

Europäisches Patentamt European Patent Office Office européen des brevets

(11) **EP 1 420 207 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

19.05.2004 Patentblatt 2004/21

(21) Anmeldenummer: 03026195.2

(22) Anmeldetag: 17.11.2003

(51) Int Cl.7: **F23Q 7/24**, F23Q 7/06

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

Benannte Erstreckungsstaaten: **AL LT LV MK**

(30) Priorität: 18.11.2002 DE 10253659

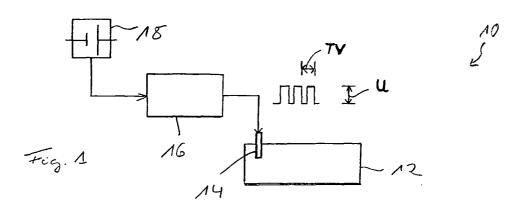
(71) Anmelder: J. Eberspächer GmbH & Co. KG 73730 Esslingen (DE)

(72) Erfinder: Steiner, Peter 73773 Aichwald (DE)

(74) Vertreter:

Ruttensperger, Bernhard, Dipl.-Phys. et al Weickmann & Weickmann Patentanwälte Postfach 86 08 20 81635 München (DE)

(54) Verfahren zum Ansteuern eines Glühzündorgans eines Heizgerätes


(57) Ein Verfahren zum Ansteuern eines Glühzündorgans (14) eines Heizgerätes (12), insbesondere eines Fahrzeugheizgerätes, umfasst die Schritte:

a) beruhend auf einer Bordspannung Erzeugen einer an das Glühzündorgan für eine Grund-Vorglühdauer mit einem Grund-Vorglühtastverhältnis anzulegenden Soll-Vorglühspannung (U_s) ,

b) dann, wenn die Soll-Vorglühspannung (U_s) nicht erreichbar ist, Ermitteln einer Abweichung (ΔU_1 ,

 ΔU_2) zwischen der Soll-Vorglühspannung (U_s) und der an das Glühzündorgan (14) angelegten Ist-Vorglühspannung (U_1 , U_2),

c) beruhend auf der im Schritt b) ermittelten Abweichung (ΔU_1 , ΔU_2), Ermitteln einer bezüglich der Grund-Vorglühdauer erhöhten korrigierten Vorglühdauer oder/und Ermitteln eines bezüglich des Grund-Vorglühtastverhältnisses erhöhten korrigierten Vorglühtastverhältnisses.

5

Beschreibung

[0001] Die vorliegende Erfindung betrifft ein Verfahren zum Ansteuern eines Glühzündorgans eines Heizgerätes, insbesondere eines Fahrzeugheizgerätes.

[0002] Aus der DE 32 48 412 A1 ist ein Verfahren zum Ansteuern eines Glühzündstifts eines Fahrzeugheizgerätes bekannt, bei welchem Verfahren eine Vorglühdauer des Glühzündstifts in Abhängigkeit von einer durch eine Fahrzeugbatterie bereitgestellten Spannung eingestellt wird. Je höher die Spannung ist, desto kürzer wird der Glühzündstift vorgeglüht, und umgekehrt. Somit soll sichergestellt werden, dass unabhängig von der von einer Fahrzeugbatterie zur Verfügung gestellten Spannung die zur Durchführung des Zündvorgangs erforderliche Temperatur des Glühzündstifts erreicht werden kann.

[0003] Aus der DE 199 36 729 C1 ist es bekannt, in der Startphase eines Fahrzeugheizgerätes zum Vorglühen eines Glühzündstifts diesen mit einer konstanten, ungetakteten Spannung zu erregen, um möglichst schnell die gewünschte Betriebstemperatur zu erreichen. Die Zeitdauer, während welcher diese kontinuierliche Bestromung des Glühzündstifts erfolgt, ist abhängig von der Bordspannung. Je höher die zur Verfügung gestellte Bordspannung ist, desto kürzer wird die zur kontinuierlichen Bestromung und somit zum Vorglühen verwendete Zeitdauer.

[0004] Die DE 44 46 113 A1 offenbart ein Verfahren zur Ansteuerung eines Glühzündstifts, bei welchem ein Glühzündstift zur Erlangung einer vorgegebenen Temperatur mit einem bestimmten Tastverhältnis angesteuert wird, d. h. die zur Verfügung stehende Spannung entsprechend dem Tastverhältnis gepulst an den Glühzündstift angelegt wird. Das Tastverhältnis wird in Abhängigkeit von der vorhandenen Versorgungsspannung ausgewählt, so dass mit abnehmender Versorgungsspannung das Tastverhältnis bis zu einem Wert von 100 % zunimmt.

[0005] Es ist die Aufgabe der vorliegenden Erfindung, ein Verfahren zum Ansteuern eines Glühzündorgans eines Heizgerätes, insbesondere eines Fahrzeugheizgerätes, vorzusehen, mit welchem der Betrieb des Glühzündorgans unter Entlastung desselben optimiert werden kann.

[0006] Erfindungsgemäß wird diese Aufgabe gelöst durch ein Verfahren zum Ansteuern eines Glühzündorgans eines Heizgerätes, insbesondere eines Fahrzeugheizgerätes, umfassend die Schritte:

- a) beruhend auf einer Bordspannung Erzeugen einer an das Glühzündorgan für eine Grund-Vorglühdauer mit einem Grund-Vorglühtastverhältnis anzulegenden Soll-Vorglühspannung,
- b) dann, wenn die Soll-Vorglühspannung nicht erreichbar ist, Ermitteln einer Abweichung zwischen der Soll-Vorglühspannung und der an das Glühzündorgan angelegten Ist-Vorglühspannung,

c) beruhend auf der im Schritt b) ermittelten Abweichung, Ermitteln einer bezüglich der Grund-Vorglühdauer erhöhten korrigierten Vorglühdauer oder/und Ermitteln eines bezüglich des Grund-Vorglühtastverhältnisses erhöhten korrigierten Vorglühtastverhältnisses.

[0007] Elementar ist bei der erfindungsgemäßen Vorgehensweise, dass zunächst versucht wird, die an ein Glühzündorgan anzulegende Spannung in der Vorglühphase auf einen für ein bestimmtes Glühzündorgan optimalen Sollwert einzustellen. In Zuordnung zu einem derartigen Sollwert werden dann eine Grund-Vorglühdauer und ein Grund-Vorglühtastverhältnis dazu herangezogen, das Glühzündorgan in definierter Art und Weise vorzuglühen. Zwischen dem Sollwert der Vorglühspannung und der Grund-Vorglühdauer bzw. dem Grund-Vorglühtastverhältnis besteht ein enger Zusammenhang dahingehend, als mit diesen Werten erreicht werden soll, dass die Vorglühphase möglichst kurz sein soll, die Erregung des Glühzündorgans jedoch so sein soll, dass eine Überlastung, insbesondere Überhitzung, desselben nicht auftreten kann.

[0008] Wird jedoch beispielsweise aufgrund der Tatsache, dass momentan in einem Fahrzeug viele Verbraucher elektrischer Energie aktiviert sind, die Bordspannung so weit gedrückt, dass die Soll-Vorglühspannung nicht erreicht werden kann und insofern eine entsprechend verminderte Ist-Vorglühspannung an das Glühzündorgan angelegt wird, werden beruhend auf der vorhandenen Abweichung zwischen dem Sollwert und dem Istwert der Vorglühspannung Korrekturmaßnahmen ergriffen, um zur Erreichung der gewünschten Temperatur am Ende der Vorglühphase die mit der verminderten Vorglühspannung ebenso verminderte Vorglühleistung entsprechend zu kompensieren.

[0009] Um beim Vorglühen eines Fahrzeugheizgerätes bzw. des Glühzündorgans desselben äußere Umstände, wie z.B. die Umgebungstemperatur, berücksichtigen zu können, wird vorgeschlagen, dass die Grund-Vorglühdauer oder/und das Grund-Vorglühtastverhältnis beruhend auf wenigstens einem Betriebsparameter vorgegeben werden, wobei dieser wenigstens eine Betriebsparameter die Umgebungstemperatur wiedergeben kann. Somit wird es möglich, beispielsweise bei sehr geringer Außentemperatur eine längere Grund-Vorglühdauer oder ein höheres Grund-Vorglühtastverhältnis vorzugeben, als bei höheren Umgebungstemperaturen. Auch kann die im Bereich des Heizgeräts selbst vorherrschende Temperatur berücksichtigt werden, so dass beispielsweise dann, wenn nach einer kurzen Stillstandphase das Heizgerät wieder in Betrieb genommen werden soll und es noch auf vergleichsweise hoher Temperatur ist, eine entsprechend verkürzte Vorglühphase mit möglicherweise entsprechend verminderter Vorglühleistung gewählt werden

[0010] Weiter kann gemäß der vorliegenden Erfin-

dung vorgesehen sein, dass dann, wenn die im Schritt b) ermittelte Abweichung einen vorbestimmten Grenzwert überschreitet, das Anlegen einer Vorglühspannung an das Glühzündorgan unterbunden wird. Die Korrekturmaßnahmen, die erfindungsgemäß dann vorzunehmen sind, wenn ein bestimmtes Spannungsniveau nicht mehr erreicht werden kann, können beispielsweise dadurch erfolgen, dass im Schritt c) die korrigierte Vorglühdauer durch Bestimmen eines Korrekturterms beruhend auf der im Schritt b) ermittelten Abweichung und Addieren des Korrekturterms zur Grund-Vorglühdauer ermittelt wird oder/und dass im Schritt c) das korrigierte Grund-Vorglühtastverhältnis durch Ermitteln eines Korrekturterms beruhend auf der im Schritt b) ermittelten Abweichung und Addieren des Korrekturterms zum Grund-Vorglühtastverhältnis ermittelt wird.

[0011] Die vorliegende Erfindung wird nachfolgend mit Bezug auf die beiliegenden Figuren beschrieben. Es zeigt:

- Fig. 1 schematisch ein Heizsystem, bei welchem die erfindungsgemäße Vorgehensweise vorgenommen werden kann;
- Fig 2 die an ein Glühzündorgan des Systems der Fig. 1 angelegte Vorglühspannung in Abhängigkeit von der Zeit;
- Fig. 3 ein zweidimensionales Kennfeld, durch welches ein Zusammenhang zwischen Spannungsabweichungen und Korrekturtermen hergestellt wird.

[0012] In Fig. 1 ist ein Heizsystem, wie es beispielsweise als Standheizung oder Zuheizer in einem Fahrzeug Einsatz finden kann, sehr schematisch dargestellt. Dieses Heizsystem 10 umfasst ein allgemein mit 12 bezeichnetes Heizgerät. In diesem Heizgerät 12 wird Verbrennungsluft mit verdampftem oder zerstäubtem Brennstoff gemischt und zur Verbrennung gebracht. Um diese Verbrennung zu starten, ist in einem Brennerbereich ein Glühzündstift 14 vorgesehen. Dieser steht, ebenso wie andere anzusteuernde Systembereiche des Heizgeräts 12, unter der Ansteuerung einer Ansteuervorrichtung 16. Die Ansteuervorrichtung 16 wird zum Anlegen einer Erregungsspannung an den Glühzündstift 14 aus einem Bordspannungsnetz 18 gespeist. Beruhend auf der dem Bordspannungsnetz 18 entnommenem bzw. dort abgegriffenen Bordspannung legt dann, wenn durch Erregung des Glühzündstifts 14 das Heizgerät 12 bzw. die Verbrennung darin gestartet werden soll, die Ansteuervorrichtung 16 eine Spannung U mit einem Tastverhältnis V an den Glühzündstift 14 an. Dabei wird in einer Vorglühphase, in welcher der Glühzündstift 14 möglichst schnell auf eine gewünschte Temperatur gebracht werden soll, eine etwas erhöhte Vorglühspannung angelegt, die am Ende dieser Vorglühphase, wie nachfolgend noch beschrieben, dann etwas abgesenkt wird.

[0013] Beruhend auf der Bordspannung erzeugt also dann, wenn beispielsweise zum Zeitpunkt to ein Befehl zum Starten des Vorglühens ausgegeben wird, die Ansteuervorrichtung 16 eine Vorglühspannung, die an den Glühzündstift 14 angelegt wird. Hier wird als Vorglühspannungs-Sollwert ein Wert U_s ausgewählt, der an den speziellen konstruktiven Aufbau eines jeweiligen Glühzündstifts 14 angepasst ist und sicherstellt, dass dieser zumindest in normaler Betriebsweise nicht überlastet werden kann. Hierzu ist es beispielsweise bekannt, einen Vorglühspannungs-Sollwert US im Bereich von etwa 10 V vorzugeben. In Zuordnung zu diesem Sollwert U_S ist auch eine Grund-Vorglühdauer vorgegeben, während welcher diese Vorglühspannung mit dem Sollwert U_s an den Glühzündstift angelegt wird. In der Darstellung der Fig. 2 ist diese Grund-Vorglühdauer repräsentiert durch das Zeitintervall zwischen dem Zeitpunkt to und t_a. Ebenso wird in Zuordnung zu dem Sollwert U_S ein Grund-Vorglühtastverhältnis ausgewählt, so dass diese Vorglühspannung U mit dem Wert US und dem Grund-Vorglühtastverhältnis während der Grund-Vorglühdauer an den Glühzündstift 14 angelegt wird. Nach Ablauf der Grund-Vorglühdauer kann die an den Glühzündstift 14 anzulegende Spannung auf einen verringerten Zündwert U₂ gesenkt werden.

[0014] Aufgrund der Tatsache, dass in modernen Kraftfahrzeugen eine Vielzahl zusätzlicher Verbraucher elektrischer Energie vorhanden ist, ist es insbesondere auch bei vergleichsweise niedrigen Außentemperaturen möglich, dass die durch das Bordspannungsnetz 18 zur Verfügung gestellte Bordspannung nicht ausreicht, um die für die Vorglühphase vorgesehene Spannung mit dem Sollwert US bereitzustellen. Wird in einem derartigen Zustand also ein Befehl zum Vorglühen erzeugt, so versucht zwar die Ansteuervorrichtung 16 eine ausreichend hohe Spannung an den Glühzündstift 14 anzulegen, die tatsächlich angelegte Ist-Vorglühspannung wird jedoch etwas geringer sein, als der Sollwert U_S. Es sei beispielsweise zunächst angenommen, dass die tatsächlich erreichte Vorglühspannung bei einem Wert U₁ liegt, der um eine Differenz ΔU₁ unter dem Sollwert U_S liegt. Wird bei einer derartigen Vorglühspannung U₁ bei ansonsten unveränderten Ansteuerparametern der Glühzündstift 14 vorgeglüht, so besteht die Gefahr, dass er nicht ausreichend vorerwärmt wird. Es wird daher in dem Falle, dass der Sollwert US der Vorglühspannung nicht erreicht werden kann, erfindungsgemäß zumindest einer der Parameter Grund-Vorglühdauer und Grund-Vorglühtastverhältnis korrigiert.

[0015] Die Fig. 3 zeigt ein Kennfeld mit einer Kennlinie K, wo jeweiligen Spannungsdifferenzenwerten ΔU Zeitkorrekturterme Δt zugeordnet sind. Liegt also im vorangehend beschriebenen Falle die tatsächlich angelegte Vorglühspannung U_1 um die Differenz ΔU_1 unter der Sollspannung U_S , so wird aus dem in der Fig. 3 gezeigten Kennfeld ein entsprechender Korrekturterm Δt_1 entnommen und wird zur Grund-Vorglühdauer hinzu ad-

diert. Es ergibt sich somit, wie in der Fig. 2 erkennbar, für das Beenden des Vorglühens ein Zeitpunkt t_1 , zu dem dann die Spannung auf den Zündspannungswert U_{τ} abgesenkt wird.

[0016] Je größer die Abweichung der tatsächlich an den Glühzündstift 14 angelegten Spannung von dem Sollwert $\mathbf{U}_{\mathbf{S}}$ ist, desto größer wird auch die vorgenommene Zeitkorrektur. Entsprechendes kann selbstverständlich auch im Falle des bereits angesprochenen Tastverhältnisses vorgenommen werden, welches mit zunehmender Abweichung der Istspannung von der Sollspannung in Richtung Erhöhen bzw. Verlängern des "An-Zyklus" verstellt werden kann.

[0017] Die Korrektur der Vorglühdauer bzw. des Vorglühtastverhältnisses kann jedoch auch dadurch erfolgen, dass ein Korrekturterm berechnet wird, in dem ein Korrekturfaktor, der angibt, um wieviele Sekunden pro Volt-Spannungsabweichung die Vorglühzeitdauer verlängert werden soll, mit der ermittelten Spannungsabweichung multipliziert wird. Der so erhaltene Korrekturterm kann dann zur Grund-Vorglühdauer addiert werden. Entsprechendes gilt selbstverständlich auch wieder für das Tastverhältnis.

[0018] Ebenso wie die Grund-Vorglühdauer und das Grund-Vorglühtastverhältnis in Abhängigkeit von verschiedenen Parametern, wie z.B. der Umgebungstemperatur oder der Temperatur im Bereich des Heizgeräts 12 ausgewählt werden können, kann auch ein derartiger Korrekturfaktor, der in der Darstellung der Fig. 3 im Wesentlichen auch wiedergegeben ist durch die Steigung der Kennlinie K, in Abhängigkeit von derartigen äußeren Umständen ausgewählt werden, so dass beispielsweise auch dann, wenn höhere Umgebungstemperaturen oder höhere Temperaturen im Bereich des Heizgeräts 12 vorliegen, geringere Korrekturen bei Unterschreiten der Sollspannung vorgenommen werden, als in einem Falle, in welchem vergleichsweise niedrige Temperaturen vorherrschen.

[0019] Gemäß einem weiteren Aspekt kann bei der erfindungsgemäßen Vorgehensweise vorgesehen sein, dass dann, wenn die Differenz zwischen der Sollspannung und der tatsächlich angelegten Vorglühspannung einen bestimmten Grenzwert überschreitet, d.h. wenn die Istspannung einen bestimmten Spannungsgrenzwert nicht mehr überschreitet, das Erregen des Glühzündstifts 14 vollständig eingestellt wird und möglicherweise eine entsprechende Fehlerwarnung erzeugt wird, da dann nicht sichergestellt werden kann, dass das Heizgerät 12 in ordnungsgemäßer Art und Weise gezündet werden kann.

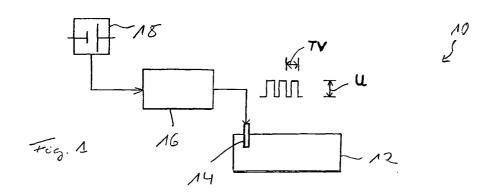
[0020] In jedem Falle muss durch die Auswahl der verschiedenen Grundgrößen, Korrekturterme und Korrekturfaktoren sichergestellt werden, dass auch unter ungünstigsten Umständen, d.h. beispielsweise bei sehr niedrigen Umgebungstemperaturen bzw. sehr kaltem Glühzündstift 14, am Anfang der Vorglühphase innerhalb der letztendlich dann für diese Glühzündphase vorgegebenen Zeitdauer die erforderliche Temperatur er-

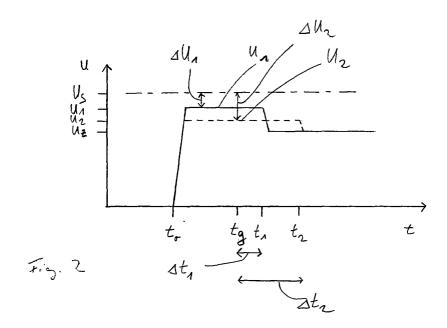
reicht werden kann. Andererseits stellt die vorliegende Erfindung dadurch, dass sie Korrekturen nur dann vornimmt, wenn die Sollspannung in der Vorglühphase nicht erreicht werden kann, sicher, dass eine Überlastung des Glühzündstifts verhindert werden kann.

Patentansprüche

1. Verfahren zum Ansteuern eines Glühzündorgans (14) eines Heizgerätes (12), insbesondere eines Fahrzeugheizgerätes, umfassend die Schritte:

a) beruhend auf einer Bordspannung Erzeugen einer an das Glühzündorgan für eine Grund-Vorglühdauer mit einem Grund-Vorglühtastverhältnis anzulegenden Soll-Vorglühspannung (U_S) ,


b) dann, wenn die Soll-Vorglühspannung (U_S) nicht erreichbar ist, Ermitteln einer Abweichung (ΔU_1 , ΔU_2) zwischen der Soll-Vorglühspannung (U_S) und der an das Glühzündorgan (14) angelegten Ist-Vorglühspannung (U_1 , U_2), c) beruhend auf der im Schritt b) ermittelten Abweichung (ΔU_1 , ΔU_2), Ermitteln einer bezüglich der Grund-Vorglühdauer erhöhten korrigierten Vorglühdauer oder/und Ermitteln eines bezüglich des Grund-Vorglühtastverhältnisses erhöhten korrigierten Vorglühtastverhältnisses.


- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Grund-Vorglühdauer oder/und das Grund-Vorglühtastverhältnis beruhend auf wenigstens einem Betriebsparameter vorgegeben werden.
- Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der wenigstens eine Betriebsparameter eine Umgebungstemperatur wiedergibt.
- 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass dann, wenn die im Schritt b) ermittelte Abweichung einen vorbestimmten Grenzwert überschreitet, das Anlegen einer Vorglühspannung an das Glühzündorgan unterbunden wird.
 - 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass im Schritt c) die korrigierte Vorglühdauer durch Bestimmen eines Korrekturterms (Δt₁, Δt₂) beruhend auf der im Schritt b) ermittelten Abweichung (ΔU₁, ΔU₂) und Addieren des Korrekturterms zur Grund-Vorglühdauer ermittelt wird oder/und dass im Schritt c) das korrigierte Grund-Vorglühtastverhältnis durch Ermitteln eines Korrekturterms beruhend auf der im Schritt b) ermittelten Abweichung (ΔU₁, ΔU₂) und

40

50

Addieren des Korrekturterms zum Grund-Vorglühtastverhältnis ermittelt wird.

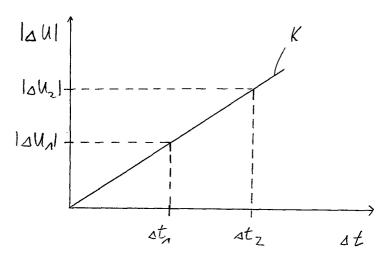


Fig. 3