is securely written to durable
media (see steps 371, 375, and 377 in FIG. 3D), the
primary process 200's transaction record will also have
been securely written to durable media, because the log
manager preserves a contiguous sequence of records
as written to it. That is, so long as the transaction out-
come has been securely recorded to durable media,

17 EP 1 380 948 A2 18

then the transaction record has also been securely re-
corded. Otherwise, it doesn't matter whether the trans-
action record has been durably recorded or not, be-
cause the transaction cannot be considered to have
committed unless its transaction outcome record has
been recorded.

[0065] In step 344, the integrity process 202 receives
the copy of the transaction record 212. Receipt of the
transaction record 212 acts as an implicit prepare mes-
sage to the integrity process 202. As a result, in step
344, the integrity process 202 uses the copy of the trans-
action record 212 to replay, or forward-play, the trans-
action. More specifically, the integrity process 202 proc-
esses, in order, each message described in the copy of
the transaction record 212. This processing is done by
calling, in order, exactly the same methods of the object-
like interface of primary process 200 as were called dur-
ing step 322, and passing the same parameters. This is
possible because the information needed to do so
(method identification and parameter values) was re-
corded in the transaction record 212 when the work for
the request was originally performed. Any result or "out"
parameters returned by the method invocation are com-
pared to the corresponding results and "out" parameters
recorded in the transaction record 212; it is an error (a
"serialization fault") if this comparison yields a mis-
match. After this comparison, the result and "out" pa-
rameters are discarded; they are not "returned" any-
where. The transaction record 212 may also contain, in-
between the method invocation and response informa-
tion for each method invoked by or on behalf of an ap-
plication, records of invocations and responses made
by the primary process 200 on behalf of the application
in the course of step 322. These also occur in the trans-
action record 212 in the order in which they were origi-
nally performed.

[0066] During step 344, the integrity process 202 is
expected to attempt to make an exactly corresponding
attempt to invoke the same external resource manager.
When such a call is attempted by the integrity process
202, itis intercepted, and compared to the next informa-
tion in transaction record 212. If a mismatch occurs, this
is an error, which is considered in step 346; otherwise
this information is discarded. If such a record of an ex-
ternal call is found in the transaction record 212 at any
point during the replay other than when the replay is at-
tempting to make the exactly corresponding call, this is
also an error considered in step 346. Finally, no external
call to the identified external resource manager is actu-
ally made during the replay process. Instead, the re-
sponse and/or "out" parameter values, if any, which
were returned to the primary process 200 when it made
the corresponding external call during step 322, are
read from the transaction record 212 and returned as
the result and/or "out" parameters of the call which the
integrity process 202 is attempting to make.

[0067] In step 346, the integrity process 202 deter-
mines if any errors have been detected during the replay

10

15

20

25

30

35

40

45

50

55

10

of the current transaction. If errors have occurred, the
integrity process 202 sends a message to the primary
process 200 voting to rollback the transaction at step
348, and then in step 350, the changes made to the pro-
tected resource copy 208 are rolled back. More specif-
ically, in step 350, the integrity process 202 must undo
any changes made to the protected resource copy 208
during the current transaction (i.e., the transaction orig-
inally initiated by the application program 114 in steps
302 through 308). The integrity process 202 may do this
rollback by aborting and restarting itself using the pas-
sivated recovery image 210 and transaction record log
214, thereby restoring the integrity process 202, and the
protected resource copy 208, to the pre-transaction
state. This process is described in more detail later in
this disclosure.

[0068] Alternatively, in-memory rollback may be per-
formed by erasing all of the states of protected resource
copy 208, and then reconstructing the pre-transaction
state from the passivated integrity process 202 and
transaction record log 214. Either of these alternatives
will ensure that no artifacts of the rolled-back transaction
remain in protected resource copy 208.

[0069] If no errors are detected in step 346, then the
integrity process 202 continues execution at step 352.
In step 352, the integrity process 202 evaluates any in-
tegrity constraints that are specified for the current
transaction. In step 354, the integrity process 202 de-
termines if any errors or exceptions have occurred dur-
ing the evaluation of the integrity constraints. If errors or
exceptions are found, the integrity process 202 contin-
ues execution at steps 348 and 350. In these steps, as
discussed previously, the integrity process 202 returns
protected resource copy 208 to its pre-transaction state
after sending a message to the primary process 200 vot-
ing to rollback the current transaction.

[0070] Step 356 is reached when the integrity process
202 determines that no errors have occurred during the
replay of the current transaction and where no errors or
exceptions have been detected in the evaluation of the
integrity constraints. In step 356, the integrity process
202 exposes the changes that have been made during
the current transaction to the protected resource copy
208. It should be appreciated by those skilled in the art
that exposure of these changes does not violate the AC-
ID properties via premature exposure of the transac-
tion's changes because the forward play of the current
transaction has been performed serially. For transaction
processing systems, serialization is equivalent to isola-
tion. Furthermore, the integrity process 202 communi-
cates only with the primary process 200, and its memory
is protected from being viewed directly by other proc-
esses. Typically, the integrity process 202 exposes
these changes by removing any locks or other protec-
tions that have been applied to prevent access to the
protected resource copy 208 by other process threads
during the current transaction. After exposing the
changes to the protected resource copy 208 the integrity

19 EP 1 380 948 A2 20

process 202 sends, in step 358, a message to the pri-
mary process 200. The message indicates that the in-
tegrity process 202 has voted to commit the current
transaction.

[0071] Thus, the integrity process 202 sends either a
commit vote (in step 358) or a rollback vote (in step 348)
for each transaction in response to each prepare mes-
sage. These votes are received by the primary process
200 at step 340, where the primary process 200 deter-
mines whether to vote "commit" or "rollback" in re-
sponse to step 342. This determination process is de-
scribed in more detail in following paragraphs of this dis-
closure. The primary process 200 then sends, in step
342, a message to the transaction manager 112. The
message indicates that the primary process 200 has
voted to commit or rollback the current transaction, as
determined previously in step 340. In step 360, the
transaction manager 112 receives the vote of each re-
source manager participating in the current transaction.
[0072] In step 362 as shown in FIG. 3D, the transac-
tion manager 112 determines if any participating re-
source manager has voted to rollback the current trans-
action. If one or more participating resource managers
voted to rollback, execution continues at step 364.
[0073] If the vote is for a rollback then in step 364, the
transaction manager 112 sends a message to the pri-
mary process 200 (and to all other resource managers
that have joined the transaction) indicating that the cur-
rent transaction should be rolled back. In step 366, this
message is received by the primary process 200, which
reacts by undoing the changes that have been made to
the protected resource 206 (either by undoing the
changes in memory or by aborting and restarting using
the passivated recovery image 210 and transaction
record log 214), unless this was done previously in step
339. In step 366, the primary process 200 also forwards
the rollback message to the integrity process 202. In
step 368, the rollback message is received by the integ-
rity process 202; the integrity process 202 then aborts
and restarts using the passivated recovery image 210
and transaction record log 214. In this way, the changes
made to the copy of the protected resource 208 are re-
turned to their pre-transaction state. In step 379, the
transaction manager 112 sends a message to primary
process 200 to indicate that the transaction has rolled
back; primary process 200 receives this notification in
step 366. In step 379, the transaction manager 112 also
sends a message to the application program 114 noti-
fying it that the transaction has been rolled back rather
than committed. Application program 114 receives this
outcome in step 380.

[0074] If, at step 362, all resource managers vote to
commit the current transaction, process flow continues
atstep 370. In step 371, transaction manager 112 sends
the outcome of the transaction (either commit, or as de-
scribed above, rollback) to log manager 118, which
records the outcome on a durable storage media in step
375. When this outcome is securely written, log manag-

10

15

20

25

30

35

40

45

50

55

11

er 118 responds to transaction manager 112, which re-
ceives this response in step 377.

[0075] The transaction manager 112 then continues
to step 379, where the transaction manager 112 sends
a message to application program 114 and primary
process 200 indicating that the transaction has commit-
ted. Application program 114 receives this outcome in
step 380. In step 372, the primary process 200 responds
by exposing the changes that have been made to the
protected resource 206. Typically, primary process 200
exposes these changes by removing any locks or other
protections that have been applied to prevent access to
the protected resource 206 during the current transac-
tion by process threads not associated with the trans-
action.

[0076] Instep 373, the primary process 200 sends the
transaction record plus notification that the transaction
has committed to backup process 222, which receives
this notification in step 365. Backup process 222 proc-
esses the transaction from its first request through ex-
posure of changes in step 365. This processing is iden-
tical to the processing as described for integrity process
202 in steps 344, 346, 352, 354, 356, and 357, with the
exception that any error causes termination of backup
process 222 rather than a rollback vote being sent to the
primary process 200. Note that this should "never" hap-
pen, because backup process 222 is deterministically
replaying the same sequence of instructions, with the
same starting point and the same inputs, as has already
been successfully replayed by integrity process 202.
Backup process 222 then completes its processing of
the transaction by sending a replay complete message
to primary process 200, which waits for this message to
arrive in step 376 prior to sending its forget message to
transaction manager 112.

[0077] In step 374, the primary process 200 updates
the transaction record log 214 to indicate that the current
transaction has committed. More specifically, for the
purposes of the present invention, a unique identifier is
associated with each transaction. Typically, this identi-
fier is generated by the transaction manager 112 in re-
sponse to a message sent by the application program
114 to initiate a transaction (as shown in FIG. 3A). In
step 374, this identifier is sent to log manager 118 with
a flag indicating the transaction has committed. In step
383 log manager 118 adds this transaction outcome to
the transaction record log 214. In this way, the transac-
tion record log 214 is updated to positively identify each
transaction that has been committed. After the transac-
tion outcome is securely written to durable media in step
383, confirmation of this write is sent to primary process
200, which receives this confirmation in step 381. As
shown in the figures, this update of the transaction
record log 214 occurs as part of the commit processing
performed by the primary process 200. It should be ap-
preciated, however, that it may be preferable to delay
the update until the next time at which a transaction
record 212 is added to the transaction record log 214.

21 EP 1 380 948 A2 22

In this way, the update is "piggybacked" onto the next
transaction record write by the primary process 200 in
step 338 of a subsequent transaction. Typically, this
"piggybacked" write would only be done if such a sub-
sequent transaction record write was necessary within
a relatively short time; otherwise, a separate write would
be performed.

[0078] In step 376, the primary process 200 follows
the update of the transaction record log 214 and receipt
of the replay done message from the backup process
222 by sending a forget transaction message to the
transaction manager 112. In step 378, the transaction
manager 112 receives the forget transaction message
and performs whatever processing is required to mark
the current transaction as complete. In particular, when
all joined resource managers have sent such a "forget"
message, the transaction manager 112 may record this
in durable storage and purge all record of the transaction
from its working storage.

[0079] As mentioned previously, the primary process
200 performs rollback processing in one of steps 339 or
366. A method for rollback processing in the primary
process 200 is shown in FIG. 4 and generally designat-
ed 400. Method 400 begins with step 402 where the pri-
mary process 200 determines whether the changes
made to protected resource 206 during the transaction
may be completely undone in process memory without
disrupting other transactions in progress, if any. This de-
termination will depend on the implementation of the pri-
mary process 200 of this resource manager 116, which
may vary according to the state being managed, how
(and if) changes to the state are explicitly tracked, how
isolation of uncommitted transaction changes is accom-
plished, and whether the primary process 200 has been
written to support this "undo" operation. Note that it is
equally correct for the primary process 200 to rollback
changes either by tracking and undoing changes (steps
404 and 406) or by performing abort/recovery (steps
408 and 410). The difference is that abort/recovery may
be resource-intensive, thus degrading the overall sys-
tem's performance, and also forces the rollback of any
other transactions which the primary process 200 is in-
volved in, which may not be desirable for some applica-
tions. If step 402 determines that changes may be un-
done in memory without disrupting other transactions in
progress, this undoing is performed in step 404, fol-
lowed by step 406, which releases any intra-process
locks held by the transaction.

[0080] If step 402 determines that changes may not
be undone in the process' memory without disrupting
other transactions, processing continues with step 408,
where the primary process 200 sends a "rollback only"
message to the transaction manager 112 for every other
transaction it is involved with other than the current one
(these messages are necessary because the changes
associated with the other transactions will be lost in the
following step 410). Processing then continues with step
410, where the primary process 200 performs abort/re-

10

15

20

25

30

35

40

45

50

55

12

covery, which is described in detail later in this docu-
ment.

[0081] As previously discussed, the primary process
200 makes a determination in step 340 to vote "commit",
"commit conditionally", or "rollback." A method for mak-
ing this determination is shown in FIG. 5 and generally
designated 500. Method 500 begins with step 502
where the primary process 200 determines whether any
errors were detected during consistency checking (step
334) (this may be implemented by simply recording in
step 334 whether any errors were found, then reading
that recorded value in step 502). If there were errors,
processing continues with step 514, where the vote is
set to "rollback."

[0082] As previously discussed, the transaction
record 212 is appended to transaction record log 214 in
step 338. The process of adding the transaction record
212 to the transaction record log 214 is typically per-
formed by a record log manager. Step 504 ensures that
the transfer operation initiated in step 342 has complet-
ed. If step 504 determines that errors have occurred dur-
ing the transfer of the transaction record 212 to the
transaction record log 214, execution of method 500
continues at step 514 where the primary process 200
votes to rollback the current transaction.

[0083] Alternatively, if the transfer of the transaction
record 212 has completed without error, execution of
method 500 continues with step 506. In step 506, the
primary process 200 consults the response received in
step 340 shown in FIG. 3C. If the integrity process 202
has voted to commit, processing continues with step
508; otherwise the vote of the primary process 200 must
be to rollback and processing continues with step 514.
[0084] In step 508 the primary process 200 deter-
mines if there is a relevant preceding transaction, and if
so, if it has already committed. If step 508 returns "no,"
this means that the immediately preceding transaction
is still in doubt. In this case, primary process 200 records
the relevant antecedent transaction as the transaction
upon which this commit vote is conditional, and returns
a conditional commit vote in step 518.

[0085] If there is no relevant antecedent transaction,
or step 508 returns "yes," method 500 continues execu-
tion with step 510, where the primary process 200
records the identity of the current transaction as the
"preceding transaction ID" for use during processing of
the next transaction, if any. Execution then continues
with step 512, where the primary process 200 votes to
"commit."

[0086] A method for determining whether the relevant
preceding transaction has committed is shown in FIG.
6 and generally designated 600. Method 600 is the de-
tailed description of step 508 of FIG. 5. Method 600 be-
gins with step 602 where the primary process 200 tests
whether the "preceding transaction ID" is NULL. Note
that NULL is the initial value of this variable when the
primary process 200 is initialized/recovered, and this
value is never assigned to it again. Hence, a value of

23 EP 1 380 948 A2 24

NULL means there was no immediately preceding
transaction during the current instantiation of the prima-
ry process 200. The lack of an immediately preceding
transaction means, in turn, that either this is the first time
this primary process 200 has run, and that there is there-
fore no relevant preceding transaction, or that the pre-
ceding transaction was rolled back such that it forced
the primary process 200 to perform abort/recovery. In
every such latter case the integrity process 202 is also
forced to perform abort/recovery processing. Thus a val-
ue of NULL means that there is no relevant preceding
transaction (because the integrity process 202 went
through recovery immediately before processing the
current transaction), so that only committed transac-
tions were present in protected resource copy 208.
Thus, if step 602 answers "yes", processing continues
with step 612, where the response "yes" is returned from
method 600.

[0087] Ifstep 602 answers "no," processing continues
with step 604, where primary process 200 checks
whether the identified antecedent transaction is known
to have committed. If so, "yes" is returned; if not, "no" is
returned.

[0088] As indicated above, either primary process
200 or integrity process 202 may be restarted and re-
covered using the passivated image 210 and transac-
tion record log 214. A method for performing this recov-
ery is shown in FIG. 7 and generally designated 700. To
perform this type of recovery, the process to be recov-
ered first overlays protected resource 206 or 208 (for
the primary process 200 or integrity process 202, re-
spectively) with the state image previously saved on du-
rable storage designated passivated integrity process
210. This memory represents the state of the protected
resource 208 at some previous between-transaction
point, with the effects of all transactions which commit-
ted prior to the point correctly reflected in the protected
resource 208. Hence, this overlay process returns the
protected resource 206 or 208 to exactly that between-
transaction state. This process of performing this over-
lay is represented in FIG. 7 as step 702.

[0089] Method 700 then continues with step 704,
where the new process reads, in sequence, (having
started at the beginning) the next transaction record 212
from transaction record log 214. If there are no transac-
tion records 212 remaining then recovery is complete,
otherwise processing continues with step 706. Step 706
determines whether the outcome of the transaction rep-
resented by the just-read transaction record 212 was
"commit" or "rollback." The new process does this by
one of three methods, tried in order as follows. First, the
outcome may be recorded as the next item in the trans-
action record log 214 (aread-ahead of the log is required
to determine this). Second, the outcome may be record-
ed immediately after the next transaction record log 214.
(Again, read-ahead is required to determine this.) If nei-
ther of these is the case, then the transaction is still in
"phase 2" of two-phase commit, which means that the

10

15

20

25

30

35

40

45

50

55

13

outcome has been decided but the transaction manager
112 has not confirmed that all participating resource
managers have received and recorded the outcome. In
this case, the transaction manager 112 is consulted to
determine the outcome of the transaction. If the out-
come was "rollback", processing continues by returning
to step 704. If the outcome was "commit" processing
continues with step 708.

[0090] In step 708, the new process considers the
next record of a call or response performed to or from
process group resource manager 116 during the original
processing of the transaction. If the record is a call re-
ceived, that call is re-enacted--the same method is in-
voked within the process, providing exactly the same
parameters as in the original call (the execution of this
call will be discussed in more detail below). If the record
is a response sent (which may include "out" parame-
ters), the result and "out" parameters, if any, are com-
pared to the corresponding result and "out" parameters
recorded in the transaction record 212. Ideally, they will
always match exactly.

[0091] During the re-enacting execution of a call in
step 710, it may occur that the program instructions at-
tempt to make an external call, e.g., invoke a method of
a separate resource manager. Instead of actually per-
forming this external call, step 710 will compare which
call is being made, and what parameters are being
passed, to the corresponding record in the transaction
record 212. If they do not match exactly, this is a serial-
ization error. Then, this call identification and outgoing
parameters are discarded, and the response and "out"
parameters, if any, which were returned by the corre-
sponding external call during the original processing of
the transaction by the primary process 200 are read
from the transaction record 212, and used as though
they were returned from the external call which the re-
enacting execution was trying to make.

[0092] In FIG. 3D, steps 363 and 369 are not shown
as connected to any other because the processing they
represent is disjoint from the processing of any particu-
lar transaction. Step 363 represents the synchronization
procedure necessary for backup process 222 to perform
in order to change its role within the process group re-
source manager 116 to become primary process 200.
Similarly, step 369 represents the synchronization pro-
cedure for backup process 222 to change its role to be
the integrity process 202. Steps 363 and 369 therefore
differ only in the target roles that backup process 222
changes to.

[0093] A method for performing this synchronization
and role change is shown in FIG. 8 and generally des-
ignated 800. To perform this role change, the backup
process 222 first opens a cursor to log manager 118 in
step 802, positioned such that it can read transaction
records from the log starting immediately after the most
recently committed transaction that is already in the pro-
tected resource copy 218.

[0094] Method 800 then continues with step 804,

25

where backup process 222 reads, in sequence, the next
transaction record 218 from transaction record log 214.
If there are no transaction records 218 remaining then
synchronization is complete and the role of the backup
process 222 is changed to a new assigned role, other-
wise processing continues with step 806. Step 806 de-
termines whether the outcome of the transaction repre-
sented by the just-read transaction record 218 was
"commit" or "rollback." The synchronizing process does
this by one of two methods, as follows. First, the out-
come may be recorded in the transaction record log 214
(preferably a read-ahead of the log determines this).
Otherwise, the transaction manager 112 is consulted to
determine the outcome of the transaction. If the out-
come was "rollback", processing continues by returning
to step 804. If the outcome was "commit" processing
continues with step 808.

[0095] In step 808, the synchronizing process consid-
ers the next record of a call or response performed to
or from process group resource manager 116 during the
original processing of the transaction. If the record is a
call received, that call is re-enacted--the same method
is invoked within the process, providing below the same
parameters as in the original call (the execution of this
call is discussed in more detail). If the record is a re-
sponse sent (which may include "out" parameters), the
result and "out" parameters, if any, are compared to the
corresponding result and "out" parameters recorded in
the transaction record 218. Ideally, they will always
match exactly.

[0096] During the re-enacting execution of a call in
step 810, it may occur that the program instructions at-
tempt to make an external call, e.g., invoke a method of
a separate resource manager. Instead of actually per-
forming this external call, step 810 compares which call
is being made, and what parameters are being passed,
to the corresponding record in the transaction record
218. If they do not match exactly, this is a serialization
error, resulting in termination of the backup process. Ide-
ally that this should "never" happen, because the trans-
action has already committed, which means that the in-
tegrity process has already performed exactly this
processing, from exactly the same starting point, and
reading the same inputs from the transaction record.
Otherwise, this call identification and outgoing parame-
ters are discarded, and the response and "out" param-
eters, if any, which were returned by the corresponding
external call during the original processing of the trans-
action by the primary process 200 are read from the
transaction record 218, and used as though they were
returned from the external call which the re-enacting ex-
ecution was trying to make.

[0097] From time to time, a process group resource
manager may consolidate the passivated recovery im-
age 210 with transaction record log 214, as will be de-
scribed below. Generally, this would be done to reduce
the volume of durable storage required by these two
components, and to reduce the amount of time that the

EP 1 380 948 A2

10

15

20

25

30

35

40

45

50

55

14

26

recovery process described as method 700 would take.
[0098] Passivated recovery image 210 and transac-
tion record log 214 should always be a matched set.
Thatis, neither of these components should be not mod-
ified by consolidation without the other having the com-
plementary modification applied. Preferably, this is ac-
complished by including in passivated recovery image
210 the log sequence number of the last committed
transaction reflected in said passivated recovery image
210, so that forward play during recovery may begin at
a point immediately following that in the transaction
record log.

[0099] Consolidation of the passivated recovery im-
age 210 and transaction record log 214 is accomplished
as follows. First, the backup process 222 must be in a
between-transaction state. So, processing of any trans-
action which it is currently working on is completed, and
processing of the next request from the primary process
200 to replay a transaction is forced to wait until the con-
solidation process is complete. Note, however, that be-
cause transaction processing may continue without the
participation of backup process 222, this wait does not
interfere with transaction throughput. Because backup
process 222 only replays committed transactions, pro-
tected resource copy 218 correctly represents all com-
mitted transactions, and has no artifacts within it of any
transaction which has not committed. The state of pro-
tected resource copy 218 is then written to durable stor-
age as the consolidated passivated recovery image
210. The state written to passivated recovery image 210
includes the log sequence number of the last committed
transaction reflected in protected resource copy 218.
Thus, recovery as described in FIG. 7 forward-plays
transactions starting with the first committed transaction
following the point in transaction reflected by protected
resource copy 218.

[0100] While this invention has been described with
reference to illustrative embodiments, this description is
not intended to be construed in a limiting sense. Various
modifications and combinations of the illustrative em-
bodiments as well as other embodiments of the inven-
tion will be apparent to persons skilled in the art upon
reference to this disclosure. It is therefore intended that
the claims encompass any such modifications or em-
bodiments and their equivalents.

Claims

1. A method for transaction processing using man-
aged resources, the method comprising the com-
puter-implemented steps of:

creating a record of each request sent or re-
ceived by a first process during the transaction,
in the order sent or received by the first proc-
ess.

serially replaying, by a second process, the

27 EP 1 380 948 A2 28

transaction that correspond to the record con-
structed by the first process;

causing, by the second process, a transaction
to rollback if the replay of that transaction does
not match the record constructed by the first
process for that transaction; and

occasionally storing onto durable storage me-
dia, by a third process, an image of the third
process in a between-transaction state, said
image for use in reconstructing either the first
process or the second process.

The method of claim 1, further comprising the step
of restoring the first process to its pre-transaction
state, in the event of a rollback.

The method of claim 1 or 2, further comprising the
step of restoring the second process to its pre-trans-
action state, in the event of a rollback.

The method of one of the preceding claims, further
comprising the step of evaluating, by the second
process, integrity constraints for the transaction.

The method of one of the preceding claims 1, further
comprising the step of creating a log of successfully
processed transactions.

A process group resource manager for managing
protected resources during transaction processing,
the process group resource manager comprising:

a first process configured to provide access to
a protected resource during one or more trans-
actions, the first process being further config-
ured to construct a transaction record for each
respective transaction, wherein each transac-
tion record includes each request message re-
ceived by the first process and each response
message sent by the first process during a par-
ticular transaction;

a second process configured to serially replay
the transactions in which the first process par-
ticipates, the second process being configured
to cause a particular transaction to rollback if
the replay of that transaction does not match
the transaction record constructed by the first
process for that transaction; and

a third process configured to store a durable im-
age of the third process for use in reconstruct-
ing either the first process or the second proc-
ess.

The process group resource manager of claim 6 fur-
ther comprising a log of successfully processed
transactions, the log being constructed by the first
process.

10

15

20

30

35

40

45

50

55

15

8. A computer system for distributed transaction

processing, the system comprising:

a processor means;
afirst means for providing access to a protected
resource during one or more transactions, the
first means being further configured to con-
struct a transaction record for each respective
transaction, wherein each transaction record
includes each request message received by
the first means and each response message
sent by the first means during a particular trans-
action;

a second means configured to serially replay
the transactions in which the first means partic-
ipates, the second means being configured to
cause a particular transaction to rollback if the
replay of that transaction does not match the
transaction record constructed by the first
means for that transaction; and

a third means for storing a durable image of the
third process for use in reconstructing either the
first means or the second means.

9. The system of claim 8 further comprising a log of

successfully process transactions, the log being
constructed by the first means.

EP 1 380 948 A2

01T Vv

eIpawl
23e.01s
a|gein(

1L

I 31

Ja3eueR|p 924N0SaY

02T™
~ Jagdeue|n 924n0SaY
91t dnoJr) ssa20.4d
BI301]
yTT ™M uoijeolddy
NHH\<memcms_co:ommcm&h
8T Ja3eue|N 307

AJoWwaN

I~ 70T

10SS820.d

v ¢0T

1L

i)

i

80T ™V

921A8(]
indino

11

90T "V

921A9(]
1nhdu

16

EP 1 380 948 A2

0c¢e

PJ0o29Y
uoljoesuel |

pJ02aYy
uonoesueu |

22.4N0S3Y 924N0S3AY

904Nn0saYy

8T¢ 80¢ 90¢

SS900.44 dnyoeg $S920.44 Atewilig

SS820.4 A11u391u
¢éc

PJ029Y
uonoesuels |

P4008Yy
onoesuel

adew| 307
K19A008Y PI0J8Y
pajeAlssed

uolnyoesuel
0t1¢ . L

(o]
—
i

Z 81

17

EP 1 380 948 A2

VE ‘St

811
198eUBN

807

cee
$59004d

dnyoeg

20¢
$5300.1d

A3au|

00¢
$$820.d

Aewig

90¢€

R

3

uonoesues)
uin}ai

uoioesuel}
CIYEREY

h

uonoesue.}
ajeJaussd

\/\

80¢

[40:

:N

7

ot

[481
193euep

uofjoesueld |

onoesuel)
ajenul

2
weidoiyd

uotjeoyddy

18

EP 1 380 948 A2

811
1938euepy

807

cce
$5920.14

dnyoeg

c0e
$$92014

Auudsiug

vie

cle

ynsaj
V1Y

{

piodal
uoljoesues} oy
asuodsau pue
}sanbau ppe

fﬂ\s

wopad

92130U dAI903.

Jo8euew
924N0Ss3al

81¢

Ajou

%

uoloesuesy
0} Ja8euew
924N0SaJ ppe

N\A uiof %
4 91e
ysanbau
% CIVEREY! <
002 [A81
$582044 Ja3euepn
Aewnid uojjoesued |

}nsaJ
q EINERED] /\/wmm
HI0OM
1sanbau ™\
01€
AT
weidoud

uoneoyddy

19

EP 1 380 948 A2

Eve

ve

DE S

pJodal
sueJ) 10y
NS uinjal

Jayng ojul
ind
'p1023J suely

hoj NS udisse

Jadeue
307

(/

811

SS9204d
dnyoeg

yae]

boe M

“NYA wxe

A1 asodxa

ssaooud

+

uonoesuels)
yoeq|[o.

6G€E

Y

aledaud-ai
s|puey

19¢

2

0} 8)0A

uoijoesuel}
Hwwod ||
0} 9]0A

sadueyo

EENE
Koua)sisuod

| wJiopad

N

oﬁm\

\.(
1423

540119

¢ce

\

}senbal

aledaud-al

1sanbai

%

asedaad
0} puodsai

A

-+ 9]0A aiedaid

aulwiIavp

/

A

uoljoesuely
10 s108))8
yoeq||o

YGRE)]
uonoesuel}
Jajsuely
pue ajum

uoljoesuel}
o >N_Qm_ Al.VMM\-L,\
$$300.1d
Adau| ,\/Now

1

ipao9)ep

SYEENE)
Aouaysisuod

wuopad

g

S9)0A
ale|nge)

<

09¢

CEE

R

$$820.d
Kewny

00¢

asedaud <

1sanbal

Ja8euep
uoljoesuel |

1WIwod

YA

AN

1sanbau

7

oce

EE%&
u

oneol|ddy

Mt

20

EP 1 380 948 A2

$s920.d

Aui8eui
10 3jol
QM. ..MNE swinsse A\ Uonoesues
* ‘10 UOW T | 8L€ 19810}
: < [|1
N ssao0ud 9/§ 10810} puss SINY paulol |
69¢€ woJy V+ W01 PaAIdDal
uoKoNJIsul a8essawu
’ e : 188/ uoilewjuod 193105 UaYM
alim 30|
iy fl aA1903l uonesyiou
a|qeJinp o} le ! soeqIio)
m:\@ aW09}No 40 JWiod
£ge _ uonoesues} puss (/7
A\l alMm
9)9jdwod v/E
epow |29 Y] Aeides UOIBWIUOD
siqeinp 0} foo o 7T . N R [[| @M 30| 2
}IM aAI903
‘piodad — - N R |
suen 10} _ piodal \|_ 3Wo2}N0
NS uBisse LU0 uonoesuesy” aum M
3 I)0
=% 4 Uenoayl puas
e 6ot |’|uonoesuen N\
Ae|dais €LE »
: u
sagdueyo Fl onoesuel) ¢
ssac0.d 2087 W__3sodxe ON\m./ WO
Arewnd
wo M_mw_m ss9001d o segdueyd Hl uonoesuely
w Jeqj|jo4
X9 }oeqjlos 4
‘J0HUOW A\
ssa%0.d B9E wwm\/ \/\
wioJ} ¥9€E Y
A co:om:m:_ jo100
€9¢ } yoeqjjo4
¢/
9t
Ja3euepy M\ $S320.d $S920.d $S920.d Ja3euep
307 811 dnyoeg Q/NNN ALdayu) /\WON Kiewid /\/oow uoioesues |

6L€E

LLE

1€

awod}no
uonoesuei I
CEINEREY 08¢
weidouyd

u
oneonddy M
ljeolddy V1T

21

EP 1 380 948 A2

400

402

can changes
be undone
in memory?

h 4
408 send rollback-only
y /Y message to transaction
undo manager for every other
changes [N 404 transaction primary process
within has joined
progess
X exit process
i . 410 .
ril)iissi 'lr;tcrlf YA 406 Y and recover using
P I passivated image

and transaction
record log

Fig. 4

22

EP 1 380 948 A2

500 502

errors
detected
during consistency

checking
?

504

errors
detected
during write of
transaction
ecord?

506

did
integrity process
vote to commit
transaction

516

é 508

record antecedent N
transaction id as |¢——
depended-upon

transaction

relevant
antecedent
transaction

commit
?

518 >10 W record transaction
g\ ID as antecedent
transaction
vote t(.> 514
commit
conditionally ' v v
>12 AVA vote to vote to
commit rollback
unconditionally

23

EP 1 380 948 A2

600

602

1s
preceding
transaction

id NULL
?

606

1s
antecedent
transaction known to

have committed
2

N
610 y —Y
\./\ ritu;,l,l ‘ return “yesn \/-\ 612
n

Fig. 6

24

EP 1 380 948 A2

700 702 N

overlay protected
resource with
passivated image

v

703 A

m

open cursor to
log manager
starting at point

immediately following

ost recent transaction
from overlay

v

704 N

>

read first (or
next)

no

remaining

records

712

b,

transaction from
transaction
record log

706

708

A

did
transaction
commit?

no remaining
call/response
records

consider first (or
next)
call or response
record in
transaction
record log

y

710 N

replay call

>

recovery
complete

Fig. 7

record or
compare and
discard
response record

25

EP 1 380 948 A2

open cursor to
log manager
starting at point

immediately following
most recently replayed

transaction

'

804
N

>

read first (or
next)

no
remaining
records

800

812

b

transaction from
transaction

" record log

806

did

808

A

transaction
commit?

no remaining
call/response
records

consider first (or
 next)
call or response
record in
transaction
record log

I

810 N

replay call

record or
compare and
discard
response record

Fig. 8

26

)

change to new
assigned role

	bibliography
	description
	claims
	drawings

