(11) **EP 1 422 374 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 26.05.2004 Patentblatt 2004/22

(51) Int Cl.⁷: **E05F 15/12**, E05F 11/06

(21) Anmeldenummer: 03103462.2

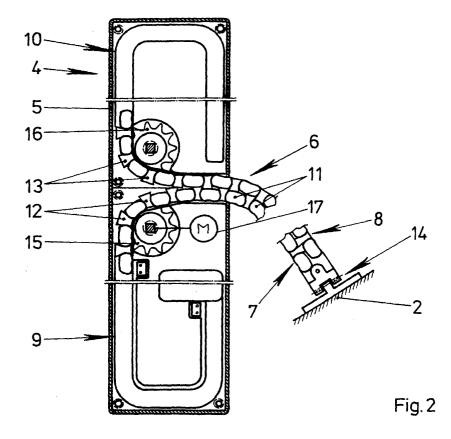
(22) Anmeldetag: 19.09.2003

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR Benannte Erstreckungsstaaten:

AL LT LV MK

(30) Priorität: 19.11.2002 DE 10253754


(71) Anmelder: Aug. Winkhaus GmbH & Co. KG D-48291 Telgte (DE)

(72) Erfinder: Vogel, Robert 48167 Münster (DE)

(54) Betätigungsvorrichtung für ein Fenster, eine Fenstertür, eine Lüftungsklappe oder dergleichen

(57) Bei einer Betätigungsvorrichtung (4) für ein Fenster, eine Fenstertür, eine Lüftungsklappe oder dergleichen, mit einem zwei miteinander verbundene Ketten (7, 8) aufweisenden Kraftübertragungsglied (6) sind Lagerbolzen (22) der Ketten (7, 8) parallel zu einer Lagerachse des Flügels (2) angeordnet. Eine der Ketten (7) ist nahe an der Lagerung (3) des Flügels (2) angeordnet und hat einen kurzen Achsabstand von Kettengliedern (11). Die zweite der Lagerung des Flügels (2)

entfernt angeordnete Kette (8) hat einen im Vergleich zu der anderen Kette (7) größeren Achsabstand der Kettenglieder. An beiden Ketten (7, 8) angeordnete Greifelemente (12, 13) weisen unterschiedliche Abmessungen auf und erzeugen damit einen Kreisbogen des Kraftübertragungsgliedes (6). Hierdurch wird mit geringem Aufwand eine besonders große Ausstellweite des Fensters, der Fenstertür oder der Lüftungsklappe ermöglicht.

Beschreibung

[0001] Die Erfindung betrifft eine Betätigungsvorrichtung für ein Fenster, eine Fenstertür, eine Lüftungsklappe oder dergleichen, bei der ein Flügel gegenüber einem Rahmen verschwenkbar ist, mit einem an dem Flügel oder dem Rahmen angelenkten, zwei im ausgefahrenen Zustand miteinander verbundene Ketten aufweisenden Kraftübertragungsglied und einer Antriebseinrichtung zum Antrieb des Kraftübertragungsgliedes zur Bewegung des Flügels gegenüber dem Rahmen, und mit einer Lagerung des Flügels an dem Rahmen.

[0002] Eine solche Betätigungsvorrichtung ist beispielsweise aus der DE 41 31 762 C2 bekannt. Hierbei werden die Ketten bei geschlossenem Flügel in der Antriebseinrichtung in ihrer abbiegbaren Richtung aufgewickelt. Das freie Ende der Kette ist über einer Lagerung an dem der Antriebseinrichtung abgewandten Bauteil des Fensters angeordnet. Zum Öffnen des Flügels werden zwei jeweils mit einer der beiden Ketten in Verbindung stehenden Zahnräder mittels eines Elektromotors angetrieben und die Ketten ausgefahren. Dabei werden die Ketten über Greifelemente miteinander verbunden und quer zu ihrer vorgesehenen Biegerichtung gebogen. Die beiden Ketten folgen damit einem Schwenkradius, welcher dem Abstand der Antriebseinrichtung von der Lagerung des Flügels entspricht. Da Ketten nur geringfügig quer zu ihrer vorgesehenen Biegerichtung gebogen werden können, lassen sich hierdurch nur geringe Ausstellweiten des Flügels erzeugen.

[0003] Alternativ zu der genannten Betätigungsvorrichtung ist aus der Praxis eine Betätigungsvorrichtung bekannt geworden, bei der die Antriebseinrichtung an dem Flügel oder dem Rahmen schwenkbar gelagert ist. Hierdurch lässt sich die Kette bei geöffnetem Flügel gerade führen. Nachteilig bei dieser Betätigungsvorrichtung ist jedoch, dass die Kette an einem Holm des Flügels oder des Rahmens anstoßen kann und dass die Lagerung der Betätigungsvorrichtung einen großen Platzbedarf hat.

[0004] Der Erfindung liegt das Problem zugrunde, eine Betätigungsvorrichtung der eingangs genannten Art so weiterzubilden, dass eine möglichst große Ausstellweite des Flügels ermöglicht wird und dass sie einen besonders geringen Platzbedarf hat.

[0005] Dieses Problem wird erfindungsgemäß dadurch gelöst, dass eine der Ketten im ausgefahrenen Zustand einen kürzeren Abstand von Lagerbolzen von Kettengliedern zueinander hat als die andere Kette und dass die Kette mit den kürzeren Achsabständen näher an der Lagerung des Flügels an dem Rahmen angeordnet ist als die Kette mit den längeren Achsabständen und dass die Lagerbolzen der Ketten parallel zu der Lagerachse der Lagerung des Flügels angeordnet sind.

[0006] Durch diese Gestaltung werden die Ketten im Gegensatz zu denen der bekannten Betätigungsvorrichtung in ihre vorgesehene Biegerichtung gebogen. Dies führt zu einer besonders geringen mechanischen

Belastung der Ketten und damit zu einem geringen Verschleiß. Weiterhin beschreiben die Ketten durch ihre unterschiedlichen Achsabstände einen Kreisbogen und vermögen den Flügel um über 90° auszustellen. Da die Antriebseinrichtung fest an dem Flügel oder dem Rahmen montiert sein kann, erfordert die erfindungsgemäße Betätigungsvorrichtung keine aufwändige Lagerung. Die erfindungsgemäße Betätigungsvorrichtung ist daher besonders platzsparend aufgebaut. Ein weiterer Vorteil der erfindungsgemäßen Betätigungsvorrichtung besteht darin, dass sie wegen ihrer geringen mechanischen Belastung der Ketten besonders geräuscharm ist.

[0007] Die miteinander verbundenen Ketten weisen gemäß einer vorteilhaften Weiterbildung der Erfindung eine hohe Stabilität auf, wenn innere oder äußere Kettenglieder der näher an der Lagerung des Flügels angeordneten Kette im aus der Antriebseinrichtung ausgefahrenen Zustand kürzer sind als die Kettenglieder der anderen Kette. Hierfür können Lagerbolzen von inneren und äußeren Kettengliedern unterschiedliche Abstände zueinander haben.

[0008] Die Ketten lassen sich gemäß einer vorteilhaften Weiterbildung der Erfindung jeweils einfach in der Antriebseinrichtung um gleiche Zahnräder aufwickeln, wenn Lagerbolzen der näher an der Lagerung des Flügels angeordneten Kette in Langlöcher geführt sind. Damit kann die näher an der Lagerung angeordnete Kette innerhalb der Antriebseinrichtung länger sein als im mit der anderen Kette verbundenen Zustand.

[0009] Bei einem Kraftübertragungsglied, bei dem die Ketten aufeinander zuweisende Greifelemente haben, welche im ausgefahrenen Zustand der Kette ineinander greifen, lässt sich gemäß einer anderen vorteilhaften Weiterbildung der Erfindung ein nahezu beliebiger Radius der Ketten im ausgefahrenen Zustand erzeugen, wenn die Greifelemente der einen Kette kleinere Abmessungen aufweisen als die Greifelemente der anderen Kette. Diese Gestaltung führt zudem zu einer hohen Stabilität des Kraftübertragungsgliedes.

[0010] Die Ketten weisen gemäß einer anderen vorteilhaften Weiterbildung der Erfindung besonders geringe Abmessungen auf, wenn die Greifelemente an inneren Kettengliedern der Ketten angeordnet sind.

[0011] Die Antriebseinrichtung könnte beispielsweise die nahe der Lagerung des Flügels angeordnete Kette mit einer geringeren Geschwindigkeit antreiben als die andere Kette. Die Antriebseinrichtung erfordert jedoch gemäß einer anderen vorteilhaften Weiterbildung der Erfindung einen besonders geringen baulichen Aufwand, wenn die Antriebseinrichtung ausschließlich mit einer einzigen der Ketten in Verbindung steht.

[0012] Die Erfindung lässt zahlreiche Ausführungsformen zu. Zur weiteren Verdeutlichung ihres Grundprinzips ist eine davon in der Zeichnung dargestellt und wird nachfolgend beschrieben. Diese zeigt in

Fig.1 ein Fenster mit einer erfindungsgemäßen Be-

tätigungsvorrichtung,

- Fig.2 stark vergrößert die erfindungsgemäße Betätigungsvorrichtung aus Figur 1 mit einem Kraftübertragungsglied,
- Fig.3 eine stark vergrößerte Darstellung des Kraftübertragungsgliedes aus Figur 2,
- Fig.4 eine Ansicht von inneren Kettengliedern des Kraftübertragungsgliedes aus Figur 3.

[0013] Figur 1 zeigt ein Fenster mit einem gegen einen Rahmen 1 schwenkbaren Flügel 2. Der Flügel 2 hat eine Lagerung 3 mit einer horizontalen Achse an dem Rahmen 1 und lässt sich von einer elektromotorisch angetriebenen Betätigungsvorrichtung 4 von der dargestellten ausgeschwenkten Lage in eine in dem Rahmen 1 liegende Schließposition verschwenken. Die Betätigungsvorrichtung 4 hat ein von einer Antriebseinrichtung 5 ausfahrbares Kraftübertragungsglied 6. Die Antriebseinrichtung 5 ist an dem Rahmen 1 befestigt, während das freie Ende des Kraftübertragungsgliedes 6 an dem Flügel 2 angelenkt ist.

[0014] Figur 2 zeigt schematisch die Betätigungsvorrichtung 4 aus Figur 1. Zur Vereinfachung der Zeichnung ist eine Abdeckung der Antriebseinrichtung 5 nicht dargestellt. Das Kraftübertragungsglied 6 ragt aus der Antriebseinrichtung 5 heraus und hat zwei Ketten 7, 8. Die Ketten 7, 8 werden innerhalb der Antriebseinrichtung 5 getrennt voneinander in Führungen 9, 10 aufgenommen. Außerhalb der Antriebseinrichtung 5 sind die Ketten 7, 8 aneinander gekoppelt und bilden einen Bogen. Der Bogen der Ketten 7, 8 wird dadurch erzeugt, dass einzelne Kettenglieder 11 der näher an der in Figur 1 dargestellten Lagerung 3 des Flügels 2 angeordneten Kette 7 im ausgefahrenen Zustand kürzer sind als die der anderen Kette 8. Weiterhin weisen an den beiden Ketten 7, 8 zu ihrer Verbindung angeordnete Greifelemente 12, 13 unterschiedliche Abmessungen auf. Die Befestigung des freien Endes der Ketten 7, 8 an dem Flügel 2 erfolgt über einen Lagerbock 14. Die Antriebseinrichtung 5 weist zwei mit jeweils einer der Ketten 7, 8 verbundene Zahnräder 15, 16 auf, von denen zumindest eines von einem Elektromotor 17 antreibbar ist. [0015] Figur 3 zeigt einen Ausschnitt des Kraftübertragungsgliedes 6 im ausgefahrenen Zustand. Hierbei ist zu erkennen, dass die beiden Ketten 7, 8 einen Kreisbogenabschnitt bilden. Äußere Kettenglieder 11, 11', 18, 18' der beiden Ketten 7, 8 sind gleich aufgebaut, während innere Kettenglieder 19, 19', 20, 20' der näher an der in Figur 1 dargestellten Lagerung 3 des Flügels 2 Langlöcher 21, 21' für Lagerbolzen 22, 22' aufweisen. Figur 4 zeigt das Kraftübertragungsglied 6 aus Figur 3 ohne die äußeren Kettenglieder 11, 18 und die Lagerbolzen 22. Hierbei ist zu erkennen, dass die Greifelemente 12 der näher an der in Figur 1 dargestellten Lagerung 3 des Flügels 2 angeordneten Kette 7 größere

Abmessungen aufweisen als die Greifelemente 13 der andere Kette 8. Die in Figur 3 dargestellten Lagerbolzen 22 in den inneren Kettengliedern 19 der näher an der Lagerung 3 angeordneten Kette 7 sind in den Langlöchern 21 geführt. Dies führt zu einer zwangsweisen Biegung der Ketten 7, 8 zu dem dargestellten Kreisbogenabschnitt des Kraftübertragungsgliedes 6 und zu dessen hoher Stabilität. Die Greifelemente 12, 13 sind in dargestellten Ausführungsform schwalbenschwanzförmig dargestellt. Damit hintergreifen sich die Greifelemente 12, 13 gegenseitig und erzeugen einen Formschluss zwischen den Ketten 7, 8. Selbstverständlich können die Greifelemente 12, 13 auch ineinander greifende Rippen oder gerade Vorsprünge aufweisen. [0016] Die Führung der Lagerbolzen 22 in den Langlöchern 21 hat den Vorteil, dass die beiden Ketten 7, 8 innerhalb der Antriebseinrichtung 5 dieselbe Länge der Kettenglieder 11, 18 - 20 aufweisen können. Damit könnten auch beide Zahnräder 15, 16 der Antriebseinrichtung 5 in derselben Geschwindigkeit angetrieben werden. Die für den zu bildenden Bogen des Kraftübertragungsgliedes 6 erforderliche Verkürzung der näher an der Lagerung 3 anzuordnenden Kette 7 erfolgt während der Verbindung der Ketten 7, 8 mit den Greifelementen 12, 13. Alternativ zu der dargestellten Ausführungsform des Kraftübertragungsgliedes 6 können die Ketten 7, 8 auch unterschiedlich lange, innere oder äußere Kettenglieder 11, 18 - 20 aufweisen.

Patentansprüche

- 1. Betätigungsvorrichtung für ein Fenster, eine Fenstertür, eine Lüftungsklappe oder dergleichen, bei der ein Flügel gegenüber einem Rahmen verschwenkbar ist, mit einem an dem Flügel oder dem Rahmen angelenkten, zwei im ausgefahrenen Zustand miteinander verbundene Ketten aufweisenden Kraftübertragungsglied und einer Antriebseinrichtung zum Antrieb des Kraftübertragungsgliedes zur Bewegung des Flügels gegenüber dem Rahmen, und mit einer Lagerung des Flügels an dem Rahmen, dadurch gekennzeichnet, dass eine der Ketten (7, 8) im ausgefahrenen Zustand einen kürzeren Abstand von Lagerbolzen (22) von Kettengliedern (11, 18 - 20) zueinander hat als die andere Kette (7, 8) und dass die Kette (7) mit den kürzeren Achsabständen näher an der Lagerung (3) des Flügels (2) an dem Rahmen (1) angeordnet ist als die Kette (8) mit den längeren Achsabständen und dass die Lagerbolzen (22) der Ketten (7, 8) parallel zu der Lagerachse der Lagerung (3) des Flügels angeordnet ist.
- 55 2. Betätigungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass innere oder äußere Kettenglieder (11, 19) der näher an der Lagerung (3) des Flügels (2) angeordneten Kette (7) im aus der An-

40

45

50

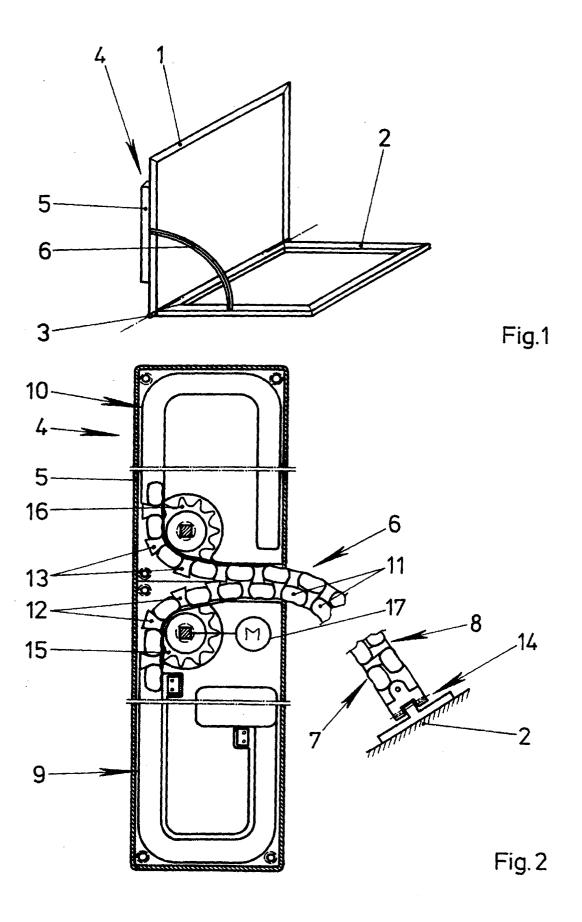
triebseinrichtung (5) ausgefahrenen Zustand kürzer sind als die Kettenglieder (18, 20) der anderen Kette (8).

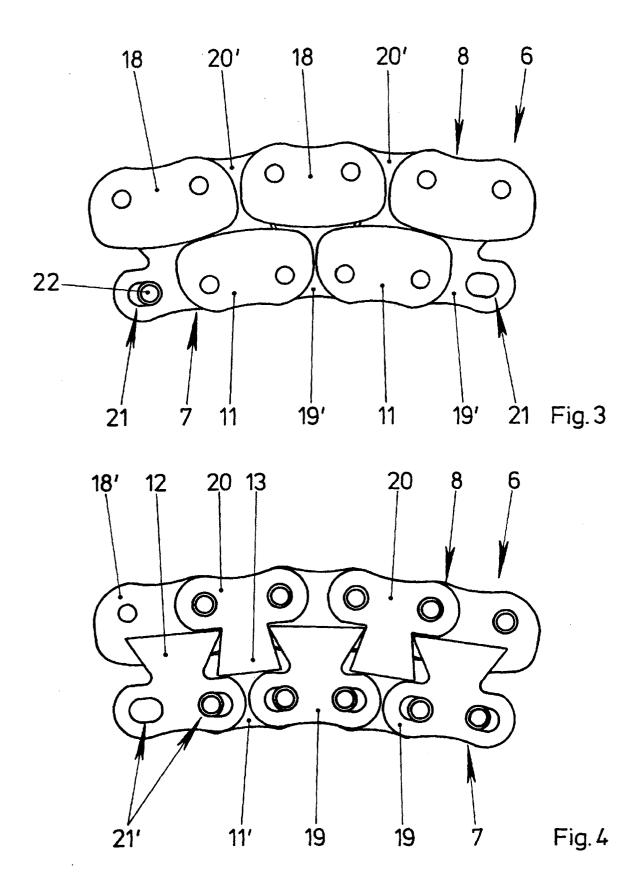
3. Betätigungsvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass Lagerbolzen (22) der näher an der Lagerung (3) des Flügels (2) angeordneten Kette (7) in Langlöchern (21) geführt

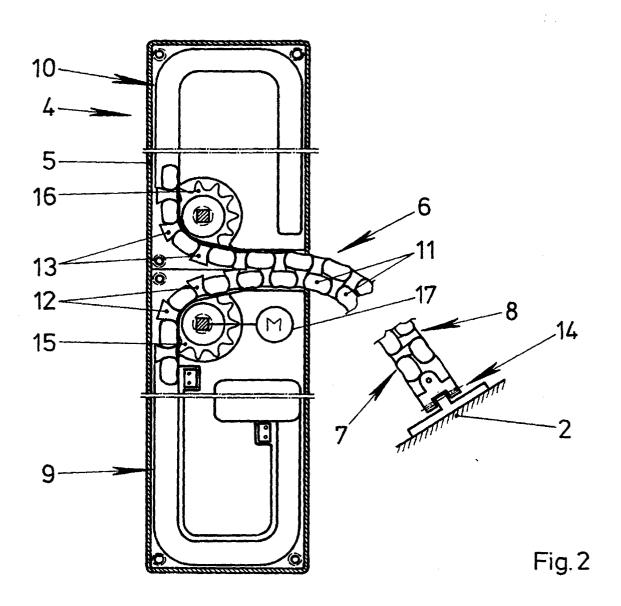
4. Betätigungsvorrichtung nach zumindest einem der vorhergehenden Ansprüche, wobei die Ketten aufeinander zuweisende Greifelemente haben, welche im ausgefahrenen Zustand der Kette ineinander greifen, dadurch gekennzeichnet, dass die Greifelemente (13) der einen Kette (8) kleinere Abmessungen aufweisen als die Greifelemente (12) der anderen Kette (7).

5. Betätigungsvorrichtung nach zumindest einem der ²⁰ vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Greifelemente (12, 13) an inneren Kettengliedern (19, 20) der Ketten (7, 8) angeordnet sind.

6. Betätigungsvorrichtung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Antriebseinrichtung (5) ausschließlich mit einer einzigen der Ketten (7) in Verbindung steht.


35


40


45

50

55

