(19)
(11) EP 1 396 549 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
10.03.2004  Patentblatt  2004/11

(21) Anmeldenummer: 02019314.0

(22) Anmeldetag:  28.08.2002
(51) Internationale Patentklassifikation (IPC)7C21D 8/02, C22C 38/14
(84) Benannte Vertragsstaaten:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(71) Anmelder: ThyssenKrupp Stahl AG
47161 Duisburg (DE)

(72) Erfinder:
  • Nuss, Andreas
    47800 Krefeld (DE)
  • Heller, Thomas, Dr.-Ing.
    47229 Duisburg (DE)
  • Stich, Günter, Dipl.-Ing.
    44869 Bochum (DE)
  • Van Hasz, Udo
    46049 Oberhausen (DE)
  • Rudolphi, Ulrich, Dr.
    46562 Voerde (DE)
  • Sowka, Eberhard, Dr.-Ing.
    46535 Dinslaken (DE)

(74) Vertreter: COHAUSZ & FLORACK 
Patent- und Rechtsanwälte Bleichstrasse 14
40211 Düsseldorf
40211 Düsseldorf (DE)

   


(54) Verfahren zum Herstellen eines perlitfreien warmgewalzten Stahlbands und nach diesem Verfahren hergestelltes Warmband


(57) Die Erfindung stellt ein Verfahren zum Herstellen eines perlitfreien warmgewalzten Stahlbands mit TRIP-Eigenschaften und mit einer Zugfestigkeit von mindestens 600 MPa zur Verfügung. Zu diesem Zweck wird in einem kontinuierlich ablaufenden Arbeitsprozess eine Stahlschmelze, die neben Eisen und unvermeidbaren Verunreinigungen (in Gew.-%) C: 0,06 - 0,3 %, Si: 0,1-3,0 %, Mn: 0,3 - 1,1 %, wobei die Summe aus den Gehalten an Si und Mn 1,5 - 3,5 % beträgt, mindestens eines der Elemente Ti oder Nb in Gehalten von jeweils 0,005 - 0,15 %, sowie wahlweise eines oder mehrere der folgenden Elemente Cr: max. 0,8 %, Mo: max. 0,8 %, Cu: max. 1 %, Ni: max. 1 %, enthält, zu Dünnbrammen vergossen. Die mit einer 850 bis 1050 °C betragenden Einlauftemperatur in einen Glühofen einlaufenden Dünnbrammen werden dann bei Glühtemperaturen von 1000 bis 1200 °C für eine Glühdauer von 10 bis 60 Minuten geglüht, in einem Zunderwäscher unter einem Abspritzdruck der zum Entzundern eingesetzten Flüssigkeit von mindestens 300 bar entzundert, zu einem Warmband bei Warmwalzendtemperaturen, die im Bereich von 750 bis 1000 °C liegen, fertig warmgewalzt, auf eine Haspeltemperatur abgekühlt und gehaspelt.
Die Veröffentlichung soll ohne Figur erfolgen.


Beschreibung


[0001] Hochfeste Stähle mit guten Dehnungskennwerten und Verarbeitbarkeit werden im Bereich des Fahrzeugbaus, im allgemeinen Stahlbau sowie im Maschinen- und Apparatebau zur Herstellung von Bauteilen benötigt, die hohe Kräfte aufnehmen und in ihrer Formgebung optimal an die sich jeweils stellenden konstruktiven Anforderungen angepasst werden können.

[0002] Ein für diese Einsatzzwecke bestimmtes hochfestes, gut verformbares Warmband und ein Verfahren zu seiner Herstellung sind aus der EP 0 295 500 B1 bekannt. Der für die Erzeugung des bekannten Warmbands verwendete Stahl enthält neben Eisen und den herstellungsbedingt unvermeidbaren Verunreinigungen (in Gew.-%) 0,15 bis weniger als 0,3 % C, 0,5 bis 2,0 % Si, 0,5 bis 2,0 % Mn. Zusätzlich können in dem Stahl 0,0005 bis 0,0100 Ca oder 0,005 bis 0,050 % Seltenerdmetalle enthalten sein.

[0003] Der bekannte Stahl wird gemäß der EP 0 295 500 B1 in einer Warmwalzstaffel mit einer Warmwalzendtemperatur warmgewalzt, die mit maximal 50 °C von der Ar3-Temperatur abweicht. Im Anschluss an das Warmwalzen wird das Warmband auf dem sich an die Warmwalzstaffel anschließenden Rollgang gesteuert abgekühlt, wobei die EP 0 295 500 B1 zwei Wege dieser gesteuerten Abkühlung vorgibt. Auf dem ersten Weg wird das Band in einer ersten Stufe bei relativ niedrigen Abkühlgeschwindigkeiten von 15 bis 45 K/s und dann in einer zweiten Stufe mit einer jeweils erhöhten Abkühlgeschwindigkeit gekühlt, die zwischen 35 bis 80 K/s lag. Bei der anderen Variante erfolgt die Abkühlung dreistufig mit Abkühlgeschwindigkeiten, die in der ersten Stufe 50 bis 85 K/s, in der zweiten Stufe 10 bis 45 K/s und in der dritten Stufe 35 bis 80 K/s betrug. Die bei beiden Varianten erreichten Haspeltemperaturen lagen zwischen 370 bis 520 °C.

[0004] Zusätzlich zu der mehrstufigen Abkühlung wird gemäß dem aus der EP 0 295 500 B1 bekannten Verfahren eine Abkühlung des Warmbandes im Coil durchgeführt. Dabei wird das Band mit einer Abkühlgeschwindigkeit von mindestens 30 °C/h auf eine unter 200 °C liegende Temperatur beschleunigt abgekühlt.

[0005] Warmband, das in dieser Weise hergestellt worden ist, besitzt eine aus Ferrit, Restaustenit und Bainit gebildete Struktur. Die Bildung von Perlit und Martensit ist dabei weitestgehend unterdrückt, um die Bildung von Restaustenit nicht zu behindern.

[0006] Das gemäß dem bekannten Verfahren hergestellte Warmband weist zwar eine hohe Festigkeit bei hoher Dehnbarkeit auf. In der Praxis zeigt sich jedoch, dass seine Herstellung aufwändig ist. Auch zeigt sich im Fall plötzlicher Belastungen durch hohe kinetische Energien, wie sie beispielsweise bei Kraftfahrzeugen bei einem Unfall typischerweise auftreten, dass es nur schwer möglich ist, mit dem bekannten Stahl die immer weiter steigenden Anforderungen an ein optimiertes Crash-Verhalten zu erfüllen. Hinzu kommt, dass die konventionelle Fertigung des bekannten Warmbandes aufwändig ist.

[0007] Die der Erfindung zu Grunde liegende Aufgabe bestand daher darin, ein kostengünstig und praxisgerecht durchführbares Verfahren anzugeben, welches zuverlässig die Herstellung von hinsichtlich ihrer Festigkeits- und Verformungseigenschaften optimierten Warmbändern ermöglicht.

[0008] Diese Aufgabe wird erfindungsgemäß durch ein Verfahren zum Herstellen eines warmgewalzten Stahlbands gelöst, das perlitfrei ist, TRIP-Eigenschaften besitzt und eine Zugfestigkeit von mindestens 600 MPa aufweist. Erfindungsgemäß wird dieses Warmband in einem kontinuierlich ablaufenden Arbeitsprozess erzeugt, bei dem mindestens folgende Arbeitsschritte durchgeführt werden:
  • Vergießen einer Stahlschmelze, die neben Eisen und unvermeidbaren Verunreinigungen (in Gew.-%) 0,06 - 0,3 % C, 0,1 - 3,0 % Si, 0,3 - 1,1 % Mn, wobei die Summe aus den Gehalten an Si und Mn 1,5 - 3,5 % beträgt, mindestens eines der Elemente Ti oder Nb in Gehalten von jeweils 0,005 - 0,15 %, sowie wahlweise einzeln oder in Kombination max. 0,8 % Cr, max. 0,8 % Mo, max. 1 % Cu und max. 1 % Ni, enthält, zu Dünnbrammen,
  • Glühen der mit einer 850 bis 1050 °C betragenden Einlauftemperatur in einen Glühofen einlaufenden Dünnbrammen bei Glühtemperaturen von 1000 bis 1200 °C für eine Glühdauer von 10 bis 60 Minuten,
  • Entzundern der Dünnbrammen in einem Zunderwäscher unter einem Abspritzdruck der zum Entzundern eingesetzten Flüssigkeit von mindestens 300 bar,
  • Fertigwarmwalzen der Dünnbrammen zu einem Warmband bei Warmwalzendtemperaturen, die im Bereich von 750 bis 1000 °C liegen,
  • gesteuertes Abkühlen des erhaltenen Warmbands auf eine Haspeltemperatur,
  • Haspeln des Warmbands.


[0009] Gemäß der Erfindung wird in einem kontinuierlich ablaufenden Verfahren, wie es typisch auf einer Gießwalzanlage durchführbar ist, ein TRIP-Eigenschaften besitzendes Warmband erzeugt, welches aufgrund einer optimierten Abstimmung seiner Legierungsgehalte und der Art und Weise seiner Herstellung eine Kombination von Verformungseigenschaften und Festigkeitswerten aufweist, die einerseits seine Verarbeitung vereinfacht und andererseits zu einem verbesserten Kraftaufnahmevermögen im Fall plötzlicher Belastung durch hohe Verformungsenergien beiträgt.

[0010] Der Si- und Mn-Gehalt des verarbeiteten Stahles sind dabei so abgestimmt, dass im erhaltenen Warmband eine für die Erzielung des TRIP-Effekts ausreichende Menge an Restaustenit gewährleistet ist. Mangan stabilisiert den nach der gesteuerten Abkühlung im Stahl verbleibenden Restaustenit. Die Anwesenheit von Silizium unterstützt einerseits die Bildung von Ferrit und verbessert zudem die Dehnbarkeit des Stahls. Andererseits wirkt sich der Silizium-Gehalt günstig im Hinblick auf die Anreicherung des im Zuge der Warmbanderzeugung nicht umgewandelten Austenits mit Kohlenstoff aus. Neben den die mechanischen Eigenschaften verbessernden Effekten bewirkt die erfindungsgemäße Beschränkung der Si- und Mn-Gehalte auch eine Verbesserung der Oberflächenbeschaffenheit der Warmbänder. Besonders sicher stellen sich diese Wirkungen dann ein, wenn die Summe aus den Gehalten an Silizium und Mangan 1,5 - 2,5 Gew.-%, insbesondere 1,8 - 2,3 Gew.-%, beträgt.

[0011] Wesentlicher Bestandteil der erfindungsgemäß verarbeiteten Legierung ist neben den Gehalten an Silizium und Mangan der Gehalt an mindestens einem der Elemente Niob und Titan. TRIP-Stähle enthalten Restaustenit und weisen infolgedessen den Effekt der sogenannten "TRansformation Induced Plasticity" auf. Wesentlich ist dabei die erfindungsgemäß vorgeschriebene Kombination aus der Verfahrensführung über eine Gießwalzanlage und dem Vorhandensein von Ti und/oder Nb.

[0012] Diese Mikrolegierungselemente werden bei der konventionellen Erzeugung über Brammenguss in der Bramme ausgeschieden und gehen nur teilweise bei der Erwärmung der Bramme vor dem Warmwalzen wieder in Lösung. Bei der erfindungsgemäß vorgeschriebenen Erzeugung einer Dünnbramme bleiben diese Elemente bedingt durch die zwischen der Dünnbrammenerzeugung und dem Warmwalzen in der Regel in einem Tunnelofen im Durchlauf erfolgende Wärmezufuhr dagegen bis zum Beginn des Warmwalzens in Lösung. Diese Ausscheidungen verbessern die Kornfeinung des fertigen Warmbands und tragen einerseits zu einer Erhöhung des Restaustenitanteils und andererseits zu einer Stabilisierung des Restaustenits gegen eine Umwandlung in Martensit bei. Erfindungsgemäß erzeugter und zusammengesetzter Stahl ist daher in der Lage, höhere Belastungen zu ertragen. Diese Eigenschaft macht ihn besonders geeignet für die Herstellung von so genannten "crash-relevanten" Bauteilen, die beispielsweise bei einem Unfall plötzlich hohen Beanspruchungen ausgesetzt sind. Durch die gegebenenfalls kombinierte, notwendige Anwesenheit von Niob und/oder Titan in Gehalten von jeweils bis zu 0,15 Gew.-% werden so in Kombination mit dem erfindungsgemäß eingeschlagenen Verfahrensweg die Verformbarkeit des Warmbands selbst und die Verfestigungsprozesse im Fall einer Verformung eines aus dem erfindungsgemäß erzeugten Warmband hergestellten Bauteils gezielt verbessert.

[0013] Nach dem Vergießen des erfindungsgemäß verwendeten Stahls zu Dünnbrammen, deren Dicke typisch 40 bis 70 mm beträgt, laufen die erhaltenen Dünnbrammen mit Temperaturen, die im Bereich von 850 - 1050 °C in einen Tunnelofen ein. Bevorzugt beträgt die Einlauftemperatur nicht weniger als 950 °C, um die Bildung von Ausscheidungen in diesem Stadium der Warmbanderzeugung zu vermeiden.

[0014] In dem Ofen werden die Dünnbrammen bei 1000 - 1200 °C im Durchlauf geglüht. Die Tunnelofentemperatur ist dabei vorzugsweise auf den Bereich von 1000 - 1050 °C beschränkt, um eine übermäßige Zunderbildung zu vermeiden. Auf diese Weise wird der bei ca. 900 °C liegende Temperaturbereich sicher umgangen, bei dem es im erfindungsgemäß verwendeten Stahl zu einem Ausscheidungsmaximum kommt. Stattdessen werden die Mikrolegierungselemente in Lösung gehalten mit der Folge, dass sie im fertigen Produkt feiner und homogener verteilt vorliegen.

[0015] Zum selben Zweck ist die Verweilzeit im Tunnelofen auf 10 - 60 Minuten, bevorzugt 15 - 35 Minuten, beschränkt. Darüber hinaus bewirkt die Beschränkung der Glühdauer unmittelbar eine Erhöhung der Ausbringung der erfindungsgemäß eingesetzten Gieß-Walz-Anlage.

[0016] Auch wenn es bei der durch die Erfindung vorgegebenen Vorgehensweise insgesamt zur Entstehung geringerer Zundermengen auf den Oberflächen der verarbeiteten Dünnbrammen kommt, werden die Dünnbrammen nach dem Glühen in einem Zunderwäscher gezielt entzundert. Der Druck, mit dem dabei die Reinigungsflüssigkeit, in der Regel Wasser, auf die Brammen gegeben wird, beträgt erfindungsgemäß mindestens 300 bar, um eine weitestgehende Entfernung aller auf den Oberflächen der Bramme vorhandenen Rückstände zu erreichen. Besonders die auf den Brammen vorhandene Menge an Fayalit, welches andernfalls im weiteren Prozess die Bildung von unerwünschtem Rotzunder verursachen kann, wird auf diese Weise weitestgehend entfernt.

[0017] In der anschließend durchlaufenen Fertigwalzstaffel werden aus den Dünnbrammen bei Warmwalzendtemperaturen von 750 bis 1000 °C Warmbänder gewalzt, deren Dicke typischerweise 0,8 - 10 mm beträgt. Durch die innerhalb des vorgegebenen Temperaturbereichs jeweils konkret gewählte Endtemperatur lässt sich die Feinheit und die Zusammensetzung der Struktur der erhaltenen Warmbänder beeinflussen. So kann schon dadurch, dass das Fertigwalzen unterhalb der Ar3-Temperatur beendet wird, eine verfeinerte Körnung erreicht werden. Über der Ar3-Temperatur liegende Warmwalzendtemperaturen können eingestellt werden, wenn größere Mengen an Restaustenit gebildet werden sollen.

[0018] Im Hinblick auf die Feinheit der Struktur des erhaltenen Warmbandes hat es sich darüber hinaus als günstig erwiesen, wenn der während des Fertigwarmwalzens erzielte Gesamtumformgrad ϕges 1,8 - 3,7 beträgt. Auf diese Weise ist eine ausreichende Zerstörung des Gussgefüges der Brammen sichergestellt und es wird eine optimierte Feinkörnigkeit des erhalten Warmbandes erzielt. Dies ist insbesondere dann der Fall, wenn der über das Warmwalzen erzielte Umformgrad ϕges mindestens 2,5 beträgt. Unterstützt werden kann die Ausbildung eines feinkörnigen Gefüges zudem dadurch, dass, wenn das Fertigwalzen in mehreren Stichen durchgeführt wird, die Verformung im letzten Stich des Warmwalzens mindestens 5 %, bevorzugt 15 - 25 %, beträgt.

[0019] Die durch die verschiedenen Maßnahmen der erfindungsgemäßen Vorgehensweise erreichte Feinkörnigkeit trägt nicht nur zur Verformbarkeit, sondern gemeinsam mit der chemischen Zusammensetzung des verarbeiteten Stahls auch zur Stabilisierung des erwünschten Restaustenitanteils bei. So behindert die feine Verteilung der einzelnen im erfindungsgemäß erzeugten Warmband vorhandenen Phasen auch auf mechanische Weise die Umwandlung des Restaustenits in Martensit. Das erfindungsgemäße Warmband weist infolge dessen in Bezug auf den Restaustenitanteil nicht nur eine hohe chemische, sondern auch eine hohe geometrische Stabilität auf. Diese Stabilität des Gefüges trägt dazu bei, dass noch im aus dem Warmband erzeugten fertigen Bauteil Restaustenit vorliegen kann.

[0020] Die nach dem Warmwalzen erfolgende gesteuerte Abkühlung hat ebenfalls wesentlichen Einfluss auf die Ausprägung der Gefügestruktur und mechanischen Eigenschaften des fertigen Warmbands. So lassen sich durch die Abkühlung gezielt die Anteile der einzelnen Phasen sowie die Festigkeits- und Dehnungseigenschaften beeinflussen. Gemäß einer ersten Variante der Erfindung erfolgt die gesteuerte Abkühlung zu diesem Zweck, indem das Warmband in einer ersten Stufe ausgehend von der Warmwalzendtemperatur mit einer Abkühlgeschwindigkeit von 70 bis 500 K/s auf eine 600 - 750 °C betragende Zwischentemperatur gekühlt wird, indem das Warmband anschließend in einer zweiten Stufe für 2 bis 13 Sekunden an Luft abkühlt und indem das Warmband daraufhin in einer dritten Stufe mit einer 30 bis 200 K/s betragenden Abkühlgeschwindigkeit auf eine Haspeltemperatur gekühlt wird, die 300 - 530 °C beträgt. Eine möglichst hohe Abkühlgeschwindigkeit in der ersten Stufe der Abkühlung wirkt sich dabei positiv auf die im erhaltenen Warmband enthaltene Restaustenitmenge aus. Daher beträgt nach einer bevorzugten Ausführungsform dieser Variante der gesteuerten Abkühlung die Abkühlgeschwindigkeit in der ersten Stufe der Abkühlung mindestens 150 K/s, bevorzugt 300 K/s.

[0021] Nach der ersten Phase der schnellen Abkühlung erfolgt in der zweiten Phase eine Kühlpause, um die Bildung von größeren Mengen an Ferrit und die Anreicherung des Restaustenits mit Kohlenstoff zu ermöglichen. Die Dauer der zweiten Stufe der Abkühlung kann zu diesem Zweck bevorzugt auf 4 bis 8 Sekunden beschränkt werden. Anschließend wird in der dritten Stufe die beschleunigte Abkühlung fortgesetzt, um die Bildung von Perlit und das Kornwachstum zu unterdrücken.

[0022] Eine andere Variante der Erfindung sieht vor, dass die gesteuerte Abkühlung dadurch erfolgt, dass das Warmband mit einer Abkühlgeschwindigkeit von 10 bis 70 K/s kontinuierlich von der Warmwalzendtemperatur auf die Haspeltemperatur gekühlt wird. Auch auf diese Weise lässt sich ein Warmband mit der erfindungsgemäß angestrebten Gefügestruktur erzeugen.

[0023] Schließlich ist es möglich, die Abkühlung so zu steuern, dass das Warmband in einer ersten Stufe innerhalb von 1 - 7 Sekunden auf eine Temperatur abgekühlt wird, die etwa 80 °C über der Haspeltemperatur liegt, und dass das Warmband anschließend an Luft auf die Haspeltemperatur abkühlt, die im Bereich von 300 bis 530 °C liegt. Bei dieser Variante der gesteuerten Abkühlung erfolgt im ersten Schritt eine besonders schnelle Abkühlung mit der Folge, dass sich ein besonders feines Gefüge mit hohem Restaustenitanteil und hoher Festigkeit einstellt.

[0024] Unabhängig, welche der voranstehend erläuterten Varianten der gesteuerten Abkühlung eingesetzt werden, kühlt das Warmband nach dem Haspeln im Coil weiter ab. Damit es dabei nicht zur Bildung von unerwünscht großen Mengen an Bainit auf Kosten des Restaustenits kommt, ist es günstig, wenn das Warmband nach einer Ruhezeit im Coil beschleunigt abgekühlt wird. Es hat sich gezeigt, dass sich die gewünschte Aufteilung der einzelnen Phasen-Anteile einstellt, wenn die beschleunigte Kühlung des Coils nach einer im Bereich von 2 bis 30 liegenden Ruhezeit beginnt. Dabei lässt sich die Abkühlung durch Beaufschlagung des Coils mit einem Kühlfluid beschleunigen. Abhängig von den jeweils erforderlichen Abkühlgeschwindigkeiten kann dazu eine Flüssigkeit, beispielsweise Wasser, oder ein Luftstrom eingesetzt werden.

[0025] Das erfindungsgemäß erzeugte Warmband weist jeweils mindestens drei der Gefügebestandteile Ferrit, Bainit, Restaustenit oder Martensit auf. Dabei sollte die Summe der Gehalte an Martensit und Restaustenit mindestens 8 % betragen. Möglichst geringe Martensitgehalte sind angestrebt, um einen Kohlenstoffverlust zu Ungunsten des Restaustenits zu vermeiden. Dementsprechend sieht die Erfindung vor, dass der Kohlenstoffgehalt des Restaustenits mehr als 1 % betragen soll. Dieser Kohlenstoffgehalt lässt sich beispielsweise röntgenographisch ermitteln.

[0026] Durch die erfindungsgemäße Weise der Herstellung lassen sich Warmbänder erzeugen, bei denen das Produkt RM*A5 aus Zugfestigkeit Rm und Bruchdehnung A5 mindestens 19.000 MPa*% und das Produkt Rm*A80 aus Zugfestigkeit Rm und Bruchdehnung A80 mindestens 16.000 MPa*%, insbesondere 17.000 MPa*%, beträgt.

[0027] Erfindungsgemäß erzeugtes Warmband eignet sich in besonderer Weise zur Verwendung im Fahrzeugbau, im Stahlbau, im allgemeinen Maschinen- und Apparatebau sowie im Schiffsbau.

[0028] Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.

[0029] Es sind Stahlschmelzen S1, S2 und S3 erschmolzen worden, deren Zusammensetzungen in Tabelle 1 angegeben sind.

[0030] Die Stahlschmelzen S1, S2, S3 sind in einer Gieß-Walz-Anlage zu Dünnbrammen mit einer Dicke von durchschnittlich 55 mm vergossen worden, die in einem sich kontinuierlich an das Vergießen anschließenden Vorgang in einen Tunnelofen eingelaufen sind, in dem sie bei durchschnittlichen Temperaturen von 1050 °C im Durchlauf einer Glühung unterzogen worden sind. Nach Verlassen des Ofens haben die Dünnbrammen einen Zunderwäscher passiert, in dem ihre Oberfläche durch Beaufschlagung mit einer unter mehr als 300 bar abgespritzten Reinigungsflüssigkeit im Durchlauf vom Zunder befreit worden ist.

[0031] Die derart gesäuberten Dünnbrammen sind dann in eine mehrgerüstige Warmwalzstaffel eingelaufen, in der sie bei einer Warmwalzendtemperatur ET in mehreren Stichen zu jeweils einem Warmband mit einer Dicke d fertigwarmgewalzt worden sind.

[0032] Anschließend sind die aus den Schmelzen S1 und S2 erzeugten Warmbänder W1 - W4 in drei Stufen abgekühlt worden. In der ersten Stufe dieser Abkühlung sind die betreffenden Warmbänder jeweils mit einer Abkühlgeschwindigkeit Ag1 auf eine Zwischentemperatur ZT1 gekühlt worden. Daran schloss sich für eine Zeitdauer t2 eine Abkühlung an Luft an, auf die wiederum die dritte Abkühlstufe folgte, in der die Bänder mit einer Abkühlgeschwindigkeit Ag2 auf eine Temperatur ZT2 gekühlt worden sind. Auf dem zwischen dem Ende der Kühleinrichtung bis zur Haspeleinrichtung zurückgelegten Weg sind die Warmbänder dann auf die Temperatur HT angekühlt, mit der sie gehaspelt worden sind.

[0033] Die während der Herstellung der Warmbänder W1 - W4 aus den Schmelzen S1 und S2 eingehaltenen Endwalztemperaturen ET, die Warmbanddicken d, die jeweiligen Abkühlgeschwindigkeiten Ag1, die Zwischentemperatur ZT1, die Zeitdauer t2 der zwischengeschalteten Abkühlung an Luft, die jeweiligen Abkühlgeschwindigkeiten Ag2, die Zwischentemperatur ZT2 und die Haspeltemperaturen HT sind in Tabelle 2 angegeben.

[0034] In Tabelle 3 sind die für die betreffenden Warmbänder W1 - W4 ermittelten mechanischen Eigenschaften Zugfestigkeit Rm, Gleichmaßdehnung Ag, Dehnung A80 und Dehnung A5 sowie das jeweilige Produkt aus Rm*A5 und Rm*A80 angegeben.

[0035] Die aus der Schmelze S3 erzeugten Warmbänder W5 - W10 sind dagegen nach dem Verlassen der Warmwalzstaffel einer Abkühlung unterzogen worden, bei der sie mit einer Abkühlgeschwindigkeit Ag1 auf eine Zwischentemperatur ZT1 und anschließend mit einer Abkühlgeschwindigkeit Ag2 auf die jeweilige Haspeltemperatur HT abgekühlt worden sind. In Tabelle 4 sind die betreffenden Verfahrensparameter sowie die Dicke d der Warmbänder W5 bis W10 angegeben. Tabelle 5 enthält die zugehörigen Angaben zur jeweiligen Zugfestigkeit Rm, Gleichmaßdehnung Ag, Dehnung A80 und Dehnung A5 sowie zum jeweiligen Produkt aus Rm*A5 und Rm*A80.








Ansprüche

1. Verfahren zum Herstellen eines perlitfreien warmgewalzten Stahlbands mit TRIP-Eigenschaften und mit einer Zugfestigkeit von mindestens 600 MPa, bei dem in einem kontinuierlich ablaufenden Arbeitsprozess mindestens folgende Arbeitsschritte durchgeführt werden:

- Vergießen einer Stahlschmelze, die neben Eisen und unvermeidbaren Verunreinigungen (in Gew.-%)

C: 0,06 - 0,3 %,

Si: 0,1 - 3,0 %,

Mn: 0,3 -1,1 %,

   wobei die Summe aus den Gehalten an Si und Mn
   1,5 - 3,5 % beträgt,
   mindestens eines der Elemente Ti oder Nb in Gehalten von jeweils 0,005 - 0,15 %,
   sowie wahlweise eines oder mehrere der folgenden Elemente

Cr: max. 0,8 %,

Mo: max. 0,8 %,

Cu: max. 1 %,

Ni: max. 1 %,

   enthält,
zu Dünnbrammen,

- Glühen der mit einer 850 bis 1050 °C betragenden Einlauftemperatur in einen Glühofen einlaufenden Dünnbrammen bei Glühtemperaturen von 1000 bis 1200 °C für eine Glühdauer von 10 bis 60 Minuten,

- Entzundern der Dünnbrammen in einem Zunderwäscher unter einem Abspritzdruck der zum Entzundern eingesetzten Flüssigkeit von mindestens 300 bar,

- Fertigwarmwalzen der Dünnbrammen zu einem Warmband bei Warmwalzendtemperaturen, die im Bereich von 750 bis 1000 °C liegen,

- gesteuertes Abkühlen des erhaltenen Warmbands auf eine Haspeltemperatur,

- Haspeln des Warmbands.


 
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Summe aus den Gehalten an Si und Mn 1,5 - 2,5 Gew.-% beträgt.
 
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Summe aus den Gehalten an Si und Mn 1,8 - 2,3 Gew.-% beträgt.
 
4. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Glühtemperatur weniger als 1150 °C beträgt.
 
5. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Glühdauer 15 bis 35 Minuten beträgt.
 
6. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die während des Fertigwarmwalzens erzielte Gesamtumformung 1,8 - 3,7 beträgt.
 
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Gesamtumformung mindestens 2,5 beträgt.
 
8. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Fertigwalzen in mehreren Stichen durchgeführt wird und die Verformung im letzten Stich mindestens 5 % beträgt.
 
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Verformung im letzten Stich 15 - 25 % beträgt.
 
10. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Warmwalzendtemperatur unterhalb der Ar3-Temperatur liegt.
 
11. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die gesteuerte Abkühlung erfolgt, indem das Warmband in einer ersten Stufe ausgehend von der Warmwalzendtemperatur mit einer Abkühlgeschwindigkeit von 70 bis 500 K/s auf eine 600 - 750 °C betragende Zwischentemperatur gekühlt wird, indem das Warmband anschließend in einer zweiten Stufe für 2 bis 13 Sekunden an Luft abkühlt und indem das Warmband daraufhin in einer dritten Stufe mit einer 30 bis 200 K/s betragenden Abkühlgeschwindigkeit auf eine Haspeltemperatur gekühlt wird, die 300 - 530 °C beträgt.
 
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die Abkühlgeschwindigkeit in der ersten Stufe der Abkühlung mindestens 150 K/s beträgt.
 
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Abkühlgeschwindigkeit in der ersten Stufe der Abkühlung mindestens 300 K/s beträgt.
 
14. Verfahren nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass die Dauer der zweiten Stufe der Abkühlung 4 bis 8 Sekunden beträgt.
 
15. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die gesteuerte Abkühlung erfolgt, indem das Warmband mit einer Abkühlgeschwindigkeit von 10 bis 70 K/s kontinuierlich von der Warmwalzendtemperatur auf die Haspeltemperatur gekühlt wird.
 
16. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die gesteuerte Abkühlung erfolgt, indem das Warmband in einer ersten Stufe innerhalb von 1 bis 7 Sekunden auf eine Temperatur abgekühlt wird, die etwa 80 °C über der Haspeltemperatur liegt, und indem das Warmband anschließend an Luft auf die Haspeltemperatur abkühlt, die im Bereich von 300 bis 530 °C liegt.
 
17. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Warmband im Coil nach einer Ruhezeit beschleunigt abgekühlt wird.
 
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass die Ruhezeit 2 bis 30 Minuten beträgt.
 
19. Verfahren nach Anspruch 17 oder 18, dadurch gekennzeichnet, dass die beschleunigte Abkühlung durch Beaufschlagung des Coils mit einem Kühlfluid erfolgt.
 
20. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das erhaltene Warmband mindestens drei der Gefügebestandteile Ferrit, Bainit, Restaustenit oder Martensit aufweist.
 
21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, dass die Summe der Gehalte an Martensit und Restaustenit mindestens 8 % beträgt.
 
22. Verfahren nach einem der Ansprüche 20 oder 21, dadurch gekennzeichnet, dass der Kohlenstoffgehalt des Restaustenits mehr als 1 % beträgt.
 
23. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Produkt der Zugfestigkeit Rm und der Bruchdehnung A5 des erhaltenen Warmbands mindestens 19.000 MPa*% beträgt.
 
24. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Produkt der Zugfestigkeit Rm und der Bruchdehnung A80 des erhaltenen Warmbands mindestens 17.000 MPa*% beträgt.
 





Recherchenbericht