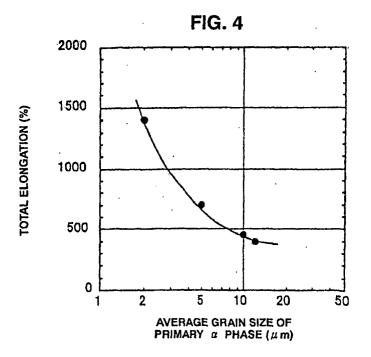
(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

- (43) Date of publication: 21.01.2004 Bulletin 2004/04
- (21) Application number: 02703899.1
- (22) Date of filing: 26.02.2002

- (51) Int CI.⁷: **C22C 14/00**, C22F 1/18, B21B 3/00
- (86) International application number: **PCT/JP2002/001710**
- (87) International publication number: WO 2002/070763 (12.09.2002 Gazette 2002/37)
- (84) Designated Contracting States:

 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU


 MC NL PT SE TR
- (30) Priority: 28.02.2001 JP 2001054809
- (71) Applicant: JFE Steel Corporation Tokyo, 100-0011 (JP)
- (72) Inventors:
 - FUKAI, Hideaki, c/o Int. Prop. Dep. JFE Steel Corp Tokyo 100-0011 (JP)

- OGAWA, Atsushi, c/o Int. Prop. Dep. JFE Steel Corp Tokyo 100-0011 (JP)
- MINAKAWA, Kuninori, c/o Int.Prop.Dep.JFE Steel Cor Tokyo 100-0011 (JP)
- (74) Representative: HOFFMANN EITLE Patent- und Rechtsanwälte Arabellastrasse 4 81925 München (DE)

(54) TITANIUM ALLOY BAR AND METHOD FOR PRODUCTION THEREOF

(57) The invention relates to an $\alpha\text{+}\beta$ type titanium alloy bar consisting essentially of 4 to 5 % Al, 2.5 to 3.5 % V, 1.5 to 2.5 % Fe, 1.5 to 2.5 % Mo, by mass, and balance of Ti, and having 10 to 90 % of volume fraction of primary α phase, 10 μm or less of average grain size

of the primary α phase, and 4 or less of aspect ratio of the grain of the primary α phase on the cross sectional plane parallel in the rolling direction of the bar. The $\alpha+\beta$ type titanium alloy bar has excellent ductility, fatigue characteristics and formability.

Description

20

30

35

40

45

50

TECHNICAL FIELD

[0001] The present invention relates to a titanium alloy bar having excellent ductility, fatigue characteristics and formability, particularly to an $\alpha+\beta$ type titanium alloy bar, and to a method for manufacturing thereof.

BACKGROUND ART

[0002] Owing to high strength, light weight and excellent corrosion resistance, titanium alloys are used as structural materials in the fields such as chemical plants, power generators, aircrafts and the like. Among them, an $\alpha+\beta$ type titanium alloy occupies a large percentage of use because of its high strength and relatively good formability.

[0003] Products made of titanium alloys have various shapes such as sheet, plate, bar and so on. The bar may be used as it is, or may be forged or formed in complex shapes such as a threaded fastener. Accordingly, the bar is requested to have excellent formability as well as superior ductility and fatigue characteristics.

[0004] Fig. 1 shows a typical manufacturing method of bar.

[0005] An ingot prepared by melting is forged to a billet as a base material for hot rolling. As shown in Fig. 2A and Fig. 2B, the billet is hot rolled to a bar after reheated in a reheating furnace using a reverse rolling mill or tandem rolling mills. If necessary, the billet is intermediately reheated during hot rolling to compensate the temperature needed for subsequent hot rolling.

[0006] As for a titanium alloy bar, particularly as for an α + β type titanium alloy bar, however, the temperature of billet increases during hot rolling owing to the adiabatic heat, which disturbs stable hot rolling and manufacturing of a titanium alloy bar having excellent ductility, fatigue characteristics and formability. For example, if the temperature of billet increases to β transus or above, the finally hot rolled bar has β microstructure consisting mainly of acicular α phase, thus failing in attaining superior ductility and fatigue characteristics. In addition, even as for a Ti-6Al-4V alloy having high β transus, the increase in temperature during hot rolling owing to the adiabatic heat enhances grain growth, although the temperature during hot rolling hardly exceeds β transus, thus failing in attaining excellent ductility, fatigue characteristics and formability.

[0007] To solve the problem of temperature increase during hot rolling caused by the adiabatic heat, JP-A-59-82101, (the term "JP-A" referred herein signifies the "unexamined Japanese patent publication"), discloses a rolling method in which cross sectional area reduction rate of billet is specified to 40 % or less per rolling pass in α region or in α + β region. JP-A-58-25465 discloses a method in which billet is water cooled during hot rolling to suppress the temperature rise caused by the adiabatic heat. Furthermore, Article 1 "Hot Bar Rolling of Ti-6Al-4V in a Continuous Mill (Titanium '92 Science and Technology)" describes that hot rolling speed is reduced to the lower limit of keeping performance of mill in order to suppress the adiabatic heat.

[0008] The methods disclosed in JP-A-59-82101 and JP-A-58-25465, however, cannot produce a titanium alloy bar that simultaneously has excellent ductility, fatigue characteristics and formability.

[0009] Even if cross sectional area reduction rate per rolling is 40 % or less according to the method of JP-A-59-82102, it is not sufficient to suppress the adiabatic heat for some kinds of titanium alloys. The method of JP-A-58-25465 also causes characteristics deterioration by hydrogen absorption caused by water cooling, and difficulty in accurate temperature control because of deformation resulted from rapid cooling.

[0010] The method described in Article 1 deals with a Ti-6Al-4V alloy. As described below, the method is not necessarily applicable to alloys which generate large adiabatic heat and therefor should be hot rolled in low temperature region, resulting in poor ductility, fatigue characteristics and formability.

[0011] Fig. 3 shows a relationship between temperature and rolling time during hot rolling for Ti-6Al-4V alloy and Ti-4.5A1-3V-2Fe-2Mo alloy.

[0012] The heating temperature was 950 °C for the Ti-6Al-4V alloy, and 850 °C for the Ti-4.5Al-3V-2Fe-2Mo alloy. The Ti-4.5Al-3V-2Fe-2Mo alloy has lower β transus than that of the Ti-6Al-4V alloy by 100 °C so that the heating temperature was reduced by the difference, thus selecting 850 °C as the heating temperature thereof. The rolling was conducted using a reverse rolling mill and tandem rolling mills, while selecting the same conditions of rolling speed, reduction rate and pass schedule to both alloys. The rolling speed of reverse rolling mill was 2.7 m/sec, and the rolling speed of tandem rolling mills was 2. 25 m/sec at the final rolling pass where the rolling speed becomes the maximum for both alloys. The rolling speeds are lower than the rolling speed of Article 1 (6 m/sec). The cross sectional area reduction rate was selected to maximum 26 % for both alloys.

[0013] For the case of the Ti-6Al-4V alloy, the rolling was conducted at a sufficiently lower temperature than 1000 $^{\circ}$ C which is the β transus of the alloy, thus giving favorable structure. For the case of the Ti-4.5Al-3V-2Fe-2Mo alloy, however, even if the heating temperature was decreased by the magnitude of low β transus, the low temperature rolling resulted in increased deformation resistance and in increased adiabatic heat, so the temperature increased to a tem-

perature region exceeding the β transus, thus failed to obtain favorable microstructure. As a result, excellent ductility, fatigue characteristics and formability were not obtained. The result suggests that rolling conditions such as rolling temperature, reduction rate and time between rolling passes shall be considered, as well as the rolling speed.

5 DISCLOSURE OF THE INVENTION

[0014] An object of the present invention is to provide a high strength titanium alloy bar having excellent ductility, fatigue characteristics and formability, and to provide a method of manufacturing thereof.

[0015] The object is attained by an $\alpha+\beta$ type titanium alloy bar consisting essentially of 4 to 5 % Al, 2.5 to 3.5 % V, 1.5 to 2.5 % Fe, 1.5 to 2.5 % Mo, by mass, and balance of Ti, and having 10 to 90 % of volume fraction of primary α phase, 10 μ m or less of average grain size of the primary α phase, and 4 or less of aspect ratio of the grain of the primary α phase on the cross sectional plane parallel in the rolling direction of the bar.

[0016] The $\alpha+\beta$ type titanium alloy bar can be manufactured by a method comprising the step of hot rolling an $\alpha+\beta$ type titanium alloy consisting essentially of 4 to 5 % Al, 2.5 to 3.5 % V, 1.5 to 2.5 % Fe, 1.5 to 2.5 % Mo, by mass, and balance of Ti, while keeping the surface temperature thereof to β transus or below.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017]

20

15

25

30

35

40

45

50

Fig. 1 shows a typical method for manufacturing a bar.

Fig. 2 shows a process for hot rolling a bar.

Fig. 3 shows a relationship between temperature and rolling time during hot rolling for Ti-6Al-4V alloy and Ti-4.5Al-3V-2Fe-2Mo alloy.

Fig. 4 shows a relationship between average grain size of primary α phase and total elongation measured by high temperature tensile test.

Fig. 5 shows a relationship between average grain size of primary α phase and fatigue strength after 10⁸ cycles observed in fatigue test.

Fig. 6 shows temperature changes with time at surface and center.

Fig. 7 shows a relationship between cross sectional area and temperature difference between surface and center.

EMBODIMENTS OF THE INVENTION

[0018] The inventors of the present invention studied the microstructure of $\alpha+\beta$ type titanium alloy bar to provide excellent ductility, fatigue characteristics and formability, and found the followings.

[0019] The $\alpha+\beta$ type titanium alloy consists of primary α phase and transformed β phase. If, however, the alloy contains very large volume fraction of α phase that has HCP structure having little sliding system, or contains very large volume fraction of transformed β phase containing acicular α phase, formability and ductility deteriorate. Consequently, the volume fraction of primary α phase is specified to a range of from 10 to 90 %. If the volume fraction of α phase and of β phase is equal or close to each other at reheating stage before hot rolling, the formability becomes better, so the volume fraction of primary α phase is preferably between 50 and 80 %.

[0020] Fig. 4 shows a relationship between average grain size of primary α phase and total elongation measured by high temperature tensile test.

[0021] When the average grain size of primary α phase exceeds 10 μ m, the total elongation measured by high temperature tensile test rapidly decreases, and therefore the formability degrades .

[0022] Fig. 5 shows a relationship between average grain size of primary α phase and fatigue strength after 10⁸ cycles observed in fatigue test.

[0023] If the average grain size of primary α phase exceeds 10 μ m, the fatigue strength decreases . If the average grain size of primary α phase becomes less than 6 μ m, higher fatigue strength is attained.

[0024] Forging a bar induces rough surface on a free deforming plane not contacting with a mold due to the shape of grains, or due to the aspect ratio of the grains. Generally, the grains of bar tend to be elongated in the rolling direction. Particularly for the case of upset forging, elongated grains appear on a side face of the bar that becomes a free deforming plane. Therefore, it is necessary to avoid excessive increase in the aspect ratio during forging, more concretely to regulate the aspect ratio not exceeding 4 for the grains of the primary a phase on a cross section parallel in the rolling direction of the bar in order to prevent rough surface on the bar after forged.

[0025] Based on the above-described findings, a high strength titanium alloy bar having excellent ductility, fatigue characteristics and formability is obtained when the volume fraction of the primary α phase is between 10 and 90 %, preferably between 50 and 80 %, the average grain size in the primary α phase is 10 μ m or less, preferably 6 μ m or

less, and further the aspect ratio of grains in the primary α phase is 4 or less.

[0026] The $\alpha+\beta$ type titanium alloy bar having above-described microstructure should consist essentially of 4 to 5 % Al, 2.5 to 3.5 % V, 1.5 to 2.5 % Fe, 1 . 5 to 2.5 % Mo, by mass, and balance of Ti. The reasons to limit the content of individual elements are described below.

ΑI

5

10

15

20

30

35

40

45

50

55

[0027] Aluminum is an essential element to stabilize the α phase and to contribute to the strength increase. If the Al content is below 4 %, high strength cannot fully be attained. If the Al content exceeds 5 %, ductility degrades.

٧

[0028] Vanadium is an element to stabilize the β phase and to contribute to the strength increase. If the V content is below 2. 5 %, high strength cannot fully be attained, and β phase becomes unstable. If the V content exceeds 3.5 %, range of workable temperature becomes narrow caused by the lowered β transus , and cost increases.

Мо

[0029] Molybdenum is an element to stabilize the β phase and to contribute to the strength increase. If the Mo content is below 1.5%, high strength cannot fully be attained, and β phase becomes unstable. If the Mo content exceeds 2.5%, range of workable temperature becomes narrow caused by the lowered β transus, and cost increases.

Fe

[0030] Iron is an element to stabilize the β phase and to contribute to the strength increase. Iron rapidly diffuses to improve formability. If, however, the Fe content is below 1.5%, high strength cannot fully be attained, and the β phase becomes unstable, which results in failing to attain excellent formability. If the Fe content exceeds 2.5%, range of workable temperature becomes narrow caused by the lowered β transus, and degradation in characteristics is induced by segregation.

[0031] The α + β type titanium alloy bar according to the present invention may be manufactured by hot rolling an α + β type titanium alloy having above-described composition while adjusting the conditions of heating temperature, rolling temperature range, reduction rate, rolling speed, time between passes, and other variables to suppress the temperature rise caused by the adiabatic g heat, namely to keep the surface temperature of the alloy not exceeding the β transus. For example, the method comprises the steps of: heating an α + β type titanium alloy having β transus of T β °C so that the surface temperature ranges between (T β - 150) and T β °C; and hot rolling the heated α + β type titanium alloy so that the surface temperature thereof during hot rolling is between (T β - 300) and (T β - 50) °C, and so that the finish surface temperature thereof is between (T β - 300) and (T β - 100) °C.

[0032] The reason of heating the surface before hot rolling in the range of from (T β - 150) to T β °C is the following. If the surface temperature before hot rolling is below (T β - 150) °C, the decrease in temperature during the final rolling stage becomes significant to increase crack susceptibility and deformation resistance. And, if the surface temperature before hot rolling exceeds T β °C, the microstructure of the bar becomes β microstructure consisting mainly of acicular α phase, which deteriorates ductility and formability. The reason of limiting the surface temperature during hot rolling to the range of from (T β - 300) to (T β - 50) °C is the following. If the surface temperature during hot rolling is below (T β - 300) °C, the hot formability deteriorates to induce problems such as cracking. And, if the surface temperature during hot rolling exceeds (T β - 50) °C, the temperature rise caused by the adiabatic heat induces coarse grains and formation of acicular phase. The reason of limiting the finish surface temperature immediately after the final rolling pass to the range of from (T β - 300) and (T β - 100) °C is the following. If the finish temperature thereof is below (T β - 300) °C, the crack susceptibility and the deformation resistance increase. And, if the finish temperature thereof exceeds (T β - 100) °C, grains become coarse.

[0033] The hot rolling is conducted by plurality of rolling passes. To prevent temperature rise caused by the adiabatic heat, it is preferable to keep the reduction rate not more than 40 % per rolling pass.

[0034] When the hot rolling is conducted by a reverse rolling mill, it is preferable to limit the rolling speed not more than 6 m/sec to prevent the temperature rise caused by the adiabatic heat. When the hot rolling is conducted by tandem rolling mills, it is preferable to limit the rolling speed not more than 1.5 m/sec.

[0035] Since the alloy is cooled from surface af ter each rolling pass, the surface of the alloy receives temperature drop to some extent before entering succeeding pass even if a temperature rise exists caused by the adiabatic heat. As shown in Fig. 6, however, if the alloy has a large diameter (for the case of 106 mm in diameter), the temperature drop at center section of the alloy is small so that a large temperature difference appears between the surface and the

center of the alloy. When the temperature drop at the center is small, the alloy is subjected to succeeding rolling pass before lowering the temperature of the center, which further increases the temperature owing to the adiabatic heat. If the phenomenon sustains, the center is hot rolled at higher temperature than the initial temperature. Consequently, the center of alloy having large diameter is required to be cooled with sufficient time between rolling passes.

[0036] To this point, the inventors of the present invention made a detailed study on the temperature difference between the surface and the center, and derived the finding described below. As shown in Fig. 7, the temperature difference significantly increases at or above 3500 mm 2 of cross sectional area of alloy normal to the rolling direction thereof. When an alloy having large cross sectional area is hot rolled to S mm 2 of the cross sectional area, securing the time before entering succeeding rolling at 0.167 x S $^{1/2}$ sec or more can make the temperature difference small and is favorable in manufacturing a bar having homogeneous characteristics.

[0037] According to the manufacturing method of the present invention, the hot rolling is carried out while keeping the surface temperature of the alloy to β transus or below, thus there is a possibility for the surface temperature to decrease to a lower than the required rolling temperature range during hot rolling depending on the time between rolling passes and on the diameter of alloy. In that case, reheating the alloy may be given using a high frequency heating unit or the like.

Example 1

10

15

20

30

35

40

45

50

[0038] Materials having 125 square mm size were prepared by cutting each of the base alloy A01 (having composition within the range of the present invention) and the base alloy A02 (having composition outside the range of the present invention), both of which are α + β type titanium alloy having respective chemical compositions given in Table 1. The materials are hot rolled using a caliber rolling mill under respective conditions (B01 through B18) given in Table 2 to produce bars having 20 mm and 50 mm in diameter, respectively. For the time between rolling passes given in Table 2, \bigcirc denotes the time between rolling passes of 0.167 x S^{1/2} or more for all the rolling passes under each rolling condition, and \times denotes the time between rolling passes of less than 0.167 x S^{1/2}. Table 3 through Table 20 give cross sectional area S of alloy, reduction rate, 0.167 x S^{1/2}, time between rolling passes, surface temperature, and rolling speed on each rolling pass under each rolling condition. R in the table signifies a reverse rolling mill, and T signifies tandem rolling mills.

[0039] The produced bars were annealed at temperatures between 700 and 720 $^{\circ}$ C. Tensile test was conducted to determine yield strength (0.2 % PS), tensile strength (UTS), elongation (EI), and reduction of area (RA). In addition, the smooth fatigue test (under the condition of Kt = 1) and the notch fatigue test (under the condition of Kt = 3) were given to determine fatigue strength.

[0040] Furthermore, optical microstructure examination was performed at the center of the bar and at the position of quarter of diameter (1/4 D) to determine grain size of primary α phase, volume fraction of the grains, and aspect ratio of the grains on a cross section parallel in the rolling direction.

[0041] The results are given in Table 21. The columns of the microstructure in the table giving no grain size mean that the position consisted only of β microstructure consisting mainly of acicular α phase and that the equiaxed primary a phase could not be observed.

[0042] When the surface heating temperature is below $(T\beta$ - 150)°C, the surface temperature of the alloy was excessively low, and the rolling load became excessive to fail in rolling. When the heating temperature exceeds $T\beta$ °C, the surface temperature of the alloy became too high even if the time between rolling passes was within the range of the present invention, which is seen under the rolling conditions of B02 and B11, so the surface temperature exceeded $T\beta$ °C caused by the adiabatic heat to form β microstructure consisting mainly of acicular α phase at the center of the bar, thus deteriorated ductility and fatigue characteristics.

[0043] When the finish surface temperature was below ($T\beta$ - 300) °C, the temperature of the alloy became too low, which deteriorated formability to generate cracks during hot rolling. When the finish surface temperature exceeded ($T\beta$ - 100) °C, fine microstructure could not be attained, deteriorating ductility and fatigue characteristics as in the cases under the conditions of B04, B05, and B07.

[0044] When the surface temperature during hot rolling was below (T β - 300) °C, the surface temperature was too low, generating cracks. When the surface temperature exceeded (T β -50) °C, the center and the 1/4 D had β microstructure consisting mainly of acicular a phase after hot rolling, deteriorating ductility and fatigue characteristics.

[0045] When the reduction rate per rolling pass exceeded 40 %, the adiabatic heat was enhanced, and the temperature of the alloy exceeded Tß °C, and fine microstructure could not be attained.

[0046] In the case of the rolling condition B14 which applied a reverse rolling mill and which selected the rolling speeds of higher than 6 m/sec, or in the case of rolling condition B15 which applied tandem rolling mills and which selected the rolling speeds of higher than 1.5 m/sec, the adiabatic heat became large, and the surface temperature exceeded $T\beta$ °C, thus failed to attain fine microstructure.

[0047] When the time between rolling passes was outside the range of the present invention, the surface temperature

increase caused by the adiabatic heat overrode the temperature decrease caused by air cooling, thus the surface temperature exceeded $T\beta$ °C, and fine microstructure could not be attained.

[0048] With the bars using A01 which had the chemical composition within the range of the present invention and produced under the rolling conditions B01, B06, B08, B09, B16, B17, and B18, homogeneous microstructure of 10 μ m or smaller grain size of primary α phase was observed, and they provided excellent ductility and fatigue characteristics. That is, further excellent ductility and fatigue characteristics could be attained giving 15 % or larger elongation, 40 % or larger reduction of area, 500 MPa or larger smooth fatigue strength, and 200 MPa of notch (Kt=3) fatigue strength. Furthermore, with the α + β type titanium alloy bars having 50 to 80 % of volume fraction of primary α phase and 6 μ m or less of average grain size of primary α phase, produced under the rolling conditions of B01, B06, B08, and B09, further excellent ductility and fatigue characteristics could be attained giving 20 % or larger elongation, 50 % or larger reduction of area, 550 MPa or larger smooth fatigue strength, and 200 MPa of notch (Kt=3) fatigue strength.

[0049] On the other hand, bars produced using A02 having chemical composition outside the range of the present invention under the rolling conditions of B10 and B12 could not attain satisfactory ductility and fatigue characteristics because the grain size in the primary α phase exceeded 10 μ m, though the adiabatic heat was suppressed because the rolling conditions were within the range of the present invention.

Example 2

15

20

30

35

40

45

50

55

[0050] Cylindrical specimens having 8 mm in diameter and 12 mm in height were cut from the center section in radial direction of bars produced in Example 1 under the rolling conditions B01 through B18, respectively. The specimens were heated to 800 °C and were compressed to 70 %. After the compression, the occurrence of cracks and of rough surface on the surface of each specimen was inspected to give evaluation of hot forging property.

[0051] The results are shown in Table 21.

[0052] As for the bars produced under the rolling conditions of B01, B06, B08, B09, B16, B17, and B18 which were within the range of the present invention, no crack and rough surface appeared, and favorable hot forging property was obtained.

[0053] On the other hand, for the bars produced under the rolling conditions of B10 and B12 in which the grain size in the primary α phase exceeded 10 μ m, rough surface appeared, though no crack was generated. As for the bars having only α phase at center and 1/4 D produced under the rolling conditions of B02 , B03, B04, B05, B07, B11, B14, and B15, both cracks and rough surface appeared. Furthermore, for the bars produced under the rolling condition B14 giving aspect ratios of more than 4 for the grains in a cross section parallel in the rolling direction, though giving the grain size in the primary a phase and the volume fraction within the range of the present invention, rough surface also appeared.

Alloy	Al	V	Fe	Мо	0	С	N	Н	β transus		
A01	4.7	3.1	2.1	1.9	0.1	0.001	0.005	0.0017	900 °C		
A02	6.1	4.1	0.2	-	0.2	0.01	0.006	0.0016	1000 °C		
Un	Unit is mass%.										

ပ

25.8

17

0

806

791-887

900

 ϕ 50

A02

B10

	Remark	ធ	၁	၁	၁	ວ	3	ວ	3	ы
10	Finel rolling speed in finish rolling (Tandem rolling mils)	1.125	1,125	1.125	1,125	1,125	1,125	1.125	1.125	1.125
15	Rolling speed in rough rolling (Reverse rolling mill) (m/sec)	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
20	Maximum reduction rate per rolling pass (%)	25.8	25.8	25.8	42.4	25.8	18.4	18.4	25.8	25.8
25	Total number of passes	17	17	17	. 80	17	12	12	11	21
	Time between passes	0.	0	0	0	×	0	×	0	0
30	Finish temp. (C)	714	765	764	919	865	731	874	069	726
35	Rolling temp. range (C)	700-811	755-929	754-911	818-930	845-901	711-804	864-909	670-812	721-829
	Reheat- ing temp.	800	250	890	850	800	800	830	800	820
40	Pinish diameter (mm)	φ20	φ20	φ20	φ 20	φ20	φ 20	φ 20	φ 20	φ20
45	Alloy	A01	AO1	A01	A01	A01	A01	A01	AO1	A01
50	Table 2 Rolling condition	B01	B02	B03	B04	B05	B06	B07	B08	B09

ບ υ ပ ပ Ü ы ы M 1.125 1.125 1.125 1.125 2,250 1.125 10.8 18.4 25.8 25.8 25.8 18.4 11 17 17 17 17 12 11 0 0 0 0 Ö 0 0 0 825 830 869 774 864 777 772 815-1024 764-845 157-842 810-906 698-928 719-910 774-911 772-850 1050 900 830 920 800 800 830 ϕ 50 φ 20 ϕ 20 φ 20 ϕ 20 φ 20 ϕ 20 ф 20 A02 A02 A01 A01 A01 A01 A01 A01 B12 B11 B13 B14 B15 B16 **B17** B18

Example, C: Comparative example <u>ម</u>េ

Numerals with underline signify that they are outside the range of the present invention.

55

Table 3

				Rolling cor	ndition: B01			
5	Number of passes	Cross sectional area (mm ²)	Reduction rate (%)	0.167√S (sec)	Time between passes (sec)	Rolling speed (m/ sec)	Temp. (°C)	Rolling mill
		15625						
10	1	13000	16.8	19.0	25	2.7	790	R
	2	11000	15.4	17.5	25	2.7	796	R
	3	9500	13.6	16.3	25	2.7	801	R
15	4	8000	15.8	14.9	25	2.7	803	R
	5	6500	18.8	13.5	25	2.7	811	R
	6	5200	20.0	12.0	25	2.7	801	R
	7	4150	20.2	10.8	25	2.7	779	R
20	8	3300	20.5	9.6	25	2.7	761	R
	9	2450	25.8	8.3	25	2.7	738	R
	10	1850	24.5	7.2	25	2.7	719	R
25	11	1450	21.6	6.4	5	0.350	721	Т
	12	1150	20.7	5.7	5	0.466	732	Т
	13	900	21.7	5.0	5	0.581	739	Т
30	14	700	22.2	4.4	5	0.733	745	Т
30	15	550	21.4	3.9	5	0.871	741	Т
	16	420	23.6	3.4	5	0.982	730	Т
	17	320	23.8			1.125	714	Т

Table 4

			Rolling cor	ndition: B02			
Number of passes	Cross sectional area (mm²)	Reduction rate (%)	0.167√S (sec)	Time between passes (sec)	Rolling speed (m/ sec)	Temp. (°C)	Rolling mill
	15625						
1	13000	16.8	19.0	25	2.7	929	R
2	11000	15.4	17.5	25	2.7	925	R
3	9500	13.6	16.3	25	2.7	919	R
4	8000	15.8	14.9	25	2.7	913	R
5	6500	18.8	13.5	25	2.7	911	R
6	5200	20.0	12.0	25	2.7	900	R
7	4150	20.2	10.8	25	2.7	891	R
8	3300	20.5	9.6	25	2.7	880	R
9	2450	25.8	8.3	25	2.7	868	R

Table 4 (continued)

			Rolling con	dition: B02			
Number of passes	Cross sectional area (mm²)	Reduction rate (%)	0.167√S (sec)	Time between passes (sec)	Rolling speed (m/ sec)	Temp. (°C)	Rolling mill
10	1850	24.5	7.2	25	2.7	860	R
11	1450	21.6	6.4	5	0.350	852	Т
12	1150	20.7	5.7	5	0.466	839	Т
13	900	21.7	5.0	5	0.581	829	Т
14	700	22.2	4.4	5	0.733	822	Т
15	550	21.4	3.9	5	0.871	803	Т
16	420	23.6	3.4	5	0.982	785	Т
17	320	23.8			1.125	765	Т

			Tab	ole 5			
			Rolling cor	ndition: B03			
Number of passes	Cross sectional area (mm²)	Reduction rate (%)	0.167√S (sec)	Time between passes (sec)	Rolling speed (m/ sec)	Temp. (°C)	Rolling mill
	15625						
1	13000	16.8	19.0	25	2.7	890	R
2	11000	15.4	17.5	25	2.7	894	R
3	9500	13.6	16.3	25	2.7	899	R
4	8000	15.8	14.9	25	2.7	906	R
5	6500	18.8	13.5	25	2.7	911	R
6	5200	20.0	12.0	25	2.7	902	R
7	4150	20.2	10.8	25	2.7	889	R
8	3300	20.5	9.6	25	2.7	881	R
9	2450	25.8	8.3	25	2.7	867	R
10	1850	24.5	7.2	25	2.7	860	R
11	1450	21.6	6.4	5	0.350	852	Т
12	1150	20.7	5.7	5	0.466	839	Т
13	900	21.7	5.0	5	0.581	830	Т
14	700	22.2	4.4	5	0.733	820	Т
15	550	21.4	3.9	5	0.871	803	Т
16	420	23.6	3.4	5	0.982	784	Т
17	320	23.8			1.125	764	Т

Table 6

				Rolling con	idition: B04			
5	Number of passes	Cross sectional area (mm²)	Reduction rate (%)	0.167√S (sec)	Time between passes (sec)	Rolling speed (m/ sec)	Temp. (°C)	Rolling mill
		15625						
10	1	9300	40.5	19.0	25	2.7	849	R
	2	5500	40.9	17.5	25	2.7	865	R
	3	3300	40.0	16.3	25	2.7	879	R
15	4	1900	42.4	14.9	25	2.7	896	R
	5	1100	42.1	13.5	25	2.7	912	R
	6	660	40.0	12.0	25	2.7	921	R
20	7	400	39.4	10.8	25	2.7	930	R
20	8	320	20.0			2.7	919	R

Table 7

				Tab	ole 7			
25				Rolling cor	ndition: B05			
30	Number of passes	Cross sectional area (mm²)	Reduction rate (%)	0.167√S (sec)	Time between passes (sec)	Rolling speed (m/ sec)	Temp. (°C)	Rolling mill
		15625						
	1	13000	16.8	19.0	10	2.7	791	R
	2	11000	15.4	17.5	10	2.7	805	R
35	3	9500	13.6	16.3	10	2.7	819	R
	4	8000	15.8	14.9	10	2.7	836	R
	5	6500	18.8	13.5	10	2.7	850	R
40	6	5200	20.0	12.0	10	2.7	865	R
	7	4150	20.2	10.8	10	2.7	871	R
	8	3300	20.5	9.6	10	2.7	875	R
	9	2450	25.8	8.3	10	2.7	879	R
45	10	1850	24.5	7.2	10	2.7	884	R
	11	1450	21.6	6.4	5	0.350	901	Т
	12	1150	20.7	5.7	5	0.466	899	Т
50	13	900	21.7	5.0	5	0.581	895	Т
	14	700	22.2	4.4	5	0.733	895	Т
	15	550	21.4	3.9	5	0.871	883	Т
	16	420	23.6	3.4	5	0.982	875	Т
55	17	320	23.8			1.125	860	Т

Table 8

			Rolling cor	ndition: B06			
Number of passes	Cross sectional area (mm²)	Reduction rate (%)	0.167√S (sec)	Time between passes (sec)	Rolling speed (m/ sec)	Temp. (°C)	Rolling mill
	15625						
1	13000	16.8	19.0	25	2.7	791	R
2	11000	15.4	17.5	25	2.7	796	R
3	9500	13.6	16.3	25	2.7	801	R
4	8000	15.8	14.9	25	2.7	804	R
5	6700	16.3	13.7	25	2.7	806	R
6	6000	10.5	12.9	25	2.7	784	R
7	5200	13.3	12.0	25	2.7	764	R
8	4650	10.6	11.4	25	2.7	746	R
9	3800	18.3	10.3	25	2.7	733	R
10	3100	18.4	9.3	5	0.622	733	Т
11	2600	16.1	8.5	5	0.837	734	Т
12	2210	15.0			1.125	731	Т

Table 9

			Tab	16 3			
			Rolling con	dition: B07			
Number of passes	Cross sectional area (mm²)	Reduction rate (%)	0.167√S (sec)	Time between passes (sec)	Rolling speed (m/ sec)	Temp. (°C)	Rolling mill
	15625						
1	13000	16.8	19.0	10	2.7	819	R
2	11000	15.4	17.5	10	2.7	836	R
3	9500	13.6	16.3	10	2.7	849	R
4	8000	15.8	14.9	10	2.7	873	R
5	6700	16.3	13.5	10	2.7	879	R
6	6000	10.5	12.9	10	2.7	896	R
7	5200	13.3	12.0	10	2.7	901	R
8	4650	10.6	11.4	10	2.7	904	R
9	3800	18.3	10.3	5	2.7	909	R
10	3100	18.4	9.3	5	0.622	902	Т
11	2600	16.1	8.5	5	0.837	883	Т
12	2210	15.0			1.125	874	Т

Table 10

				Rolling cor	idition: B08			
5	Number of passes	Cross sectional area (mm²)	Reduction rate (%)	0.167√S (sec)	Time between passes (sec)	Rolling speed (m/ sec)	Temp. (°C)	Rolling mill
		15625						
10	1	13000	16.8	19.0	25	2.7	790	R
	2	11000	15.4	17.5	25	2.7	795	R
	3	9500	13.6	16.3	25	2.7	799	R
15	4	8000	15.8	14.9	25	2.7	804	R
	5	6500	18.8	13.5	25	2.7	812	R
	6	5200	20.0	12.0	25	2.7	800	R
20	7	4150	20.2	10.8	25	2.7	780	R
20	8	3300	20.5	9.6	25	2.7	759	R
	9	2450	25.8	8.3	25	2.7	741	R
	10	1850	24.5	7.2	25	2.7	720	R
25	11	1450	21.6	6.4	10	0.350	719	Т
	12	1150	20.7	5.7	10	0.466	724	Т
	13	900	21.7	5.0	10	0.581	730	Т
30	14	700	22.2	4.4	10	0.733	729	Т
30	15	550	21.4	3.9	10	0.871	721	Т
	16	420	23.6	3.4	10	0.982	705	Т
	17	320	23.8			1.125	690	Т
35								

Table 11

			Rolling cor	ndition: B09			
Number of passes	Cross sectional area (mm²)	Reduction rate (%)	0.167√S (sec)	Time between passes (sec)	Rolling speed (m/ sec)	Temp. (°C)	Rolling mill
	15625						
1	13000	16.8	19.0	25	2.7	810	R
2	11000	15.4	17.5	25	2.7	816	R
3	9500	13.6	16.3	25	2.7	821	R
4	8000	15.8	14.9	25	2.7	824	R
5	6500	18.8	13.5	25	2.7	829	R
6	5200	20.0	12.0	25	2.7	821	R
7	4150	20.2	10.8	25	2.7	800	R
8	3300	20.5	9.6	25	2.7	779	R
9	2450	25.8	8.3	25	2.7	761	R

Table 11 (continued)

	Rolling condition: B09											
Number of passes	Cross sectional area (mm²)	Reduction rate (%)	0.167√S (sec)	Time between passes (sec)	Rolling speed (m/ sec)	Temp. (°C)	Rolling mill					
10	1850	24.5	7.2	25	2.7	749	R					
11	1450	21.6	6.4	5	0.350	741	Т					
12	1150	20.7	5.7	5	0.466	751	Т					
13	900	21.7	5.0	5	0.581	760	Т					
14	700	22.2	4.4	5	0.733	766	Т					
15	550	21.4	3.9	5	0.871	761	Т					
16	420	23.6	3.4	5	0.982	751	Т					
17	320	23.8			1.125	726	Т					

Table 12

			Tab	le 12			
			Rolling cor	ndition: B10			
Number of passes	Cross sectional area (mm²)	Reduction rate (%)	0.167√S (sec)	Time between passes (sec)	Rolling speed (m/ sec)	Temp. (°C)	Rolling mill
	15625						
1	13000	16.8	19.0	25	2.7	886	R
2	11000	15.4	17.5	25	2.7	884	R
3	9500	13.6	16.3	25	2.7	884	R
4	8000	15.8	14.9	25	2.7	887	R
5	6500	18.8	13.5	25	2.7	885	R
6	5200	20.0	12.0	25	2.7	859	R
7	4150	20.2	10.8	25	2.7	841	R
8	3300	20.5	9.6	25	2.7	820	R
9	2450	25.8	8.3	25	2.7	800	R
10	1850	24.5	7.2	25	2.7	791	R
11	1450	21.6	6.4	5	0.350	801	Т
12	1150	20.7	5.7	5	0.466	810	Т
13	900	21.7	5.0	5	0.581	830	Т
14	700	22.2	4.4	5	0.733	836	Т
15	550	21.4	3.9	5	0.871	829	Т
16	420	23.6	3.4	5	0.982	821	Т
17	320	23.8			1.125	806	Т

Table 13

				Rolling cor	ndition: B11			
5	Number of passes	Cross sectional area (mm²)	Reduction rate (%)	0.167√S (sec)	Time between passes (sec)	Rolling speed (m/ sec)	Temp. (°C)	Rolling mill
		15625						
10	1	13000	16.8	19.0	25	2.7	1024	R
	2	11000	15.4	17.5	25	2.7	1015	R
	3	9500	13.6	16.3	25	2.7	1003	R
15	4	8000	15.8	14.9	25	2.7	996	R
	5	6500	18.8	13.5	25	2.7	985	R
	6	5200	20.0	12.0	25	2.7	969	R
20	7	4150	20.2	10.8	25	2.7	961	R
20	8	3300	20.5	9.6	25	2.7	949	R
	9	2450	25.8	8.3	25	2.7	930	R
	10	1850	24.5	7.2	25	2.7	921	R
25	11	1450	21.6	6.4	5	0.350	911	Т
	12	1150	20.7	5.7	5	0.466	901	Т
	13	900	21.7	5.0	5	0.581	891	Т
30	14	700	22.2	4.4	5	0.733	881	Т
30	15	550	21.4	3.9	5	0.871	864	Т
	16	420	23.6	3.4	5	0.982	845	Т
	17	320	23.8			1.125	825	Т
35								

Table 14

	Rolling condition: B12											
Number of passes	Cross sectional area (mm²)	Reduction rate (%)	0.167√S (sec)	Time between passes (sec)	Rolling speed (m/ sec)	Temp. (°C)	Rolling mill					
	15625											
1	13000	16.8	19.0	25	2.7	891	R					
2	11000	15.4	17.5	25	2.7	895	R					
3	9500	13.6	16.3	25	2.7	899	R					
4	8000	15.8	14.9	25	2.7	905	R					
5	6700	16.3	13.7	25	2.7	906	R					
6	6000	10.5	12.9	25	2.7	886	R					
7	5200	13.3	12.0	25	2.7	865	R					
8	4650	10.6	11.4	25	2.7	845	R					
9	3800	18.3	10.3	25	2.7	836	R					

Table 14 (continued)

	Rolling condition: B12											
Number of passes	Cross sectional area (mm²)	Reduction rate (%)	0.167√S (sec)	Time between passes (sec)	Rolling speed (m/ sec)	Temp. (°C)	Rolling mill					
10	3100	18.4	9.3	5	0.622	835	Т					
11	2600	16.1	8.5	5	0.837	834	Т					
12	2210	15.0			1.125	830	Т					

			Tab	le 15			
			Rolling co	ndition: B13			
Number of passes	Cross sectional area (mm²)	Reduction rate (%)	0.167√S (sec)	Time between passes (sec)	Rolling speed (m/ sec)	Temp. (°C)	Rolling mill
	15625						
1	13000	16.8	19.0	25	2.7	929	R
2	11000	15.4	17.5	25	2.7	925	R
3	9500	13.6	16.3	25	2.7	919	R
4	8000	15.8	14.9	25	2.7	913	R
5	6500	18.8	13.5	25	2.7	911	R
6	5200	20.0	12.0	25	2.7	900	R
7	4150	20.2	10.8	25	2.7	891	R
8	3300	20.5	9.6	25	2.7	880	R
9	2450	25.8	8.3	25	2.7	868	R
10	1850	24.5	7.2	25	2.7	850	R
11	1450	21.6	6.4	10	0.350	832	Т
12	1150	20.7	5.7	10	0.466	804	Т
13	900	21.7	5.0	10	0.581	777	Т
14	700	22.2	4.4	10	0.733	749	Т
15	550	21.4	3.9	10	0.871	728	Т
16	420	23.6	3.4	10	0.982	713	Т
17	320	23.8			1.125	698	Т

	Rolling condition: B14											
Number of passes	Cross sectional area (mm²)	Reduction rate (%)	0.167√S (sec)	Time between passes (sec)	Rolling speed (m/ sec)	Temp. (°C)	Rolling mill					
	15625											

Table 16 (continued)

			Rolling cor	ndition: B14			
Number of passes	Cross sectional area (mm²)	Reduction rate (%)	0.167√S (sec)	Time between passes (sec)	Rolling speed (m/ sec)	Temp. (°C)	Rolling mill
1	13000	16.8	19.0	25	10.8	810	R
2	11000	15.4	17.5	25	10.8	836	R
3	9500	13.6	16.3	25	10.8	861	R
4	8000	15.8	14.9	25	10.8	883	R
5	6500	18.8	13.5	25	10.8	911	R
6	5200	20.0	12.0	25	10.8	901	R
7	4250	20.2	10.8	25	10.8	869	R
8	3300	20.5	9.6	25	1.8	841	R
9	2450	25.8	8.3	25	10.8	808	R
10	1850	24.5	7.2	25	10.8	779	R
11	1450	21.6	6.4	10	0.350	781	Т
12	1150	20.7	5.7	10	0.466	792	Т
13	900	21.7	5.0	10	0.581	799	Т
14	700	22.2	4.4	10	0.733	805	Т
15	550	21.4	3.9	10	0.871	801	Т
16	420	23.6	3.4	10	0.982	790	Т
17	320	23.8			1.125	774	Т

	Rolling condition: B15											
Number of passes	Cross sectional area (mm²)	Reduction rate (%)	0.167√S (sec)	Time between passes (sec)	Rolling speed (m/ sec)	Temp. (°C)	Rolling mill					
	15625											
1	13000	16.8	19.0	25	2.7	790	R					
2	11000	15.4	17.5	25	2.7	796	R					
3	9500	13.6	16.3	25	2.7	801	R					
4	8000	15.8	14.9	25	2.7	803	R					
5	6500	18.8	13.5	25	2.7	811	R					
6	5200	20.0	12.0	25	2.7	801	R					
7	4150	20.2	10.8	25	2.7	779	R					
8	3300	20.5	9.6	25	2.7	761	R					
9	2450	25.8	8.3	25	2.7	738	R					
10	1850	24.5	7.2	25	2.7	719	R					

Table 17 (continued)

	Rolling condition: B15											
Number of passes	Cross sectional area (mm²)	Reduction rate (%)	0.167√S (sec)	Time between passes (sec)	Rolling speed (m/ sec)	Temp. (°C)	Rolling mill					
11	1450	21.6	6.4	5	0.700	751	Т					
12	1150	20.7	5.7	5	0.932	782	Т					
13	900	21.7	5.0	5	1.162	829	Т					
14	700	22.2	4.4	5	1.466	865	Т					
15	550	21.4	3.9	5	1.742	891	Т					
16	420	23.6	3.4	5	1.964	910	Т					
17	320	23.8			2.500	864	Т					

Table 18

	Rolling condition: B16											
Number of passes	Cross sectional area (mm²)	Reduction rate (%)	0.167√S (sec)	Time between passes (sec)	Rolling speed (m/ sec)	Temp. (°C)	Rolling mill					
	15625											
1	13000	16.8	19.0	25	2.7	821	R					
2	11000	15.4	17.5	25	2.7	817	R					
3	9500	13.6	16.3	25	2.7	834	R					
4	8000	15.8	14.9	25	2.7	838	R					
5	6700	16.3	13.7	25	2.7	845	R					
6	6000	10.5	12.9	25	2.7	824	R					
7	5200	13.3	12.0	25	2.7	794	R					
8	4650	10.6	11.4	25	2.7	776	R					
9	3800	18.3	10.3	25	2.7	767	R					
10	3100	18.4	9.3	5	0.622	764	Т					
11	2600	16.1	8.5	5	0.837	769	Т					
12	2210	15.0			1.125	766	Т					

50		Rolling condition: B17										
50	Number of passes	Cross sectional area (mm²)	Reduction rate (%)	0.167√S (sec)	Time between passes (sec)	Rolling speed (m/ sec)	Temp. (°C)	Rolling mill				
55		15625										
	1	13000	16.8	19.0	25	2.7	822	R				

Table 19 (continued)

		Rolling condition: B17													
5	Number of passes	Cross sectional area (mm²)	Reduction rate (%)	0.167√S (sec)	Time between passes (sec)	Rolling speed (m/ sec)	Temp. (°C)	Rolling mill							
	2	11000	15.4	17.5	25	2.7	825	R							
10	3	9500	13.6	16.3	25	2.7	833	R							
	4	8000	15.8	14.9	25	2.7	834	R							
	5	6500	18.8	13.5	25	2.7	842	R							
	6 5200		20.0	12.0	25	2.7	830	R							
15	7	7 4150		10.8	25	2.7	809	R							
	8	3300	20.5	9.6	25	2.7	790	R							
	9	2450	25.8	8.3	25	2.7	765	R							
20	10	1850	24.5	7.2	25	2.7	757	R							
	11	1450	21.6	6.4	5	0.350	759	Т							
	12	1150	20.7	5.7	5	0.466	772	Т							
25	13	900	21.7	5.0	5	0.581	771	Т							
25	14 700		22.2	4.4	5	0.733	774	Т							
	15	550	21.4	3.9	5	0.871	771	Т							
	16	420	23.6	3.4	5	0.982	779	Т							
30	17	320	23.8			1.125	777	Т							

Table 20

35	Rolling condition: B18										
40	Number of passes	Cross sectional area (mm²)	Reduction rate (%)	0.167√S (sec)	Time between passes (sec)	Rolling speed (m/ sec)	Temp. (°C)	Rolling mill			
		15625									
	1	13000	16.8	19.0	25	2.7	850	R			
	2	11000	15.4	17.5	25	2.7	847	R			
45	3	9500	13.6	16.3	25	2.7	847	R			
	4	8000	15.8	14.9	25	2.7	845	R			
	5	6500	18.8	13.5	25	2.7	844	R			
	6	5200	20.0	12.0	25	2.7	845	R			
50	7	4150	20.2	10.8	25	2.7	843	R			
	8	3300	20.5	9.6	25	2.7	834	R			
55	9	2450	25.8	8.3	25	2.7	830	R			
	10	1850	24.5	7.2	25	2.7	829	R			
	11	1450	21.6	6.4	5	0.350	821	Т			

Table 20 (continued)

Rolling condition: B18										
Number of passes	Cross sectional area (mm²)	Reduction rate (%)	0.167√S (sec)	Time between passes (sec)	Rolling speed (m/ sec)	Temp. (°C)	Rolling mill			
12	1150	20.7	5.7	5	0.466	814	Т			
13	900	21.7	5.0	5	0.581	803	Т			
14	700	22.2	4.4	5	0.733	794	Т			
15	550	21.4	3.9	5	0.871	790	Т			
16	420	23.6	3.4	5	0.982	782	Т			
17	320	23.8			1.125	772	Т			

5	
10	
15	
20	
25	
30	
35	

40

45

50

55

		Remark		ผ	Ü	υ	υ	၁	ខា	ບ	Я	23	υ	ပ	υ	υ	ນ	υ	В	23	ы
	characteristics	- 6	of rough surface	Not occurred	Occurred	Occurred	Occurred	Occurred	Not occurred	Occurred	Not occurred	Not occurred	Occurred	Occurred	Occurred	Occurred	Occurred	Occurred	Not occurred	Not occurred	. Not occurred
	rorging characteris	e o de du de de	of crack	Not occurred	Occurred	Occurred	Occurred	Occurred	Not occurred	Occurred	Not occurred	Not occurred	Not occurred	Occurred	Not occurred	Not occurred	Occurred	Occurred	Not occurred	Not occurred	Not occurred
		uc	Aspect ratio	1.8	ı	,	,	J	2.2	,	2.3	2.1	3.2	J	3.4	4.5	•	•	2.7	2.9	3.3
	ary α)	Center section	Volume fraction (%)	99	•	•	t	•	68	•	69	64	88	1	89	87	•	1	60	61	09
	(prim	ນຶ	Grain size (µm)	2.7	, 1	•	1	,	5.8	1	1.9	4.9	12.0	•	15.0	5.8		ı	6.4	6.3	9.9
	ructure		Aspect	1.5	4.1	4.4	•	4.2	2.1	4.3	1.9	1.7	2.8	2.9	3.0	4.2	4.2	4.3	2.5	2.7	3.1
	Microstructure (primary	1/4D	Volume fraction (%)	99	59	58	•	29	. 09	31	67	62	89	85	80	85	. 84	. 81	63	. 64	09
			Grain size (µm)	2.5	3.7	3.4		3.8	5.4	5.9	1.7	4.1	11.4	13.2	14.5	5.5	5.2	5.3	6.2	5.8	6.5
	g Ş	Notch	(Kt=3)	230	120	125	115	100	225	120	240	210	185	95	175	155	115	120	202	202	200
	Fatigue strength	Smooth	(Kt=1)	565	350	355	365	360	560	355	570	550	480	230	440	395	345	340	505	510	200
	É	5	*	51.9	12.3	13.5	11.6	11.1	50.8	12.1	52.3	50.1	43.3	9.8	42.1	38.2	34.5	33.3	40.1	42.3	40.1
		1	&	20.4	3.5	1.5	4.1	3.8	20.0	3.7	20.5	20.1	14.8	3.6	13.8	12.1	13.7	11.9	17.4	18.3	15.6
	_	S C	(MPa)	1030	1009	1010	1011	1014	1020	1005	1030	1027	1019	1012	1011	987	116	956	1014	1031	1008
517		0.28 PS	(MPa)	931	885	879	881	874	921	887	930	929	911	863	902	899	884	894	910	914	902
Table		Rolling	condition	B01	B02	B03	B04	BOS	B06	B07	B08	B09	B10	B11	B12	B13	B14	B15	B16	B17	B18

E: Example, C: Comparative example

Claims

1. An α + β type titanium alloy bar consisting essentially of 4 to 5 % Al, 2.5 to 3.5 % V, 1.5 to 2.5 % Fe, 1.5 to 2.5 %

Mo, by mass, and balance of Ti, and having 10 to 90 % of volume fraction of primary α phase, 10 μ m or less of average grain size of the primary α phase, and 4 or less of aspect ratio of the grain of the primary α phase on the cross sectional plane parallel in the rolling direction of the bar.

5 **2.** The α + β type titanium alloy bar of claim 1, wherein the volume fraction of primary α phase is 50 to 80 %, and the average grain size of the primary α phase is 6 μm or less.

10

15

20

25

30

35

40

45

50

- 3. A method for manufacturing an $\alpha+\beta$ type titanium alloy bar comprising the step of hot rolling an $\alpha+\beta$ type titanium alloy consisting essentially of 4 to 5 % Al, 2.5 to 3.5 % V, 1.5 to 2.5 % Fe, 1. 5 to 2.5 % Mo, by mass, and balance of Ti, while keeping the surface temperature thereof to β transus or below.
- 4. The method for manufacturing an $\alpha+\beta$ type titanium alloy bar of claim 3 comprising the steps of: heating an $\alpha+\beta$ type titanium alloy having a β transus of T β °C while keeping the surface temperature thereof between (T β 150) and T β °C; and hot rolling the heated $\alpha+\beta$ type titanium alloy while keeping the surface temperature thereof during hot rolling between (T β 300) and (T β 50) °C and keeping the finish surface temperature thereof, as the surface temperature immediately after the final rolling pass, between (T β 300) and (T β 100) °C.
- 5. The method for manufacturing an $\alpha+\beta$ type titanium alloy bar of claim 4, wherein the $\alpha+\beta$ type titanium alloy is hot rolled at a reduction rate of 40 % or less per rolling pass.
- **6.** The method for manufacturing an $\alpha+\beta$ type titanium alloy bar of claim 4 , wherein the rolling speed is selected to 6 m/sec or less when a reverse rolling mill is applied to hot rolling.
- 7. The method for manufacturing an $\alpha+\beta$ type titanium alloy bar of claim 4, wherein the rolling speed is selected to 1.5 m/sec or less when tandem rolling mills are applied to hot rolling.
- 8. The method for manufacturing an $\alpha+\beta$ type titanium alloy bar of claim 4 , wherein when the $\alpha+\beta$ type titanium alloy having 3500 mm² or larger cross sectional area in normal to the rolling direction is hot rolled to the cross sectional area of S mm², a waiting time before starting succeeding rolling is 0.167 x S^{1/2} or more sec.
- **9.** The method for manufacturing an $\alpha+\beta$ type titanium alloy bar of claim 4, wherein the $\alpha+\beta$ type titanium alloy is reheated during hot rolling.

FIG. 1

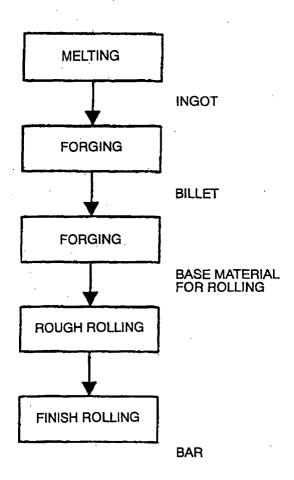


FIG. 2A

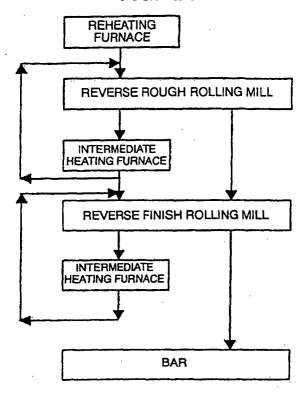
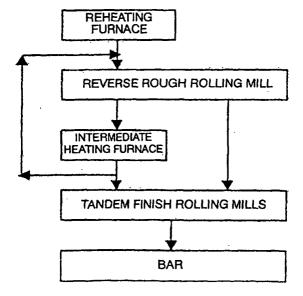
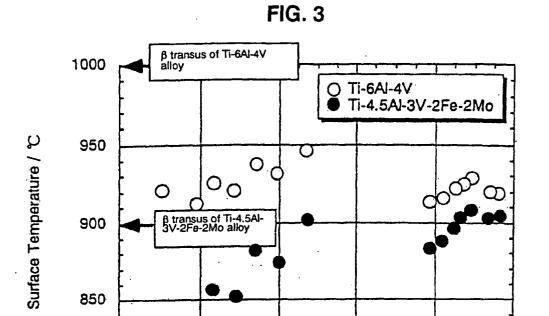




FIG. 2B

Time / sec

100 .

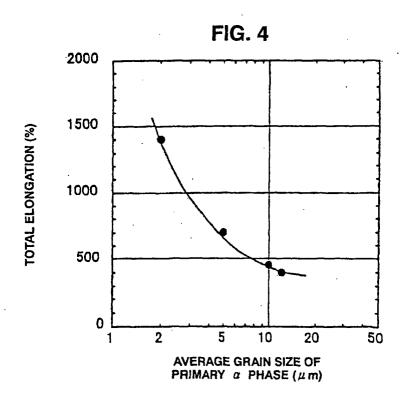
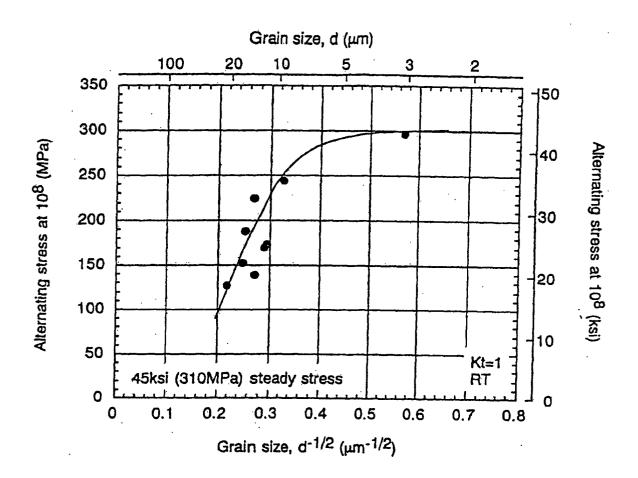
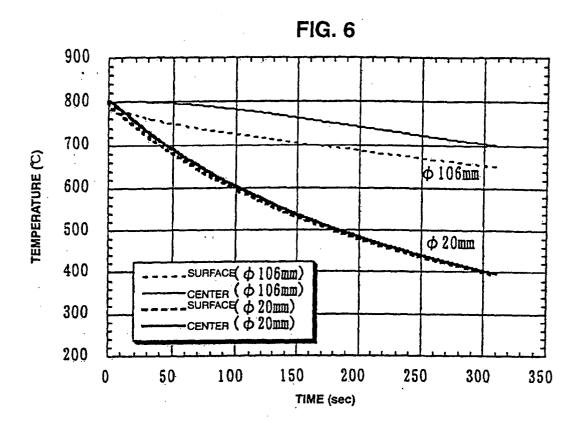
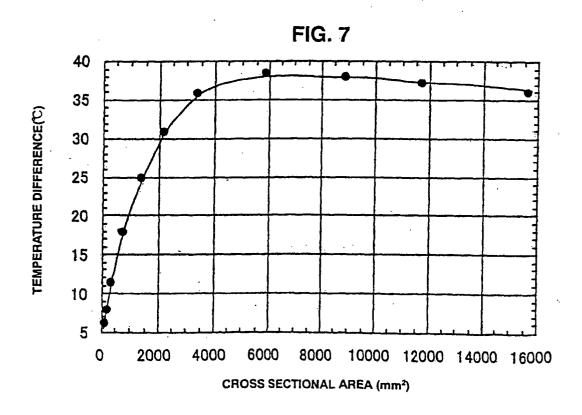





FIG. 5

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP02/01710

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C22C14/00, C22F1/18, B21B3/00									
According to International Patent Classification (IPC) or to both national classification and IPC									
B. FIELDS SEARCHED									
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C22C1/00-49/14, C22F1/00-3/02, B21B3/00									
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1926-1996 Toroku Jitsuyo Shinan Koho 1994-2002 Kokai Jitsuyo Shinan Koho 1971-2002 Jitsuyo Shinan Toroku Koho 1996-2002									
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)									
C. DOCUMENTS CONSIDERED TO BE RELEVANT									
Category* Citation of document, with indication, where approp	riate, of the relevant passages	Relevant to claim No.							
X JP, 10-306335, A (NKK Corp.), Y 17 November, 1998 (17.11.98), Claims; Par. No. [0031]; table (Family: none)	1, 2	1-5,8,9 6,7							
15 February, 1983 (15.02.83),	Page 2, upper left column, line 18 to upper right column, line 7								
X JP, 8-103831, A (NKK Corp.), 23 April, 1996 (23.04.96), Par. No. [0010]; table 1 (Family: none)		1-4							
X JP, 5-295502, A (NKK Corp.), 09 November, 1993 (09.11.93), Par. No. [0018] (Family: none)		1-4							
Further documents are listed in the continuation of Box C.	See patent family annex.								
* Special categories of cited documents: "T" "A" document defining the general state of the art which is not considered to be of particular relevance."	later document published after the interpriority date and not in conflict with the understand the principle or theory understand the principle or theory understand the principle or theory understand the principle releases the pri	e application but cited to crlying the invention							
"E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other "Y"	document which may throw doubts on priority claim(s) or which is step when the document is taken alone								
special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means	special reason (as specified) document referring to an oral disclosure, use, exhibition or other considered to involve an inventive step when the document is combined with one or more other such documents, such								
"P" document published prior to the international filing date but later than the priority date claimed "&"	P" document published prior to the international filing date but later "&" document member of the same patent family								
Date of the actual completion of the international search 02 April, 2002 (02.04.02)	Date of mailing of the international search report 16 April, 2002 (16.04.02)								
Name and mailing address of the ISA/ Japanese Patent Office Aut	Authorized officer								
	Telephone No.								

Form PCT/ISA/210 (second sheet) (July 1998)