

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) **EP 1 382 840 A1**

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

21.01.2004 Patentblatt 2004/04

(51) Int Cl.⁷: **F02M 61/18**

(21) Anmeldenummer: 03009122.7

(22) Anmeldetag: 22.04.2003

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

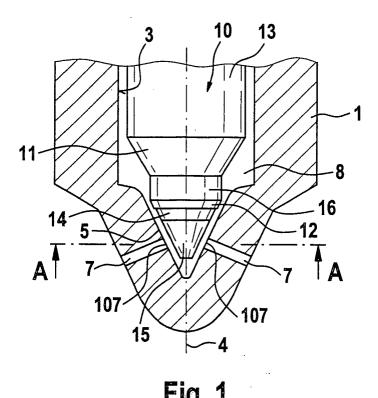
Benannte Erstreckungsstaaten:

AL LT LV MK

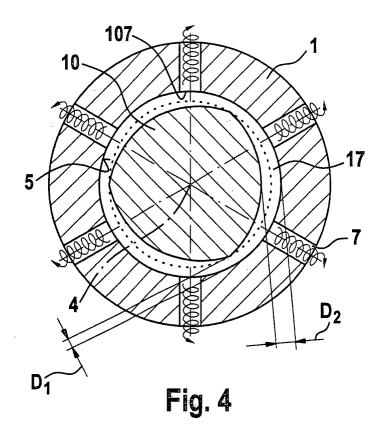
(30) Priorität: 16.07.2002 DE 10232049

(71) Anmelder: ROBERT BOSCH GMBH 70442 Stuttgart (DE)

(72) Erfinder:


Heinold, Oliver
 70839 Gerlingen (DE)

 Suenderhauf, Gerhard 95194 Regnitzlosau (DE)


(54) Kraftstoffeinspritzventil für Brennkraftmaschinen

(57) Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem Ventilkörper (1), in dem eine eine Längsachse (4) aufweisende Bohrung (3) ausgebildet ist, die an ihrem brennraumseitigen Ende von einem Ventilsitz (5) begrenzt wird. Vom Ventilsitz (5) geht die Eintrittsöffnung (107) wenigstens eines Einspritzkanals (7) aus, der in den Brennraum der Brennkraftmaschine mündet. In der Bohrung (3) ist eine Ventilnadel (10) längsver-

schiebbar angeordnet, die mit einer Ventildichtfläche (12) mit dem Ventilsitz (5) zusammenwirkt und so den Kraftstoffzufluss zu dem wenigstens einen Einspritzkanal (7) steuert, so dass bei vom Ventilsitz (5) abgehobener Ventilnadel (10) ein Ringspalt (17) aufgesteuert wird, durch den Kraftstoff dem wenigstens einen Einspritzkanal (7) zuströmt. Die Breite des Ringspalts (17) weist nicht über den gesamten Umfang des Ventilkörpers (1) die gleiche Breite auf (Figur 1; Figur 4).

EP 1 382 840 A1

Beschreibung

Stand der Technik

[0001] Die Erfindung geht von einem Kraftstoffeinspritzventil für Brennkraftmaschinen aus, wie es der Gattung des Patentanspruchs 1 entspricht. Derartige Kraftstoffeinspritzventile sind aus dem Stand der Technik bekannt. So zeigt die DE 196 09 218 A1 ein Kraftstoffeinspritzventil, das einen Ventilkörper mit einer Bohrung aufweist. Die Bohrung wird an ihrem brennraumseitigen Ende von einem konischen Ventilsitz begrenzt, von dem mehrere Einspritzkanäle abgehen, die in den Brennraum der Brennkraftmaschine münden. In der Bohrung ist eine Ventilnadel längsverschiebbar angeordnet, die mit einer ebenfalls konischen Ventildichtfläche mit dem Ventilsitz zusammenwirkt und so den Kraftstoffzufluss zu den Einspritzkanälen steuert. Bei vom Ventilsitz abgehobener Ventilnadel strömt Kraftstoff zwischen der Ventildichtfläche und dem Ventilsitz hindurch zu den Eintrittsöffnungen der Einspritzkanäle und wird von dort in den Brennraum der Brennkraftmaschine eingespritzt. Die Einspritzkanäle sind hierbei vorzugsweise gleichmäßig über den Umfang des Kraftstoffeinspritzventils verteilt und es herrscht innerhalb der Einspritzkanäle eine gleichmäßige Strömung des Kraftstoffs. Hierdurch erreicht man eine hohe Eindringtiefe des Kraftstoffstrahls in den Brennraum, was bei großen Brennräumen und damit großem Hubraum zu einer schnellen Verteilung des Kraftstoffs führt und damit zu einer guten Verbrennung.

[0002] Eine hohe Eindringtiefe der Kraftstoffstrahlen ist jedoch nicht immer von Vorteil. Insbesondere bei kleinen Brennkraftmaschinen mit einem geringen Brennraumvolumen wird ein Kraftstoffstrahl angestrebt, der bereits kurz nach Austritt aus dem Einspritzkanal des Kraftstoffeinspritzventils stark zersträubt, um eine möglichst homogene Verteilung des Kraftstoffs im Brennraum zu erreichen. Dies kann beispielsweise dadurch erreichen werden, dass der Kraftstoffstrom im Einspritzkanal einen Vortex bildet, also einen Drall oder einen Wirbel um die Längsachse des im wesentlichen zylindrischen Einspritzkanals. Dies führt unmittelbar nach Austritt des Kraftstoffs aus dem Einspritzkanal zu einer starken Zersträubung. Solche Einspritzventile sind aus dem Stand der Technik ebenfalls bekannt, beispielsweise aus der Offenlegungsschrift JP 11-082229 A oder der US 6 065 692. Bei diesen Einspritzventilen wird durch Nuten in der Ventilnadel bzw. durch eingelegte Strömscheiben ein Vortex erzeugt, womit die oben angegebenen Wirkungen eintreten. Diese Einspritzventile weisen jedoch den Nachteil auf, dass sie jeweils nur eine einzelne Einspritzöffnung aufweisen und konstruktionsbedingt für den Einsatz in modernen direkteinspritzenden Brennkraftmaschinen nur eingeschränkt geeignet sind. Vorteile der Erfindung

[0003] Das erfindungsgemäße Kraftstoffeinspritzventil mit den kennzeichnenden Merkmalen des Patentanspruchs 1 weist demgegenüber den Vorteil auf, dass wie bei den bekannten Kraftstoffeinspritzventilen mehrere Einspritzkanäle über den Umfang des Kraftstoffeinspritzventils verteilt angeordnet sein können und in sämtlichen Einspritzkanälen ein Vortex erzeugt wird. Hierzu ist der zwischen der Ventildichtfläche und dem Ventilsitz ausgebildete Ringspalt, durch den der Kraftstoff den Einspritzkanälen zuströmt, nicht über den gesamten Umfang gleich dick ausgebildet. Der Kraftstoff strömt, abhängig vom Azimutwinkel bezüglich der Längsachse der Bohrung, mit unterschiedlicher Geschwindigkeit in die Einspritzkanäle, so dass sich an der Eintrittsöffnung der Einspritzkanäle ein Geschwindigkeitsgradient in Umfangsrichtung ausbildet. Dadurch wird der Kraftstoffstrom im Einspritzkanal in eine Wirbelbewegung versetzt, die zu der oben erwähnten starken Zerstäubung des austretenden Kraftstoffs im Brennraum führt.

[0004] Durch die in den Unteransprüchen aufgeführten Merkmale sind vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung möglich.

[0005] In einer ersten vorteilhaften Ausgestaltung ist die Ventilnadel auf Höhe der Eintrittsöffnungen der Einspritzkanäle mit einem Querschnitt gestaltet, der einem Dreieck mit konvex gewölbten Seitenflächen entspricht. Dies ermöglicht in einfacher Art und Weise eine Zuflusscharakteristik zu den Einspritzkanälen, die zu dem erwünschten Vortex im Einspritzkanal führt. Ebenso vorteilhaft ist die Ausgestaltung der Ventilnadel auf Höhe der Eintrittsöffnung der Einspritzkanäle in Form eines Ovals, was ebenfalls zu den dargestellten Zuströmverhältnissen führt. Ebenso vorteilhaft ist die Ausgestaltung einer Ventilnadel, die auf Höhe der Eintrittsöffnungen einen Querschnitt aufweist, der einem Sechseck entspricht, wobei die Innenwinkel der aneinandergrenzenden Seiten abwechselnd größer und kleiner als 120° sind. Die Eintrittsöffnungen sind hierbei vorzugsweise in einer Radialebene zur Längsachse der Bohrung angeordnet, so dass in allen Einspritzkanälen dieselben Vortices erzeugt werden.

[0006] Ebenso ist es vorteilhaft, wenn die den Eintrittsöffnungen gegenüberliegende Fläche der Ventilnadel abgeflacht ist, wobei die gedachte Verlängerung der Einspritzkanäle diese Fläche der Ventilnadel in einem schiefen Winkel schneidet. Dadurch lassen sich die Einströmbedingungen für jeden Einspritzkanal separat modifizieren. Außerdem lassen sich so die gewünschten Einströmbedingungen bei einer beliebigen Anzahl von Einspritzkanälen erreichen.

5 Zeichnung

[0007] In der Zeichnung sind verschiedene Ausführungsbeispiele des erfindungsgemäßen Kraftstoffein-

spritzventils dargestellt. Es zeigt

Figur 1 einen Längsschnitt durch ein erfindungsgemäßes Kraftstoffeinspritzventil an dessen brennraumseitigen Ende,

Figur 2 den Querschnitt eines Kraftstoffeinspritzventils, wie es aus dem Stand der Technik bekannt ist, entlang der Linie A-A der Figur 1.

Figur 2A eine geschnittene Darstellung des Ventilkörpers im Bereich des Ventilsitzes,

Figur 3 ebenfalls einen Querschnitt entlang der Linie A-A der Figur 1 eines ersten Ausführungsbeispiels des erfindungsgemäßen Kraftstoffeinspritzventils,

Figur 3A eine geschnittene Darstellung des Ventilkörpers im Bereich des Ventilsitzes mit dem Kraftstoffverlauf im Einspritzkanal,

Figur 4, Figur 5 und

Figur 6 weitere Ausführungsbeispiele, die denselben Querschnitt wie Figur 3 darstellen, und

Figur 7 denselben Querschnitt wie Figur 3, jedoch weist die Ventilnadel hier einen kreisrunden Querschnitt auf.

Beschreibung der Ausführungsbeispiele

[0008] Figur 1 zeigt einen Längsschnitt durch ein erfindungsgemäßes Kraftstoffeinspritzventil, wobei nur das brennraumseitige Ende des ansonsten hinlänglich aus dem Stand der Technik bekannten Kraftstoffeinspritzventils dargestellt ist. In einem Ventilkörper 1 ist eine Bohrung 3 ausgebildet, die eine Längsachse 4 aufweist. Die Bohrung 3 wird an ihrem brennraumseitigen Ende von einem im wesentlichen konischen Ventilsitz 5 begrenzt, in dem die Eintrittsöffnungen 107 mehrerer Einspritzkanäle 7 angeordnet sind, die in Einbaulage des Kraftstoffeinspritzventils in der Brennkraftmaschine in den Brennraum derselben münden. In der Bohrung 3 ist eine kolbenförmige Ventilnadel 10 längsverschiebbar angeordnet, deren brennraumseitiges Ende mit dem Ventilsitz 5 zusammenwirkt. Die Ventilnadel 10 weist einen zylindrischen Abschnitt 13 auf, an den sich ein konischer Abschnitt 11 anschließt, an welchen wiederum ein zweiter zylindrischer Abschnitt 16 grenzt. An den zweiten zylindrischen Abschnitt 16 schließt sich eine konische Ventildichtfläche 12 an, mit der die Ventilnadel 10 in ihrer Schließstellung am konischen Ventilsitz 5 anliegt. Das brennraumseitige Ende der Ventilnadel 10 bildet die konische Ventilnadelspitze 15, die von der Ventildichtfläche 12 durch eine Ringnut 14 getrennt ist.

[0009] Zwischen der Ventilnadel 10 und der Wand der Bohrung 3 ist ein Druckraum 8 ausgebildet, der mit Kraftstoff unter hohem Druck befüllt werden kann. In Schließstellung der Ventilnadel 10, das ist, wenn die Ventildichtfläche 12 am Ventilsitz 5 anliegt, werden die Einspritzkanäle 7 durch die Ventilnadel 10 vom Druckraum 8 getrennt. In Öffnungsstellung der Ventilnadel 10,

also wenn die Ventildichtfläche 12 durch eine Längsbewegung der Ventilnadel 10 vom Ventilsitz 5 abgehoben ist, strömt Kraftstoff aus dem Druckraum 8 zwischen der Ventildichtfläche 12 und dem Ventilsitz 5 hindurch zu den Eintrittsöffnungen 107 der Einspritzkanäle 7 und wird von dort in den Brennraum der Brennkraftmaschine eingespritzt.

[0010] Figur 2 zeigt einen Querschnitt entlang der Linie A-A der Figur 1 eines Kraftstoffeinspritzventils, wie es aus dem Stand der Technik bekannt ist. Die Ventilnadel 10 weist hier auf Höhe der Eintrittsöffnungen 107 der Einspritzkanäle 7, von denen hier sechs über den Umfang des Ventilkörpers 1 verteilt angeordnet sind, eine kreisrunde Form auf. Hierdurch ergibt sich in Öffnungsstellung der Ventilnadel 10 ein kreisrunder Ringspalt 17 zwischen der Ventilnadel 10 und dem Ventilsitz 5, durch den der Kraftstoff den Einspritzkanälen 7 zuströmt. Durch die rotationssymmetrische Ausgestaltung des Ringspalts 17, der über den gesamten Umfang des Ventilkörpers 1 eine konstante Breite D aufweist, ergibt sich überall die gleiche Strömungsgeschwindigkeit des Kraftstoffs. Betrachtet man die Geschwindigkeit des Kraftstoffstroms im Bereich der Eintrittsöffnung 107 eines Einspritzkanals 7, so ist die tangentiale Geschwindigkeit am linken Rand v_I, wie es in Figur 2 an allen Einspritzkanälen 7 angedeutet ist, gleich groß wie die tangentiale Geschwindigkeit v_R am rechten Rand der Einspritzkanäle 7. Figur 2A zeigt einen Teil des Ventilkörpers 1 in geschnittener Darstellung im Bereich des Ventilsitzes 5. Exemplarisch geht hier ein Einspritzkanal 7 ab, der zur Verdeutlichung mit vergrößertem Durchmesser dargestellt ist. Die tangentialen Einlaufgeschwindigkeiten V_L und V_R des Kraftstoffs sind gleich groß, so dass sich eine gleichmäßige Strömung des Kraftstoffs im Einspritzkanal 7 und damit die bekannt hohe Eindringtiefe in den Brennraum der Brennkraftmaschine ergibt.

[0011] Figur 3 zeigt wie Figur 2 einen Querschnitt entlang der Linie A-A der Figur 1 eines ersten Ausführungsbeispiels des erfindungsgemäßen Kraftstoffeinspritzventils. Die Ventilnadel 10 weist auf Höhe der Eintrittsöffnungen 107 der Einspritzkanäle 7 eine Form auf, die einem Sechseck entspricht, wodurch an der Ventilnadel 10 sechs Seitenflächen 20 gebildet werden. Die Innenwinkel der aneinandergrenzenden Seitenflächen 20 ist abwechselnd kleiner und größer als 120°, so dass die Verlängerung der Einspritzkanäle 7 einen schiefen Winkel mit der jeweils gegenüberliegenden Seitenfläche 20 bildet. Der Ringspalt 17 variiert somit in seiner Breite über den Umfang des Ventilkörpers 1. Die bisher bekannte Form der Ventilnadel 10 ist durch eine gepunktete Linie angedeutet, wodurch die nicht überall gleiche Breite D des Ringspalts 17 verdeutlicht wird.

[0012] Betrachtet man einen einzelnen Einspritzkanal 7, so ist der Spalt zwischen der Seitenfläche 20 der Ventilnadel 10 und dem linken Rand der Eintrittsöffnung 107 des Einspritzkanals 7 kleiner als der Spalt zwischen dem rechten Rand der Eintrittsöffnung 107 und der Sei-

tenfläche 20. Dadurch ergibt sich am rechten Rand ein höherer Strömungswiderstand des Kraftstoffs im Ringspalt 17 und damit bezüglich des Einspritzkanals 7 eine geringere tangentiale Geschwindigkeit v_R beim Eintritt des Kraftstoffs. Am linken Rand hingegen ergibt sich durch den geringeren Strömungswiderstand eine entsprechend höhere tangentiale Geschwindigkeit v. . Durch diese unterschiedlichen Eintrittsgeschwindigkeiten des Kraftstoffs an beiden Seiten des Einspritzkanals 7 ergibt sich ein Vortex, der beim Austritt des Kraftstoffs in den Brennraum der Brennkraftmaschine zu einer starken Zersträubung führt und damit zu einer geringeren Eindringtiefe. Bei den Einspritzkanälen 7, die neben dem exemplarisch ausgewählten Einspritzkanal 7 liegen, kehren sich, was die linke und rechte Seite des Einspritzkanals 7 betrifft, die Geschwindigkeitsverhältnisse um, so dass der Vortex in diesen Einspritzkanälen 7 eine gegensinnige Rotationsrichtung aufweist. In Figur 3 sind die tangentialen Geschwindigkeiten v_L und v_R in sämtlichen Einspritzkanälen 7 durch Pfeile angedeutet. [0013] Figur 3A zeigt in der gleichen Darstellung wie Figur 2A die Einströmverhältnisse an einem Einspritzkanal 7 des in Figur 3 dargestellten Einspritzventils. Die tangentialen Geschwindigkeitskomponenten v_L und v_R führen im Einspritzkanal 7 zu einem Vortex, der hier von der Eintrittsöffnung 107 aus gesehen im Gegenuhrzeigersinn rotiert.

[0014] Figur 4 zeigt ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Kraftstoffeinspritzventils, wiederum als Querschnitt entlang der Linie A-A der Figur 1. Die Ventilnadel 10 weist hier auf Höhe der Eintrittsöffnungen 107 der Einspritzkanäle 7 eine Dreiecksform auf mit konvex, also nach außen gewölbten Seitenflächen. Auch hier erhält man ähnliche Einströmverhältnisse wie bei dem in Figur 3 gezeigten Einspritzventil und ebensolche Vortices, die bei benachbarten. Einspritzkanälen 7 unterschiedliche Orientierung aufweisen. Die kleinste Breite des Ringspalts 17 ist in der Figur 3 mit D_1 bezeichnet, die größte mit D_2 . Diese Form der Ventilnadel 10 ist auf sechs Einspritzkanäle 7 abgestimmt, die gleichmäßig über den Umfang des Ventilkörpers 1 verteilt angeordnet sind. Die übliche kreisrunde Form der Ventilnadel 10 ist durch eine gepunktete Linie angedeutet. Alternativ kann es auch vorgesehen sein, dass die Ventilnadel 10 einen Querschnitt aufweist, der einem Dreieck mit konkav, also nach innen gewölbten Seitenflächen entspricht. Auch hier ergeben sich Einströmbedingungen, die in der oben dargelegten Weise zu einem Vortex in den Einspritzkanälen 7 führen.

[0015] Figur 5 zeigt ein weiteres Ausführungsbeispiel in derselben Darstellung wie Figur 4. Die Ventilnadel 10 weist hier auf Höhe der Eintrittsöffnungen 107 eine Querschnittsform auf, die einer Kreissägenform ähnelt. Die den Einspritzkanälen 7 gegenüberliegenden Seitenflächen 20 der Ventilnadel 10 sind bezüglich der gedachten Verlängerung der Einspritzkanäle 7 schräg angeordnet, wie dies auch bei dem Ausführungsbeispiel

der Figur 3 der Fall ist. Die Einströmverhältnisse sind hier jedoch an jedem Einspritzkanal 7 identisch, so dass auch der sich ausbildende Vortex in allen Einspritzkanälen 7 dieselbe Rotationsrichtung hat.

[0016] Figur 6 zeigt ein weiteres Ausführungsbeispiel, wobei hier nur vier Einspritzkanäle 7 über den Umfang des Ventilkörpers 1 verteilt angeordnet sind. Dies bedingt eine andere Form der Ventilnadel 10, die auf Höhe der Eintrittsöffnungen 107 eine ovale Form mit angespitzten Enden aufweist. Auch hier ergibt sich durch den sich in Umfangsrichtung ändernden Ringspalt 17 Einströmbedingungen in die Einspritzkanäle 7, die dort einen Vortex erzeugen.

[0017] Figur 7 zeigt ein weiteres Ausführungsbeispiel des erfindungsgemäßen Kraftstoffeinspritzventils. Die Ventilnadel 10 ist hierbei im Bereich der Eintrittsöffnungen 107 kreisrund gestaltet, wie es aus dem Stand der Technik bekannt ist. Statt dessen ist die Ventilsitzfläche 5 so modifiziert, so dass sich ähnliche Einströmbedingungen in die Einspritzkanäle 7 ergeben wie bei einer entsprechend geformten Ventilnadel 10. Der Ventilsitz 5 weist im Querschnitt eine Form auf, die einem Dreieck mit konkav gewölbten Seitenflächen entspricht, also etwa die Form, die in Figur 4 die Ventilnadel 10 besitzt. Diese Ausgestaltung hat den Vorteil, dass die Ventilnadel 10 unverändert bleiben kann und aus den bekannten Kraftstoffeinspritzventilen übernommen werden kann. Auch die anderen Ausgestaltungen der Ventilnadel 10, die in den Figuren 3, 5 und 6 dargestellt sind, können in analoger Weise auf die Form den Ventilsitzes 5 übertragen werden bei einer gleichzeitig kreisrund ausgebildeten Ventilnadel 10 im Bereich der Eintrittsöffnungen 107.

[0018] Es kann auch vorgesehen sein, dass ein Vortex nicht bei sämtlichen Einspritzkanäle 7 erwünscht ist. Zur besseren Verteilung des Kraftstoffs bei größeren Brennräumen kann es vorteilhaft sein, beispielsweise nur bei jedem zweiten Einspritzkanal 7 einen Vortex zu erzeugen. Dies hat den Vorteil, dass ein Teil der Einspritzkanäle 7 den Kraftstoff weit in den Brennraum einspritzen, während die Einspritzkanäle mit Vortex den Kraftstoff stärker zerstäuben, so dass der durch diese Einspritzkanäle eingespritzte Kraftstoff nur eine geringe Eindringtiefe erreicht. In diesem Fall ist nur bei einem Teil der Eintrittsöffnungen 107 die Ventilnadel 10 bzw. die Ventildichtfläche 12 so gestaltet, dass der Abstand der Eintrittsöffnung 107 von der Ventildichtfläche 12 an wenigstens zwei Stellen unterschiedlich ist, was die unterschiedlichen Einströmgeschwindigkeiten verursacht und damit eine Wirbelbildung. Die Ventildichtfläche 12 ist im Bereich der übrigen Eintrittsöffnungen 107 so gestaltet, dass die Einströmbedingungen über die gesamte Eintrittsöffnung 107 gleich sind, wie schon in Figur 2 dargestellt.

50

55

Patentansprüche

- 1. Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem Ventilkörper (1), in dem eine Längsachse (4) aufweisende Bohrung (3) ausgebildet ist, die an ihrem brennraumseitigen Ende von einem Ventilsitz (5) begrenzt wird, in dem die Eintrittsöffnung (107) wenigstens eines Einspritzkanals (7) ausgebildet ist, der in den Brennraum der Brennkraftmaschine mündet, und mit einer Ventilnadel (10), die in der Bohrung (3) längsverschiebbar angeordnet ist und die mit einer Ventildichtfläche (12) mit dem Ventilsitz (5) zusammenwirkt und so den Kraftstoffzufluss zu dem wenigstens einen Einspritzkanal (7) steuert, so dass bei vom Ventilsitz 15 (5) abgehobener Ventilnadel (10) ein Ringspalt (17) aufgesteuert wird, durch den Kraftstoff dem wenigstens einen Einspritzkanal (7) zuströmt, dadurch gekennzeichnet, dass bei wenigstens einem Einspritzkanal (7) der Abstand der Eintrittsöffnung (107) zur Ventildichtfläche (12) an wenigstens zwei Stellen der Eintrittsöffnung (107) unterschiedlich
- 2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die Ventilnadel (10) auf Höhe der Eintrittsöffnung (107) des wenigstens einen Einspritzkanals (7) einen Querschnitt aufweist, der einem Dreieck mit konvex gewölbten Seitenfläche entspricht.
- Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die Ventilnadel (10) auf Höhe der Eintrittsöffnung (107) des wenigstens einen Einspritzkanals (7) einen ovalen Querschnitt aufweist.
- 4. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass mehrere Einspritzkanäle (7) ausgebildet sind, deren Eintrittsöffnungen (107) eine abgeflachte Seitenfläche (20) der Ventilnadel (10) gegenüberliegt, wobei die gedachte Verlängerung der Einspritzkanäle (7) die abgeflachte Seitenfläche (20) in einem schiefen Winkel schneidet.
- 5. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die Ventilnadel (10) auf Höhe der Eintrittsöffnung (107) des wenigstens einen Einspritzkanals (7) einen Querschnitt aufweist, der einem Sechseck entspricht, wobei die Innenwinkel der aneinandergrenzenden Seitenflächen abwechselnd einen Winkel von weniger als 120° und mehr als 120° einschließen.
- Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die Ventilnadel (10) auf Höhe der wenigstens einen Eintrittsöffnung (107) einen kreisrunden Querschnitt aufweist.

7. Kraftstoffeinspritzventil nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass mehrere Einspritzkanäle (7) über den Umfang des Ventilkörpers (1) verteilt angeordnet sind, wobei die Eintrittsöffnungen (107) der Einspritzkanäle (7) in einer Radialebene zur Längsachse (4) der Bohrung (3) liegen.

40

45

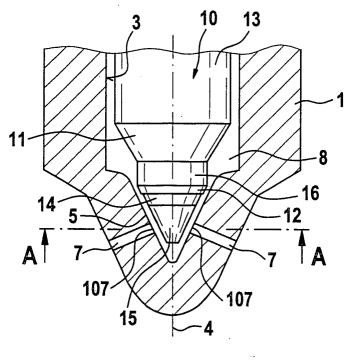
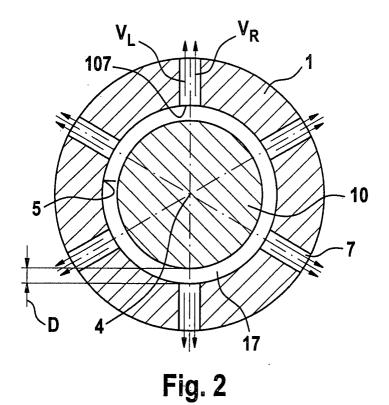



Fig. 1

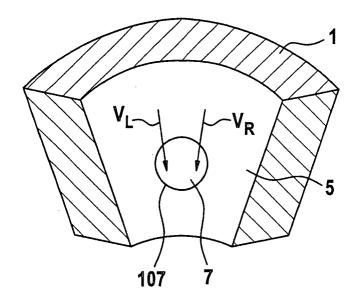


Fig. 2A

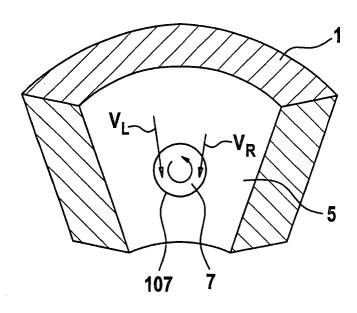
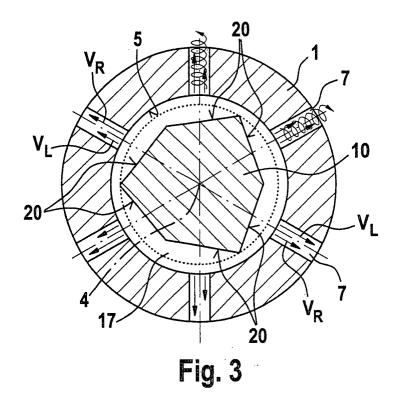
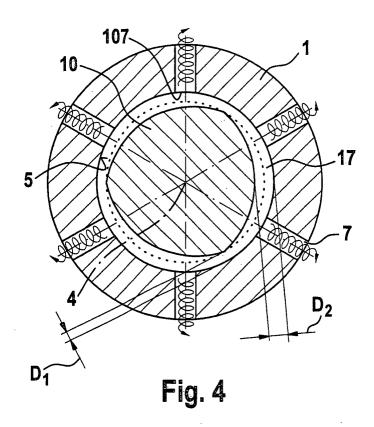
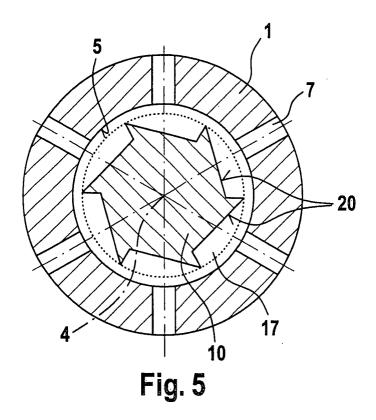
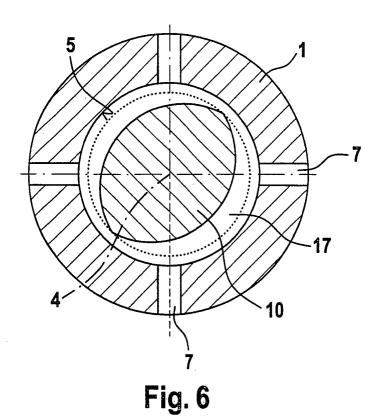






Fig. 3A

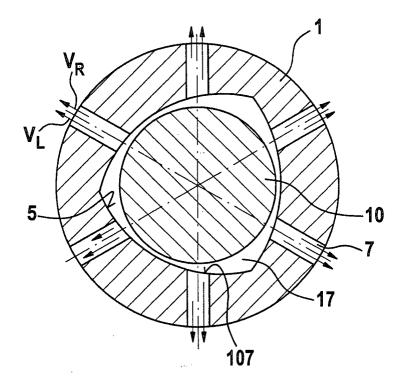


Fig. 7

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 03 00 9122

Kategorie	Kennzeichnung des Dokum	KLASSIFIKATION DER		
\ategorie	der maßgeblichen		Betrifft Anspruch	ANMELDUNG (Int.CI.7)
X	PATENT ABSTRACTS OF vol. 008, no. 263 (4. Dezember 1984 (1 -& JP 59 136563 A (6. August 1984 (198 * Zusammenfassung;	M-342), 984-12-04) DAIHATSU KOGYO KK), 4-08-06)	1,3	F02M61/18
Х	GB 2 170 269 A (DAI 30. Juli 1986 (1986 * Zusammenfassung;	-07-30)	1	
A	DE 196 09 218 A (B0 11. September 1997 * Zusammenfassung;	(1997-09-11)	1,6,7	
Α	WO 02 31350 A (BOSC 18. April 2002 (200 * Zusammenfassung;	2-04-18)	1	
		,		RECHERCHIERTE SACHGEBIETE (Int.CI.7)
				F02M
Der vo		de für alle Patentansprüche erstellt		
Recherchenort MÜNCHEN		Abschlußdatum der Recherche 1. Oktober 2003	Kol	Profer
X : von Y : von ande A : tech	LITEGORIE DER GENANNTEN DOKU besonderer Bedeutung allein betrachte besonderer Bedeutung in Verbindung ren Veröffentlichung derselben Kategon ologischer Hintergrund tschriftliche Offenbarung	E : älteres Patentdoi et nach dem Anmet mit einer D : in der Anmeldun orie L : aus anderen Grü	kument, das jedo dedatum veröffen g angeführtes Do nden angeführtes	tlicht worden ist kument Dokument

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 03 00 9122

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

01-10-2003

Im Recherche angeführtes Pater		Datum der Veröffentlichung		Mitglied(er) de Patentfamilie	er ·	Datum der Veröffentlichung
JP 59136563	А	06-08-1984	KEINE			
GB 2170269	А	30-07-1986	DE FR IT JP SE SE	3502642 / 2576642 / 1188269 / 61175264 / 459027 / 8505529 /	A1 B A B	31-07-1986 01-08-1986 07-01-1988 06-08-1986 29-05-1989 27-07-1986
DE 19609218	A	11-09-1997	DE CN FR GB JP	19609218 / 1160815 / 2745853 / 2310893 / 9242650 /	A ,B Al A ,B	11-09-1997 01-10-1997 12-09-1997 10-09-1997 16-09-1997
WO 0231350	Α	18-04-2002	DE WO EP	10050053 / 0231350 / 1328719 /	A2	18-04-2002 18-04-2002 23-07-2003
				* .		

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82