

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 1 408 171 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
14.04.2004 Bulletin 2004/16

(51) Int Cl. 7: E04C 2/04

(21) Application number: 04000003.6

(22) Date of filing: 01.06.1998

(84) Designated Contracting States:
DE FR GB

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:
98304317.5 / 0 962 605

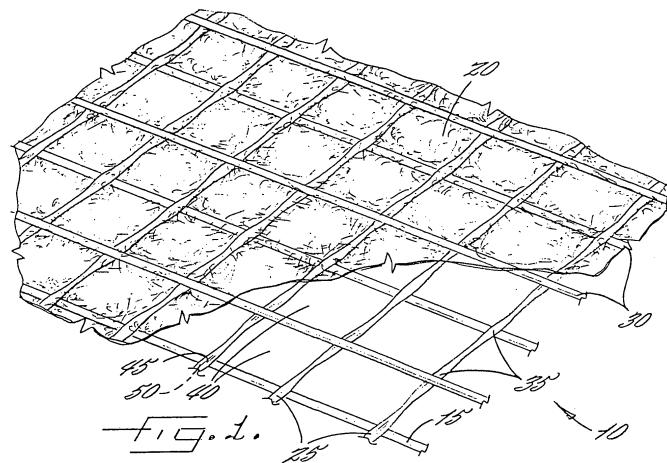
(71) Applicant: Clark-Schwebel Tech-Fab Company
Anderson, South Carolina 29622 (US)

(72) Inventors:

- Newman, Nicholas S.
Cohasset, Massachusetts 02025 (US)
- Broadway, Andrew D.
Anderson, South Carolina 29621 (US)

- Brown, Gordon L. (Jnr.)
Anderson, South Carolina 29621 (US)
- Chou, Chia-Te
Anderson, South Carolina 29621 (US)
- Hinton, R. Bruce
Anderson, South Carolina 29621 (US)

(74) Representative: Shanks, Andrew et al
Cruikshank & Fairweather,
19 Royal Exchange Square
Glasgow G1 3AE (GB)


Remarks:

This application was filed on 02-01-2004 as a divisional application to the application mentioned under INID code 62.

(54) **Glass fiber facing sheet and method of making same**

(57) The invention provides a glass fiber facing sheet for engineered surfaces such as cement boards which reduces the pitting associated with open mesh glass scrims. The glass fiber facing sheet comprises an open mesh glass scrim having a plurality of intersecting continuous multifilament yarns which are bonded at their crossover points to provide dimensional stability to the scrim. A melt blown polymer web is preferably joined to one face of the glass scrim and covers the mesh openings in the scrim. The opposed face of the scrim defines an exposed grid profile surface which is available for mechanical interaction between the scrim and the

cementitious slurry used in cement boards. In cement boards, the glass fiber facing sheet of the present invention is preferably mechanically integrated into a surface portion of the cement core along the exposed grid profile of the scrim. A second facing sheet may also be mechanically integrated into an opposed surface portion of the cement core and contain a melt blown polymer web joined to one face. The present invention further includes a method of making the glass fiber facing sheet of the invention and a method of making a smooth cement board containing the glass fiber facing sheet of the invention.

EP 1 408 171 A1

DescriptionField of the Invention

[0001] The invention relates to glass fiber facing sheets for cement boards and a method of making same, and more particularly, relates to nonwoven, open mesh facing sheets formed of continuous glass yarns, to a method of making same and to engineered surfaces, specifically, cement boards including such facing sheet material.

Background of the Invention

[0002] Interior and exterior construction boards with cores of plaster, cement, or hybrid materials, such as cement boards or gypsum boards, are used in a wide variety of indoor and outdoor structural applications. For example, cement boards are used as a support surface for overlying materials such as wood siding, stucco, synthetic stucco, aluminum, brick, tile, stone aggregate and marble. In addition, cement boards are used in exterior insulating systems, commercial roof deck systems, and exterior curtain walls.

[0003] Generally, cement boards contain a core formed of a cementitious material which is interposed between two layers of facing material. The facing material advantageously contributes flexural and impact strength to the high compressive strength but brittle material forming the hardened cementitious core. In addition, the facing material can provide a durable surface and/or other desirable surface properties to the cement board.

[0004] One material which has been used to form facing sheet material is glass fibers. In addition to increased dimensional stability in the presence of moisture, glass fiber facings provide greater physical and mechanical properties to the cement board. As described, for example, in U.S. Pat. No. 5,371,989 to Lehnert et al., the method of making cement boards containing glass fiber facing sheets typically consists of providing a continuous feed of the facing material and depositing a cementitious slurry onto the top surface of the facing material. A second continuous feed of facing material is then applied to the top surface of the slurry. The slurry is then dried to harden the cementitious composition and to integrate the facing material in the cement board. The cement board is cut to a predetermined length for shipping and for its eventual use.

[0005] U.S. Pat. No. 4,647,496 to Lehnert et al. describes the use of randomly oriented fibrous glass mats as the facing material for gypsum boards. Additionally, U.S. Pat. No. 5,397,631 to Green et al. describes coating a gypsum board including a randomly oriented glass mat with a water-resistant resinous binder to prevent the deterioration of the bond between the gypsum and the glass mat.

[0006] An alternative to the randomly oriented fibrous

glass mats to reinforce cement boards is the use of open mesh glass scrims formed from continuous glass yarns. Because these scrims contain continuous yarns, they possess greater tensile strength than the randomly oriented fibrous glass mats. For example, U.S. Pat. No. 3,993,882 to Knauf et al. describes using a facing sheet formed of a glass fabric. In addition, published European patent application 637,658 to Bay Mills Limited describes the use of glass rovings to form nonwoven scrims for stucco boards.

[0007] In order to reduce glass usage, the mesh size of the glass scrims may be increased thus reducing the number of yarns or "picks per inch" in the transverse and/or the longitudinal direction without reducing the strength of the cement board. Nevertheless, the resulting increase in the size of the mesh openings in the glass fiber facing sheet causes other problems. Particularly, when the open mesh facing is applied to a cementitious slurry, pitting or the formation of indentations may occur in the center of the mesh openings which negatively affects the aesthetic appearance and surface properties of the cement board.

Summary of the Invention

[0008] The present invention provides a glass fiber facing sheet for engineered surfaces such as for masonry applications, roofing applications, and the like, preferably for cement board. The glass fiber facing sheet provides a smooth surface which is essentially free of pitting. The glass fiber facing sheet is created from a minimal amount of material compared to glass fiber facing sheets that use a heavier weight scrim, thus reducing the cost and weight of the resulting cement board or other product but without significant negative impact on the physical and mechanical properties of the final product.

[0009] In accordance with the present invention, the glass fiber facing sheet comprises an open mesh glass scrim having a plurality of intersecting glass yarns which are bonded at their crossover points to provide dimensional stability to the scrim. The glass scrim of the present invention is preferably a nonwoven scrim comprising generally transverse and generally longitudinal yarns having less than 100 mesh openings per square inch, i.e., less than 10 by 10 picks per inch. Preferably, the glass yarns are bonded through the use of a polymeric binder. A polymer web is joined to one or both faces of the glass scrim and covers at least a portion of the mesh openings in the scrim. The polymer web is formed of melt blown polymer fibers which are preferably formed directly on the surface of the scrim. The melt blown polymer web is generally a low strength web that does not contribute significantly to the strength of the cement board. Nevertheless, the polymer web causes a cementitious slurry or other liquid used to form cement board, roofing materials and the like, to window pane evenly over the mesh openings on the exterior of the

scrim thus improving the appearance and, at least in some cases the strength of the final product, e.g., cement board, by improving the interaction of the liquid or slurry and the glass scrim. Because the melt blown web is typically thin and is normally applied to only one face of the glass scrim, the opposed face of the scrim provides an exposed three-dimensional grid profile surface which remains available to interact mechanically with hardenable liquids such as the cementitious slurry used in the cement board. Accordingly, when used in forming cement board, the glass fiber facing sheet of the present invention is mechanically integrated into a surface portion of the cementitious core by virtue of the exposed grid profile surface of the scrim. A second open mesh glass scrim may be mechanically integrated into the other surface of the cement core to further enhance the properties of the cement board and may also include a melt blown polymer web on the surface of the scrim.

[0010] In one preferred embodiment of the invention, the melt blown polymer web applied to the surface of the glass scrim has a basis weight of between about 2 and 30 g/m² (grams per square meters of scrim). Cement board formed using this facing sheet has a smooth exterior surface with little or no pitting. In another preferred embodiment of the invention, the melt blown polymer web applied to the surface of the open mesh glass scrim has a higher basis weight of between about 10 and 50 g/m². The basis weight of the melt blown polymer web in this embodiment provides various desirable surface properties including a smooth finished exterior surface which can be painted directly.

[0011] In yet another preferred embodiment of the invention, the melt blown polymer web applied to the surface of the glass scrim has an even higher basis weight of between about 45 and 75 g/m². The melt blown polymer web may then be subjected to heat and pressure to melt and coalesce the fibers in the polymer web to form a microporous layer. The microporous layer provides a water resistant surface which nonetheless allows gases such as water vapor to pass through the web. Alternatively, a microporous film such as a high density polyethylene film may be applied to the facing sheet prior to or following deposition of the melt blown polymer web to provide essentially the same result.

[0012] In a preferred method embodiment of the invention, the present invention includes a method of creating a glass fiber facing sheet for engineered surfaces on products such as cement boards. According to this preferred embodiment, the melt blown polymer web is generally formed directly on the surface of the scrim and is preferably formed from an adhesive polymer composition which adheres to the surface of the scrim. In another preferred method embodiment, the present invention includes a method of making an engineered surface comprising providing a method of making an engineered surface comprising providing a facing sheet comprising an open mesh glass scrim defined by a plurality of intersecting, continuous filament glass yarns bonded at

crossover points thereof and a melt blown polymer web joined to one face of the glass scrim and covering at least a portion of the mesh openings thereon, the opposed face of the glass scrim defining an exposed grid profile surface, integrating the exposed grid profile surface of the facing sheet into a surface portion of a cementitious slurry layer, and allowing the cementitious slurry layer to harden to form the engineered surface.

[0013] The present invention further includes a method of making a cement board using the glass fiber facing sheet of the invention. The glass fiber facing sheets can be used to prepare cement boards of various types using conventional cement board manufacturing apparatus and manufacturing layouts. The method comprises providing a first facing sheet, preferably formed of glass fibers, and depositing a first cementitious slurry onto and through the facing sheet. A second cementitious slurry typically varying in material composition and/or viscosity from the first cementitious slurry may optionally be deposited on the first cementitious slurry. A glass fiber facing sheet formed according to the method described above is then applied to the cementitious slurry with the exposed grid profile directly contacting the cementitious slurry. An additional cementitious slurry preferably having a low viscosity may optionally be applied to the surface of the glass fiber facing sheet. The cementitious slurry(s) and the glass fiber facing sheet(s) are then preferably pressed to control thickness and consolidate the materials and the cementitious material hardened, for example by heating, to mechanically integrate the exposed three-dimensional grid profile surface of the glass fiber facing sheet into the cementitious core thereby forming the cement board.

[0014] Cement boards including the glass fiber facing sheet of the present invention have a smooth finish with little or no pitting. In addition, these boards can be lighter and/or less expensive than conventional cement boards while possessing mechanical and physical properties comparable to or exceeding conventional boards.

Brief Description of the Drawings

[0015] In the drawings which form a portion of the original disclosure of the invention:

Figure 1 illustrates a perspective view of one glass fiber facing sheet of the invention including a melt blown polymer web having a density of between about 2 and 30 g/m² according to a preferred embodiment of the invention.

Figure 2 illustrates a perspective view of one glass fiber facing sheet of the invention including a melt blown polymer web having a density of between about 10 and 50 g/m² according to an alternative preferred embodiment of the invention.

Figure 3 illustrates a perspective view of one glass fiber facing sheet of the invention including a melt blown polymer web having a density of between

about 45 and 75 g/m² and which has been melted to form a microporous film according to an alternative preferred embodiment of the invention.

Figure 4 illustrates a plan view of the glass fiber facing sheet in **Figure 1** taken from the bottom thereof and illustrates the exposed grid profile of the facing sheet.

Figure 5 schematically illustrates one preferred method of forming the melt blown polymer web on one face of the glass scrim to form a glass fiber facing sheet according to the invention.

Figure 6 schematically illustrates one preferred method of making a cement board including the glass fiber facing sheet of the invention.

Figure 7 illustrates a perspective view of a cement board including a glass fiber facing sheet of the invention.

Figure 8 is a sectional view of the cement board in **Figure 7** along line 8-8.

Detailed Description of the Preferred Embodiments

[0016] In the following detailed description, preferred embodiments of the invention are described and discussed in detail to enable practice of the invention. It will be apparent that although specific terms are used to describe the preferred embodiments, these are used in the descriptive sense and not for the purpose of limiting the invention thereto. It will also be apparent that the invention is susceptible to a wide variety of changes as will become apparent from a consideration of the preferred embodiments of the invention as shown in the attached drawings and described in detail below.

[0017] Figure 1 illustrates a glass fiber facing sheet 10 for an engineered surface such as cement board 12 according to one preferred embodiment of the invention. The glass fiber facing sheet 10 of the invention comprises an open mesh glass scrim 15 and a melt blown polymer web 20. The open mesh glass scrim 15 is formed by a plurality of intersecting, continuous multifilament, glass yarns 25 and 30 which are bonded at their crossover points 35 to provide dimensional stability to the glass scrim. Preferably, as shown in Figure 1, the open mesh glass scrim is formed by a plurality of generally transverse glass yarns 25 and a plurality of generally longitudinal glass yarns 30 which are bonded at their crossover points 35 to provide dimensional stability to the glass scrim. As will be apparent, the glass scrim 15 can be formed from or include yarns of various orientations in place of or in addition to the generally transverse and generally longitudinal yarns illustrated in Figure 1 including diagonally oriented yarns, randomly oriented yarns, and yarns in a 0°/60°/120° orientation, which intersect and are bonded at their crossover points and define a generally open mesh scrim. The scrim 15 can be woven, knitted or nonwoven. Preferably, scrims such as scrim 15 comprising transverse yarns 25 and the longitudinal yarns 30 are nonwoven. The glass scrim 15 can

be formed by the apparatus and process of U.S. Patent No. 4,242,779 issued January 6, 1991 to Curinier et al. which is hereby incorporated by reference. This process involves using an apparatus for forming a web of transverse (weft) yarns 25 for use in the scrim 15 and subsequently superimposing one or more webs of longitudinal (warp) yarns 30 on the web of weft yarns to form the open mesh glass scrim.

[0018] Preferably, the quantity of glass yarns used to form the glass scrim 15 is minimal, thereby reducing the cost and the weight of the resulting cement board using the glass fiber facing sheet 10. Nevertheless, the amount of continuous glass yarns used in the glass scrim 15 are sufficient to impart the desired physical and mechanical properties to the scrim 15 and the glass fiber facing sheet 10. Therefore, scrims having generally transverse 25 and generally longitudinal yarns 30 are preferred. The amount of generally transverse yarns 25 and generally longitudinal yarns 30 may be defined by the "picks per inch" or pick count of the scrim 15. Alternatively, the number of transverse yarns 25 and longitudinal yarns 30 may be defined by the number of mesh openings 40 in the glass scrim 15. Preferably, the glass scrim 15 has less than about 100 mesh openings per square inch (i.e., a pick count of less than 10 by 10). More preferably, the glass scrim 15 has less than about 70 mesh openings per square inch or even less than about 50 mesh openings per square inch. Generally, the individual yarns used to form the scrim can have a size ranging from about 900 yds/lb to about 9,000 yds/lb.

[0019] The transverse yarns 25 and the longitudinal yarns 30 are bonded at their crossover points 35 to provide dimensional stability to the scrim 15 and therefore to the glass fiber facing sheet 10. Preferably, the transverse yarns 25 and the longitudinal yarns 30 are bonded at their crossover points 35 by a polymeric binder. The polymeric binder is preferably applied as a low viscosity coating so that it can uniformly penetrate into the transverse yarns 25 and longitudinal yarns 30 and coat the filaments forming the yarns. Numerous different polymeric binders capable of penetrating the transverse yarns 25 and the longitudinal yarns 30 and interlocking the transverse yarns and longitudinal yarns together at their crossover points 35 can be used in the invention. Preferably, the polymeric binder is an alkali and moisture resistant thermoplastic or thermosetting polymer coating which can, in addition to providing dimensional stability to the scrim, also prevent chemical interaction between the cementitious materials forming the core of the cement board and the glass filamentary material, particularly when an alkaline and/or silicious cementitious material, e.g. Portland cement, is contained in the core of the cement board. Exemplary moisture resistant materials for the polymeric binder include polyvinyl chloride, polyvinyl acetate, polyvinylidene chloride, polyvinyl alcohol, styrene butadiene rubber, urethane, silicone, metallic resins, wax, asphalt, acrylic resins, styrene acrylate copolymers, aromatic isocyanates and diisocyanates.

anates, organohydrogenpolysiloxenes, thermoset resins such as epoxies and phenolics, mixtures thereof, and the like. The preferred polymeric binder for binding the transverse yarns **25** and the longitudinal yarns **30** is polyvinyl chloride (PVC) which is applied as a plastisol. Preferably, the polymer coating is applied to the scrim in between about 5 and 150 parts dry weight of resin to 100 parts by weight of fabric. In other words, the coating is applied at 5% to 150% dry weight pick-up.

[0020] A melt blown polymer web **20** is preferably joined to the glass scrim **15** on one face **45** of the scrim, but may be applied on both faces of the scrim. The melt blown polymer web **20** covers at least a portion of the mesh openings **40** in the glass scrim **15**, preferably, a significant portion (e.g. most, if not all) of the mesh openings. The term "covers" as used in this context includes both partial and complete coverage of the mesh openings. The polymer web **20** is preferably composed of a plurality of randomly oriented melt blown polymer fibers. Preferably, the melt blown web partially and uniformly covers the mesh openings, i.e., each opening includes a porous web that only partially covers the scrim opening because of the openings in the porous web. The melt blown polymer fibers preferably are formed from an adhesive polymer so that the web adheres to the face **45** of the glass scrim **15** without requiring application of a separate adhesive layer. Therefore, the polymer used for the melt blown polymer web **20** is typically a polymer which possesses a certain tackiness to the glass surface or the polymeric binder, at least when the fibers are at a temperature above their softening point (e.g. 350° to 400°F). Such materials include polyolefins such as polypropylene, polyethylene and amorphous poly(α -olefins); ethylene copolymers such as ethylene vinyl acetate or ethylene methacrylate copolymers, polyesters such as polyethylene terephthalate; polyamides; polyacrylates; polystyrene; styrene block copolymers; thermoplastic elastomers; mixtures thereof; and other known fiber forming thermoplastic materials. Preferably, the polymer used to form the melt blown polymer web **20** is not tacky at temperatures considerably below its softening point (e.g. at room temperature) to allow the facing sheet to be rolled and unrolled without sticking to itself, i.e., without adherence between the opposed face of the scrim and the melt blown polymer web. Preferred melt blown polymers include amorphous poly(α -olefin) polymers (e.g. 8494-36G from National Starch and Chemical Co.) and polyamides (e.g. HL-6520-X from HB Fuller Co.)

[0021] The amount of melt blown fibers forming the polymer web **20** and applied to the face **45** of the glass scrim **15** is normally described in terms of basis weight, or grams of melt blown fibers per square meters of glass scrim surface. Preferably, the basis weight of the melt blown polymer web **20** is between about 1 and 100 g/m². In one preferred embodiment, illustrated in Figure 1, the basis weight of the melt blown polymer web **20** is about 2 and 30 g/m².

[0022] The melt blown polymer webs **20** illustrated in Figure 1 have very little inherent strength and are essentially nonstructural. Nevertheless, as described herein, the melt blown polymer web prevents pitting (i.e. indentations caused when the slurry used to form the cementitious core sinks into the mesh openings of the glass scrim). This is particularly a problem in the large open mesh glass scrims that are used in preferred embodiments of the present invention. The melt blown polymer web **20** maintains a portion of the cementitious slurry on the surface of the glass fiber facing sheet **10** and causes the slurry to "window pane" the mesh openings **40** of the glass scrim **15** thereby forming a substantially planar bridge surface between the transverse and

longitudinal yarns **25** and **30**. Accordingly, at least in some cases, the melt blown polymer web **20** increases the composite strength of the cement board **12** by improving the mechanical integration of the facing sheet **10** into the cement board **12**.

[0023] Figure 2 illustrates a glass fiber facing sheet **110** according to an alternative preferred embodiment of the invention. In Figure 2, the basis weight of the melt blown polymer web **120** is between about 10 and 50 g/m². The increased basis weight of the melt blown polymer web **120** over the embodiment illustrated in Figure 1 provides a corresponding increase in the inherent strength of the web. Nevertheless, the majority of the strength provided by the facing sheet **110** in the cement board **12** is provided by the glass scrim **15**. In the embodiment shown in Figure 2, the higher basis weight melt blown polymer web **120**, which by itself is relatively weak, combines with the cementitious slurry to provide various desirable surface properties including a smooth finished exterior surface which can be painted directly without requiring any additional material on the surface of the cement board.

[0024] Figure 3 illustrates a glass fiber facing sheet **210** according to yet another embodiment of the invention. In Figure 3, the melt blown polymer web **220** applied to the surface of the glass scrim **15** has an even higher basis weight of between about 45 and 75 g/m². As in Figure 2, the increased basis weight over the embodiment illustrated in Figure 1 does increase the inherent strength of the web **220** but the majority of the strength provided by the facing sheet **210** is still provided by glass scrim **15**. The melt blown polymer web **220** may be subjected to heat and pressure to melt and coalesce the melt blown fibers in the polymer web to form a microporous layer **220**. The microporous layer **220** provides a water resistant surface which nonetheless allows gases such as water vapor to pass through the facing sheet **210**. The microporosity of the layer **220** can be particularly desirable in the formation of cement boards because the cement used in the core of the cement board is a hydrated compound and therefore water vapor may be evaporated from the hydrated cement. The microporous layer **220** allows the water vapor to pass through the glass scrim **15** thus preventing the

buildup of moisture on the interior of the facing sheet **210** and the eventual corrosion of the cement board.

[0025] In the embodiments illustrated in Figures 1-3, the glass fiber facing sheet may additionally include a microporous film (not shown) either between the glass scrim **15** and the melt blown polymer web **20, 120, 220** or on top of the melt blown polymer web. The microporous layer provides all the benefits described with respect to the embodiment of Figure 3. Suitable microporous films include the polymers described for use as melt blown polymer fibers. Preferably, the microporous layer is a microporous high density polyethylene film.

[0026] As described above, the melt blown polymer web **20** is preferably applied to one face **45** of the glass scrim **15** to form the glass fiber facing sheet **10**. The opposed face **50** of the glass scrim **15** is preferably not covered by the melt blown polymer web **20** and defines an exposed three-dimensional grid profile surface **55** as illustrated in Figure 4. The grid profile surface **55** is available to interact mechanically with a cementitious slurry used in the cement board **12**. As described below, this allows the glass fiber facing sheet **10** to be mechanically integrated into a surface portion of the cementitious core by virtue of the exposed grid profile surface **55** of the scrim **15**.

[0027] The present invention also includes a method of making a glass fiber facing sheet **10** for an engineered surface such as the surface of cement board **12** according to the invention. First, the glass scrim **15** is created from a plurality of intersecting yarns such as generally transverse yarns **25** and generally longitudinal yarns **30**. As stated above, the glass scrim **15** may include other yarn orientations. Typically, the scrim **15** is created by forming a web of weft yarns and then superimposing one or more webs of warp yarns as described in U.S. Patent No. 4,242,779. Alternatively, the generally transverse yarns **25** and generally longitudinal yarns **30** can be woven or knitted to form the glass scrim **15**. Once the glass scrim **15** is formed, the transverse yarns **25** and longitudinal yarns **30** are interlocked at their crossover points **35** to provide dimensional stability to the glass scrim **15**. As described above, preferably this is accomplished by applying a polymer coating to the scrim **15**. Generally, the glass scrim **15** is coated by the polymer coating by passing the glass scrim through a resinous bath containing the coating and then allowing the coating to harden on the surface and throughout the transverse yarns **25** and longitudinal yarns **30** of the glass scrim. Typically, the coating is hardened on the scrim **15** by heating the coated glass scrim to set the polymeric binder.

[0028] Once the glass scrim **15** is formed and coated with the polymeric binder, the melt blown polymer web **20** is preferably formed onto one face **45** of the glass scrim **15** to cover the mesh openings **40** thereon. This provides an exposed grid profile surface **55** on the opposed face of the glass scrim **15** for mechanical interaction with the cementitious composition of the cement board. The melt blown polymer web **20** can be formed

onto the face **45** of the glass scrim **15** in an "on-line" process prior to taking the coated glass scrim up on rolls (e.g. roll **60** in Figure 5) or alternatively, the melt blown polymer web can be formed on the face of the coated glass scrim **15** after it is taken up on rolls in an "off-line" process.

[0029] Figure 5 schematically illustrates the application of the melt blown polymer web **20** to the face **45** of the glass scrim **15** to form the glass fiber facing sheet **10** of the invention by forming a melt blown web directly on the glass scrim using a conventional melt blowing apparatus. Melt blowing apparatus are known to the skilled artisan and are disclosed, for example, in U.S. Patent No. 3,849,241 to Buntin et al. and U.S. Patent No. 4,048,364 to Harding et al. The melt blowing process involves supplying polymeric pellets or other polymer materials to a melting apparatus **64** such as an extruder, melting the molten polymeric material in the melting apparatus, and pumping it to melt blowing heads **66**. The filamentary streams exit the heads **66** where high velocity converging streams of a heated gas, typically air, are supplied from nozzles. The converging streams of high velocity heated gas attenuate the polymer streams and deposit same on the surface of glass scrim **15**. The fibers are randomly oriented and together form the melt blown polymer web **20**. Once the melt blown polymer web **20** has been formed on the surface of the glass scrim **15**, the web/scrim laminate constituting the facing sheet **10** of the invention, may be taken up on a collecting roll **70**. Alternatively, the facing sheet **10** can be formed "on-line" in a process of forming an engineered surface such as cement board without being collected on rolls prior to use in forming the final product, e.g. cement board.

[0030] In the event that the melt blown polymer web **20** is to be melted to form a microporous layer **220** as described with respect to the embodiment in Figure 3, the process of making the glass fiber facing sheet **10** can include a heater (not shown) or alternative means for melting and coalescing the melt blown fibers to form the microporous layer. Alternatively, if a separate microporous film is to be applied to the surface of the glass scrim **15** prior to applying the melt blown polymer web **20**, then an additional melt blown apparatus and head (not shown) can be provided before the melt blowing apparatus **62** to form a light weight tacky web on the surface of the glass scrim **15** thereby allowing the microporous film to bond thereto. Additionally, it may be advantageous to apply a separate microporous layer on the melt blown polymer web, in which case, the additional melt blown apparatus and head would be provided after the melt blowing apparatus **62**.

[0031] Figure 6 illustrates formation of a cement board **12** employing the glass fiber facing sheet **10** of the invention using conventional cement board manufacturing apparatus and layouts. As shown in Figure 6, a first facing sheet **72** having any of various constructions is provided and the cement board **12** formed ther-

eon. The first facing sheet **72** can, for example, be an open mesh glass scrim comprising a plurality of generally transverse yarns and generally longitudinal yarns optionally containing a melt blown polymer web as described above or any other material which can be used as a facing material for the cement board **12**. The first facing sheet **72** is typically formed of glass fibers and supplied by a roll **74** or other suitable means and a first cementitious slurry **76** is provided from a mixer **78** and deposited onto the surface of the facing sheet **72**. The cementitious slurry **76** can be formed of numerous different compositions of varying moisture content. Exemplary cementitious materials include hydraulic cements such as aluminous cement, Portland cement, gypsum cements, mixtures thereof with aggregates or polymer binders, and the like as will be known to the skilled artisan. Additional mixers such as mixer **92** can be installed between mixer **78** and pressing rolls **80** for the application of an additional cementitious material such as slurry **93** which may differ in viscosity and/or composition from the first cementitious slurry **76**. Preferably, a second cementitious slurry **93** when used has a higher viscosity and generally contains larger aggregate particles than slurry **76**.

[0032] As shown in Figure 6, the glass fiber facing sheet **10** of the invention can be supplied from a roll **70** ("off-line") or formed on-line. An additional mixer **90** can be used to apply a low viscosity cementitious slurry **91** to facing sheet **10**. The low viscosity slurry **91** will generally pass through the glass fiber facing sheet **10** but will also window pane over the mesh openings **40** to create a smooth surface on the cement board. The glass fiber facing sheet **10** is then applied to the cementitious slurry **76** (and optionally cementitious slurry **93**) such that the exposed three dimensional grid profile surface **55** on the lower face **50** of the glass scrim **15** directly contacts the cementitious slurry(s). The glass fiber facing sheet **10**, the cementitious slurry **76** or slurries and the facing sheet **72** are then pressed together such as by one or more pressing rolls **80**, a doctor blade or any other suitable means. When the glass fiber facing sheet **10** is pressed into the cementitious slurry **76** or slurries, the cementitious slurry is forced up through the mesh openings **40** of the glass fiber facing sheet **10**. The force of gravity then causes the cementitious slurry **76** to sink back down away from the glass fiber facing sheet **10** and form meniscuses within the mesh openings. Nevertheless, the melt blown polymer web **20** prevents the cementitious slurry **76** from sinking into the large mesh openings **40** of the glass fiber facing sheet **10**. Instead, the melt blown polymer web **20** maintains a portion of the cementitious slurry **76** on the surface of the glass fiber facing sheet **10** and causes the slurry to window pane the mesh openings **40** of the glass scrim **15** thereby forming a substantially planar bridge surface between the transverse and longitudinal yarns, **25** and **30**. As a result, the glass fiber facing sheet **10** becomes mechanically integrated into the cement board **12** once the

cementitious slurry **76** or slurries harden to thereby provide a generally uniform planar exterior surface on the cement board **12**.

[0033] In the hardening of the cementitious slurry **76** or slurries, the cementitious material becomes hydrated. This process can be accelerated by the application of heat such as from heater **82**. During hardening of the slurry **76**, the exposed three dimensional grid profile surface **55** of the glass fiber facing sheet **10** becomes mechanically interlocked into the cement board **12** since the grid profile surface allows the fluid slurry to intimately contact the filament yarns **25** and **30** forming the scrim **15** around a substantial portion of their cross-sections. Preferably the cementitious slurry **76** substantially fully surrounds the cross-section of the longitudinal and transverse yarns **25** and **30** to achieve a high level of mechanical integration of the facing sheet **10** into the core when the slurry hardens. Once the cement board is formed, it may be cut by appropriate means **84** into boards such as 4' x 8' x 7/16" boards. The resulting cement board is illustrated in Figure 7.

[0034] Figure 8 illustrates a cross-section of the cement board **12** illustrated in Figure 7 along line 8-8. As shown in Figure 8, the glass fiber facing sheet **10** comprising the glass scrim **15** and the melt blown polymer web **20** is mechanically integrated into a surface portion **86** of the cementitious core **80** forming the cement board. In addition, the facing sheet **72** is mechanically integrated into an opposed surface portion **90** of the cementitious core **80**.

[0035] As will be apparent from the foregoing, the glass fiber facing sheet **10** of the present invention provides a smooth cement board **12** which is essentially free of pitting. The glass fiber facing sheet **10** can be constructed using fewer continuous glass yarns per unit length of the scrim fabric, thus reducing the cost of the resulting cement board **12** but without negatively affecting the physical and mechanical properties of the cement board.

[0036] The cement boards including the glass fiber facing sheet of the invention can be used in a wide variety of indoor and outdoor structural application. For example, cement boards are used as a support surface for overlying materials such as wood siding, stucco, synthetic stucco, aluminum, brick, tile, stone aggregate and marble. In addition, cement boards are used in exterior insulating systems, commercial roof deck systems, and exterior curtain walls. In addition to cement boards, the facing sheet of the invention can be used with other engineered surfaces in masonry applications, roofing applications and the like.

[0037] The invention has been described in considerable detail with particular reference to preferred embodiments. However, numerous variations and modifications can be made without departing from the spirit and scope of the invention as described in the foregoing specification and shown in the drawings and defined in the following claims.

Claims

1. A method of making a cement board comprising:

providing a first facing sheet;
 depositing a first cementitious slurry on the first facing sheet to form a first cementitious slurry layer in contact with said first facing sheet on one side thereof;
 applying a second facing sheet to the opposed side of said slurry layer, said second facing sheet comprising an open mesh glass scrim defined by a plurality of intersecting, continuous filament glass yarns bonded at crossover points thereof and a melt blown polymer web joined to one face of the glass scrim and covering at least a portion of the mesh openings thereon, the opposed face of the glass scrim defining an exposed grid profile surface, said second facing sheet being applied to said slurry layer such that said exposed grid profile surface is orientated in a direction toward said slurry and is applied to the first cementitious slurry; and
 allowing the cementitious material to harden to form the cement board so that said open mesh profile surface of said second facing sheet mechanically interlocks said second facing sheet in the cement board.

2. The method according to claim 1, wherein said applying step comprises a second facing sheet comprising an open mesh glass scrim defined by a plurality generally transverse and generally longitudinal, continuous filament yarns.

3. The method according to claim 1, wherein said providing step includes providing a first facing sheet comprising an open mesh glass scrim.

4. The method according to claim 3, wherein said open mesh glass scrim is defined by a plurality of generally transverse and generally transverse longitudinal, continuous filament glass yarns bonded at crossover points thereof.

5. The method according to claim 3, wherein said first facing sheet further comprises a melt blown polymer web joined to one face of the glass scrim and uniformly covering at least a portion of the mesh openings thereon.

6. The method according to claim 1, wherein said depositing step comprises depositing a material selected from the group consisting of hydraulic cement and gypsum cement.

7. The method according to claim 1, further comprising:

5 ing depositing a second cementitious slurry on the first cementitious slurry layer prior to said applying step, said second cementitious slurry having at least one of a different viscosity and a different composition than the first cementitious slurry.

8. The method according to claim 1, further comprising depositing a low viscosity cementitious slurry on said second facing sheet after said applying step.

10 9. The method according to claim 1, further comprising the step of pressing the first and second facing sheets into the cement slurry.

15 10. The method according to claim 1, wherein said allowing step comprises heating the slurry to allow the slurry to harden.

20 11. The method according to claim 1, further including the steps of:

providing an open mesh glass scrim from a plurality of intersecting, continuous filament glass yarns;

25 applying a polymer coating to said scrim to interlock the yarns at their crossover points; and forming a melt blown polymer web onto one face of the open mesh glass scrim over at least a portion of the mesh openings thereon to provide an exposed grid profile surface on the opposed side of said scrim for mechanical interaction with a cementitious composition of said cement board.

30 35 12. A method of making a glass fiber facing sheet for an engineered surface comprising:

providing an open mesh glass scrim defined by a plurality of intersecting, continuous filament glass yarns;

40 applying a polymer coating to said scrim to interlock the intersecting yarns at their crossover points; and

45 forming a melt blown polymer web onto one face of the open mesh glass scrim to cover at least a portion of the mesh openings on said one face and to provide an exposed grid profile surface on the opposed face of the open mesh glass scrim for mechanical interaction with a cementitious composition.

50 55 13. The method according to claim 11 or 2, wherein said step of providing an open mesh glass scrim comprises providing a glass scrim comprising a plurality of generally transverse and generally longitudinal yarns.

14. The method according to claim 11 or 12, further

comprising the step of heating the scrim after said step of applying a polymer coating.

15. The method according to claim 14, wherein the polymer coating comprises polyvinyl chloride.

16. The method according to claim 11 or 12, wherein said forming step comprises forming a melt blown polymer web having a basis weight between about 2 and 30 g/m².

17. The method according to claim 11 or 12, wherein said forming step comprises forming a melt blown polymer web having a basis weight between about 45 and 50 g/m².

18. The method according to claim 11 or 12, wherein said forming step comprises forming a melt blown polymer web having a basis weight between about 10 and 75 g/m².

19. The method according to claim 18, further comprising melting the polymer to form a microporous layer on one face of the scrim.

20. The method according to claim 11 or 12, further comprising the step of applying a microporous layer onto the glass scrim prior to forming the melt blown polymer web.

21. The method according to claim 11 or 12, further comprising the step of applying a microporous layer onto the melt blown polymer web after said forming step.

22. The method according to claim 13, wherein said step of providing an open mesh glass scrim comprises providing a scrim having less than about 100 mesh openings per square inch.

23. The method according to claim 13, wherein said step of providing an open mesh glass scrim comprises providing a scrim having less than about 70 mesh openings per square inch.

24. The method according to claim 11 or 12, wherein said forming step comprises forming a melt blown polymer web consisting of a material which is tacky at a temperature above its softening point to facilitate adhesion between said melt blown polymer web and said glass scrim but which is essentially free of tackiness at temperatures considerably below its softening point to thereby allow said facing sheet to be rolled and unrolled without adherence between said opposed face and said melt blown polymer web.

25. The method according to claim 11 or 12, wherein said forming step comprises forming a melt blown polymer web comprising a polymer selected from the group consisting of polyolefins ethylene copolymers, polyesters, polyamides, polyacrylates, polystyrene, styrene block copolymers, thermoplastic elastomers, and mixtures thereof.

5 26. The method according to claim 11 or 12, wherein said forming step comprises forming a melt blown polymer web comprising an amorphous poly(α-olefin) polymer.

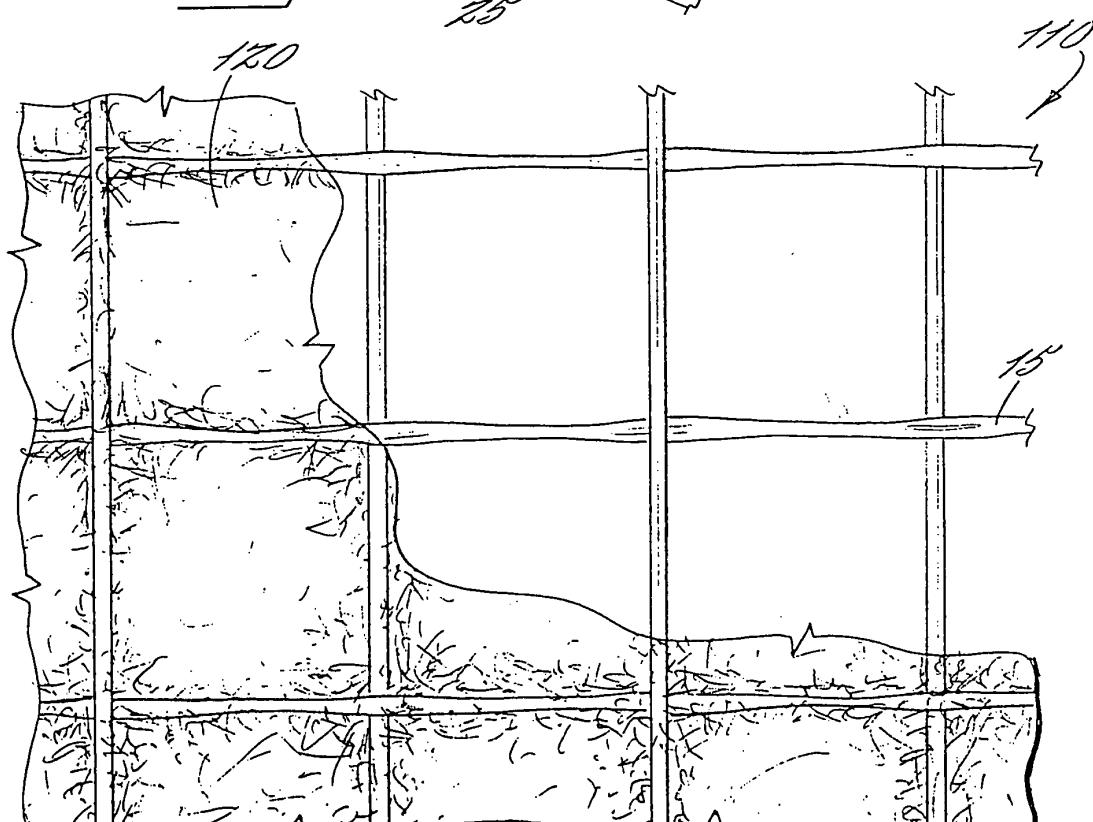
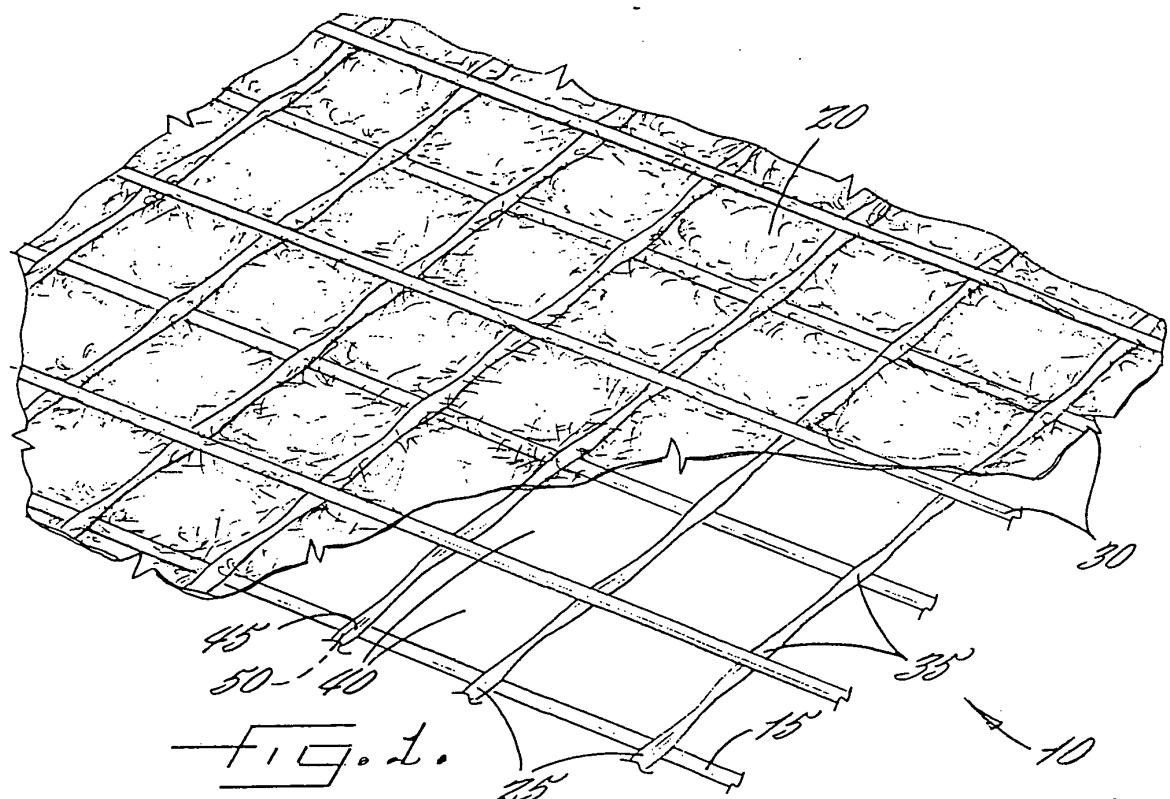
10 27. The method according to claim 11 or 12, wherein said forming step comprises forming a melt blown polymer web comprising a polyamide.

15

20

25

30



35

40

45

50

55

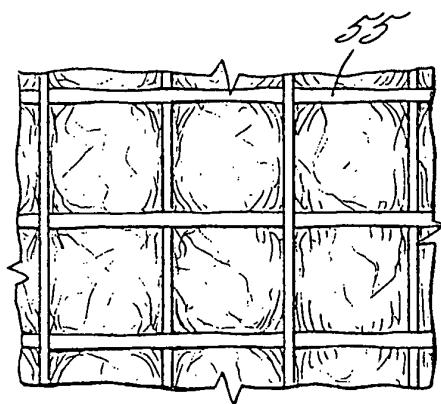


FIG. 4.

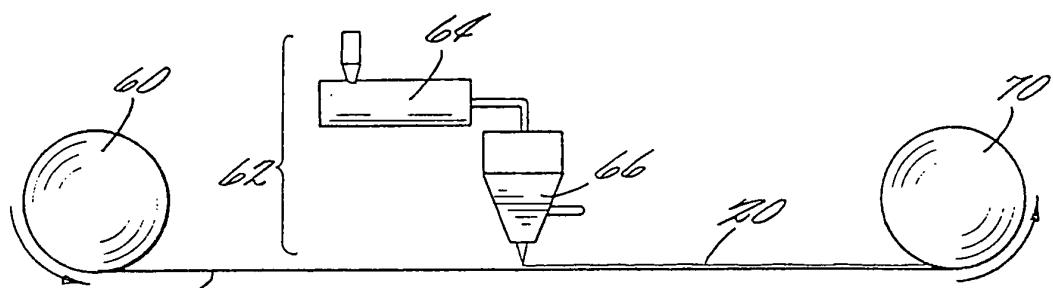


FIG. 5.

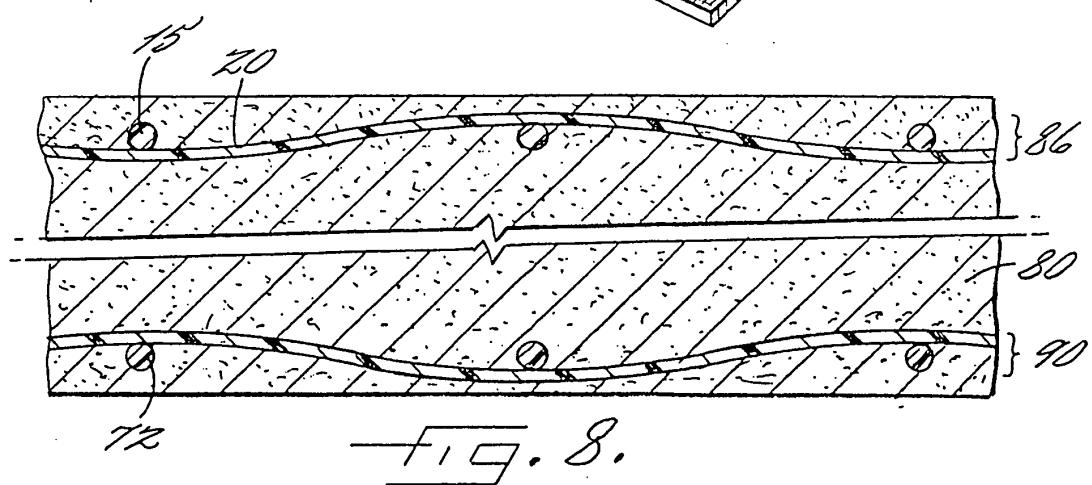
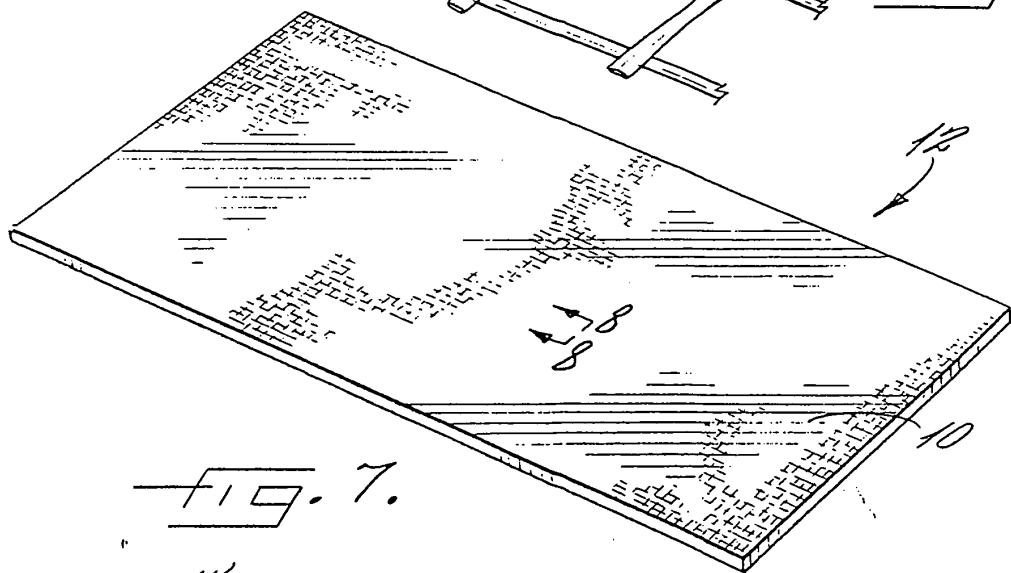
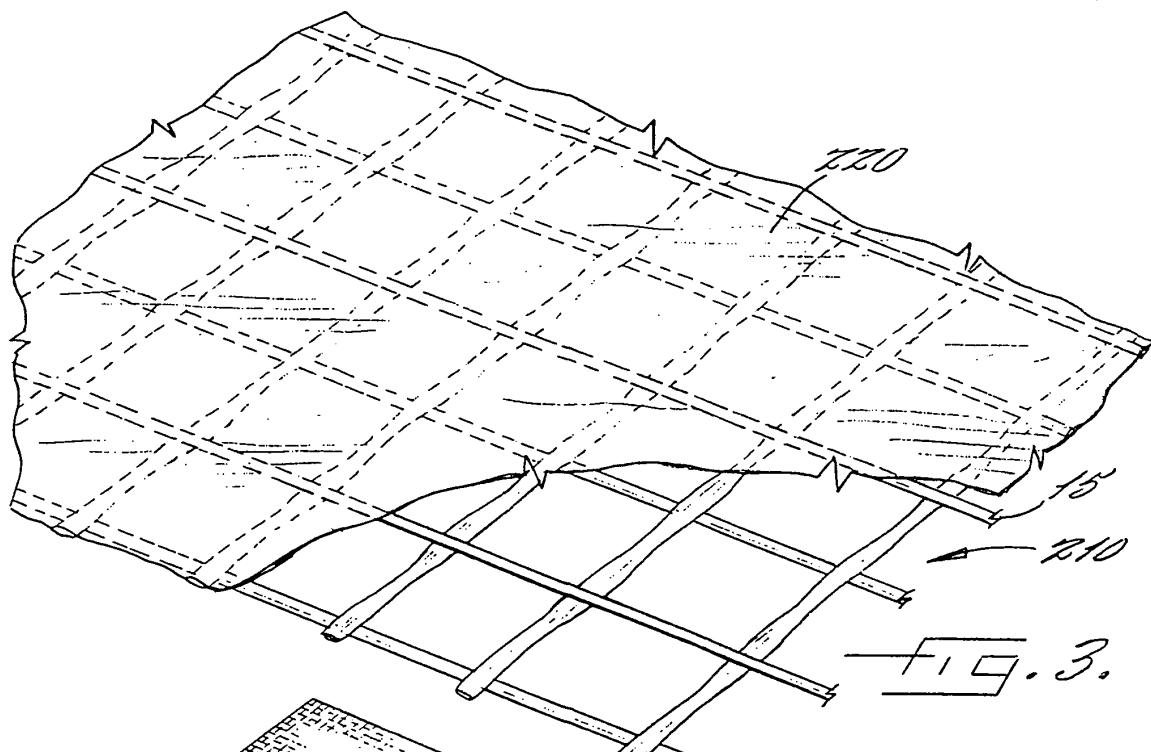





FIG. 6.

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number

EP 04 00 0003

DOCUMENTS CONSIDERED TO BE RELEVANT					
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.7)		
Y	US 5 370 756 A (BUIJS ET AL.) 6 December 1994 (1994-12-06)	1-4,6	E04C2/04		
A	* column 2, line 13 - line 48; figure 1 *	27			
Y	DE 30 12 293 A (GEBR. KNAUF WESTDEUTSCHE GIPSWERKE) 1 October 1981 (1981-10-01) * page 7, line 3 - page 8, line 8; figures 1,2 *	1-4,6			
A	GB 2 102 731 A (RUBEROID PAPER LIMITED) 9 February 1983 (1983-02-09) * page 1, line 10 - line 99; figures 1-3 *	12,13, 15,22,23			
D,A	US 4 048 364 A (HARDING ET AL.) 13 September 1977 (1977-09-13) * column 3, line 42 - line 4 *	16-18, 25-27			
TECHNICAL FIELDS SEARCHED (Int.Cl.7)					
E04C B32B					
The present search report has been drawn up for all claims					
Place of search	Date of completion of the search	Examiner			
THE HAGUE	17 February 2004	Mysliwetz, W			
CATEGORY OF CITED DOCUMENTS					
X : particularly relevant if taken alone	T : theory or principle underlying the invention				
Y : particularly relevant if combined with another document of the same category	E : earlier patent document, but published on, or after the filing date				
A : technological background	D : document cited in the application				
O : non-written disclosure	L : document cited for other reasons				
P : intermediate document	& : member of the same patent family, corresponding document				

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.

EP 04 00 0003

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

17-02-2004

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 5370756	A	06-12-1994	NONE		
DE 3012293	A	01-10-1981	DE BE DK NL NO US	3012293 A1 888103 A1 118481 A ,B, 8101413 A ,B, 811044 A ,B, 4504533 A	01-10-1981 16-07-1981 30-09-1981 16-10-1981 30-09-1981 12-03-1985
GB 2102731	A	09-02-1983	NONE		
US 4048364	A	13-09-1977	NONE		