FIELD OF THE INVENTION
[0001] The present invention is directed to a method of controlled radical polymerization
of vinyl monomers. Specifically, the invention is directed to a method of controlled
polymerization of vinyl monomers using an iniferter initiator, which is capable of
forming a carbon centered radical.
BACKGROUND OF THE INVENTION
[0002] A wide variety of radically polymerizable monomers, such as methacrylic and acrylic
monomers, is commercially available and can confer a wide range of properties to a
polymer or copolymer (hereinafter, collectively referred to as (co)polymer). The use
of conventional free radical (co)polymerization methods to synthesize (co)polymers
provides little control over molecular weight, molecular weight distribution and,
in particular, (co)polymer chain structure.
[0003] In order to overcome this problem, polymerization methods based ionic methods (anionic
and cationic polymerization) were developed that would enable the artisan a degree
of control over the placement of monomers along a growing polymer chain. These methods
are limited, however, to a relatively narrow class of monomer and polymer types.
[0004] A further development provides a method of free radical polymerization, in which
a "living" polymer containing a radically transferable atom or group is employed to
enable a degree of control over (co)polymer composition and architecture. These methods,
referred to collectively as atom or group radical transfer polymerization (ATRP),
are described in, for example, United States Patent Nos.
5,807,937,
5,789,487 and
5,763,548 to Matyjaszewski et al. The ATRP method is described as providing highly uniform products having controlled
structure (i.e., controllable topology, composition, etc.).
[0005] However, ATRP type processes require the use of halogenated hydrocarbon initiators
and transition metal catalysts, which cause safety and material compatibility concerns
when implemented at production scale. Further, although more versatile than ionic
polymerization methods, a number of functional monomers, for example carboxylic acid
functional monomers, cannot be polymerized directly using ATRP methodologies.
[0006] A further technique that has been explored to provide control over a radical polymerization
process is those processes utilizing iniferter initiators. Iniferter initiators contain
a chemical bond that will break under appropriate thermal or photolytic conditions,
forming two carbon centered radicals. The radicals are capable of polymerizing monomers
and the polymerization step competes with radical recombination. Functional groups
that have found use in iniferter initiators include thiuram disulfides, dithiocarbamate
disulfides and ethylene derivatives that contain at least four stabilizing groups.
[0007] Thiouram iniferter initiators are disclosed in, for example,
U.S. Patent No. 6,169,147 to Kroeze et al.;
Lokaj et al., Journal of Applied Polymer Science, 67, 755-762 (1998);
Kroeze et al., Macromolecules, 28, 6650-6656 (1995) ;
Nair et al., J. Macromol. Sci.-Chem., A27(6), 791-806 (1990) ; and
Nair et al., Polymer, 29, 1909-1917 (1988). Thiuram disulfide iniferter initiated polymerizations are able to produce block
copolymers, but typically with limited control and wide molecular weight distributions.
[0008] Dithiocarbamate disulfide iniferter initiators are disclosed in, for example,
U.S. Patent Nos. 5,866,047 to Nagino et al.,
5,658,986 to Clouet and
5,489,654 to Clouet;
Suwier at al., Journal of Polymer Science: Part A: Polymer Chemistry, 38, 3558-3568
(2000); and
Nair et al., Macromolecules, 23, 1361-1369 (1990).). Dithiocarbamate disulfide iniferter initiated polymerizations are able to produce
block copolymers, but typically with limited control and wide molecular weight distributions.
[0009] Various multisubstituted ethylene derivatives have been disclosed as iniferter initiators.
For example,
U.S. Patent No. 5866,047 to Nagino et al.,
Chen et al., European Polymer Journal, 36, 1547-1554 (2000),
Tharanikkarusa et al., Journal of Applied Polymer Science, 66, 1551-1560 (1997); and
Tharanikkarusa et al., J.M.S.-Pure Appl. Chem., A33(4), 417-437 (1996) disclose derivatives of 1,1,2,2-tetraphenyl-1,2-ethanediol as iniferter initiators.
The use of phenylazotriphenyl methane as an iniferter initiator is disclosed by
Otsu et al., Polymer Bulletin, 16, 277-284 (1996). Various 1,2-dicyano-1,2-diphenylethane derivatives are described as iniferter initiators
by
Qin et al., Macromolecules, 33, 6987-6992 (2000);
Qin et al., Journal of Polymer Science: Part A: Polymer Chemistry, 38, 2115-2120
(2000);
Qin et al., Polymer, 41, 7347-7353 (2000);
Qin et al., Journal of Polymer Science: Part A: Polymer Chemistry, 37, 4610-4615 (1999);
Tharanikkarusa et al., European Polymer Journal, 33, 1779-1789 (1997);
Tazaki et al., Polymer Bulletin, 17, 127-134 (1987); and
Otsu et al., Polymer Bulletin, 17, 323-330 (1987). The multisubstituted ethylene derivative iniferter initiated polymerizations are
all able to produce block copolymers, but typically also demonstrate limited control
of the polymerization process and the resulting polymers had wide molecular weight
distributions.
[0010] All of the cited iniferter technology utilized either disulfide groups or ethylene
derivatives with multiple radical stabilizing groups, such as phenyl and cyano, to
effect a somewhat controlled polymerization process. In the case of disulfide iniferters,
the sulfide and dithiocarbamate groups are prone to side reactions and early termination
reactions. The multi-phenyl substituted ethylene iniferters are similarly prone to
side reactions and early termination reactions. These problems lead to poor control
of the polymerization process and a wide, bimodal or multimodal molecular weight distribution.
[0011] There remains a need for a method of controlled polymerization, which is capable
of polymerizing a wide variety of functional monomers. The controlled polymerization
method should also provide for copolymer composition and architecture control as well
as providing for control over polymer molecular weight and molecular weight distribution.
SUMMARY OF THE INVENTION
[0012] In accordance with the present invention, there is provided a controlled free radical
polymerization process, which includes the steps of:
- (a) adding a compound capable of forming a carbon centered radical, which is able
to initiate free radical polymerization, having the general structure:

wherein R1 is selected from the group consisting of C1-C20 alkyl, cyclic, heterocyclic, alkynol, or aryl; R2 is selected from the group consisting of H and C1-C4 alkyl; SG is a radical stabilizing group; and W is selected from the group consisting
of a -C-C- bond and a group that can decompose to form two residues containing carbon
centered radicals; to a solvent, forming a solution, which is substantially free of
oxygen;
- (b) heating the solution to a temperature 20°C to 250°C;
- (c) adding a first monomer composition comprising one or more ethylenically unsaturated
monomers to the solution containing the carbon centered radical residues; and
- (d) polymerizing the first monomer composition to form a quasi-living polymer;
optionally adding a second, third, fourth, etc. monomer composition comprising one
or more ethylenically unsaturated monomers, which is different than the first monomer
composition, to the quasi-living polymer solution; and
polymerizing the second monomer composition.
[0013] The present invention is further directed to a non-random copolymer of general formula
I:
(I) φ-[-A
p-B
s-]
t-φ
where A and B are different compositions of ethylenically unsaturated monomers; p
is an integer from 1 to 1,000; s is an integer from 1 to 1,000; t is an integer from
1 to 100; and φ is a residue from a carbon centered radical capable of initiating
free radical polymerization.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
[0014] The terms (meth)acrylic and (meth)acrylate are meant to include both acrylic and
methacrylic acid derivatives, such as the corresponding alkyl esters often referred
to as acrylates and (meth)acrylates, which the term (meth)acrylate is meant to encompass.
[0015] Unless otherwise noted, the term copolymer is meant to include polymers containing
more than one monomer in all forms, i.e., random, alternating, block, gradient, etc.
[0016] The controlled free radical polymerization process of the present invention can generally
be described as including the steps of:
adding a compound capable of forming a carbon centered radical, which is able to initiate
free radical polymerization (an iniferter), of general structure II:

wherein R1 is selected from the group consisting of C1 to C20 alkyl, cyclic, heterocyclic or alkynol; R2 is selected from the group consisting of H and C1-C4 alkyl; SG is a radical stabilizing group; and W may be a C-C bond or a group that
decomposes to form two residues containing a carbon centered radical, such as, for
example, an -O-O- group or a -N=N-group; to a solvent, forming a solution, which is
substantially free of oxygen;
heating the solution to a temperature sufficient to allow the compound to form two
carbon centered radical residues (20°C-260°C),
adding a first monomer composition comprising one or more ethylenically unsaturated
monomers to the solution containing the carbon centered radical residues;
polymerizing the first monomer composition to form a quasi-living polymer;
optionally, adding a second monomer composition comprising one or more ethylenically
unsaturated monomers, which is different than the first monomer composition, to the
quasi-living polymer solution; and
polymerizing the second monomer composition.
[0017] By quasi-living polymer, what is meant is a polymer that will not spontaneously incorporate
a monomer added to a solution containing the quasi-living polymer, but will incorporate
the monomer under specific conditions, such as, for example, sufficient temperature
or exposure to a specific wavelength or quantum of light.
[0018] The radical stabilizing group, SG, of the iniferter of the present invention can
be any functional group that is capable of stabilizing a free radical at the adjacent
carbon atom. The most effective radical stabilizing groups are able to delocalize
the radical through various resonance structures. Examples of radical stabilizing
groups that can be used as part of the present invention include, but are not limited
to nitrile, ester, amide, carboxyl, allyl, nitro, aryl and halide.
[0019] Preferred compounds that are capable of acting as iniferters in the present invention
include azobisalkylonitriles, bisalkylonitriles, bisphenylalkanes, bishalolalkanes,
biscarboxyalkanes and bisnitroalkanes. Particularly preferred compounds are those
of general formulas III-VIII:

where R
1 and R
2 are independently selected from H, C
1-C
20 alkyl, cyclic, heterocyclic and alkynol, R
7 is selected from H, C
1-C
20 alkyl, cyclic, heterocyclic, alkynol, and aryl; Z is O or NH; and X is a halogen.
[0020] In general, the iniferter compound capable of forming a carbon centered radical breaks
down, when exposed to a sufficient temperature or light, to form two carbon centered
radical residues as described in Scheme I:

[0021] Surprisingly, this is accomplished with an iniferter residue containing only one
stabilizing group for the free radical. Each carbon centered radical residue is capable
of then initiating polymerization as shown in Scheme II:

[0022] The polymer may grow through conventional free radical addition polymerization, or
recombine with a carbon centered radical residue as shown in Scheme III:

[0023] The terminal carbon centered radical residue is able, when exposed to a sufficient
temperature or light, to break down and reform a carbon centered free radical residue,
a quasi-living free radical polymer, as shown in Scheme IV:

[0024] When a second monomer is added to the "quasi-living" polymer, a block copolymer is
achieved as depicted in Scheme V.

[0025] With regard to Schemes I-V, A and B represent functional groups of different polymerizable
ethylenically unsaturated monomers and n and m are integers representing the block
lengths of each monomer composition represented by A and B, respectfully. R
1, R
2 and SG are as described above.
[0026] In the present invention, it has been found that certain compounds capable of forming
carbon centered radicals are capable of acting as iniferter initiators providing a
quasi-living polymer, which can be used to control the polymerization process. As
opposed to prior art iniferters, the iniferters of the present invention contain only
one stabilizing group in the free radical containing residue. This effect is obtained
by regulating the temperature and monomer addition of the polymerization process.
The method of the present invention does not require the presence of transition metals
or potential corrosive halides.
[0027] The iniferter compound of the present invention can be a bis tertiary alkyl compound,
which is added directly to a solvent. An azobis tertiary alkyl compound can also be
used and is added to a solvent, heated to decompose to form free radical containing
residues that then recombine and are capable of acting as iniferters, breaking down
to reform free radical containing residues.
[0028] Examples of suitable azobis tertiary alkyl compounds include, but are not limited
to, 4-4'-azobis(4-cyanovaleric acid), 1-1'-azobiscyclohexanecarbonitrile, 2-2'-azobisisobutyronitrile,
2-2'-azobis(2-methylpropionamidine) dihydrochloride, 2-2'-azobis(2-methylbutyronitrile),
2-2'-azobis(propionitrile), 2-2'-azobis(2,4-dimethylvaleronitrile), 2-2'-azobis(valeronitrile),
2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide], 4,4'-azobis(4-cyanopentanoic
acid), 2,2'-azobis(N,N'-dimethyleneisobutyramidine), 2,2'-azobis(2-amidinopropane)
dihydrochloride, 2,2'-azobis(N,N'-dimethyleneisobutyramidine) dihydrochloride, and
2-(carbamoylazo)-isobutyronitrile.
[0029] Preferred azobis tertiary alkyl compounds include 2,2'-azobis(2-methyl-butyronitrile),
dimethyl 2,2'-azobisisobutyrate and 4,4'-azobis(4-cyanopentanoic acid)
[0030] Examples of suitable bis tertiary alkyl compounds include, but are not limited to,
4,5 dicyano-4,5 dimethyl suberic acid, 1,1'-dicyanodicyclohexyl, 2,3-dicyano-2,3-dimethylbutane,
2, 2, 3, 3-tetramethyl-1,4-diamidinylbutane dihydrochloride, 2, 2, 3, 3-tetramethyl-N,N'-dihydroxyethyl
succinamide, and 2, 2, 3, 3-tetramethyl-N,N'-tetramethylene succinamide.
[0031] In the method of the present invention, the iniferter is decomposed at a temperature
that will accomplish the decomposition but minimize the occurrence of unwanted or
unanticipated side and competing reactions. The method can be performed at any temperature
that accomplishes this aim. The controlled polymerization process of the present invention
is performed at from 20°C to 250°C, preferably from 50°C to 200°C, and more preferably
from 60°C to 150°C.
[0032] In the present invention any ethylenically unsaturated monomer can be used. The ethylenically
unsaturated monomers can be described by general formula IX:

wherein R
3, R
4 and R
6 are independently selected from the group consisting of H, halogen, CN, CF
3, straight or branched alkyl of 1 to 20 carbon atoms (preferably from 1 to 6 carbon
atoms, more preferably from 1 to 4 carbon atoms), aryl, unsaturated straight or branched
alkenyl or alkynyl of 2 to 10 carbon atoms (preferably from 2 to 6 carbon atoms, more
preferably from 2 to 4 carbon atoms), unsaturated straight or branched alkenyl of
2 to 6 carbon atoms (preferably vinyl) substituted (preferably at the α-position)
with a halogen (preferably chlorine), C
3-C
8 cycloalkyl, heterocyclyl, phenyl, which may optionally have from 1-5 substituents
on the phenyl ring, C(=Y) R
9, C(=Y)NR
10R
11, YCR
10R
11R
12 and YC(=Y)R
12, where Y may be NR
12 or O (preferably O), R
9 is alkyl of from 1 to 20 carbon atoms, alkoxy of from 1 to 20 carbon atoms, aryloxy
or heterocyclyloxy, R
10 and R
11 are independently H or alkyl of from 1 to 20 carbon atoms, or R
10 and R
11 may be joined together to form an alkylene group of from 2 to 5 carbon atoms, thus
forming a 3- to 6-membered ring, and R
12 is H, straight or branched C
1-C
20, alkyl and aryl; R
5 is selected from the group consisting of H, halogen, C
1-C
6 alkyl, CN, COOR
8, wherein R
8 is selected from the group consisting of H, an alkali metal, a C
1-C
6 alkyl group and aryl.
[0033] Specific examples of vinyl monomers that may be polymerized by the method of the
present invention include vinyl monomers, allylic monomers, olefins, (meth)acrylic
acid, (meth)acrylates, (meth)acrylamide, N- and N,N-disubstituted (meth)acrylamides,
vinyl aromatic monomers, vinyl halides vinyl esters of carboxylic acids and mixtures
thereof. More specific examples of suitable monomers include, without limitation,
C
1-C
20 alkyl (meth)acrylates (including linear or branched alkyls and cycloalkyls) which
include, but are not limited to, methyl (meth)acrylate, ethyl (meth)acrylate, propyl
(meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, iso-butyl (meth)acrylate,
tert-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, isobornyl
(meth)acrylate, cyclohexyl (meth)acrylate, 3,3,5-trimethylcyclohexyl (meth)acrylate
and isocane (meth)acrylate: oxirane functional (meth)acrylates which include, but
are not limited to, glycidyl (meth)acrylate, 3,4-epoxycyclohexylmethyl(meth)acrylate,
and 2-(3,4-epoxycyclohexyl) ethyl(meth)acrylate; hydroxy alkyl (meth)acrylates having
from 2 to 4 carbon atoms in the alkyl group which include, but are not limited to,
hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate and hydroxybutyl (meth)acrylate.
The residues may each independently be residues of monomers having more than one (meth)acryloyl
group, such as (meth)acrylic anhydride, diethyleneglycol bis(meth)acrylate, 4,4'-isopropylidenediphenol
bis(meth)acrylate (bisphenol A di(meth)acrylate), alkoxylated 4,4'-isopropylidenediphenol
bis(meth)acrylate, trimethylolpropane tris(meth)acrylate and alkoxylated trimethylolpropane
tris(meth)acrylate.
[0034] In the context of the present application, the terms "alkyl", "alkenyl" and "alkynyl"
refer to straight-chain or branched groups. Furthermore, in the present application,
"aryl" refers to phenyl, naphthyl, phenanthryl, phenalenyl, anthracenyl, triphenylenyl,
fluoranthenyl, pyrenyl, pentacenyl, chrysenyl, naphthacenyl, hexaphenyl, picenyl and
perylenyl (preferably phenyl and naphthyl), in which each hydrogen atom may be replaced
with alkyl of from 1 to 20 carbon atoms (preferably from 1 to 6 carbon atoms and more
preferably methyl), alkyl of from 1 to 20 carbon atoms (preferably from 1 to 6 carbon
atoms and more preferably methyl) in which each of the hydrogen atoms is independently
replaced by a halide (preferably a fluoride or a chloride), alkenyl of from 2 to 20
carbon atoms, alkynyl of from 1 to 20 carbon atoms, alkoxy of from 1 to 6 carbon atoms,
alkylthio of from 1 to 6 carbon atoms, C
3-C
8 cycloalkyl, phenyl, halogen, NH
2, C
1-C
6 -alkylamino, C
1-C
6 -dialkylamino, and phenyl which may be substituted with from 1 to 5 halogen atoms
and/or C
1-C
4, alkyl groups. (This definition of "aryl" also applies to the aryl groups in "aryloxy"
and "aralkyl".) Thus, phenyl may be substituted from 1 to 5 times and naphthyl may
be substituted from 1 to 7 times (preferably any aryl group, if substituted, is substituted
from 1 to 3 times) with one of the above substituents. More preferably, "aryl" refers
to phenyl, naphthyl, phenyl substituted from 1 to 5 times with fluorine or chlorine,
and phenyl substituted from 1 to 3 times with a substituent selected from the group
consisting of alkyl of from 1 to 6 carbon atoms, alkoxy of from 1 to 4 carbon atoms
and phenyl. Most preferably, "aryl" refers to phenyl and tolyl.
[0035] Specific examples of vinyl aromatic monomers that may be used to prepare the (co)polymer
include, but are not limited to, styrene, p-chloromethyl styrene, divinyl benzene,
vinyl naphthalene and divinyl naphthalene. Vinyl halides that may be used to prepare
the graft (co)polymer include, but are not limited to, vinyl chloride, p-chloromethylstyrene,
vinyl chloroacetate and vinylidene fluoride. Vinyl esters of carboxylic acids that
may be used to prepare the graft (co)polymer include, but are not limited to, vinyl
acetate, vinyl butyrate, vinyl 3,4-dimethoxybenzoate and vinyl benzoate.
[0036] In the context of the present invention, "heterocyclyl" refers to pyridyl, furyl,
pyrrolyl, thienyl, imidazolyl, pyrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, pyranyl,
indolyl, isoindolyl, indazolyl, benzofuryl, isobenzofuryl, benzothienyl, isobenzothienyl,
chromenyl, xanthenyl, purinyl, pteridinyl, quinolyl, isoquinolyl, phthalazinyl, quinazolinyl,
quinoxalinyl, naphthyridinyl, phenoxathiinyl, carbazolyl, cinnolinyl, phenanthridinyl,
acridinyl, 1,10-phenanthrolinyl, phenazinyl, phenoxazinyl, phenothiazinyl, oxazolyl,
thiazolyl, isoxazolyl, isothiazolyl, and hydrogenated forms thereof known to those
in the art. Preferred heterocyclyl groups include pyridyl, furyl, pyrrolyl, thienyl,
imidazolyl, pyrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, pyranyl and indolyl, the
most preferred heterocyclyl group being pyridyl. Accordingly, suitable vinyl heterocyclyls
to be used as a monomer in the present invention include 2-vinyl pyridine, 4-vinyl
pyridine, 2-vinyl pyrrole, 3-vinyl pyrrole, 2-vinyl oxazole, 4-vinyl oxazole, 5-vinyl
oxazole, 2-vinyl thiazole, 4-vinyl thiazole, 5-vinyl thiazole, 2-vinyl imidazole,
4-vinyl imidazole, 3-vinyl pyrazole, 4-vinyl pyrazole, 3-vinyl pyridazine, 4-vinyl
pyridazine, 3-vinyl isoxazole, 3-vinyl isothiazoles, 2-vinyl pyrimidine, 4-vinyl pyrimidine,
5-vinyl pyrimidine, and any vinyl pyrazine, the most preferred being 2-vinyl, pyridine.
The vinyl heterocyclyls mentioned above may bear one or more (preferably 1 or 2) C
1-C
6 alkyl or alkoxy groups, cyano groups, ester groups or halogen atoms, either on the
vinyl group or the heterocyclyl group, but preferably on the heterocyclyl group. Further,
those vinyl heterocyclyls which, when unsubstituted, contain an N--H group may be
protected at that position with a conventional blocking or protecting group, such
as a C
1-C
6 alkyl group, a tris-C
1-C
6 alkylsilyl group, an acyl group of the formula R
13 CO (where R
13 is alkyl of from 1 to 20 carbon atoms, in which each of the hydrogen atoms may be
independently replaced by halide, preferably fluoride or chloride), alkenyl of from
2 to 20 carbon atoms (preferably vinyl), alkynyl of from 2 to 10 carbon atoms (preferably
acetylenyl), phenyl which may be substituted with from 1 to 5 halogen atoms or alkyl
groups of from 1 to 4 carbon atoms, or aralkyl (aryl-substituted alkyl, in which the
aryl group is phenyl or substituted phenyl and the alkyl group is from 1 to 6 carbon
atoms), etc. (This definition of "heterocyclyl" also applies to the heterocyclyl groups
in "heterocyclyloxy" and "heterocyclic ring.")
[0037] More specifically, preferred monomers include, but are not limited to, styrene, p-chloromethylstyrene,
vinyl chloroacetate, acrylate and methacrylate esters of C
1-C
20 alcohols, isobutene, 2-(2-bromopropionoxy) ethyl acrylate, acrylonitrile, and methacrylonitrile.
[0038] As used herein, by "allylic" and "allylic monomer(s)" is meant monomers or stabilizing
groups (SG) containing substituted and/or unsubstituted allylic functionality, i.e.,
one or more radicals represented by the following general formula X,
(X) H
2C=C (R
14)-CH
2-
wherein R
14 is hydrogen, halogen or a C
1-C
4 alkyl group. Most commonly, R
14 is hydrogen or methyl and, consequently, general formula X represents the unsubstituted
(meth)allyl radical. Examples of allylic monomers include, but are not limited to,
(meth)allyl ethers, such as methyl (meth)allyl ether and (meth)allyl glycidyl ether;
allyl esters of carboxylic acids, such as (meth)allyl acetate, (meth)allyl butyrate,
(meth)allyl 3,4-dimethoxybenzoate and (meth)allyl benzoate.
[0039] Other ethylenically unsaturated radically polymerizable monomers that may be used
to prepare the (co)polymer include, but are not limited to, cyclic anhydrides, e.g.,
maleic anhydride, 1-cyclopentene-1,2-dicarboxylic anhydride and itaconic anhydride;
esters of acids that are unsaturated but do not have α,β-ethylenic unsaturation, e.g.,
methyl ester of undecylenic acid; diesters of ethylenically unsaturated dibasic acids,
e.g., di(C
1-C
4 alkyl)ethyl maleates; maleimide and N-substituted maleimides.
[0040] In one embodiment of the present invention, the monomer includes a hydrophobic residue
of a monomer selected from an oxirane functional monomer reacted with a carboxylic
acid selected from the group consisting of aromatic carboxylic acids, polycyclic aromatic
carboxylic acids, aliphatic carboxylic acids having from 6 to 20 carbon atoms and
mixtures thereof; C
6-C
20 alkyl (meth)acrylates, e.g., including those as previously recited herein; aromatic
(meth)acrylates, e.g., phenyl (meth)acrylate, p-nitrophenyl (meth)acrylate and benzyl
(meth)acrylate; polycyclicaromatic (meth)acrylates, e.g., 2-naphthyl (meth)acrylate;
vinyl esters of carboxylic acids, e.g., hexanoic acid vinyl ester and decanoic acid
vinyl ester; N,N-di(C
1-C
8 alkyl) (meth)acrylamides; maleimide; N-(C
1-C
20 alkyl) maleimides; N-(C
3-C
8 cycloalkyl) maleimides; N-(aryl) maleimides; and mixtures thereof. Examples of N-substituted
maleimides include, but are not limited to, N-(C
1-C
20 linear or branched alkyl) maleimides, e.g., N-methyl maleimide, N-tertiary-butyl
maleimide, N-octyl maleimide and N-icosane maleimide; N-(C
3-C
8 cycloalkyl) maleimides, e.g., N-cyclohexyl maleimide; and N-(aryl) maleimides, e.g.,
N-phenyl maleimide, N-(C
1-C
9 linear or branched alkyl substituted phenyl) maleimide, N-benzyl maleimide and N-(C
1-C
9, linear or branched alkyl substituted benzyl) maleimide.
[0041] The oxirane functional monomer or its residue that is reacted with a carboxylic acid
may be selected from, for example, glycidyl (meth)acrylate, 3,4-epoxycyclohexylmethyl(meth)acrylate,
2-(3,4-epoxycyclohexyl) ethyl(meth)acrylate, allyl glycidyl ether and mixtures thereof.
Examples of carboxylic acids that may be reacted with the oxirane functional monomer
or its residue include, but are not limited to, para-nitrobenzoic acid, hexanoic acid,
. 2-ethyl hexanoic acid, decanoic acid, undecanoic acid and mixtures thereof.
[0042] The monomer containing at least one polar group may be present in an amount of 5
to 100 wt % by weight based on the total amount of monomers. A preferred amount of
the monomer containing at least one polar group is 10 to 100 wt %; the most preferred
amount is 20 to 100 wt % based on the total amount of monomers. This is particularly
important in the case of acrylonitrile because an amount of at least 20 wt % assures
solvent resistance properties of the resulting (co)polymer A.
[0043] A particular advantage of the controlled radical polymerization of the present invention
is that carboxylic acid containing monomers can be polymerized directly. In other
controlled polymerization methods (ATRP, anionic, etc.) the carboxylic acid functionality
on a monomer must be blocked prior to polymerization and then unblocked after polymerization.
The present method does not require blocking of such monomers.
[0044] Examples of carboxylic acid functional monomers include, but are not limited to,
(meth)acrylic acid, maleic acid, fumaric acid and undecylenic acid. The monomer may
be a residue of a precursor of a carboxylic acid functional monomer that is converted
to a carboxylic acid residue after completion of the controlled radical polymerization,
e.g., maleic anhydride, di (C
1-C
4 alkyl) maleates and C
1-C
4 alkyl (meth)acrylates. For example, residues of maleic anhydride can be converted
to diacid residues, ester/acid residues or amide/acid residues by art-recognized reactions
with water, alcohols or primary amines, respectively. Residues of C
1-C
4 alkyl (meth)acrylates, such as t-butyl (meth)acrylate, can be converted to (meth)acrylic
acid residues by art-recognized ester hydrolyzation methods, which typically involve
the concurrent removal of an alcohol, such as t-butanol by vacuum distillation. Salts
of carboxylic acid functional monomers include, for example, salts of (meth)acrylic
acid and primary, secondary or tertiary amines, such as, butyl amine, dimethyl amine
and triethyl amine.
[0045] Amine functional monomers include, for example, amino(C
2-C
4 alkyl) (meth)acrylates, e.g., 2-aminoethyl (meth)acrylate, 3-aminopropyl (meth)acrylate
and 4-aminobutyl (meth)acrylate; N-(C
1-C
4, alkyl) amino (C
2-C
4 alkyl) (meth)acrylates, e.g., N-methyl-2-aminoethyl (meth)acrylate; and N,N-di(C
1-C
4 alkyl) amino (C
2-C
4 alkyl) (meth)acrylates, e.g., N,N-dimethyl-2-aminoethyl (meth)acrylate. The monomer
may also comprise residues of salts of amine functional monomers, e.g., salts of those
amine functional monomers as recited previously herein. Salts of the amine functional
monomer residues may be formed by mixing a carboxylic acid, e.g., lactic acid, with
the copolymer after completion of controlled radical polymerization.
[0046] As described above, the copolymer may have nonionic moieties, ionic moieties and
combinations thereof. In an embodiment of the present invention, the ethylenically
unsaturated monomers can be selected from, for example, poly(alkylene glycol) (meth)acrylates;
C
1-C
4 alkoxy poly(alkylene glycol) (meth)acrylates; hydroxyalkyl (meth)acrylates having
from 2 to 4 carbon atoms in the alkyl group; N-(hydroxy C
1-C
4 alkyl) (meth)acrylamides, e.g., N-hydroxymethyl (meth)acrylamide and N-(2-hydroxyethyl)
(meth)acrylamide; N,N-di-(hydroxy C
1-C
4 alkyl) (meth)acrylamides (e.g., N,N-di(2-hydroxyethyl) (meth)acrylamide); carboxylic
acid functional monomers; salts of carboxylic acid functional monomers; amine functional
monomers; salts of amine functional monomers; and mixtures thereof.
[0047] Poly(alkylene glycol) (meth)acrylates and C
1-C
4 alkoxy poly(alkylene glycol) (meth)acrylates are prepared by known methods. For example,
(meth)acrylic acid or hydroxyalkyl (meth)acrylate, e.g., 2-hydroxyethyl (meth)acrylate,
may be reacted with one or more alkylene oxides, e.g., ethylene oxide, propylene oxide
and butylene oxide. Alternatively, an alkyl (meth)acrylate may be transesterified
with a C
1-C
4 alkoxy poly(alkylene glycol), e.g., methoxy poly(ethylene glycol). Examples of poly(alkylene
glycol) (meth)acrylates and C
1-C
4 alkoxy poly(alkylene glycol) (meth)acrylates include poly(ethylene glycol) (meth)acrylate
and methoxy poly(ethylene glycol) (meth)acrylate, the poly(ethylene glycol) moiety
of each having a molecular weight of from 100 to 800. An example of a commercially
available C
1-C
4 alkoxy poly(alkylene glycol) (meth)acrylate is methoxy poly(ethylene glycol) 550
methacrylate monomer from Sartomer Company, Inc. Preferred hydroxy functional monomer
are hydroxyalkyl (meth)acrylates having from 2 to 20 carbon atoms in the alkyl group;
epoxide functional ethylenically unsaturated radically polymerizable monomers, which
are hydrolyzed; hydroxyalkyl (meth)acrylates having from 2 to 20 carbon atoms in the
alkyl group, which are reacted with a lactone; beta-hydroxy ester functional (meth)acrylates,
which are the reaction product of (i) (meth)acrylic acid and a glycidyl ester of a
saturated monocarboxylic acid having from 4 to 26 carbon atoms, or (ii) glycidyl (meth)acrylate
and a saturated monocarboxylic acid having from 4 to 26 carbon atoms; and mixtures
thereof.
[0048] The present invention is also directed to a non-random copolymer of general formula
(XI):
(XI) φ-[-A
p-B
s-]
t-φ
where A and B are different compositions of ethylenically unsaturated monomers; p
is an integer from 1 to 1,000; s is an integer from 1 to 1,000; t is an integer from
1, to 100; and φ is a residue from the iniferter initiator of the present invention.
The residue φ typically has the structure of general formula XII:

where R
1 is selected from the group consisting of C
1-C
20 alkyl, cyclic, heterocyclic or alkynol; R
2 is selected from the group consisting of H and C
1-C
4 alkyl and SG is a radical stabilizing group as discussed above.
[0049] In an embodiment of the present invention, the copolymer can contain a segment that
includes carboxylic acid functional monomers selected from (meth)acrylic acid, maleic
anhydride, maleic acid, di(C
1-C
4 alkyl) maleates, itaconic acid, mono or di(C
1-C
4 alkyl) itaconates, and mixtures thereof. In a still further embodiment of the present
invention, the copolymer segment is a residue of amine functional monomers selected
from amino(C
2-C
4 alkyl) (meth)acrylates, N-(C
1-C
4 alkyl)amino(C
2-C
4 alkyl) (meth)acrylates, N,N-di(C
1-C
4 alkyl)amino(C
2-C
4 alkyl) (meth)acrylates and mixtures thereof.
[0050] The copolymer also may contain a segment that contains cationic moieties selected
from ammonium, sulphonium and phosphonium. Ammonium, sulphonium and phosphonium moieties
may be introduced into the (co)polymer by means known to the skilled artisan. For
example, when the (co)polymer contains a residue of N,N-dimethyl-2-aminoethyl (meth)acrylate,
the N,N-dimethylamino moieties may be converted to ammonium moieties by mixing an
acid, e.g., lactic acid, with the polymer.
[0051] Further, the copolymer also may contain a segment that contains residues of oxirane
functional monomers, such as glycidyl (meth)acrylate. The oxirane group may be left
as is or it may be used to introduce sulphonium or phosphonium moieties into the polymer.
Sulphonium moieties may be introduced into the polymer by reaction of the oxirane
groups with thiodiethanol in the presence of an acid, such as lactic acid. Reaction
of the oxirane groups with a phosphine, e.g., triphenyl phosphine or tributyl phosphine,
in the presence of an acid, such as lactic acid, results in the introduction of phosphonium
moieties into the graft (co)polymer.
[0052] Additionally, the copolymer may contain a segment that contains residues of hydroxy
functional monomers, such as an hydroxyalkyl(meth)acrylate. Examples of hydroxyalkyl(meth)acrylates
include hydroxyethyl(meth)acrylate and hydroxy(propyl)methacrylate.
[0053] The non-random copolymer of the present invention can have any number of monomers
and monomer blocks as depicted by general structure XIII:
(XIII) φ-[-A
p-B
s-C
q ... W
r]
t-φ
where A, B, C and W represent different compositions of ethylenically unsaturated
monomers; p is an integer from 1 to 1,000 is an integer from 1-1000; s, q and r are
independently integers from 0 to 1,000; t is an integer from 1 to 100; and φ is a
residue from the iniferter initiator as defined above.
[0054] Referring to general structure XI, when containing more than one type or species
of monomer residue, the A- and B-blocks may each have at least one of block, e.g.,
di-block and tri-block, alternating and gradient architectures. Gradient architecture
refers to a sequence of different monomer residues that changes gradually in a systematic
and predictable manner along the polymer backbone. For purposes of illustration, an
A-block containing 6 residues of methyl methacrylate (MMA) and 6 residues of glycidyl
methacrylate (GMA), for which p is 12, may have di-block, tetra-block, alternating
and gradient architectures as represented in general formulas XIV, XV, XVI, and XVII.
(XIV) Di-Block Architecture -(MMA-MMA-MMA-MMA-MMA-MMA-GMA-GMA-GMA-GMA-GMA-GMA)-
(XV) Tetra-Block Architecture -(MMA-MMA-MMA-GMA-GMA-GMA-MMA-MMA-MMA-GMA-GMA-GMA)-
(XVI) Alternating Architecture -(MMA-GMA-MMA-GMA-MMA-GMA-MMA-GMA-MMA-GMA-MMA-GMA)-
(XVII) Gradient Architecture -(MMA-MMA-MMA-GMA-MMA-MMA-GMA-GMA-MMA-GMA-GMA-GMA)-
The B-block may be described in a manner similar to that of the A-block.
[0055] The order in which monomer residues occur along the backbone of the block copolymer
typically is determined by the order in which the corresponding monomers are fed into
the vessel in which the controlled radical polymerization is conducted. For example,
the monomers that are incorporated as residues in the A-block of the block copolymer
are generally fed into the reaction vessel prior to those monomers that are incorporated
as residues in the B-block.
[0056] During formation of the A- and B-blocks, if more than one monomer is fed into the
reaction vessel at a time, the relative reactivities of the monomers typically determines
the order in which they are incorporated into the living polymer chain. Gradient sequences
of monomer residues within the A- and B-blocks can be prepared by the controlled radical
polymerization of the present invention by (a) varying the ratio of monomers fed to
the reaction medium during the course of the polymerization, (b) using a monomer feed
containing monomers having different rates of polymerization, or (c) a combination
of (a) and (b).
[0057] The copolymer of the present invention typically has a number average molecular weight
(Mn) of from 500 to 1,000,000, preferably from 700 to 100,000 and most preferably
from 800 to 10,000, as determined by gel permeation chromatography using polystyrene
standards. The molecular weight distribution or polydispersity index (weight average
molecular weight divided by the number average molecular weight, Mw/Mn) of the (co)polymer
typically is less than 2.5, preferably less than 2.0, more preferably less than 1.8
and most preferably less than 1.5.
[0058] The copolymers of the present invention can be used without limitation, in film-forming
compositions, as rheology modifiers, with pigment or ink dispersants, in gel matrices
and with molding resins.
[0059] The copolymers of the present invention may be used in coatings. In a preferred embodiment,
the coating is a thermosetting resin composition. The thermosetting coating composition
of the present invention may be in the form of liquid coating compositions, examples
of which include aqueous and solvent-based coating compositions and electrodepositable
coating compositions. The present thermosetting coating composition may also be in
the form of a co-reactable solid particulate composition, such as a powder coating
composition. Regardless of the form, the present thermosetting coating composition
may be pigmented or clear, and may be used alone or in combination as primers, basecoats
or topcoats.
[0060] When used in thermosetting and coating compositions, the copolymers of the present
invention, prepared using a monofunctional iniferter, have several advantages compared
with (co)polymers prepared by other controlled polymerization techniques. For example,
certain functional monomers, such as carboxylic acid functional monomers, may be polymerized
directly, rather than having to use time consuming and expensive "blocking" and "deblocking"
steps to prevent the carboxylic acid group from reacting with the initiator and effectively
ending polymerization. The present method provides excellent controlled polymerization
using such monomers directly, better, more predictable placement of the functional
monomer and no post polymerization removal of the blocking agent.
[0061] Compared to atom and group transfer controlled radical polymerization techniques,
the present monofunctional iniferter method provides several advantages. First, potentially
corrosive halides are not used. This provides the ability to use a less expensive
and broader range of materials of construction for manufacturing, storing, shipping
and utilizing the copolymer of the present invention. Second, transition metals and
special ligands, which must be removed after polymerization, are not used. Any residual
from these materials can potentially cause degradation and discoloration of the eventual
coating. Finally, the range of monomers that can be employed include any radically
polymerizable compound, rather than the limited list that can be used with atom and
group radical polymerization techniques.
[0062] Polymers prepared by ionic (anionic, cationic, etc.) polymerization techniques are
even more restricted as to the monomers that can be used and the conditions that may
be employed than the atom/group radical polymerization techniques.
[0063] Compared to the prior art, multifunctional iniferter methodologies, the present monofunctional
iniferter provides advantages in coating compositions. First and foremost, the present
copolymers do not contain the bulky, multifunctional initiator groups required in
the prior art iniferter methods. When used in coating compositions, the smaller end
groups of the present copolymers provide for lower viscosity, better flow properties,
better leveling and better storage stability than similar copolymers prepared using
the multifunctional iniferters of the prior art methods. Some of the practical benefits
of these properties are lower VOC (volatile organic carbon) in liquid coatings as
well as better flow and leveling in powder coatings and electrodeposition coatings.
The iniferters of the present invention are also easier and less expensive to make,
easier to use and can be prepared from commonly and commercially available starting
materials.
[0064] The superior coating composition properties as well as the ease and less expense
to prepare and use properties make the present monofunctional iniferter polymerization
method and the resulting polymer compositions a significant advancement solving the
problems and deficiencies of prior art controlled polymerization methods.
[0065] In an embodiment of the present invention, the coating composition is a co-reactable
solid, particulate mixture of (a) a first reactant having functional groups and (b)
a second reactant having functional groups, which may be the copolymer of the present
invention. The second reactant (b) contains functional groups that can react with
the functional groups of the first reactant. Referring to general structure I, when
the second reactant is the present copolymer, it is characterized in that A and B
are different compositions of ethylenically unsaturated monomers, with B including
functional monomers with a functional group selected from the group consisting of
oxirane, hydroxy and carboxylic acid.
[0066] Not wishing to be limited to any one set of functional groups, there are several
examples of co-reactive functional groups that can be used in the present invention.
The first or crosslinking reactant has a functional group different than that contained
in the second reactant and is co-reactive toward the functional groups of the second
reactant and can be, but is not limited to, epoxy or oxirane; carboxylic acid; hydroxy;
polyol; isocyanate; capped isocyanate; amine; aminoplast and beta-hydroxyalkylamide.
The functional groups of the second reactant can be, but are not limited to, epoxy,
or oxirane; carboxylic acid; hydroxy; amide; oxazoline; aceto acetate; isocyanate;
or carbamate.
[0067] Curable powder coating compositions typically comprise a polymer reactant having
functional groups, for example, an epoxide functional polymer reactant, and a first
reactant having functional groups that act as a crosslinking agent. The first reactant
having functional groups has functional groups that are co-reactive towards and can
form covalent bonds with the functional groups of the second reactant, a functionalized
copolymer of the present invention. The first and second reactants of the curable
powder coating composition may each independently comprise one or more functional
species, and are each present in amounts sufficient to provide cured coatings having
a desirable combination of physical properties, such as smoothness, clarity, solvent
resistance and hardness.
[0068] Not wishing to be limited to any one set of functional groups, there are several
examples of co-reactive functional groups that can be used in the present invention.
One example of curable powder coating compositions from which the compositions of
the present invention may be selected include powder coating compositions comprising
an epoxide functional polymer as the first reactant and an epoxide reactive crosslinking
agent, such as a carboxylic acid functional crosslinking agent, as the second reactant.
Examples of this type of powder coating are disclosed in United States Patent Nos.
5,407,707,
5,663,240 and
5,710,214. Another example is a powder coating composition comprising a carboxylic acid functional
polymer as the first reactant and a beta-hydroxyalkylamide functional crosslinking
agent as the second reactant, such as those disclosed in United States Patent Nos.
4,889,890,
4,937,288,
5,098,955,
5,202,382 and
5,214,101. A further example is a powder coating composition comprising an hydroxy functional
polymer as the first reactant and capped isocyanate functional crosslinking agent
as the second reactant, such as those described in United States Patent Nos.
4,997,900,
5,439,896,
5,508,337,
5,510,444,
5,554,692 and
5,777,061.
[0069] Polymers comprising the majority of the binder resins in curable powder coating compositions
are solid at room temperature, typically having differential scanning calorimetry
(DSC) derived glass transition midpoint values of from 30°C to 80°C, preferably from
35°C to 50°C. These polymers also typically have number average molecular weights
(Mn) of from 500 to 15,000.
[0070] Classes of epoxide functional polymers from which the copolymer reactant of the curable
powder coating compositions of the present invention may be selected include, but
are not limited to, epoxide functional vinyl polymers, of which epoxide functional
(meth)acrylic polymers, epoxide functional polyethers, epoxide functional polyesters
and combinations thereof are included. Epoxide functional vinyl polymers can be prepared
by the controlled free radical polymerization method of the present invention.
[0071] Epoxide functional vinyl polymers can be prepared using the controlled polymerization
method of the present invention and are typically prepared by polymerizing one or
more epoxide functional ethylenically unsaturated monomers with a non-epoxide functional
ethylenically unsaturated monomer. Examples of non-epoxide functional ethylenically
unsaturated monomers include, but are not limited to, methyl (meth)acrylate, isobornyl
(meth)acrylate, butyl (meth)acrylate and styrene. Examples of epoxide functional ethylenically
unsaturated monomers that may be used in the preparation of epoxide functional vinyl
polymers include, but are not limited to, glycidyl (meth)acrylate, 3,4-epoxycyclohexylmethyl
(meth)acrylate, 2-(3,4-epoxycyclohexyl)ethyl (meth)acrylate and allylglycidyl ether.
Examples of ethylenically unsaturated monomers that are free of epoxide functionality
include those described in
U.S. Patent No. 5,407,707 at column 2, lines 17 through 56.
[0072] In a preferred embodiment of the present invention, the epoxide functional vinyl
polymer, prepared using the method of the present invention, is prepared from a majority
of (meth)acrylate monomers and is referred to herein as an "epoxide functional (meth)acrylic
polymer." The epoxide functional vinyl polymer typically has a number average molecular
weight of from 500 to 5,000, preferably from 800 to 2,500.
[0073] Epoxide functional polyethers can also be used in the present invention. Epoxide
functional polyethers can be prepared from a hydroxyl functional monomer, such as
a diol, and an epoxide functional monomer, and/or a monomer having both hydroxy and
epoxide functionality. Suitable epoxide functional polyethers include, but are not
limited to, those based on 4,4'-isopropylidenediphenol (bisphenol A), a specific example
of which is EPON® RESIN 2002 available commercially from Shell Chemicals.
[0074] Epoxide functional polyesters can be used as the first reactant having functional
groups and can be prepared by art-recognized methods, which typically include first
preparing a hydroxyl functional polyester that is then reacted with epichlorohydrin.
Polyesters having hydroxyl functionality may be prepared by art-recognized methods,
which include reacting carboxylic acids (and/or esters thereof) having acid(or ester)
functionalities of at least 2, and polyols having hydroxyl functionalities of at least
2. As is known to those of ordinary skill in the art, the molar equivalents ratio
of carboxylic acid groups to hydroxyl groups of the reactants is selected such that
the resulting polyester has hydroxy functionality and the desired molecular weight.
[0075] Examples of multifunctional carboxylic acids useful in preparing hydroxyl functional
polyesters are known to the skilled artisan and include, for example, phthalic acid,
tetrahydrophthalic acid, hexahydrophthalic acid, isophthalic acid and terephthalic
acid. Examples of polyols useful in preparing hydroxy functional polyesters are known
to those skilled in the art and include, for example, glycerin, trimethylolpropane,
ethylene glycol and 1,4-dimethylolcyclohexane.
[0076] Epoxide reactive crosslinking agents that are used in thermosetting powder coating
compositions comprising epoxide functional polymers may have functional groups selected
from hydroxyl, thiol, primary amines, secondary amines, carboxyl and mixtures thereof.
Useful epoxide reactive crosslinking agents having amine functionality include, for
example, dicyandiamide and substituted dicyandiamides. Preferably, the epoxide reactive
crosslinking agent has carboxylic acid groups. In one embodiment of the present invention,
the epoxide reactive crosslinking agent has carboxylic acid functionality and is substantially
crystalline. By "crystalline" is meant that the co-reactant contains at least some
crystalline domains, and correspondingly may contain some amorphous domains. While
not necessary, it is preferred that the epoxide reactive crosslinking agent have a
melt viscosity less than that of the epoxy functional polymer (at the same temperature).
As used herein, by "epoxide reactive crosslinking agent" is meant that the epoxide
reactive crosslinking agent has at least two functional groups that are reactive with
epoxide functionality.
[0077] Other suitable carboxylic acid functional crosslinking agents include those represented
by the following general formula XVIII:

wherein R is a residue from a polyol, A is a divalent linking group having from 1
to 10 carbon atoms, and b is an integer of from 2 to 10. Examples of polyols from
which R of general formula XVIII may be derived include, but are not limited to, ethylene
glycol, di(ethylene glycol), trimethylolethane, trimethylolpropane, pentaerythritol,
di-trimethylolpropane, di-pentaerythritol and mixtures thereof. Divalent linking groups
from which A may be selected include, but are not limited to, methylene; ethylene;
propylene; isopropylene; butylene; pentylene; hexylene; heptylene; octylene; nonylene;
decylene; cyclohexylene, such as 1,2-cyclohexylene; substituted cyclohexylene, such
as 4-methyl-1,2-cyclohexylene; phenylene, such as 1,2-phenylene; and 4-carboxylic
acid-1,2-phenylene. The divalent linking group A is preferably aliphatic.
[0078] The crosslinking agent represented by general formula XVIII is typically prepared
from a polyol and a dibasic or cyclic anhydride. For example, trimethylol propane
and hexahydro-4-methylphthalic anhydride are reacted together in a molar ratio of
1:3, respectively, to form a carboxylic acid functional crosslinking agent. This particular
crosslinking agent can be described with reference to general formula XVIII as follows,
R is the residue of trimethylol propane, A is the divalent linking group 4-methyl-1,2-cyclohexylene,
and b is 3. Carboxylic acid functional crosslinking agents described herein with reference
to general formula XVIII are meant to include also any unreacted starting materials
and/or coproducts, for example oligomeric species, resulting from their preparation
and contained therein.
[0079] Curable powder coating compositions comprising epoxide functional (co)polymer and
epoxide reactive crosslinking agent usually also include one or more cure catalysts
for catalyzing the reaction between the reactive functional groups and the epoxide
groups of the polymer. Examples of cure catalysts for use with acid functional crosslinking
agents include tertiary amines, such as methyl dicocoamine, and tin compounds such
as triphenyl tin hydroxide. The curing catalyst is typically present in the curable
powder coating composition in an amount of less than 5 percent by weight, preferably
from 0.25 to 2.0 percent by weight, based on the total resin solids weight of the
composition.
[0080] Curable powder coating compositions that include epoxide functional copolymers and
epoxide reactive crosslinking agents typically have present therein epoxide functional
copolymers in an amount of from 60 to 95 percent by weight based on the total resin
solids weight of the composition, preferably from 70 to 85 percent by weight, based
on the total resin solids weight composition. The epoxide reactive crosslinking agent
is typically present in the curable powder coating composition in an amount corresponding
to the balance of these recited ranges, 5 to 40, preferably 15 to 30 percent by weight.
The equivalent ratio of epoxide equivalents in the epoxide functional copolymer to
the equivalents of reactive functional groups is typically from 0.5:1 to 2:1, preferably
from 0.8:1 to 1.5:1. Curable powder coating compositions comprising carboxylic acid
functional crosslinking agent are typically cured at a temperature of from 121°C to
177°C over a period of from 10 to 60 minutes.
[0081] Curable powder coating compositions comprising carboxylic acid functional copolymer
as the second reactant (b) and beta-hydroxyalkylamide functional crosslinking agent
as the first reactant (a) are also useful in the present invention. Classes of useful
carboxylic acid functional copolymers include, but are not limited to, carboxylic
acid functional vinyl polymers, carboxylic acid functional polyesters, carboxylic
acid functional polyurethanes, and mixtures thereof.
[0082] As discussed above, carboxylic acid functional vinyl copolymers can be prepared by
the controlled radical polymerization method of the present invention. The carboxylic
acid functional vinyl copolymer is typically prepared by polymerizing one or more
carboxylic acid functional ethylenically unsaturated monomers, such as (meth)acrylic
acid, with one or more ethylenically unsaturated monomers that are free of carboxylic
acid functionality, such as, ethyl (meth)acrylate, isobornyl (meth)acrylate, butyl
(meth)acrylate and styrene. Alternatively, the carboxylic acid functional vinyl (co)polymer
that is then reacted with a cyclic anhydride, such as succinic anhydride.
[0083] Carboxylic acid functional polyurethanes may be prepared by reacting polyols and
polyisocyanates so as to form a polyurethane polyol, which is then reacted with polycarboxylic
acid or cyclic anhydride to introduce free carboxylic acid into the reaction product.
Carboxylic functional polyurethane that may be used in the curable powder coating
compositions, which include beta-hydroxyalkylamide crosslinking agents are described
in further detail in
U.S. Patent No. 4,937,288 at column 6, lines 13 through 39.
[0084] One or more beta-hydroxyalkylamide crosslinking agents may be present in the curable
powder coating compositions comprising carboxylic acid functional copolymer as the
second reactant. The beta-hydroxyalkylamide crosslinking agent can be represented
by the following general formula XIX:

where R
24 is H or C
1-C
5 alkyl; R
25 is H or C
1-C
5 alkyl or a structure as defined by structure XX:

for which R
24 is as described above, Q is a chemical bond or monovalent or polyvalent organic radical
derived from saturated, unsaturated or aromatic hydrocarbon radicals including substituted
hydrocarbon radicals containing from 2 to 20 carbon atoms, m equals 1 or 2, t equals
0 to 2, and m + t is at least 2. Preferably, Q is an alkylene radical -(CH
2)
x-where x is equal to 2 to 12, preferably 4 to 10; m is equal to 1 to 2, t is equal
to 0 to 2, and m + t is at least 2, preferably greater than 2 up to and including
4. The beta-hydroxyalkylamide crosslinking agent represented by general formula XVIII
can be prepared by art recognized methods, as described in, for example,
U.S. Patent No. 4,937,288 at column 7, lines 6 through 16.
[0085] Curable powder coating compositions comprising carboxylic acid functional copolymer
and beta-hydroxyalkylamide crosslinking agent typically have present therein carboxylic
acid functional copolymer in an amount of from 60 to 95 percent by weight, based on
total resin solids weight of the composition, preferably from 80 to 90 percent by
weight, based on total resin solids weight of the composition. The beta-hydroxyalkylamide
crosslinking agent is typically present in the curable powder coating composition
in an amount corresponding to the balance of the recited ranges, 5 to 40, preferably
10 to 20 percent by weight.
[0086] To achieve a suitable revel of cure, the equivalent ratio of hydroxy equivalents
in the beta-hydroxyalkylamide crosslinking agent to carboxylic acid equivalents in
the carboxylic acid functional copolymer is preferably from 0.6:1 to 1.6:1, preferably
from 0.8:1 to 1.3:1. Ratios outside the range of 0.6:1 to 1.6:1 are generally undesirable
due to the resulting poor cure response associated therewith.
[0087] Curable powder coating compositions comprising carboxylic acid functional copolymer
and beta-hydroxyalkylamide functional crosslinking agent are typically cured at a
temperature of from 149°C to 204°C over a period of from 10 to 60 minutes.
[0088] Also useful in the present invention are curable powder coating compositions comprising
hydroxy functional copolymer, made using the method of the present invention, and
capped isocyanate functional crosslinking agent. Hydroxy functional copolymers that
can be used in such compositions include, but are not limited to, hydroxy functional
vinyl copolymers, hydroxy functional polyesters, hydroxy functional polyurethanes
and mixtures thereof.
[0089] Vinyl copolymers having hydroxy functionality can be prepared by the controlled radical
polymerization method of the present invention. In an embodiment of the present invention,
the hydroxy functional vinyl copolymer is prepared from a majority of (meth)acrylic
monomers and is referred to herein as a "hydroxy functional (meth)acrylic copolymer.
"
[0090] Hydroxy functional polyesters useful in curable powder coating compositions comprising
capped isocyanate functional crosslinking agent can be prepared by art-recognized
methods. Typically, diols and dicarboxylic acids or diesters of dicarboxylic acids
are reacted in a proportion such that the molar equivalents of hydroxy groups is greater
than that of carboxylic acid groups (or esters of carboxylic acid groups) with the
concurrent removal of water or alcohols from the reaction medium. Hydroxy functional
polyesters useful in the present invention are described in further detail in
U.S. Patent No. 5,508,337 at column 5, line 24 through column 6, line 30.
[0091] Hydroxy functional urethanes can be prepared by art-recognized methods, for example,
as previously described herein. Hydroxy functional urethanes useful in the present
invention are described in further detail in
U.S. Patent 5,510,444 at column 5, line 33 through column 7, line 61.
[0092] By "capped isocyanate crosslinking agent" is meant a crosslinking agent having two
or more capped isocyanate groups that can decap (or deblock) under cure conditions,
for example, at elevated temperature, to form free isocyanate groups and free capping
groups. The free isocyanate groups formed by decapping of the crosslinking agent are
preferably capable of reacting and forming substantially permanent covalent bonds
with the hydroxy groups of hydroxy functional polymer.
[0093] It is desirable that the capping group of the capped isocyanate crosslinking agent
not adversely affect the curable powder coating composition upon decapping from the
isocyanate, for example, when it becomes a free capping group. For example, it is
desirable that the free capping group neither become trapped in the cured film as
gas bubbles nor excessively plasticize the cured film. Capping groups useful in the
present invention preferably have the characteristics of being nonfugitive or capable
of escaping substantially from the forming coating prior to its vitrification.
[0094] Classes of capping groups of the capped isocyanate crosslinking agent may be selected
from: hydroxy functional compounds, such as ethylene glycol butyl ether, phenol and
p-hydroxy methylbenzoate; 1H-azoles, such as 1H-1.2,4-triazole and 1H-2,5-dimethyl
pyrazole; lactams, such as e-caprolactam and 2-pyrolidone; ketoximes, such as 2-propane
oxime and 2-butanone oxime and those described in
U.S. Patent No. 5,508,337 at column 7, lines 11 through 22, the disclosure of which is incorporated herein
by reference. Other capping groups include morpholine, 3-aminopropyl morpholine and
n-hydroxy phthalimide.
[0095] The isocyanate or mixture of isocyanates of the capped isocyanate crosslinking agent
has two or more isocyanate groups and is preferably solid at room temperature. Examples
of suitable isocyanates that may be used to prepare the capped isocyanate crosslinking
agent include monomeric diisocyanates, such as α, α'-xylene diisocyanate, α, α, α',
α'-tetramethylxylylene diisocyanate and 1-isocyanato-3-isocyanatomethyl-3,5,5-trimethylcyclohexane
(isophorone diisocyanate or IPDI), and dimers and trimers of monomeric diisocyanates
containing isocyanurate, uretidino, biuret or allophanate linkages, such as the trimer
of IPDI. Isocyanates that are useful in the present invention are described in further
detail in
U.S. Patent No. 5,777,061 at column 3; line 4 through column 4, line 40, the disclosure of which is incorporated
herein by reference. A particularly preferred isocyanate is a trimer of 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexane.
[0096] The capped isocyanate crosslinking agent may also be selected from oligomeric capped
isocyanate functional adducts. As used herein, by "oligomeric capped polyisocyanate
functional adduct" is meant a material that is substantially free of polymeric chain
extension. Oligomeric capped polyisocyanate functional adducts can be prepared by
art-recognized methods from, for example, a compound containing three or more active
hydrogen groups, such as trimethylolpropane (TMP); and an isocyanate monomer, such
as 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexane (IPDI) in a molar ratio
of 1:3 respectively. In the case of TMP and IPDI, by employing art-recognized starved
feed and/or dilute solution synthesis techniques, an oligomeric adduct having an average
isocyanate functionality of 3 can be prepared ("TMP-3IPDI"). The three free isocyanate
groups per TMP-3IPDI adduct are then capped with a capping group, such as 2-propane
oxime or e-caprolactam.
[0097] Another isocyanate useful in the present invention is TMDI, which is a mixture of
2,9,4-trimethyl hexamethylene diisocyanate and 2,2,4-trimethyl hexamethylene diisocyanate.
[0098] To catalyze the reaction between the isocyanate groups of the capped polyisocyanate
crosslinking agent and the hydroxy groups of the hydroxy functional polymer, one or
more catalysts are typically present in the powder coating composition in amounts
of from, for example, 0.1 to 5 percent by weight, based on total resin solids of the
composition. Classes of useful catalysts include metal compounds, in particular, organic
tin compounds, such as tin(II) octanoate and dibutyltin(IV) dilaurate, and tertiary
amines, such as diazabicyclo[2.2.2]octane. Examples of organic tin compounds and tertiary
amines are described in
U.S. Patent No. 5,508,337 at column 7, lines 28 through 49, the disclosure of which is incorporated herein
by reference.
[0099] Curable powder coating compositions of the present invention include those where
the second reactant is selected from acid functional copolymers and the first reactant
is a glycidyl isocyanurates and/or a bisphenol A epoxide.
[0100] Curable powder coating compositions comprising hydroxy functional polymer and capped
isocyanate functional crosslinking agent typically have present therein hydroxy functional
copolymer in an amount of from 55 to 95 percent by weight, based on total resin solids
weight of the composition, preferably from 75 to 90 percent by weight based on total
resin solids weight of the composition. The capped isocyanate functional crosslinking
agent is typically present in the powder composition in an amount corresponding to
the balance of these recited ranges, 5 to 45, preferably 10 to 25 percent by weight.
[0101] The equivalent ratio of isocyanate equivalents in the capped isocyanate crosslinking
agent to hydroxy equivalents in the capped isocyanate crosslinking agent to hydroxy
equivalents in the hydroxy functional copolymer is typically within the range of 1:3
to 3:1, preferably 1:2 to 2:1. While equivalent ratios outside of this range can be
employed, that they are generally less desirable due to performance deficiencies in
cured films obtained therefrom. Powder coating compositions comprising hydroxy functional
polymer and capped isocyanate functional crosslinking agent are typically cured at
a temperature of from 120°C to 190°C over a period of from 10 to 60 minutes.
[0102] Curable powder coating compositions may optionally contain additives such as waxes
to improve the slip properties of the cured coating, degassing additives such as benzoin,
adjuvant resin to modify and optimize coating properties, antioxidants and ultraviolet
(UV) light absorbers. Examples of useful antioxidants and UV light absorbers include
those available commercially from Ciba Specialty Chemicals under the trade names IRGANOX
and TINUVIN. These optional additives, when used, are typically present in amounts
up to 20 percent by weight, based on total weight of resin solids of the curable composition.
[0103] Curable powder coating compositions useful in the present invention are typically
prepared by first dry blending the functional copolymer, for example epoxide functional
copolymer; the crosslinking agent; the polymeric flow control agent and additives
such as degassing agent and catalysts in a blender, such as a Henshel blade blender.
The blender is operated for a period of time sufficient to result in a homogeneous
dry blend of the materials charged thereto. The homogeneous dry blend is then melt
blended in an extruder, such as a twin screw co-rotating extruder, operated within
a temperature range sufficient to melt but not gel the components. For example, when
preparing curable powder coating compositions comprising epoxide functional crosslinking
agent, the extruder is typically operated within a temperature range of from 80°C
to 140°C, preferably from 100°C to 125°C.
[0104] Optionally, curable powder coating compositions of the present invention may be melt
blended in two or more steps. For example, a first melt blend is prepared in the absence
of cure catalyst. A second melt blend is prepared at a lower temperature, from a dry
blend of the first melt blend and the cure catalyst. The melt blend curable powder
coating composition is typically milled to an average particle size of from, for example,
15 to 30 microns.
[0105] In another embodiment of the present invention, the copolymer may be used in a thermosetting
composition as a flow control agent, a resinous binder or as an additive in combination
with a separate resinous binder, which may be prepared using the method of the present
invention. Referring to general structure I, the present copolymer can be characterized
in that A and B are different compositions of ethylenically unsaturated monomers,
with B including functional monomers with a functional group selected, for example,
from oxirane, hydroxy or carboxylic acid. When used as an additive, the non-random
polymer as described herein may have low functionality (it may be monofunctional)
and a correspondingly high equivalent weight. Alternatively, for other applications
such as use as a reactive diluent, the additive may be highly functional with a correspondingly
low equivalent weight.
[0106] The thermosetting composition of the present invention further comprises a crosslinking
agent having at least two functional groups that are reactive with the functional
groups of the copolymer reactant.
[0107] Not wishing to be limited to any one set of functional groups, there are several
examples of co-reactive functional groups that can be used in the present invention.
The crosslinking reactant has a functional group different than that contained in
the copolymer reactant and is co-reactive toward the functional groups of the copolymer
reactant and can be, but is not limited to, epoxy or oxirane; carboxylic acid; hydroxy;
polyol; isocyanate; capped isocyanate; amine; aminoplast and beta-hydroxyalkylamide.
The functional groups of the copolymer reactant can be, but are not limited to, epoxy,
or oxirane; carboxylic acid; hydroxy; amide; oxazoline; aceto acetate; isocyanate;
or carbamate.
[0108] The copolymer is typically present in the thermosetting composition of the present
invention in an amount of at least 0.5 percent by weight (when used as an additive),
preferably at least 10 percent by weight (when used as a resinous binder), and more
preferably at least 25 percent by weight, based on the total weight of resin solids
of the thermosetting composition. The thermosetting composition also typically contains
functionality polymer present in an amount of less than 99.5 percent by weight, preferably
less than 90 percent by weight, and more preferably less than 75 percent by weight,
based on the total weight of resin solids of the thermosetting composition. The copolymer
may be present in the thermosetting composition of the present invention in an amount
ranging between any combination of these values, inclusive of the recited values.
[0109] When the copolymer has hydroxyl functionality, examples of suitable crosslinking
agents include aminoplasts containing methylol and/or methylol ether groups and polyisocyanates.
[0110] Aminoplasts are obtained from the reaction of formaldehyde with an amine or amide.
The most common amines or amides are melamine, urea, or benzoguanamine, and are preferred.
However, condensates with other amines or amides can be used; for example, aldehyde
condensates of glycoluril, which give a high melting crystalline product which is
useful in powder coatings. While the aldehyde used is most often formaldehyde, other
aldehydes such as acetaldehyde, crotonaldehyde, and benzaldehyde may be used.
[0111] The aminoplast contains methylol groups and preferably at least a portion of these
groups are etherified with an alcohol to modify the cure response. Any monohydric
alcohol may be employed for this purpose including methanol, ethanol, butanol, isobutanol,
and hexanol.
[0112] Preferably, the aminoplasts which are used are melamine-, urea-, or benzoguanamine-formaldehyde
condensates etherified with an alcohol containing from one to four carbon atoms.
[0113] Other suitable crosslinking agents for hydroxy functional copolymers include polyisocyanates.
The polyisocyanate crosslinking agent may be a fully capped polyisocyanate with substantially
no free isocyanate groups, or it may contain free isocyanate functionality. Free isocyanate
groups allow for curing of the composition at temperatures as low as ambient. When
the crosslinking agent contains free isocyanate groups, the film-forming composition
is preferably a two-package composition (one package comprising the crosslinking agent
and the other comprising the hydroxyl functional polymer) in order to maintain storage
stability.
[0114] The polyisocyanate can be an aliphatic or an aromatic polyisocyanate or a mixture
of the two. Diisocyanates are preferred, although higher polyisocyanates can be used
in place of or in combination with diisocyanates.
[0115] Examples of suitable aliphatic diisocyanates are straight chain aliphatic diisocyanates
such as 1,4-tetramethylene diisocyanate and 1,6-hexamethylene diisocyanate. Also,
cycloaliphatic diisocyanates can be employed. Examples include isophorone diisocyanate
and 4,4'-methylene-bis-(cyclohexyl isocyanate). Examples of suitable aromatic diisocyanates
are p-phenylene diisocyanate, diphenylmethane-4,4'-diisocyanate and 2,4- or 2,6-toluene
diisocyanate. Examples of suitable higher polyisocyanates are triphenylmethane-4,4',4"-triisocyanate,
1,2,4-benzene triisocyanate and polymethylene polyphenyl isocyanate. Biurets and isocyanurates
of diisocyanates, including mixtures thereof, such as the isocyanurate of hexamethylene
diisocyanate, the biuret of hexamethylene diisocyanate and the isocyanurate of isophorone
diisocyanate are also suitable.
[0116] Isocyanate prepolymers, for example, reaction products of polyisocyanates with polyols
such as neopentyl glycol and trimethylol propane or with polymeric polyols such as
polycaprolactone diols and triols (NCO/OH equivalent ratio greater than one) can also
be used.
[0117] Any suitable aliphatic, cycloaliphatic, or aromatic alkyl monoalcohol or phenolic
compound may be used as a capping agent for the capped polyisocyanate crosslinking
agent in the composition of the present invention including, for example, lower aliphatic
alcohols such as methanol, ethanol, and n-butanol; cycloaliphatic alcohols such as
cyclohexanol; aromatic-alkyl alcohols such as phenyl carbinol and methylphenyl carbinol;
and phenolic compounds such as phenol itself and substituted phenols wherein the substituents
do not affect coating operations, such as cresol and nitrophenol. Glycol ethers may
also be used as capping agents. Suitable glycol ethers include ethylene glycol butyl
ether, diethylene glycol butyl ether, ethylene glycol methyl ether and propylene glycol
methyl ether.
[0118] Other suitable capping agents include oximes such as methyl ethyl ketoxime, acetone
oxime and cyclohexanone oxime, lactams such as epsilon-caprolactam, and amines such
as dibutyl amine.
[0119] When the functionality of monomer composition B is an oxirane or epoxy group, the
crosslinking agent has at least two functional groups that are reactive with epoxides.
The at least two functional groups are intended to include mixtures of functional
groups. The functional groups that are reactive with epoxides include, but are not
limited to, polyamines, polyamides, polycarboxylic acids, polyanhydrides and polyphenolic
compounds.
[0120] Suitable polyamines include, but are not limited to, amine and amide functional addition
polymers and oligomers typically used in film-forming compositions such as acrylic
and vinyl polymers.
[0121] Suitable polycarboxylic acids include, but are not limited to, dodecanedioic acid,
azelaic acid, adipic acid, 1,6-hexanedioic acid, succinic acid, sebacic acid, maleic
acid, citric acid, itaconic acid, pimelic acid, aconitic acid, carboxylic acid terminated
polyesters, half-esters formed from reacting an anhydride with a polyol, carboxylic
acid containing polymers such as acrylic acid and methacrylic acid containing polymers,
polyesters and polyurethanes, fatty diacids and mixtures thereof.
[0122] Suitable polyanhydrides include addition polymers and oligomers typically used in
film-forming compositions such as acrylic and vinyl polymers. Examples include, but
are not limited to, those described in
U.S. Patent Nos. 4,798,746 and
4,732,790.
[0123] When the copolymer has carboxylic acid functionality, the crosslinking agent is a
beta-hydroxyalkylamide as described above.
[0124] The crosslinking agent is typically present in the thermosetting compositions of
the present invention in an amount of at least 10 percent by weight, preferably at
least 25 percent by weight, based on total resin solids weight of the composition.
The crosslinking agent is also typically present in the composition in an amount of
less than 90 percent by weight, preferably less than 75 percent by weight, based on
total resin solids weight of the composition. The amount of crosslinking agent present
in the thermosetting composition of the present invention may range between any combination
of these values, inclusive of the recited values.
[0125] The equivalent ratio of functional groups in the polymer to reactive functional groups
in the crosslinking agent is typically within the range of 1:0.5 to 1:1.5, preferably
1:0.8 to 1:1.2.
[0126] Usually the thermosetting composition will also preferably contain catalysts to accelerate
the cure of the crosslinking agent with reactive groups on the polymer(s).
[0127] Suitable catalysts for aminoplast cure include acids such as acid phosphates and
sulfonic acid or a substituted sulfonic acid. Examples include dodecylbenzene sulfonic
acid, paratoluene sulfonic acid, phenyl acid phosphate, ethylhexyl acid phosphate,
and the like. Suitable catalysts for isocyanate cure include organotin compounds such
as dibutyltin oxide, dioctyltin oxide, dibutyltin dilaurate, and the like. The catalyst
is usually present in an amount of about 0.05 to about 5.0 percent by weight, preferably
about 0.25 to about 2.0 percent by weight, based on the total weight of resin solids
in the thermosetting composition.
[0128] The thermosetting composition of the present invention is preferably used as a film-forming
(coating) composition, and may contain adjunct ingredients conventionally used in
such compositions. Optional ingredients such as, for example, plasticizers, surfactants,
thixotropic agents, anti-gassing agents, organic cosolvents, flow controllers, anti-oxidants,
UV light absorbers and similar additives conventional in the art may be included in
the composition. These ingredients are typically present at up to about 40% by weight
based on the total weight of resin solids.
[0129] The thermosetting composition of the present invention is typically a liquid and
may be waterborne, but is usually solventborne. Suitable solvent carriers include
the various esters, ethers, and aromatic solvents, including mixtures thereof, that
are known in the art of coating formulation. The composition typically has a total
solids content of about 40 to about 80 percent by weight.
[0130] The thermosetting composition of the present invention may contain color pigments
conventionally used in surface coatings and may be used as a monocoat; that is, a
pigmented coating. Suitable color pigments include, for example, inorganic pigments
such as titanium dioxide, iron oxides, chromium oxide, lead chromate, and carbon black,
and organic pigments such as phthalocyanine blue and phthalocyanine green. Mixtures
of the above mentioned pigments may also be used. Suitable metallic pigments include
in particular aluminum flake, copper bronze flake and metal oxide coated mica, nickel
flakes, tin flakes, and mixtures thereof.
[0131] In general, the pigment is incorporated into the coating composition in amounts up
to about 80 percent by weight based on the total weight of coating solids. The metallic
pigment is employed in amounts of about 0.5 to about 25 percent by weight based on
the total weight of coating solids.
[0132] As stated above, the thermosetting compositions of the present invention may be used
in a method of coating a substrate comprising applying a thermosetting composition
to the substrate, coalescing the thermosetting composition over the substrate in the
form of a substantially continuous film, and curing the thermosetting composition.
[0133] The compositions can be applied to various substrates to which they adhere including
wood, metals, glass, and plastic. The compositions can be applied by conventional
means including brushing, dipping, flow coating, spraying and the like, but they are
most often applied by spraying. The usual spray techniques and equipment for air spraying
and electrostatic spraying and either manual or automatic methods can be used.
[0134] After application of the composition to the substrate, the composition is allowed
to coalesce to form a substantially continuous film on the substrate. Typically, the
film thickness will be about 0.01 to about 5 mils (about 0.254 to about 127 microns),
preferably about 0.1 to about 2 mils (about 2.54 to about 50.8 microns) in thickness.
The film is formed on the surface of the substrate by driving solvent, i.e., organic
solvent and/or water, out of the film by heating or by an air drying period. Preferably,
the heating will only be for a short period of time, sufficient to ensure that any
subsequently applied coatings can be applied to the film without dissolving the composition.
Suitable drying conditions will depend on the particular composition, but in general
a drying time of from about 1 to 5 minutes at a temperature of about 68-250°F (20-121°C)
will be adequate. More than one coat of the composition may be applied to develop
the optimum appearance. Between coats the previously applied coat may be flashed,
that is, exposed to ambient conditions for about 1 to 20 minutes.
[0135] The film-forming composition of the present invention is preferably used as the clear
coat layer in a multi-component composite coating composition such as a "color-plus-clear"
coating system, which includes at least one pigmented or colored base coat and at
least one clear topcoat. In this embodiment, the clear film-forming composition may
include the thermosetting composition of the present invention.
[0136] The film-forming composition of the base coat in the color-plus-clear system can
be any of the compositions useful in coatings applications, particularly automotive
applications. The film-forming composition of the base coat comprises a resinous binder
and a pigment to act as the colorant. Particularly useful resinous binders are acrylic
polymers, polyesters, including alkyds, and polyurethanes. Polymers prepared using
atom transfer radical polymerization may also be used as resinous binders in the base
coat.
[0137] The base coat compositions may be solventborne or waterborne. Waterborne base coats
in color-plus-clear compositions are disclosed in
U. S. Patent No. 4,403,003, and the resinous compositions used in preparing these base coats can be used in
the practice of this invention. Also, waterborne polyurethanes such as those prepared
in accordance with
U. S. Patent No. 4,147,679 can be used as the resinous binder in the base coat. Further, waterborne coatings
such as those described in
U. S. Patent No. 5,071,904 can be used as the base coat.
[0138] The base coat contains pigments to give it color. Suitable pigments include those
discussed above. In general, the pigment is incorporated into the coating composition
in amounts of about 1 to 80 percent by weight based on weight of coating solids. Metallic
pigment is employed in amounts of about 0.5 to 25 percent by weight based on weight
of coating solids.
[0139] If desired, the base coat composition may contain additional materials well-known
in the art of formulated surface coatings, including those discussed above. These
materials can constitute up to 40 percent by weight of the total weight of the coating
composition.
[0140] The base coating compositions can be applied to various substrates to which they
adhere by conventional means, but they are most often applied by spraying. The usual
spray techniques and equipment for air spraying and electrostatic spraying and either
manual or automatic methods can be used.
[0141] During application of the base coat composition to the substrate, a film of the base
coat is formed on the substrate. Typically, the base coat thickness will be about
0.01 to 5 mils (0.254 to 127 microns), preferably 0.1 to 2 mils (2.54 to 50.8 microns)
in thickness.
[0142] After application of the base coat to the substrate, a film is formed on the surface
of the substrate by driving solvent out of the base coat film by heating or by an
air drying period, sufficient to ensure that the clear coat can be applied to the
base coat without the former dissolving the base coat composition, yet insufficient
to fully cure the base coat. More than one base coat and multiple clear coats may
be applied to develop the optimum appearance. Usually between coats, the previously
applied coat is flashed.
[0143] The clear topcoat composition may be applied to the base coated substrate by any
conventional coating technique such as brushing, spraying, dipping or flowing, but
spray applications are preferred because of superior gloss. Any of the known spraying
techniques may be employed such as compressed air spraying, electrostatic spraying
and either manual or automatic methods.
[0144] After application of the clear coat composition to the base coat, the coated substrate
may be heated to cure the coating layer(s). In the curing operation, solvents are
driven off and the film-forming materials in the composition are crosslinked. The
heating or curing operation is usually carried out at a temperature in the range of
from at least ambient (in the case of free polyisocyanate crosslinking agents) to
350°F (ambient to 177°C) but if needed, lower or higher temperatures may be used as
necessary to activate crosslinking mechanisms.
[0145] In a further embodiment of the present invention, the present copolymer is included
in thermosetting compositions used in the electrocoating of conductive substrates.
Referring to structure I, the monomer composition A includes monomers that contain
active hydrogens and monomers that contain onium salt groups. The coating composition
further contains curing agents, which are reactive with the active hydrogen groups
of the polymer. The active hydrogen-containing polymers are prepared by the method
of this invention, and have well defined polymer chain structures, molecular weights
and molecular weight distributions.
[0146] The active hydrogen group-containing polymer containing onium salt groups may be
present in the thermosetting compositions of the invention as a resinous binder (i.e.,
a film-forming polymer) or as an additive in combination with a separate resinous
binder, which may be prepared either by atom transfer radical polymerization or by
conventional polymerization methods. When used as an additive, for example as a reactive
diluent, the active hydrogen group-containing polymer as described herein typically
has a high degree of functionality and a correspondingly low equivalent weight. However,
it should be appreciated that for other applications, the additive may have low functionality
(it may be monofunctional) and a correspondingly high equivalent weight. The active
hydrogen group-containing polymer containing onium salt groups is typically present
in the thermosetting compositions of the invention in an amount of at least 0.5 percent
by weight (when used as an additive) and in an amount of at least 25 percent by weight
(when used as a resinous binder), based on total weight of resin solids of the thermosetting
composition. The active hydrogen group-containing polymers are also typically present
in the thermosetting compositions in an amount of less than 95 percent by weight,
and preferably in an amount of less than 80 percent by weight, based on total weight
of resin solids of the thermosetting composition. The active hydrogen group-containing
polymer may be present in the thermosetting compositions of the invention in an amount
ranging between any combination of these values, inclusive of the recited values.
[0147] The thermosetting composition of the present invention further comprises (b) a curing
agent having at least two functional groups which are reactive with the active hydrogen
groups of the polymer (a) described above.
[0148] Examples of suitable curing agents for use in the thermosetting compositions of the
invention include polyisocyanate and aminoplast curing agents. The preferred curing
agents for use in thermosetting compositions of the invention, particularly for cationic
electrodeposition, are blocked organic polyisocyanates. The polyisocyanates can be
fully blocked as described in
U. S. Patent No. 3,984,299 column 1, lines 1 to 68, column 2, and column 3, lines 1 to 15, or partially blocked
and reacted with the polymer backbone as described in
U. S. Patent No. 3,947,338 column 2, lines 65 to 68, column 3, and column 4, lines 1 to 30, which are incorporated
by reference herein. By "blocked" is meant that the isocyanate groups have been reacted
with a compound so that the resultant blocked isocyanate group is stable to active
hydrogens at ambient temperature but reactive with active hydrogens in the film forming
polymer at elevated temperatures usually between 90°C and 200°C.
[0149] Suitable polyisocyanates include aromatic and aliphatic polyisocyanates, including
cycloaliphatic polyisocyanates and representative examples include diphenylmethane-4,4'-diisocyanate
(MDI), 2,4- or 2,6-toluene diisocyanate (TDI), including mixtures thereof, p-phenylene
diisocyanate, tetramethylene and hexamethylene diisocyanates, dicyclohexylmethane-4,4'-diisocyanate,
isophorone diisocyanate, mixtures of phenylmethane-4,4'-diisocyanate and polymethylene
polyphenylisocyanate. Higher polyisocyanates such as triisocyanates can be used. An
example would include triphenylmethane-4,4',4"-triisocyanate. Isocyanate prepolymers
with polyols such as neopentyl glycol and trimethylolpropane and with polymeric polyols
such as polycaprolactone diols and triols (NCO/OH equivalent ratio greater than 1)
can also be used.
[0150] The polyisocyanate curing agent is typically utilized in conjunction with the active
hydrogen group-containing polymer (a) in an amount of at least 1 percent by weight,
preferably at least 15 percent by weight, and more preferably at least 25 percent
by weight. Also, the polyisocyanate curing agent is typically used in conjunction
with the active hydrogen group-containing polymer in an amount of less than 50 percent
by weight, and preferably less than 40 percent by weight, based on weight of total
resin solids of (a) and (b). The polyisocyanate curing agent may be present in the
thermosetting composition of the present invention in an amount ranging between any
combination of these values, inclusive of the recited values.
[0151] The thermosetting compositions of the present invention are in the form of an aqueous
dispersion. The term "dispersion" is believed to be a two-phase transparent, translucent
or opaque resinous system in which the resin is in the dispersed phase and the water
is in the continuous phase. The average particle size of the resinous phase is generally
less than 1.0 and usually less than 0.5 microns, preferably less than 0.15 micron.
[0152] The concentration of the resinous phase in the aqueous medium is at least 1 and usually
from about 2 to about 60 percent by weight based on total weight of the aqueous dispersion.
When the compositions of the present invention are in the form of resin concentrates,
they generally have a resin solids content of about 20 to about 60 percent by weight
based on weight of the aqueous dispersion.
[0153] The thermosetting compositions of the invention are typically in the form of electrodeposition
baths which are usually supplied as two components: (1) a clear resin feed, which
includes generally the active hydrogen-containing polymer which contains onium salt
groups, i.e., the main film-forming polymer, the curing agent, and any additional
water-dispersible, non-pigmented components; and (2) a pigment paste, which generally
includes one or more pigments, a water-dispersible grind resin which can be the same
or different from the main film-forming polymer, and, optionally, additives such as
wetting or dispersing aids. Electrodeposition bath components (1) and (2) are dispersed
in an aqueous medium which comprises water and, usually, coalescing solvents. Alternatively,
the electrodeposition bath may be supplied as a one-component system which contains
the main film-forming polymer, the curing agent, the pigment paste and any optional
additives in one package. The one-component system is dispersed in an aqueous medium
as described above.
[0154] The electrodeposition bath of the present invention has a resin solids content usually
within the range of about 5 to 25 percent by weight based on total weight of the electrodeposition
bath.
[0155] As aforementioned, besides water, the aqueous medium may contain a coalescing solvent.
Useful coalescing solvents include hydrocarbons, alcohols, esters, ethers and ketones.
The preferred coalescing solvents include alcohols, polyols and ketones. Specific
coalescing solvents include isopropanol, butanol, 2-ethylhexanol, isophorone, 2-methoxypentanone,
ethylene and propylene glycol and the monoethyl, monobutyl and monohexyl ethers of
ethylene or propylene glycol. The amount of coalescing solvent is generally between
about 0.01 and 25 percent and when used, preferably from about 0.05 to about 5 percent
by weight based on total weight of the aqueous medium.
[0156] As discussed above, a pigment composition and, if desired, various additives such
as surfactants, wetting agents or catalyst can be included in the dispersion. The
pigment composition may be of the conventional type comprising pigments, for example,
iron oxides, strontium chromate, carbon black, coal dust, titanium dioxide, talc,
barium sulfate, as well as color pigments such as cadmium yellow, cadmium red, chromium
yellow, and the like. The pigment content of the dispersion is usually expressed as
a pigment-to-resin ratio. In the practice of the invention, when pigment is employed,
the pigment-to-resin ratio is usually within the range of about 0.02:1/1:1. The other
additives mentioned above are usually in the dispersion in amounts of about 0.01 to
3 percent by weight based on weight of resin solids.
[0157] The thermosetting compositions of the present invention can be applied by electrodeposition
to a variety of electroconductive substrates especially metals such as untreated steel,
galvanized steel, aluminum, copper, magnesium and conductive carbon coated materials.
The applied voltage for electrodeposition may be varied and can be, for example, as
low as 1 volt to as high as several thousand volts, but typically between 25 and 500
volts. The current density is usually between 0.5 ampere and 5 amperes per square
foot and tends to decrease during electrodeposition indicating the formation of an
insulating film.
[0158] After the coating has been applied by electrodeposition, it is cured usually by baking
at elevated temperatures such as about 90°C to about 260°C for about 1 to about 40
minutes.
[0159] The present invention is more particularly described in the following examples, which
are intended to be illustrative only, since numerous modifications and variations
therein will be apparent to those skilled in the art. Unless otherwise specified,
all parts and percentages are by weight.
EXAMPLE 1:
[0160] A solution of 2,2'-azobis(2-methylbutyronitrile) (available as Vazo 67 from E.I.
du Pont de Nemours and Company, Wilmington, DE) in toluene was heated to 90°C for
three hours to produce the denitrogenated iniferter 2,3-dimethyl-2,3-dicyanobutane
(DDCB).
EXAMPLE 2-4:
[0161] The 2,2'-azobis(2-methylbutyronitrile) (Vazo-67) was added to toluene, sparged with
nitrogen for 15 minutes and heated to 80°C over a period of two hours to form DDCB.
Each monomer charge was added over a 30 minute period and then held at the specified
temperature for the specified period of time. Molecular weight measurements were made
at appropriate intervals to determine whether the monomers were polymerizing into
the quasi-living polymer. The details appear in Table 1.
Table 1
|
Example 2 |
Example 3 |
Example 4 |
Vazo 67 |
15g |
0.20g |
40g |
Toluene |
300g |
5.0ml |
300g |
Monomer 1 |
IBMA2, 180g Toluene, 200g |
VAc, 5ml |
IBMA2, 200g GHA1, 35g |
Temp./Time |
80°C, 2 hrs. |
70°C, 11 hrs. |
80°C, 2 hrs. |
Monomer 2 |
HPMA3, 120g |
|
EHMA4 , 250g |
Temp./Time |
80°C, 2 hrs. |
|
80°C, 2 hrs. |
GPC5 Mw/PD6 |
14,266/1.69 |
32,636/1.67 |
12,679/1.93 |
Time Interval |
2.5 hrs. |
4 hrs. |
2.5 hrs. |
GPC5 Mw/PD6 |
15,260/1.80 |
33,865/1.61 |
19,985/1.74 |
Time Interval |
5 hrs. |
11 hrs. |
5 hrs. |
1 glycidylmethacrylate
2 isobutylmethacrylate
3 hydroxypropylmethacrylate
4 2-ethylhexylmethacrylate
5 Gel Permeation Chromatography using polystyrene standards
6 Polydispersity Index = Mw/Mn |
[0162] The data demonstrate the efficacy of the monofunctional iniferters of the present
invention as well as the preparation of both homopolymers and block copolymers. The
increase in molecular weight after the addition of the second monomer demonstrates
its incorporation into the block copolymer. The unimodal nature of the GPC curves
in each case also verifies block copolymer formation as two homopolymers would appear
as a bi- or multi-modal distribution.
[0163] The present invention has been described with reference to specific details of particular
embodiments thereof. It is not intended that such details be regarded as limitations
upon the scope of the invention except insofar as and to the extent that they are
included in the accompanying claims.
1. A controlled radical polymerization process comprising the steps of:
(a) adding a compound capable of forming a carbon centered radical, which is able
to initiate free radical polymerization, having the general structures :

wherein R1 is selected from the group consisting of C1-C20 alkyl, cyclic, heterocyclic, alkynol, or aryl; R2 is selected from the group consisting of H and C1-C4 alkyl; SG is a radical stabilizing group; and W is selected from the group consisting
of a - C-C- bond and a group that can decompose to form two residues containing carbon
centered radicals; to a solvent, forming a solution, which is substantially free of
oxygen;
(b) heating the solution to a temperature 20°C to 250°C;
(c) adding a first monomer composition comprising one or more ethylenically unsaturated
monomers to the solution containing the carbon centered radical residues; and
(d) polymerizing the first monomer composition to form a quasi-living polymer.
2. The controlled radical polymerization process of claim 1, wherein the polymer is a
copolymer and further comprises the steps of:
(e) adding a second monomer composition comprising one or more ethylenically unsaturated
monomers, which is different than the first monomer composition, to the quasi-living
polymer solution; and
(f) polymerizing the second monomer composition.
3. The controlled radical polymerization process of claim 1, wherein the radical stabilizing
group is selected from the group consisting of nitrile, ester, amide, nitro, aryl
and halide.
4. The controlled radical polymerization process of claim 1, wherein the compound capable
of forming a carbon centered radical is selected from the group consisting of an azobisalkylonitrile
having the general structure:

a bisalkylonitrile having the general structure:

a bisphenylalkane having the following structure:

a biahalolalkane having the following structures

a substituted biscarboxyalkane having the following structure :

and a bisnitroalkane having the following structure:

wherein R
1 and R
2 are independently selected from the group consisting of C
1-C
20 alkyl, cyclic, heterocyclic and alkynol; R
7 is selected from the group consisting of H, C
1-C
20 alkyl, cyclic, heterocyclic, alkynol and aryl; Z is selected from the group consisting
of O and NH;
and X is a halogen.
5. The controlled radical polymerization process of claim 4, wherein the 2-2'-azobisalkylonitrile
is selected from the group consisting of 4-4'-azobis(4-cyanovaleric acid), 1-1'-azobiscyclohexanecarbonitrile),
1-1'-azobis(N-N-dimethylformamide, 2-2'-azobisisobutyronitrile, 2-2'-azobis(2-methylpropionamidine)
dihydrochloride, 2-2'-azobis(2-methylbutyronitrile), 2-2'-azobis(propionitrile), 2-2'-azobis(2,4-dimethylvaleronitrile)
and 2-2'-azobis(valeronitrile).
6. The controlled radical polymerization process of any of the preceding claims, wherein
the temperature is from 50°C to 200°C
7. The controlled radical polymerization process of any of the preceding claims, wherein
the ethylenically unsaturated monomers are of the general formula :

wherein R
3, R
4 and R
6 are independently selected from the group consisting of H, halogen, CN, CF
3, straight or branched alkyl of 1 to 20 carbon atoms, aryl, unsaturated straight or
branched alkenyl or alkynyl of 2 to 10 carbon atoms, unsaturated straight or branched
alkenyl of 2 to 6 carbon atoms substituted with a halogen, C
3-C
8 cycloalkyl, heterocyclyl and phenyl; R
5 is selected from the group consisting of H, halogen, C
3-C
8 cycloalkyl, heterocyclyl and phenyl; R
5 is selected from the group consisting of H, halogen, C
1-C
6 alkyl, CN, COOR
8, wherein R
8 is selected from the group consisting of H, an alkali metal, a C
1 -C
6 alkyl group and aryl.
8. The controlled radical polymerization process of claim 7, wherein the ethylenically
unsaturated monomers are alkyl (meth)acrylates.
9. A non-random copolymer of the following general formula:
φ-[-A
p-B
s-]
t-φ
wherein:
a) A and B are different compositions of ethylenically unsaturated monomers,
b) p is an integer from 1 to 1,000;
c) s is an integer from 1 to 1,000;
d) t is an integer from 1 to 100; and
e) φ is a residue from a carbon centered radical capable of initiating free radical
polymerization.
10. The nonrandom copolymer of claim 9, wherein the residue φ has the general formula
:

wherein R
1 is selected from the group consisting of C
1-C
20 alkyl, cyclic, heterocyclic, alkynol, or aryl; R
2 is selected from the group consisting of H and C
1-C
4 alkyl and SG is a radical stabilizing group.
11. The non-random copolymer of claim 9, wherein the residue φ is selected from the group
consisting of a residue having the general structure:

a residue having the following structure :

a residue having the following structure :

a substituted residue having the following structure :

and a residue having the following structure:

wherein R
1 and R
2 are independently selected from the group consisting of C
1-C
20 alkyl, cyclic, heterocyclic and alkynol; R
7 is selected from the group consisting of H, C
1-C
20 alkyl, cyclic, heterocyclic, alkynol, and aryl; Z is selected from the group consisting
of O and NH; and X is a halide.
12. The non-random copolymer of claim 10, wherein the residue φ is selected from the group
consisting of 4-cyanovaleric acid, cyclohexanecarbonitrile, N,N-dimethylformamide,
isobutyronitrile, 2-methylpropionamidine, 2-2-methylbutyronitrile, propionitrile,
2,4-dimethylvaleronitrile and valeronitrile.
13. The non-random copolymer of any of claims 9 - 12, wherein the ethylenically unsaturated
monomers are defined as in any of claims 7 and 8.
14. The non-random copolymer of any of claims 9 - 13 having a number average molecular
weight of from 500 to 1,000,000 as measured by gel permeation chromatography using
polystyrene standards.
15. The non-random copolymer of any of claims 9 - 14 having a polydispersity index of
less than 2.5.
16. A thermosetting composition comprising a co-reactable solid, particulate mixture of:
(a) a reactant having at least two functional groups; and
(b) a non-random copolymer of the following general formula:
φ-[-Ap-Bs-]t-φ
wherein:
1) A and B are different compositions of ethylenically unsaturated monomers, wherein
B includes functional monomers having a functional group reactive with the functional
groups of the reactant (a);
2) p is an integer from 1 to 1,000;
3) s is an integer from 1 to 1,000;
4) t is an integer from 1 to 100; and
5) φ is a residue from a carbon centered radical capable of initiating free radical
polymerization.
17. A thermosetting composition comprising
a) a crosslinking agent having at least two functional groups; and
b) a non-gelled, non-random copolymer as defined in claim 16.
18. The thermosetting composition of any of claims 16 and 17, wherein the functional groups
of the reactant (a) are selected from the group consisting of epoxy, oxirane, carboxylic
acid, hydroxy, polyol, isocyanate, capped isocyanate, amine, aminoplast and beta-hydroxyalkylammide;
the functional groups of the non-random copolymer (b) are selected from the group
consisting of epoxy, oxirane, carboxylic acid, hydroxy, amide, oxazoline, aceto acetate,
isocyanate, and carbamate; and, wherein the functional groups of the reactant (a)
are different than those in the non-random copolymer (b).
19. The thermosetting composition of claim 18, wherein the functional group of monomer
composition B of the non-random copolymer (b) is hydroxy and the functional group
of the reactant in (a) is a capped polyisocyanate , wherein the capping group of the
capped polyisocyanate crosslinking agent is selected from the group consisting of
hydroxy functional compounds, 1H-azoles, lactams, ketoximes and mixtures thereof.
20. The thermosetting composition of claim 18, wherein the capping group is selected from
the group consisting of phenol, p-hydroxy methylbenzoate, 1H-1,2,4-triazole, 1H-2,5-dimethyl
pyrazole, 2-propanone oxime, 2-butanone oxime, cyclohexanone oxime, e-caprolactam
and mixtures thereof.
21. The thermosetting composition of claim 18, wherein the polyisocyanate of said capped
polyisocyanate crosslinking agent is selected from the group consisting of 1,6-hexamethylene
diisocyanate, cyclohexane diisocyanate, α,α'-xylylene diisocyanate, α,α,α',α',-tetramethylxylylens
diisocyanate, 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexane, 2,4,4-trimethyl
hexamethylene diisocyanate, 2,2,4-trimethyl hexamethylene diisocyanate, diisocyanato-dicyclohexylmethane,
dimers of said polyisocyanates, trimers of said polyisocyanates and mixtures thereof.
22. The thermosetting composition of claim 19 wherein the hydroxy functional polymer has
a hydroxy equivalent weight of from 100 to 10,000 grams/equivalent.
23. The thermosetting composition of claim 18, wherein A is derived from at least one
of alkyl (meth)acrylates halving from 1 to 20 carbon atoms in the alkyl group, vinyl
aromatic monomers, vinyl halides, vinyl esters of carboxylic acids and olefins, and
B is derived from hydroxyalkyl (meth)acrylates having from 1 to 20 carbon atoms in
the alkyl group.
24. The thermosetting composition of claim 19, wherein the equivalent ratio of isocyanate
equivalents in said capped polyisocyanate crosslinking agent (a) to hydroxy equivalents
in said hydroxy functional polymer (b) is within the range of 1:3 to 3:1.
25. The thermosetting composition of claim 24, wherein said capped polyisocyanate crosslinking
agent is present in an amount of from 1 to 45 percent by weight, based on total weight
of resin solids, and said hydroxy functional polymer is present in an amount of from
55 to 99 percent by weight, based on total weight of resin solids.
26. The thermosetting composition of any of claims 16 and 17, wherein monomer composition
B of the non-random copolymer (b) includes oxirane functional ethylenically unsaturated
radically polymerizable monomers and the reactant (a) is a carboxylic functional co-reactant
having from 4 to 20 carbon atoms.
27. The thermosetting composition of claim 26 wherein the carboxylic acid reactant is
selected from the group consisting of dodecanedioc acid, azelaic acid, adipic acid,
1,6-hexanedioc acid, succinic acid, pimelic acid, sebacic acid, maleic acid, citric
acid, itaconic acid, aconitic acid and mixtures thereof.
28. The thermosetting composition of claim 27 further comprising a second polycarboxylic
acid functional material selected from the group consisting of C4-C20 aliphatic carboxylic acids, polymeric polyanhydrides, polyesters, polyurethanes and
mixtures thereof.
29. The thermosetting composition of any of claims 16 and 17, wherein monomer composition
B of the non-random copolymer (b) includes carboxylic functional ethylenically unsaturated
radically polymerizable monomers and the reactant (a) is a beta-hydroxyalkylamide.
30. The thermosetting composition of claim 29, wherein the beta-hydroxyalkylamide is represented
by the following formula:

wherein R
24 is H or C
1-C
5 alkyl; R
25 is H, C
1-C
5 alkyl or

for which R
24 is as described above, Q is a chemical bond or monovalent or polyvalent organic radical
derived from saturated, unsaturated or aromatic hydrocarbon radicals including substituted
hydrocarbon radicals containing from 2 to 20 carbon atoms, m is 1. or 2, t is from
0 to 2, and m + t is at least 2.
31. The thermosetting composition of any of claims 16-30, wherein the non-random polymer
is selected from the group consisting of linear polymers, branched polymers, hyperbranched
polymers, star polymers, graft polymers and mixtures thereof.
32. The thermosetting composition of any of claims 16-31, wherein the non-random polymer
has a number average molecular weight of from 500 to 16,000, and a polydispersity
index of less than 2.5.
33. The thermosetting composition of any of claims 16-32, wherein the ethylenically unsaturated
monomers of monomer composition A are defined as in any of claims 7 and 8.
34. A thermosetting composition comprising a resinous phase dispersed in an aqueous medium,
said resinous phase comprising the following components:
(a) an ungelled, non-random copolymer of the following general formula:
φ-[-Ap-Bs-]t-φ
wherein:
(1) A and B are different compositions of ethylenically unsaturated monomers, with
B including functional monomers with a functional group selected from the group consisting
of active hydrogen groups and onium salt groups;
(2) p is an integer from 1 to 1,000;
(3) s is an integer from 1 to 1,000;
(4) t is an integer from 1 to 100; and
(5) φ is a residue from a carbon centered radical capable of initiating free radical
polymerization; and
(b) a curing agent having at least two functional groups which are reactive with the
active hydrogen groups of (a).
35. The thermosetting composition of claim 34, wherein the active hydrogen group-containing
polymer has a number average molecular weight in the range of from 1,000 to 30,000.
36. The thermosetting composition of claim 34, wherein the polymer has an onium salt group
equivalent weight of from 1,000 to 15,000 grams/equivalent.
37. The thermosetting composition of claim 34, wherein A is a residue derived from at
least one of vinyl monomers, allylic monomers, and olefins.
38. The thermosetting composition of claim 34, wherein A is derived from at least one
of alkyl (meth)acrylates having 1 to 20 carbon atoms in the alkyl group, vinyl aromatic
monomers and olefins.
39. The thermosetting composition of claim 34, wherein the active hydrogen groups of monomer
composition B are derived from at least one of hydroxy-alkyl esters of (meth)acrylic
acid containing from 1 to 4 carbon atoms in the hydroxy alkyl group.
40. The thermosetting composition of claim 34, wherein the active hydrogen groups of monomer
composition B are derived from at least one of hydroxy-ethyl (meth)acrylate, and hydroxy-propyl
(meth)acrylate.
41. The thermosetting composition of claim 34, wherein the onium salt of monomer composition
B are selected from at least one of the class consisting of quaternary ammonium salts
and ternary sulfonium salts.
42. The thermosetting composition of claim 34, wherein the non-random polymer further
comprises segments of monomer composition G, which is derived from at least one epoxy
group-containing ethylenically unsaturated monomer which after polymerization has
been post-reacted with an amine acid salt.
43. The thermosetting composition of claim 42, wherein G is derived from at least one
epoxy group-containing monomer which after polymerization has been post-reacted with
a sulfide in the presence of an acid.
44. The thermosetting composition of claim 42, wherein the active hydrogen group-containing
polymer is a substantially linear polymer having a number average molecular weight
in the range of from 1,000 to 30,000, and wherein
G is derived from at least one epoxy group-containing monomer which after polymerization
has been post-reacted with an amine acid salt;
B is derived from at least one hydroxy-alkyl (meth)acrylate having 1 to 4 carbon atoms
in the alkyl group; and
A is derived from at least one of (meth)acrylate monomers, vinyl aromatic monomers,
and olefins.
45. The thermosetting composition of claim 44, wherein the polymer has an onium salt group
equivalent weight in the range of from 1,000 to 15,000 grams/equivalent.
46. The thermosetting composition of claim 44, wherein the polymer, prior to onium salt
group formation, has a polydispersity index of less than 2.5.
47. The thermosetting composition of any of claims 34 - 46, wherein component (a) is present
in an amount ranging from 25 to 99 weight percent, and component (b) is present in
an amount ranging from 1 to 75 weight percent, wherein the weight percentages are
based on the total weight of (a) and (b).
48. The thermosetting composition of any of claims 16-47, wherein the residue φ is defined
as in any of claims 10 - 12.
1. Kontrollierter radikalischer Polymerisationsprozess, umfassend die Schritte:
(a) Zugeben einer Verbindung, die in der Lage ist, ein kohlenstoffzentriertes Radikal
zu bilden, das in der Lage ist, eine radikalische Polymerisation zu initiieren, mit
der allgemeinen Struktur:

worin R1 ausgewählt ist aus der Gruppe bestehend aus C1- bis C20-Alkyl, einer cyclischen Gruppe, einer heterocyclischen Gruppe, Alkinol oder Aryl,
R2 ausgewählt ist aus der Gruppe bestehend aus H und C1- bis C4-Alkyl, SG eine Radikal stabilisierende Gruppe ist und W ausgewählt ist aus der Gruppe
bestehend aus einer-C-C-Bindung und einer Gruppe, die sich zersetzen kann, um zwei
Reste zu bilden, die kohlenstoffzentrierte Radikale enthalten, zu einem Lösungsmittel,
wodurch eine Lösung gebildet wird, die im Wesentlichen frei von Sauerstoff ist,
(b) Erwärmen der Lösung auf eine Temperatur von 20°C bis 250°C,
(c) Zugeben einer ersten Monomerzusammensetzung, die ein oder mehrere ethylenisch
ungesättigte Monomere enthält, zu der Lösung, die die kohlenstoffzentrierten Radikalreste
enthält, und
(d) Polymerisieren der ersten Monomerzusammensetzung, um ein quasi-lebendes Polymer
zu bilden.
2. Kontrolliertes radikalisches Polymerisationsverfahren nach Anspruch 1, wobei das Polymer
ein Copolymer ist und wobei das Verfahren zusätzlich die Schritte enthält:
(e) Zugeben einer zweiten Monomerzusammensetzung, die ein oder mehrere ethylenisch
ungesättigte Monomere enthält, und sich von der ersten Monomerzusammensetzung unterscheidet,
zu der Lösung des quasi-lebenden Polymers und
(f) Polymerisieren der zweiten Monomerzusammensetzung.
3. Kontrolliertes radikalisches Polymerisationsverfahren nach Anspruch 1, wobei die Radikal
stabilisierende Gruppe ausgewählt ist aus der Gruppe bestehend aus Nitril, Ester,
Amid, Nitro, Aryl und Halogenid.
4. Kontrolliertes radikalisches Polymerisationsverfahren nach Anspruch 1, wobei die Verbindung,
die in der Lage ist, ein kohlenstoffzentriertes Radikal zu bilden, ausgewählt ist
aus der Gruppe bestehend aus einem Azobisalkylnitril mit der folgenden allgemeinen
Struktur:

einem Bisalkylnitril mit der allgemeinen Struktur:

einem Bisphenylalkan mit der folgenden Struktur:

einem Bishalogenalkan mit der folgenden Struktur:

einem substituiertem Biscarboxyalkan mit der folgenden Struktur:

und einem Bisnitroalkan mit der folgenden Struktur:

worin R
1 und R
2 unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus C
1- bis C
20-Alkyl, einer cyclischen Gruppe, einer heterocyclischen Gruppe und Alkinol, R
7 ausgewählt ist aus der Gruppe bestehend aus H, C
1- bis C
20-Alkyl, einer cyclischen Gruppe, einer heterocyclischen Gruppe, Alkinol und Aryl,
Z ausgewählt ist aus der Gruppe bestehend aus O und NH und X ein Halogenid ist.
5. Kontrolliertes radikalisches Polymerisationsverfahren nach Anspruch 4, wobei das 2-2'-Azobisalkylnitril
ausgewählt ist aus der Gruppe bestehend aus 4-4'-Azobis(4-cyanovaleriansäure), 1-1'-Azobiscyclohexancarbonitril),
1-1'-Azobis(N,N-dimethylformamid), 2-2'-Azobisisobutyronitril, 2-2'-Azobis(2-methylpropionamidin)dihydrochlorid,
2-2'-Azobis(2-methylbutyronitril), 2-2'-Azobis(propionnitril), 2-2'-Azobis(2,4-dimethylvaleronitril)
und 2-2'-Azobis(valeronitril).
6. Kontrolliertes radikalisches Polymerisationsverfahren nach einem der vorstehenden
Ansprüche, wobei die Temperatur 50°C bis 200°C beträgt.
7. Kontrolliertes radikalisches Polymerisationsverfahren nach einem der vorstehenden
Ansprüche, wobei die ethylenisch ungesättigten Monomere die folgende allgemeine Formel
aufweisen:

worin R
3, R
4 und R
6 unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus H, Halogen, CN,
CF
3, geradkettigem oder verzweigtem Alkyl mit 1 bis 20 Kohlenstoffatomen, Aryl, ungesättigtem
geradkettigem oder verzweigtem Alkenyl oder Alkinyl mit 2 bis 10 Kohlenstoffatomen,
ungesättigtem geradkettigem oder verzweigtem Alkenyl mit 2 bis 6 Kohlenstoffatomen,
das mit einem Halogen substituiert ist, C
3- bis C
8-Cycloalkyl, einer heterocyclischen Gruppe und Phenyl, R
5 ausgewählt ist aus der Gruppe bestehend aus H, Halogen, C
3- bis C
8-Cycloalkyl, einer heterocyclischen Gruppe und Phenyl, R
5 ausgewählt ist aus der Gruppe bestehend aus H, Halogen, C
1- bis C
6-Alkyl, CN, COOR
8, worin R
8 ausgewählt ist aus der Gruppe bestehend aus H, einem Alkalimetall, einer C
1- bis C
6-Alkylgruppe und Aryl.
8. Kontrolliertes radikalisches Polymerisationsverfahren nach Anspruch 7, wobei die ethylenisch
ungesättigten Monomere Alkyl(meth)acrylate sind.
9. Ein nichtstatistisches Copolymer der folgenden allgemeinen Formel:
φ-[-A
p-B
s-]
t-φ
worin:
a) A und B unterschiedliche Zusammensetzungen von ethylenisch ungesättigten Monomeren
sind,
b) p eine ganze Zahl von 1 bis 1.000 ist,
c) s eine ganze Zahl von 1 bis 1.000 ist,
d) t eine ganze Zahl von 1 bis 100 ist und
e) φ ein Rest von einem kohlenstoffzentrierten Radikal ist, das in der Lage ist, eine
Radikalpolymerisation zu initiieren.
10. Nichtstatistisches Copolymer nach Anspruch 9, wobei der Rest φ die allgemeine Formel
aufweist:

worin R
1 ausgewählt ist aus der Gruppe bestehend aus C
1- bis C
20-Alkyl, einer cyclischen Gruppe, einer heterocyclischen Gruppe, Alkinol oder Aryl,
R
2 ausgewählt ist aus der Gruppe bestehend aus H und C
1- bis C
4-Alkyl und SG eine Radikal stabilisierende Gruppe ist.
11. Nichtstatistisches Copolymer nach Anspruch 9, wobei der Rest φ ausgewählt ist aus
der Gruppe bestehend aus einem Rest mit der allgemeinen Struktur:

einem Rest mit der folgenden Struktur:

einem Rest mit der folgenden Struktur:

einem substituierten Rest mit der folgenden Struktur:

und einem Rest mit der folgenden Struktur:

worin R
1 and R
2 unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus C
1- bis C
20-Alkyl, einer cyclischen Gruppe, einer heterocyclischen Gruppe und Alkinol, R
7 ausgewählt ist aus der Gruppe bestehend aus H, C
1- bis C
20-Alkyl, einer cyclischen Gruppe, einer heterocyclischen Gruppe, Alkinol und Aryl,
Z ausgewählt ist aus der Gruppe bestehend aus O und NH und X ein Halogenid ist.
12. Nichtstatistisches Copolymer nach Anspruch 10, wobei der Rest φ ausgewählt ist aus
der Gruppe bestehend aus 4-Cyanovaleriansäure, Cyclohexancarbonitril, N,N-Dimethylformamid,
Isobutyronitril, 2-Methylpropionamidin, 2-2-Methylbutyronitril, Propionnitril, 2,4-Dimethylvaleronitril
und Valeronitril.
13. Nichtstatistisches Copolymer nach einem der Ansprüche 9 - 12, wobei die ethylenisch
ungesättigten Monomere wie in einem der Ansprüche 7 und 8 definiert sind.
14. Nichtstatistisches Copolymer nach einem der Ansprüche 9 - 13 mit einem zahlenmittleren
Molekulargewicht von 500 bis 1.000.000, gemessen durch Gelpermeationschromatographie
unter Verwendung von Polystyrolstandards.
15. Nichtstatistisches Copolymer nach einem der Ansprüche 9 - 14 mit einem Polydispersitätsindex
von kleiner als 2,5.
16. Wärmehärtende Zusammensetzung, enthaltend eine coreaktive feste teilchenförmige Mischung
von:
(a) einem Reaktanten mit wenigstens zwei funktionellen Gruppen und
(b) einem nichtstatistischen Copolymer der folgenden allgemeinen Formel:
φ-[-Ap-Bs-]t-φ
worin:
1) A und B unterschiedliche Zusammensetzungen von ethylenisch ungesättigten Monomeren
sind, worin B funktionelle Monomere enthält, die eine funktionelle Gruppe aufweisen,
die mit den funktionellen Gruppen des Reaktanten (a) reaktiv ist,
2) p eine ganze Zahl von 1 bis 1,000 ist,
3) s eine ganze Zahl von 1 bis 1,000 ist,
4) t eine ganze Zahl von 1 bis 100 ist und
5) φ ein Rest eines kohlenstoffzentrierten Radikals ist, das in der Lage ist, eine
radikalische Polymerisation zu initiieren.
17. Wärmehärtende Zusammensetzung, enthaltend
(a) ein Vernetzungsmittel mit wenigstens zwei funktionellen Gruppen und
b) ein nichtgeliertes nichtstatistisches Copolymer wie in Anspruch 16 definiert.
18. Wärmehärtende Zusammensetzung nach einem der Ansprüche 16 und 17, wobei die funktionellen
Gruppen des Reaktanten (a) ausgewählt sind aus der Gruppe bestehend aus Epoxy, Oxiran,
Carbonsäure, Hydroxy, Polyol, Isocyanat, verkapptem Isocyanat, Amin, Aminoplast und
β-Hydroxyalkylamid, die funktionellen Gruppen des nichtstatistischen Copolymers (b)
ausgewählt sind aus der Gruppe bestehend aus Epoxy, Oxiran, Carbonsäure, Hydroxy,
Amid, Oxazolin, Acetoacetat, Isocyanat und Carbamat und wobei die funktionellen Gruppen
des Reaktanten (a) sich von denen des nichtstatistischen Copolymers (b) unterscheiden.
19. Wärmehärtende Zusammensetzung nach Anspruch 18, wobei die funktionelle Gruppe der
Monomerzusammensetzung B des nichtstatistischen Copolymers (b) Hydroxy ist und die
funktionelle Gruppe des Reaktanten (a) ein verkapptes Polyisocyanat ist, worin die
Verkappungsgruppe des verkappten Polyisocyanatvernetzungsmittels ausgewählt ist aus
der Gruppe bestehend aus hydroxyfunktionellen Verbindungen, 1 H-Azolen, Lactamen,
Ketoximen und Mischungen davon.
20. Wärmehärtende Zusammensetzung nach Anspruch 18, wobei die Verkappungsgruppe ausgewählt
ist aus der Gruppe bestehend aus Phenol, para-Hydroxymethylbenzoat, 1H-1,2,4-Triazol,
1H-2,5-Dimethylpyrazol, 2-Propanonoxim, 2-Butanonoxim, Cyclohexanonoxim, ε-Caprolactam
und Mischungen davon.
21. Wärmehärtende Zusammensetzung nach Anspruch 18, wobei das Polyisocyanat dieses verkappten
Polyisocyanatvernetzungsmittels ausgewählt ist aus der Gruppe bestehend aus 1,6-Hexamethylendiisocyanat,
Cyclohexandiisocyanat, α,α'-Xylylendiisocyanat, α,α,α',α'-Tetramethylxylylendiisocyanat,
1-Isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexan, 2,4,4-Trimethylhexamethylendiisocyanat,
2,2,4-Trimethylhexamethylendiisocyanat, Diisocyanatodicyclohexylmethan, Dimeren dieser
Polyisocyanate, Trimeren dieser Polyisocyanate und Mischungen davon.
22. Wärmehärtende Zusammensetzung nach Anspruch 19, wobei das hydroxyfunktionelle Polymer
ein Hydroxyäquivalentgewicht von 100 bis 10.000 g/Äquivalent aufweist.
23. Wärmehärtende Zusammensetzung nach Anspruch 18, wobei A sich von wenigstens einem
von Alkyl(meth)acrylaten mit 1 bis 20 Kohlenstoffatomen in der Alkylgruppe, aromatischen
Vinylmonomeren, Vinylhalogeniden, Vinylestern von Carbonsäuren und Olefinen ableitet
und B sich von Hydroxyalkyl(meth)acrylaten mit 1 bis 20 Kohlenstoffatomen in der Alkylgruppe
ableitet.
24. Wärmehärtende Zusammensetzung nach Anspruch 19, wobei das Äquivalentverhältnis von
Isocyanatäquivalenten in diesem verkappten Polyisocyanatvernetzungsmittels (a) zu
Hydroxyäquivalenten in diesem hydroxyfunktionellen Polymer (b) im Bereich von 1:3
bis 3:1 liegt.
25. Wärmehärtende Zusammensetzung nach Anspruch 24, wobei dieses verkappte Polyisocyanatvernetzungsmittel
in einer Menge von 1 bis 45 Gew.-%, bezogen auf das Gesamtgewicht von Harzfeststoffen,
vorhanden ist und dieses hydroxyfunktionelle Polymer in einer Menge von 55 bis 99
Gew.-%, bezogen auf das Gesamtgewicht von Harzfeststoffen, vorhanden ist.
26. Wärmehärtende Zusammensetzung nach einem der Ansprüche 16 und 17, worin Monomerzusammensetzung
B des nichtstatistischen Copolymers (b) oxiranfunktionelle ethylenisch ungesättigte
radikalisch polymerisierbare Monomere enthält und der Reaktant (a) ein carbonsäurefunktioneller
Coreaktant mit 4 bis 20 Kohlenstoffatomen ist.
27. Wärmehärtende Zusammensetzung nach Anspruch 26, wobei der Carbonsäurereaktant ausgewählt
ist aus der Gruppe bestehend aus Dodecandicarbonsäure, Azelainsäure, Adipinsäure,
1,6-Hexandicarbonsäure, Bernsteinsäure, Pimelinsäure, Sebacinsäure, Maleinsäure, Zitronensäure,
Itaconsäure, Aconitsäure und Mischungen davon.
28. Wärmehärtende Zusammensetzung nach Anspruch 27, die weiterhin ein zweites polycarbonsäurefunktionelles
Material enthält, das ausgewählt ist aus der Gruppe bestehend aus C4-bis C20-aliphatischen Carbonsäuren, polymeren Polyanhydriden, Polyestern, Polyurethanen und
Mischungen davon.
29. Wärmehärtende Zusammensetzung nach einem der Ansprüche 16 und 17, worin Monomerzusammensetzung
B des nichtstatistischen Copolymers (b) carbonsäurefunktionelle ethylenisch ungesättigte
radikalisch polymerisierbare Monomere enthält und der Reaktant (a) ein β-Hydroxyalkylamid
ist.
30. Wärmehärtende Zusammensetzung nach Anspruch 29, wobei das β-Hydroxyalkylamid durch
die folgende Formel wiedergegeben ist:

worin R
24 gleich H oder C
1- bis C
5-Alkyl ist, R
25 gleich H, C
1- bis C
5-Alkyl oder

ist, worin R
24 wie oben beschieben ist, Q eine chemische Bindung oder ein einbindiger oder mehrbindiger
organischer Rest ist, der sich von gesättigten, ungesättigten oder aromatischen Kohlenwasserstoffresten
einschließlich substituierten Kohlenwasserstoffresten mit 2 bis 20 Kohlenstoffatomen
ableitet, m gleich 1 oder 2 ist, t von 0 bis 2 ist und m + t wenigstens 2 ist.
31. Wärmehärtende Zusammensetzung nach einem der Ansprüche 16 bis 30, worin das nichtstatistische
Polymer ausgewählt ist aus der Gruppe bestehend aus linearen Polymeren, verzweigten
Polymeren, hyperverzweigten Polymeren, Sternpolymeren, Pfropfpolymeren und Mischungen
davon.
32. Wärmehärtende Zusammensetzung nach einem der Ansprüche 16 bis 31, worin das nichtstatistische
Polymer ein zahlenmittleres Molekulargewicht von 500 bis 16.000 und einen Polydispersitätsindex
von kleiner als 2,5 aufweist.
33. Wärmehärtende Zusammensetzung nach einem der Ansprüche 16 bis 32, wobei die ethylenisch
ungesättigten Monomere der Monomerzusammensetzung A wie in einem der Ansprüche 7 und
8 definiert sind.
34. Wärmehärtende Zusammensetzung, enthaltend eine Harzphase, die in einem wässrigen Medium
dispergiert ist, wobei diese Harzphase die folgenden Komponenten enthält:
(a) ein nichtgeliertes nichtstatistisches Copolymer der folgenden allgemeinen Formel:
φ-[-Ap-Bs-]t-φ
worin:
1) A und B unterschiedliche Zusammensetzungen von ethylenisch ungesättigten Monomeren
sind, worin B funktionelle Monomere mit einer funktionellen Gruppe, die ausgewählt
ist aus der Gruppe bestehend aus aktiven Wasserstoffgruppen und Oniumsalzgruppen,
enthält,
2) p eine ganze Zahl von 1 bis 1.000 ist,
3) s eine ganze Zahl von 1 bis 1.000 ist,
4) t eine ganze Zahl von 1 bis 100 ist und
5) φ ein Rest eines kohlenstoffzentrierten Radikals ist, das in der Lage ist, eine
radikalische Polymerisation zu initiieren, und
(b) ein Härtungsmittel mit wenigstens zwei funktionellen Gruppen, die mit den aktiven
Wasserstoffgruppen von (a) reaktiv sind.
35. Wärmehärtende Zusammensetzung nach Anspruch 34, wobei das aktive Wasserstoffgruppen
enthaltende Polymer ein zahlenmittleres Molekulargewicht im Bereich von 1.000 bis
30.000 aufweist.
36. Wärmehärtende Zusammensetzung nach Anspruch 34, wobei das Polymer ein Oniumsalzgruppenäquivalentgewicht
von 1.000 bis 15.000 g/Äquivalent aufweist.
37. Wärmehärtende Zusammensetzung nach Anspruch 34, wobei A ein Rest ist, der sich von
wenigstens einem von Vinylmonomeren, allylischen Monomeren und Olefinen ableitet.
38. Wärmehärtende Zusammensetzung nach Anspruch 34, wobei A sich von wenigstens einem
von Alkyl(meth)acrylaten mit 1 bis 20 Kohlenstoffatomen in der Alkylgruppe, aromatischen
Vinylmonomeren und Olefinen ableitet.
39. Wärmehärtende Zusammensetzung nach Anspruch 34, wobei die aktiven Wasserstoffgruppen
der Monomerzusammensetzung B sich von wenigstens einem Hydroxyalkylester von (Meth)acrylsäure
mit 1 bis 4 Kohlenstoffatomen in der Hydroxyalkylgruppe ableiten.
40. Wärmehärtende Zusammensetzung nach Anspruch 34, wobei die aktiven Wasserstoffgruppen
der Monomerzusammensetzung B sich von wenigstens einem von Hydroxyethyl(meth)acrylat
und Hydroxypropyl-(meth)acrylat ableiten.
41. Wärmehärtende Zusammensetzung nach Anspruch 34, wobei das Oniumsalz der Monomerzusammensetzung
B ausgewählt ist aus wenigstens einem der Klasse bestehend aus quartären Ammoniumsalzen
und ternären Sulfoniumsalzen.
42. Wärmehärtende Zusammensetzung nach Anspruch 34, wobei das nichtstatistische Polymer
zusätzlich Segmente der Monomerzusammensetzung G enthält, die sich von wenigstens
einem epoxygruppenhaltigen ethylenisch ungesättigten Monomer ableitet, das nach Polymerisation
mit einem Säuresalz eines Amins umgesetzt worden ist.
43. Wärmehärtende Zusammensetzung nach Anspruch 42, wobei G sich von wenigstens einem
epoxygruppenhaltigen Monomer ableitet, das nach Polymerisation mit einem Sulfid in
Gegenwart einer Säure umgesetzt worden sind.
44. Wärmehärtende Zusammensetzung nach Anspruch 42, wobei das aktive Wasserstoffgruppen
enthaltende Polymer ein im Wesentlichen lineares Polymer mit einem zahlenmittleres
Molekulargewicht im Bereich von 1.000 bis 30.000 ist und worin
G sich von wenigstens einem epoxygruppenhaltigen Monomer ableitet, das nach der Polymerisation
mit einem Säuresalz eines Amins umgesetzt worden ist,
B sich von wenigstens einem Hydroxyalkyl(meth)acrylat mit 1 bis 4 Kohlenstoffatomen
in der Alkylgruppe ableitet und
A sich von wenigstens einem von (Meth)acrylatmonomeren, aromatischen Vinylmonomer
und Olefinen ableitet.
45. Wärmehärtende Zusammensetzung nach Anspruch 44, wobei das Polymer ein Oniumsalzgruppenäquivalentgewicht
im Bereich von 1.000 bis 15.000 g/Äquivalent aufweist.
46. Wärmehärtende Zusammensetzung nach Anspruch 44, wobei das Polymer vor der Oniumsalzgruppenbildung
einen Polydispersitätsindex von kleiner als 2,5 aufweist.
47. Wärmehärtende Zusammensetzung nach einem der Ansprüche 34-46, worin Komponente (a)
in einer Menge im Bereich von 25 bis 99 Gew.-% und Komponente (b) in einer Menge im
Bereich von 1 bis 75 Gew.-% vorhanden ist, wobei die Gewichtsprozentangaben sich auf
das Gesamtgewicht von (a) und (b) beziehen.
48. Wärmehärtende Zusammensetzung nach einem der Ansprüche 16-47, worin der Rest φ wie
in einem der Ansprüche 10-12 definiert ist.
1. Procédé de polymérisation radicalaire contrôlée, comprenant les étapes consistant
à :
(a) ajouter un composé capable de former un radical centré sur un carbone, qui est
capable d'amorcer une polymérisation radicalaire, de structure générale :

dans laquelle R1 est choisi dans l'ensemble constitué par les radicaux alkyle en C1-C20, cycliques, hétérocycliques, alcynol, ou aryle ; R2 est choisi dans l'ensemble constitué par H et les radicaux alkyle en C1-C4 ; SG est un groupe de stabilisation radicalaire ; et W est choisi dans l'ensemble
constitué par une liaison -C-C- et un groupe qui peut se décomposer pour former deux
résidus contenant des radicaux centrés sur un carbone ;
à un solvant, formant une solution, qui est pratiquement exempt d'oxygène ;
(b) chauffer la solution à une température de 20°C à 250°C ;
(c) ajouter une première composition de monomères, comprenant un ou plusieurs monomères
à insaturation éthylénique, à la solution contenant les résidus radicalaires centrés
sur un carbone ; et
(d) polymériser la première composition de monomères pour former un polymère quasi-vivant.
2. Procédé de polymérisation radicalaire contrôlée selon la revendication 1, dans lequel
le polymère est un copolymère, et comprenant en outre les étapes consistant à :
(e) ajouter une deuxième composition de monomères, comprenant un ou plusieurs monomères
à insaturation éthylénique, qui est différente de la première composition de monomères,
à la solution de polymère quasi-vivant ; et
(f) polymériser la deuxième composition de monomères.
3. Procédé de polymérisation radicalaire contrôlée selon la revendication 1, dans lequel
le groupe de stabilisation radicalaire est choisi dans l'ensemble constitué par les
radicaux nitriles, ester, amide, nitro, aryle et halogénure.
4. Procédé de polymérisation radicalaire contrôlée selon la revendication 1, dans lequel
le composé capable de former un radical centré sur un carbone est choisi dans l'ensemble
constitué par un azobisalkylonitrile de structure générale :

un bisalkylonitrile de structure générale :

un bisphénylalcane de structure suivante :

un bishalogénoalcane de structure suivante :

un biscarboxyalcane substitué de structure suivante :

et un bisnitroalcane de structure suivante :

dans lesquels R
1 et R
2 sont indépendamment choisis dans l'ensemble constitué par les radicaux alkyle en
C
1-C
20, cycliques, hétérocycliques, et alcynol ; R
7 est choisi dans l'ensemble constitué par H et les radicaux alkyle en C
1-C
20, cycliques, hétérocycliques, alcynol et aryle ; Z est choisi dans l'ensemble constitué
par O et NH ; et X est un halogène.
5. Procédé de polymérisation radicalaire contrôlée selon la revendication 4, dans lequel
le 2,2'-azobisalkylonitrile est choisi dans l'ensemble constitué par le 4,4'-azobis(acide
4-cyanovalérique), le 1,1'-azobis(cyclohexanecarbonitrile), le 1,1'-azobis(N,N-diméthylformamide),
le 2,2'-azobis(isobutyronitrile), le dichlorhydrate de 2,2'-azobis(2-méthylpropionamidine),
le 2,2'-azobis(2-méthylbutyronitrile), le 2,2'-azobis(propionitrile), le 2,2'-azobis(2,4-diméthylvaléronitrile)
et le 2,2'-azobis(valéronitrile).
6. Procédé de polymérisation radicalaire contrôlée selon l'une quelconque des revendications
précédentes, dans lequel la température est de 50°C à 200°C.
7. Procédé de polymérisation radicalaire contrôlée selon l'une quelconque des revendications
précédentes, dans lequel les monomères à insaturation éthylénique répondent à la formule
générale :

dans laquelle R
3 R
4 et R
6 sont indépendamment choisis dans l'ensemble constitué par H, les halogènes et les
radicaux CN, CF
3, alkyle linéaires ou ramifiés ayant de 1 à 20 atomes de carbone, aryle, alcényle
ou alcynyle insaturés linéaires ou ramifiés ayant de 2 à 10 atomes de carbone, alcényle
insaturés linéaires ou ramifiés ayant de 2 à 6 atomes de carbone substitués par un
halogène, cycloalkyle en C
3-C
8, hétérocyclyle et phényle ; R
5 est choisi dans l'ensemble constitué par H, les halogènes et les radicaux cycloalkyle
en C
3-C
8, hétérocyclyle et phényle ; R
5 est choisi dans l'ensemble constitué par H, les halogènes et les radicaux alkyle
en C
1-C
6, CN, COOR
8 où R
8 est choisi dans l'ensemble constitué par H, un métal alcalin, un groupe alkyle en
C
1-C
6 et aryle.
8. Procédé de polymérisation radicalaire contrôlée selon la revendication 7, dans lequel
les monomères à insaturation éthylénique sont des (méth)acrylates d'alkyle.
9. Copolymère non aléatoire de formule générale suivante :
φ-[-A
p-B
s-]
t-φ
dans laquelle :
a) A et B sont des compositions différentes de monomères à insaturation éthylénique
;
b) p est un entier de 1 à 1000 ;
c) s est un entier de 1 à 1000 ;
d) t est un entier de 1 à 100 ; et
e) φ est un résidu provenant d'un radical centré sur un carbone capable d'amorcer
une polymérisation radicalaire.
10. Copolymère non aléatoire selon la revendication 9, dans lequel le résidu φ répond
à la formule générale :

dans laquelle R
1 est choisi dans l'ensemble constitué par les radicaux alkyle en C
1-C
20, cycliques, hétérocycliques, alcynol, et aryle ; R
2 est choisi dans l'ensemble constitué par H et les radicaux alkyle en C
1-C
4, et SG est un groupe de stabilisation radicalaire.
11. Copolymère non aléatoire selon la revendication 9, dans lequel le résidu φ est choisi
dans l'ensemble constitué par un résidu de structure générale :

un résidu de structure suivante :

un résidu de structure suivante :

un résidu substitué de structure suivante :

et un résidu de structure suivante :

dans lesquels R
1 et R
2 sont indépendamment choisis dans l'ensemble constitué par les radicaux alkyle en
C
1-C
20, cycliques, hétérocycliques, et alcynol ; R
7 est choisi dans l'ensemble constitué par H et les radicaux alkyle en C
1-C
20, cycliques, hétérocycliques, alcynol et aryle ; Z est choisi dans l'ensemble constitué
par O et NH ; et X est un halogène.
12. Copolymère non aléatoire selon la revendication 10, dans lequel le résidu φ est choisi
dans l'ensemble constitué par l'acide 4-cyanovalérique, le cyclohexane-carbonitrile,
le N,N-diméthylformamide, l'isobutyronitrile, la 2-méthylpropionamidine, le 2,2-méthylbutyronitrile,
le propionitrile, le 2,4-diméthylvaléronitrile et le valéronitrile.
13. Copolymère non aléatoire selon l'une quelconque des revendications 9 à 12, dans lequel
les monomères à insaturation éthylénique sont tels que définis dans l'une quelconque
des revendications 7 et 8.
14. Copolymère non aléatoire selon l'une quelconque des revendications 9 à 13, ayant une
masse moléculaire moyenne en nombre de 500 à 1 000 000 telle que mesurée par chromatographie
par perméation sur gel utilisant des étalons de polystyrène.
15. Copolymère non aléatoire selon l'une quelconque des revendications 9 à 14, ayant un
indice de polydispersité inférieur à 2,5.
16. Composition thermodurcissable comprenant un mélange particulaire solide pouvant co-réagir,
constitué de :
(a) un réactif ayant au moins deux groupes fonctionnels ; et
(b) un copolymère non aléatoire de formule générale suivante :
φ-[-Ap-Bs-]t-φ
dans laquelle :
1) A et B sont des compositions différentes de monomères à insaturation éthylénique,
où B contient des monomères fonctionnels ayant un groupe fonctionnel réactif vis-à-vis
des groupes fonctionnels du réactif (a) ;
2) p est un entier de 1 à 1000 ;
3) s est un entier de 1 à 1000 ;
4) t est un entier de 1 à 100 ; et
5) φ est un résidu provenant d'un radical centré sur un carbone capable d'amorcer
une polymérisation radicalaire.
17. Composition thermodurcissable comprenant :
a) un agent de réticulation ayant au moins deux groupes fonctionnels ; et
b) un copolymère non statistique non gélifié tel que défini dans la revendication
16.
18. Composition thermodurcissable selon l'une quelconque des revendications 16 et 17,
dans laquelle les groupes fonctionnels du réactif (a) sont choisis dans l'ensemble
constitué par les radicaux époxy, oxirane, acide carboxylique, hydroxy, polyol, isocyanate,
isocyanate coiffé, amine, aminoplaste et β-hydroxyalkylamide ; les groupes fonctionnels
du copolymère non statistique (b) sont choisis dans l'ensemble constitué par les radicaux
époxy, oxirane, acide carboxylique, hydroxy, amide, oxazoline, acétoacétate, isocyanate,
et carbamate ; et dans laquelle les groupes fonctionnels du réactif (a) sont différents
de ceux du copolymère non statistique (b).
19. Composition thermodurcissable selon la revendication 18, dans laquelle le groupe fonctionnel
de la composition de monomères B du copolymère non statistique (b) est le groupe hydroxy
et le groupe fonctionnel du réactif dans (a) est un polyisocyanate coiffé, où le groupe
de coiffage de l'agent de réticulation à base de polyisocyanate coiffé est choisi
dans l'ensemble constitué par les composés à fonctionnalité hydroxy, les 1H-azoles,
les lactames, les cétoximes et leurs mélanges.
20. Composition thermodurcissable selon la revendication 18, dans laquelle le groupe de
coiffage est choisi dans l'ensemble constitué par le phénol, le benzoate de p-hydroxyméthyle,
le 1H-1,2,4-triazole, le 1H-2,5-diméthylpyrazole, la 2-propanone-oxime, la 2-butanone-oxime,
la cyclohexanone-oxime, l'ε-caprolactame et leurs mélanges.
21. Composition thermodurcissable selon la revendication 18, dans laquelle le polyisocyanate
dudit agent de réticulation à base de polyisocyanate coiffé est choisi dans l'ensemble
constitué par le diisocyanate de 1,6-hexaméthylène, le diisocyanate de cyclohexane,
le diisocyanate d'α,α'-xylylène, le diisocyanate d'α,α,α',α'-tétraméthylxylylène,
le 1-isocyanato-3,3,5-triméthyl-5-isocyanatométhylcyclohexane, le diisocyanate de
2,4,4-triméthylhexaméthylène, le diisocyanate de 2,2,4-triméthylhexaméthylène, le
diisocyanato-dicyclohexyl-méthane, les dimères desdits polyisocyanates, les trimères
desdits polyisocyanates, et leurs mélanges.
22. Composition thermodurcissable selon la revendication 19, dans laquelle le polymère
à fonctionnalité hydroxy a une masse d'équivalent hydroxy de 100 à 10 000 grammes
/ équivalent.
23. Composition thermodurcissable selon la revendication 18, dans laquelle A dérive d'au
moins l'un parmi les (méth)acrylates d'alkyle ayant de 1 à 20 atomes de carbone dans
le groupe alkyle, les monomères vinylaromatiques, les halogénures de vinyle, les esters
vinyliques d'acides carboxyliques et les oléfines, et B dérive de (méth)acrylates
d'hydroxyalkyle ayant de 1 à 20 atomes de carbone dans le groupe alkyle.
24. Composition thermodurcissable selon la revendication 19, dans laquelle le rapport
équivalent des équivalents isocyanates dans ledit agent de réticulation à base de
polyisocyanate coiffé (a) aux équivalents hydroxy dans ledit polymère à fonctionnalité
hydroxy (b) est situé dans la plage allant de 1/3 à 3/1.
25. Composition thermodurcissable selon la revendication 24, dans laquelle ledit agent
de réticulation à base de polyisocyanate coiffé est présent en une quantité de 1 à
45 % en poids, par rapport au poids total d'extrait sec de résine, et ledit polymère
à fonctionnalité hydroxy est présent en une quantité de 55 à 99 % en poids, par rapport
au poids total d'extrait sec de résine.
26. Composition thermodurcissable selon l'une quelconque des revendications 16 et 17,
dans laquelle la composition de monomères B du copolymère non statistique (b) contient
des monomères polymérisables par polymérisation radicalaire, à insaturation éthylénique,
à fonctionnalité oxirane, et le réactif (a) est un co-réactif à fonctionnalité carboxylique
ayant de 4 à 20 atomes de carbone.
27. Composition thermodurcissable selon la revendication 26, dans laquelle le réactif
acide carboxylique est choisi dans le groupe constitué par l'acide dodécanedioïque,
l'acide azélaïque, l'acide adipique, l'acide 1,6-hexanedioïque, l'acide succinique,
l'acide pimélique, l'acide sébacique, l'acide maléique, l'acide citrique, l'acide
itaconique, l'acide aconitique et leurs mélanges.
28. Composition thermodurcissable selon la revendication 27, comprenant en outre un deuxième
matériau à fonctionnalité acide polycarboxylique choisi dans l'ensemble constitué
par les acides carboxyliques aliphatiques en C4-C20, les polyanhydrides polymères, les polyesters, les polyuréthanes et leurs mélanges.
29. Composition thermodurcissable selon l'une quelconque des revendications 16 et 17,
dans laquelle la composition de monomères B du copolymère non statistique (b) contient
des monomères polymérisables par polymérisation radicalaire, à insaturation éthylénique,
à fonctionnalité carboxylique, et le réactif (a) est un β-hydroxyalkylamide.
30. Composition thermodurcissable selon la revendication 29, dans lequel le β-hydroxyalkylamide
est représenté par la formule suivante :

dans laquelle R
24 est H ou un radical alkyle en C
1-C
5 ; R
25 est H ou un radical alkyle en C
1-C
5 ou

où R
24 est tel que décrit ci-dessus, Q est une liaison chimique ou un radical organique
monovalent ou polyvalent dérivant de radicaux hydrocarbonés saturés, insaturés ou
aromatiques, y compris les radicaux hydrocarbonés substitués contenant de 2 à 20 atomes
de carbone, m vaut 1 ou 2, t vaut de 0 à 2, et m + t vaut au moins 2.
31. Composition thermodurcissable selon l'une quelconque des revendications 16 à 30, dans
laquelle le polymère non aléatoire est choisi dans l'ensemble constitué par les polymères
linéaires, les polymères ramifiés, les polymères hyper-ramifiés, les polymères en
étoile, les polymères greffés et leurs mélanges.
32. Composition thermodurcissable selon l'une quelconque des revendications 16 à 31, dans
laquelle le polymère non aléatoire a une masse moléculaire moyenne en nombre de 500
à 16 000 et un indice de polydispersité inférieur à 2,5.
33. Composition thermodurcissable selon l'une quelconque des revendications 16 à 32, dans
laquelle les monomères à insaturation éthylénique de la composition de monomères A
sont tels que définis dans l'une quelconque des revendications 7 et 8.
34. Composition thermodurcissable comprenant une phase résineuse dispersée dans un milieu
aqueux, ladite phase résineuse comprenant les composants suivants :
(a) un copolymère non statistique non gélifié de formule générale suivante :
φ- [-Ap-Bs-]t-φ
dans laquelle :
(1) A et B sont des compositions différentes de monomères à insaturation éthylénique,
B contenant des monomères fonctionnels ayant un groupe fonctionnel choisi dans l'ensemble
constitué par les groupes hydrogène actif et les groupes sel d'onium ;
(2) p est un entier de 1 à 1000 ;
(3) s est un entier de 1 à 1000 ;
(4) t est un entier de 1 à 100 ; et
(5) φ est un résidu provenant d'un radical centré sur un carbone capable d'amorcer
une polymérisation radicalaire ; et
(b) un agent durcisseur ayant au moins deux groupes fonctionnels qui sont réactifs
avec les groupes hydrogène actif de (a).
35. Composition thermodurcissable selon la revendication 34, dans laquelle le polymère
contenant des groupes hydrogène actif a une masse moléculaire moyenne en nombre située
dans la plage allant de 1 000 à 30 000.
36. Composition thermodurcissable selon la revendication 34, dans laquelle le polymère
a une masse équivalente de groupes sel d'onium de 1 000 à 15 000 grammes/équivalent.
37. Composition thermodurcissable selon la revendication 34, dans laquelle A est un résidu
dérivant d'au moins l'un parmi les monomères de vinyle, les monomères allyliques,
et les oléfines.
38. Composition thermodurcissable selon la revendication 34, dans laquelle A dérive d'au
moins l'un parmi les (méth)acrylates d'alkyle ayant de 1 à 20 atomes de carbone dans
le groupe alkyle, les monomères vinylaromatiques et les oléfines.
39. Composition thermodurcissable selon la revendication 34, dans laquelle les groupes
hydrogène actif de la composition de monomères B dérivent d'au moins l'un parmi les
esters hydroxyalkyliques d'acide (méth)acrylique contenant de 1 à 4 atomes de carbone
dans le groupe hydroxyalkyle.
40. Composition thermodurcissable selon la revendication 34, dans laquelle les groupes
hydrogène actif de la composition de monomères B dérivent d'au moins l'un parmi le
(méth)acrylate d'hydroxyéthyle et le (méth)acrylate d'hydroxypropyle.
41. Composition thermodurcissable selon la revendication 34, dans laquelle le sel d'onium
de la composition de monomères B est choisi parmi au moins l'un de la classe constituée
des sels d'ammonium quaternaire et des sels de sulfonium quaternaire.
42. Composition thermodurcissable selon la revendication 34, dans laquelle le polymère
non aléatoire comprend en outre des segments de composition de monomères G, qui dérive
d'au moins un monomère à insaturation éthylénique contenant un groupe époxy qui, après
polymérisation, a été soumis à une post-réaction avec un sel d'acide aminé.
43. Composition thermodurcissable selon la revendication 42, dans laquelle G dérive d'au
moins un monomère contenant un groupe époxy qui, après polymérisation, a été soumis
à une post-réaction avec un sulfure en présence d'un acide.
44. Composition thermodurcissable selon la revendication 42, dans laquelle le polymère
contenant des groupes hydrogène actif est un polymère pratiquement linéaire ayant
une masse moléculaire moyenne en nombre située dans la plage allant de 1 000 à 30
000, et dans laquelle
G dérive d'au moins un monomère contenant un groupe époxy qui, après polymérisation,
a été soumis à une post-réaction avec un sel d'acide aminé ;
B dérive d'au moins un (méth)acrylate d'hydroxyalkyle ayant de 1 à 4 atomes de carbone
dans le groupe alkyle ; et
A dérive d'au moins l'un parmi les monomères (méth)acrylates, les monomères vinylaromatiques,
et les oléfines.
45. Composition thermodurcissable selon la revendication 44, dans laquelle le polymère
a une masse équivalente de groupes sel d'onium située dans la plage allant de 1 000
à 15 000 grammes/équivalent.
46. Composition thermodurcissable selon la revendication 44, dans laquelle le polymère,
avant la formation des groupes sel d'onium, a un indice de polydispersité inférieur
à 2,5.
47. Composition thermodurcissable selon l'une quelconque des revendications 34 à 46, dans
laquelle le composant (a) est présent en une quantité située dans la plage allant
de 25 à 99 % en poids, et le composant (b) est présent en une quantité située dans
la plage allant de 1 à 75 % en poids, les pourcentages en poids étant basés sur le
poids total de (a) et (b).
48. Composition thermodurcissable selon l'une quelconque des revendications 16 à 47, dans
laquelle le résidu φ est tel que défini dans l'une quelconque des revendications 10
à 12.