

Europäisches Patentamt European Patent Office Office européen des brevets

(11) **EP 1 428 587 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

16.06.2004 Bulletin 2004/25

(51) Int Cl.7: **B21B 43/00**

(21) Application number: 03026500.3

(22) Date of filing: 21.11.2003

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR Designated Extension States:

AL LT LV MK

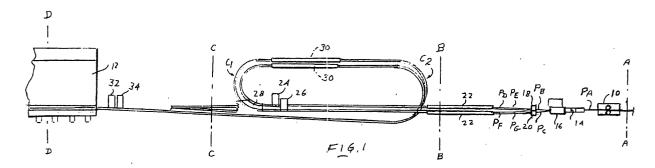
(30) Priority: 11.12.2002 US 432414 P

05.11.2003 US 701676

(71) Applicant: MORGAN CONSTRUCTION COMPANY Worcester Massachusetts 01605 (US)

(72) Inventors:

Shore, Michael T.
 Princeton MA 01541 (US)


 Palfreman, Mattew Charlton MA 01507 (US)

(74) Representative: Specht, Peter, Dipl.-Phys. et al Jöllenbecker Strasse 16433613 Bielefeld (DE)

(54) System and method for delivering the hot rolled products of hot rolling mills to a cooling bed

(57) A method and system are disclosed for receiving a hot rolled bar product from a rolling mill, and for delivering the bar product to a cooling bed. A shear subdivides the bar product into bar segments and alternately directs the bar segments to one or the other of two downstream intermediate paths for continued travel

thereon. A switch on each of said intermediate paths alternately directs bar segments traveling thereon to one or the other of two respective downstream delivery paths for continued travel thereon to the cooling bed. Decelerators slow the bar segments traveling along the delivery paths.

Description

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0001] This invention relates generally to continuous hot rolling bar mills, and is concerned in particular with a system and method for delivering the hot rolled products of such mills to a cooling bed.

2. Description of the Prior Art

[0002] In modern bar mills currently in operation, hot rolled bar products exit the last mill stand, and are subjected to cooling by being passed through one or more water boxes. The bar products are then subdivided into bar segments by a dividing shear, which includes a switching mechanism for alternately directing the bar segments to one or the other of two downstream delivery paths leading to the cooling bed. Pinch roll units, friction pads, or the like serve to decelerate the bar segments traveling along the delivery paths, with the result that the bar segments gradually slide to a halt before being laterally transferred onto the cooling bed.

[0003] Relatively high tonnage rates can be achieved with this type or arrangement when the mill is rolling larger product sizes, e.g., those having diameters above about 10.0 to 12.0 mm. These larger products have enough column strength to resist buckling as they are being pushed through the water boxes at relatively high mill delivery speeds on the order of 10 to 30 m/sec.

[0004] However, as product sizes decrease, so do their column strengths decrease, with the result that mill delivery speeds must be reduced in order to avoid buckling when pushing the smaller product sizes through the water boxes.

[0005] Thus, for example, a single strand mill rolling 8.0 mm rod for delivery to a laying head can operate at a delivery speed of 60 m/sec or greater, yielding a capacity of 85 tons/hour. However, a similar mill rolling 8.0 mm bar for delivery to a cooling bed must necessarily roll at a significantly reduced delivery speed of about 32 m/sec with a reduction in capacity to about 45 tons/hour. The reduced delivery speed for bar products is due in large part to the inability of conventional bar handling systems to bring faster moving products to a halt before they are transferred laterally onto the cooling bed.

[0006] An objective of the present invention is to increase the tonnage rate at which mills are able to roll bar products, in particular smaller product sizes, e.g., those having diameters smaller than about 12.0 mm.

[0007] A companion objective of the present invention is to raise the speed at which the smaller bar products are delivered from the mill, and to then decelerate such bar products before they are cooled in the water boxes prior to being delivered to the cooling bed.

SUMMARY OF THE INVENTION

[0008] In accordance with the present invention, hot rolled bar products are subdivided by a dividing shear into bar segments, and the bar segments are alternately directed to one or the other of two downstream intermediate paths. A switch on each intermediate path then alternately directs the bar segments to one or the other of two downstream delivery paths leading to the cooling bed. The bar segments traveling along the four delivery paths are subjected to at least two deceleration stages. The first deceleration stage operates to slow the bar segments to an intermediate speed lower than the speed at which the bar products are delivered from the mill, and the second deceleration stage operates to further slow the bar segments to a lower speed suitable for delivery to the cooling bed. The bar segments are cooled between the first and second deceleration stages while they are traveling at the intermediate speed.

[0009] Claim 1 provides a system for receiving a hot rolled bar product from a rolling mill, and for delivering the bar product to a cooling bed, said apparatus comprising: shear means for subdividing the bar product into bar segments and for alternately directing the bar segments to one or the other of two downstream intermediate paths for continued travel thereon; switch means on each of said intermediate paths for alternately directing bar segments traveling thereon to one or the other of two respective downstream delivery paths for continued travel thereon to said cooling bed; and decelerating means for slowing the bar segments traveling along said delivery paths.

[0010] Preferably, the system further comprises cooling means for cooling the bar segments traveling along said delivery paths.

[0011] According to claim 3, said decelerating means comprises first and second decelerating means spaced one from the other along said delivery paths, said first decelerating means being operable to slow the bar segments to an intermediate speed lower than the speed at which the bar product is delivered from said rolling mill, and said second decelerating means being operable to further slow the bar segments from said intermediate speed to a lower speed suitable for delivery to said cooling bed.

[0012] The distance between said first and second decelerating means is preferably greater than the length of said bar segments.

[0013] In addition to this, the system may further comprise cooling means for cooling the bar segments traveling along said delivery paths.

[0014] Accorsding to another embodiment, said cooling means comprises first and second cooling means spaced one from the other along said delivery paths, said first cooling means being located upstream of said first decelerating means, and said second cooling means being located between said first and second decelerating means.

[0015] Furthermore, the distance between said first decelerating means and said second cooling means may be less than the length of the bar segments.

[0016] According to another embodiment, said decelerating means comprise pinch roll units.

[0017] According to another embodiment, said cooling means comprises water boxes for applying water to the bar segments.

[0018] Claim 10 provides a system for receiving a hot rolled bar product from a rolling mill, and for delivering the bar product to a cooling bed, said apparatus comprising:

shear means for subdividing the bar product into bar segments and for alternately directing the bar segments to one or the other of two downstream intermediate paths for continued travel thereon;

switch means on each of said intermediate paths for alternately directing bar segments traveling thereon to one or the other of two respective downstream delivery paths for continued travel thereon to said cooling bed; and

first and second decelerating means spaced one from the other along said delivery paths, said first decelerating means being operable to slow the bar segments to an intermediate speed lower than the speed at which the bar product is delivered from said rolling mill, and said second decelerating means being operable to further slow the bar segments from said intermediate speed to a lower speed suitable for delivery to said cooling bed.

[0019] Further, claim 11 provides a system for receiving a hot rolled bar product from a rolling mill, and for delivering the bar product to a cooling bed, said apparatus comprising:

shear means for subdividing the bar product into bar segments and for alternately directing the bar segments to one or the other of two downstream intermediate paths for continued travel thereon;

switch means on each of said intermediate paths for alternately directing bar segments traveling thereon to one or the other of two respective downstream delivery paths for continued travel thereon to said cooling bed;

first and second decelerating means spaced one from the other along said delivery paths, said first decelerating means being operable to slow the bar segments to an intermediate speed lower than the speed at which the bar product is delivered from said rolling mill, and said second decelerating means being operable to further slow the bar segments from said intermediate speed to a lower speed suitable for delivery to said cooling bed; and first and second cooling means spaced one from the other along said delivery paths, said first cooling means being located upstream of said first deceler-

ating means, and said second cooling means being located between said first and second decelerating means.

[0020] The invention also provides a system for receiving a hot rolled bar product from a rolling mill, and for delivering the bar product to a cooling bed, said apparatus comprising: shear means for subdividing the bar product into bar segments and for alternately directing the bar segments to one or the other of two downstream intermediate paths for continued travel thereon; switch means on each of said intermediate paths for alternately directing bar segments traveling thereon to one or the other of two respective downstream delivery paths for continued travel thereon to said cooling bed; and first and second decelerating means spaced one from the other along said delivery paths, said first decelerating means being operable to slow the bar segments to an intermediate speed lower than the speed at which the bar product is delivered from said rolling mill, and said second decelerating means being operable to further slow the bar segments from said intermediate speed to a lower speed suitable for delivery to said cooling bed, the distance between said first and second decelerating means being greater than the length of said bar segments.

[0021] In addition to this, the invention provides a system for receiving a hot rolled bar product from a rolling mill, and for delivering the bar product to a cooling bed, said apparatus comprising: shear means for subdividing the bar product into bar segments and for alternately directing the bar segments to one or the other of two downstream intermediate paths for continued travel thereon; switch means on each of said intermediate paths for alternately directing bar segments traveling thereon to one or the other of two respective downstream delivery paths for continued travel thereon to said cooling bed; first and second decelerating means spaced one from the other along said delivery paths, said first decelerating means being operable to slow the bar segments to an intermediate speed lower than the speed at which the bar product is delivered from said rolling mill, and said second decelerating means being operable to further slow the bar segments from said intermediate speed to a lower speed suitable for delivery to said cooling bed; and first and second cooling means spaced one from the other along said delivery paths, said first cooling means being located upstream of said first decelerating means, and said second cooling means being located between said first and second decelerating means, the distance between said first decelerating means and said second cooling means is less than the length of the bar segments.

[0022] Claim 14 provides a method of receiving a hot rolled bar product from a rolling mill, and delivering the bar product to a cooling bed, said method comprising: subdividing the bar product into bar segments and alternately directing the bar segments to one or the other

20

of two intermediate paths for continued travel thereon; alternately directing bar segments traveling along said intermediate paths to one or the other of two respective delivery paths for continued travel thereon to said cooling bed; and decelerating the bar segments traveling along said delivery paths.

[0023] Preferably, the method further comprises cooling the bar segments traveling along said delivery paths.
[0024] According to still another embodiment, said bar segments are decelerated in two stages along said delivery paths, said first decelerating stage operating to slow the bar segments to an intermediate speed lower than the speed at which the bar product is delivered from said rolling mill, and said second decelerating stage operating to further slow the bar segments from said intermediate speed to a lower speed suitable for delivery to said cooling bed.

[0025] Preferably, the second decelerating stage occurs after the first decelerating stage has been completed.

[0026] In addition to this, the method preferably further comprises cooling the bar segments traveling along said delivery paths.

[0027] In addition to this, the method is preferably carried out such that said cooling occurs while said bar segments are undergoing deceleration at said first stage.

[0028] According to claim 20, a method of receiving a hot rolled bar product from a rolling mill, and delivering the bar product to a cooling bed is provided, said method comprising: subdividing the bar product into bar segments and alternately directing the bar segments to one or the other of two intermediate paths for continued travel thereon; alternately directing bar segments traveling on said intermediate paths to one or the other of two respective delivery paths for continued travel thereon to said cooling bed; and subjecting the bar segments traveling along said delivery paths to a two stage deceleration, the first deceleration stage being operable to slow the bar segments to an intermediate speed lower than the speed at which the bar product is delivered from said rolling mill, and the second deceleration stage being operable to further slow the bar segments from said intermediate speed to a lower speed suitable for delivery to said cooling bed.

[0029] Claim 21 provides a method of receiving a hot rolled bar product from a rolling mill, and delivering the bar product to a cooling bed, said method comprising: subdividing the bar product into bar segments and alternately directing the bar segments to one or the other of two intermediate paths for continued travel thereon; alternately directing bar segments traveling along said intermediate paths to one or the other of two respective delivery paths for continued travel thereon to said cooling bed; subjecting the bar segments traveling along said delivery paths to a two stage deceleration, the first deceleration stage being operable to siow the bar segments to an intermediate speed lower than the speed at which the bar product is delivered from said rolling mill,

and the second deceleration stage being operable to further slow the bar segments from said intermediate speed to a lower speed suitable for delivery to said cooling bed; and cooling the bar segments traveling at said intermediate speed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0030]

Figure 1 is a plan view of a system in accordance with the present invention in a configuration suitable for handling smaller diameter higher speed bar products;

Figure 2A, 2B and 2C are enlarged views, respectively, of the areas between reference planes A-B, B-C, and C-D of Figure 1;

Figure 3 is a sectional view on an enlarged scale taken along line 3-3 of Figure 2B;

Figure 4 is an enlarged front view of a pair of pinch roll units taken along line 4-4 of Figure 2C;

Figure 5 is a partial plan and horizontal sectional view taken along line 5-5 of Figure 4; Figure 6 is a view similar to Figure 2B showing the system reconfigured to handle larger diameter slower moving bar products; and

Figure 7 is a plan view showing two of the systems depicted in Figure 1 in a side-by-side mirror image arrangement.

[0031] With reference initially to Figures 1 and 2A-C, a system in accordance with the present invention is shown between the last roll stand 10 of a continuous hot rolling bar mill and a conventional carryover cooling bed 12. Bar product exiting from roll stand 10 along path PA is passed through a series of water boxes 14, after which it is subdivided into bar segments by a dividing shear 16. The shear 16, which can be of a conventional design known to those skilled in the art, includes a switch mechanism which alternately directs the subdivided bar segments to one or the other of two downstream intermediate paths P_B, P_C. A switch 18 on intermediate path P_B then serves to alternately direct the bar segments to one or the other of two downstream delivery paths P_D, P_E, and a switch 20 on intermediate path P_C similarly directs product segments alternately to one or the other of two downstream delivery path P_F, P_G. The side-by-side sets of delivery paths P_D , P_E and P_F , P_G lead through a series of water boxes 22 to pinch roll units 24, 26, then around a side loop defined in part by two opposed 180° curves C_1 , C_2 . Curve C_1 is partially formed by a removable guide section 28. The side loop includes water boxes 30, and at curve C₂, the two sets of delivery paths P_D, P_E and P_F, P_G are brought into vertical alignment before continuing to pinch roll units 32, 34 preceding the cooling bed 12.

[0032] With reference to Figure 3, it will be seen that single tier guide units 36, 38 with laterally spaced guide

pipes 40 are employed to direct the bar segments along the laterally disposed and vertically offset sets of delivery paths P_D , P_E and P_F , P_G , and two tier trough units 42 are employed to direct the bar segments when the two sets of delivery paths are aligned vertically.

[0033] As can best be seen in Figures 4 and 5, pinch roll unit 32 has two sets of pinch rolls 44, 46 aligned respectively with delivery paths P_G and P_F , and pinch roll unit 34 also has two sets of pinch rolls 48, 50 aligned respectively with delivery paths P_D and P_E . Each set of pinch rolls is independently driven via drive shafts 52, a gear box 54 and drive motors 56. The pinch rolls are driven at speeds selected to effect an appropriate deceleration of bar segments frictionally gripped therebetween

[0034] The pinch roll units 24, 26 are similarly constructed, but arranged slightly differently for alignment with the laterally disposed and vertically staggered quide paths.

[0035] An exemplary operation of the above-described system will now be further described with reference to the handling of a 8.0 mm diameter bar product exiting from the last roll stand 10 at a relatively high speed of 60 m/sec. and at a temperature of about 950-1050°C. The water boxes 14 are shut down, allowing the bar product to pass freely therethrough to the shear 16 where it is subdivided into successive bar segments. The switch mechanism of the shear will alternately direct the bar segments to intermediate paths $P_{\rm B}$, $P_{\rm C}$. Bar segments traveling on path $P_{\rm B}$ will then be alternately directed by switch 18 to delivery paths $P_{\rm D}$, $P_{\rm E}$, and bar segments traveling on intermediate path $P_{\rm C}$ will likewise be alternately directed by switch 20 to delivery paths $P_{\rm F}$, $P_{\rm G}$.

[0036] Pinch roll units 24 and 26 will then operate to initially decelerate the bar segments to a lower intermediate speed of about 30 m/sec. The bar sections will be directed by the curved guide section 28 around the side loop and through the water boxes 30. The linear distance between the pinch roll units 24, 26 and the water boxes 30 is preferably less than the length of the bar segments. Thus, the bar segments will enter the water boxes 30 at a beneficially reduced speed and while they are still being acted upon by the pinch roll units 24, 26. The water boxes 30 will operate to cool the bar segments down to about 500-600°C before they negotiate curve C2. The pinch roll units 32, 34 will then operate to further decelerate the bar segments to a speed of about 3-8 m/sec., which will allow the bar segments to slide to a halt at the entry end of the cooling bed 12. From here, transfer mechanisms (not shown) will operate to shift the bar segments laterally onto and across the cooling bed where they will undergo further cooling before reaching the delivery side of the bed.

[0037] Of particular importance to the present invention is the provision of multiple delivery paths for the successive bar segments produced by the dividing shear 16. By way of example, a typical sequence would in-

volve directing successive bar segments from the shear to the following paths:

Intermediate Paths	Delivery Paths		
P _B	P _D		
P _C	P _F		
P _B	P _E		
P _C	P_{G}		

[0038] Only every fourth bar segment is directed to each delivery path, thus allowing ample time and space along each delivery path for one bar segment to begin decelerating before the next bar segment is received.

[0039] As shown in Figure 6, when handling larger diameter slower bar products the system is reconfigured by replacing the curved guide section 28 with a straight tapering guide section 58. This bypasses the side loop formed between the 180° turns C_1 and C_2 .

[0040] In this operational mode, the increased column strength of the larger diameter product and the slower delivery speed of the mill will allow cooling to take place in the water boxes 22. Two stage deceleration will then take place, initially by the pinch roll units 24, 26 and then by the pinch roll units 32, 34.

[0041] It will thus be seen that the system of the present invention is extremely flexible in that it can accommodate a wide range of products at beneficially high tonnage rates. Smaller diameter products, e.g., those ranging in diameter from 6.35 to 12.0 mm can be handled at relatively high mill delivery speeds on the order of 60 to 32 m/sec. by passing freely through the water boxes 22 and undergoing initial deceleration by pinch roll units 24, 26 before cooling is effected in water boxes 30. Larger diameter products exceeding 12.0 mm in diameter and exiting the mill at slower speeds below about 30 m/sec. can be cooled in the water boxes 22 before initial deceleration by pinch roll units 24, 26.

[0042] As shown in Figure 7, two systems of the type depicted in Figure 1 can be arranged side by side to feed the same cooling bed.

Claims

45

 A system for receiving a hot rolled bar product from a rolling mill, and for delivering the bar product to a cooling bed, said apparatus comprising:

> shear means for subdividing the bar product into bar segments and for alternately directing the bar segments to one or the other of two downstream intermediate paths for continued travel thereon;

> switch means on each of said intermediate paths for alternately directing bar segments traveling thereon to one or the other of two re

20

25

spective downstream delivery paths for continued travel thereon to said cooling bed; and decelerating means for slowing the bar segments traveling along said delivery paths.

- 2. The system as claimed in claim 1 further comprising cooling means for cooling the bar segments traveling along said delivery paths.
- 3. The system as claimed in claim 1 wherein said decelerating means comprises first and second decelerating means spaced one from the other along said delivery paths, said first decelerating means being operable to slow the bar segments to an intermediate speed lower than the speed at which the bar product is delivered from said rolling mill, and said second decelerating means being operable to further slow the bar segments from said intermediate speed to a lower speed suitable for delivery to said cooling bed.
- 4. The system as claimed in claim 3 wherein the distance between said first and second decelerating means is greater than the length of said bar segments.
- **5.** The system as claimed in claims 3 or 4 further comprising cooling means for cooling the bar segments traveling along said delivery paths.
- 6. The system as claimed in claim 5 wherein said cooling means comprises first and second cooling means spaced one from the other along said delivery paths, said first cooling means being located upstream of said first decelerating means, and said second cooling means being located between said first and second decelerating means.
- 7. The system as claimed in claim 6 wherein the distance between said first decelerating means and said second cooling means is less than the length of the bar segments.
- **8.** The system as claimed in claim 1 wherein said decelerating means comprise pinch roll units.
- The system as claimed in claim 2 wherein said cooling means comprises water boxes for applying water to the bar segments.
- **10.** A system for receiving a hot rolled bar product from a rolling mill, and for delivering the bar product to a cooling bed, said apparatus comprising:

shear means for subdividing the bar product into bar segments and for alternately directing the bar segments to one or the other of two downstream intermediate paths for continued travel thereon:

switch means on each of said intermediate paths for alternately directing bar segments traveling thereon to one or the other of two respective downstream delivery paths for continued travel thereon to said cooling bed; and first and second decelerating means spaced one from the other along said delivery paths, said first decelerating means being operable to slow the bar segments to an intermediate speed lower than the speed at which the bar product is delivered from said rolling mill, and said second decelerating means being operable to further slow the bar segments from said intermediate speed to a lower speed suitable for delivery to said cooling bed.

11. A system for receiving a hot rolled bar product from a rolling mill, and for delivering the bar product to a cooling bed, said apparatus comprising:

shear means for subdividing the bar product into bar segments and for alternately directing the bar segments to one or the other of two downstream intermediate paths for continued travel thereon:

switch means on each of said intermediate paths for alternately directing bar segments traveling thereon to one or the other of two respective downstream delivery paths for continued travel thereon to said cooling bed;

first and second decelerating means spaced one from the other along said delivery paths, said first decelerating means being operable to slow the bar segments to an intermediate speed lower than the speed at which the bar product is delivered from said rolling mill, and said second decelerating means being operable to further slow the bar segments from said intermediate speed to a lower speed suitable for delivery to said cooling bed; and

first and second cooling means spaced one from the other along said delivery paths, said first cooling means being located upstream of said first decelerating means, and said second cooling means being located between said first and second decelerating means.

12. A system for receiving a hot rolled bar product from a rolling mill, and for delivering the bar product to a cooling bed, said apparatus comprising:

shear means for subdividing the bar product into bar segments and for alternately directing the bar segments to one or the other of two downstream intermediate paths for continued travel thereon;

switch means on each of said intermediate

45

50

15

paths for alternately directing bar segments traveling thereon to one or the other of two respective downstream delivery paths for continued travel thereon to said cooling bed; and first and second decelerating means spaced one from the other along said delivery paths, said first decelerating means being operable to slow the bar segments to an intermediate speed lower than the speed at which the bar product is delivered from said rolling mill, and said second decelerating means being operable to further slow the bar segments from said intermediate speed to a lower speed suitable for delivery to said cooling bed, the distance between said first and second decelerating means being greater than the length of said bar segments.

13. A system for receiving a hot rolled bar product from a rolling mill, and for delivering the bar product to a cooling bed, said apparatus comprising:

shear means for subdividing the bar product into bar segments and for alternately directing the bar segments to one or the other of two downstream intermediate paths for continued travel thereon:

switch means on each of said intermediate paths for alternately directing bar segments traveling thereon to one or the other of two respective downstream delivery paths for continued travel thereon to said cooling bed;

first and second decelerating means spaced one from the other along said delivery paths, said first decelerating means being operable to slow the bar segments to an intermediate speed lower than the speed at which the bar product is delivered from said rolling mill, and said second decelerating means being operable to further slow the bar segments from said intermediate speed to a lower speed suitable for delivery to said cooling bed; and

first and second cooling means spaced one from the other along said delivery paths, said first cooling means being located upstream of said first decelerating means, and said second cooling means being located between said first and second decelerating means, the distance between said first decelerating means and said second cooling means is less than the length of the bar segments.

14. A method of receiving a hot rolled bar product from a rolling mill, and delivering the bar product to a cooling bed, said method comprising:

subdividing the bar product into bar segments and alternately directing the bar segments to one or the other of two intermediate paths for continued travel thereon;

alternately directing bar segments traveling along said intermediate paths to one or the other of two respective delivery paths for continued travel thereon to said cooling bed; and decelerating the bar segments traveling along said delivery paths.

- 15. The method as claimed in claim 14 further comprising cooling the bar segments traveling along said delivery paths.
 - 16. The method as claimed in claim 14 wherein said bar segments are decelerated in two stages along said delivery paths, said first decelerating stage operating to slow the bar segments to an intermediate speed lower than the speed at which the bar product is delivered from said rolling mill, and said second decelerating stage operating to further slow the bar segments from said intermediate speed to a lower speed suitable for delivery to said cooling bed.
 - **17.** The method as claimed in claim 16 wherein the second decelerating stage occurs after the first decelerating stage has been completed.
 - **18.** The method as claimed in claims 16 or 17 further comprising cooling the bar segments traveling along said delivery paths.
 - **19.** The method as claimed in claim 18 wherein said cooling occurs while said bar segments are undergoing deceleration at said first stage.
 - **20.** A method of receiving a hot rolled bar product from a rolling mill, and delivering the bar product to a cooling bed, said method comprising:

subdividing the bar product into bar segments and alternately directing the bar segments to one or the other of two intermediate paths for continued travel thereon;

alternately directing bar segments traveling on said intermediate paths to one or the other of two respective delivery paths for continued travel thereon to said cooling bed; and subjecting the bar segments traveling along said delivery paths to a two stage deceleration,

said delivery paths to a two stage deceleration, the first deceleration stage being operable to slow the bar segments to an intermediate speed lower than the speed at which the bar product is delivered from said rolling mill, and the second deceleration stage being operable to further slow the bar segments from said intermediate speed to a lower speed suitable for delivery to said cooling bed.

40

21. A method of receiving a hot rolled bar product from a rolling mill, and delivering the bar product to a cooling bed, said method comprising:

> subdividing the bar product into bar segments and alternately directing the bar segments to one or the other of two intermediate paths for continued travel thereon;

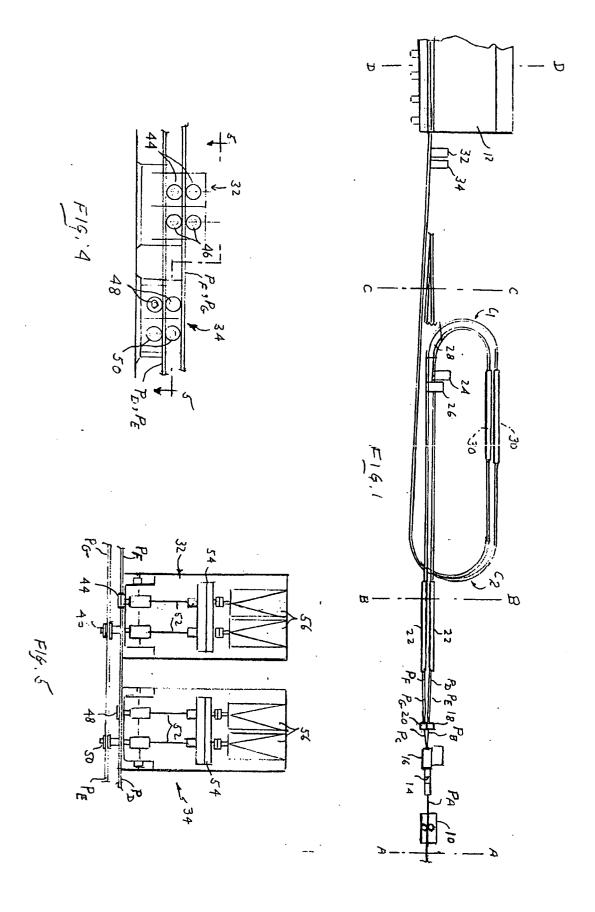
> alternately directing bar segments traveling along said intermediate paths to one or the other of two respective delivery paths for continued travel thereon to said cooling bed;

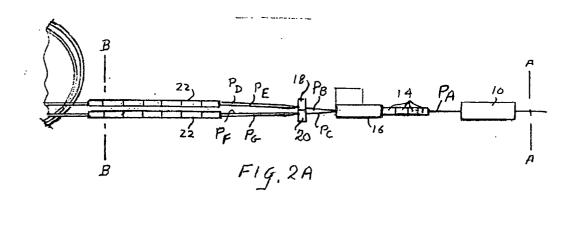
subjecting the bar segments traveling along said delivery paths to a two stage deceleration, the first deceleration stage being operable to slow the bar segments to an intermediate speed lower than the speed at which the bar product is delivered from said rolling mill, and the second deceleration stage being operable to further slow the bar segments from said intermediate speed to a lower speed suitable for delivery to said cooling bed; and cooling the bar segments traveling at said in-

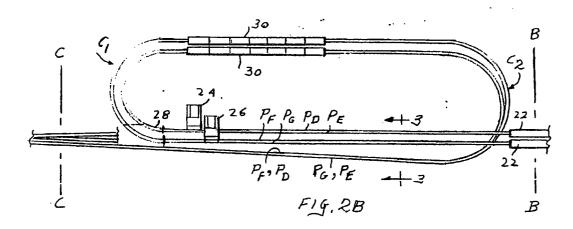
termediate speed.

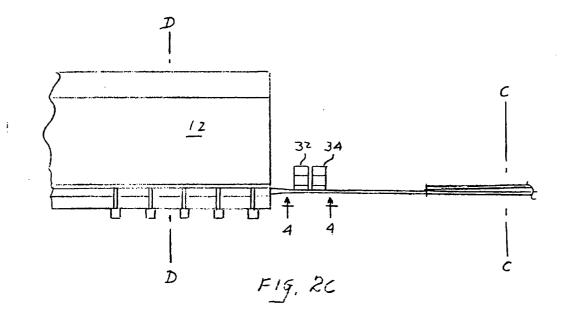
25

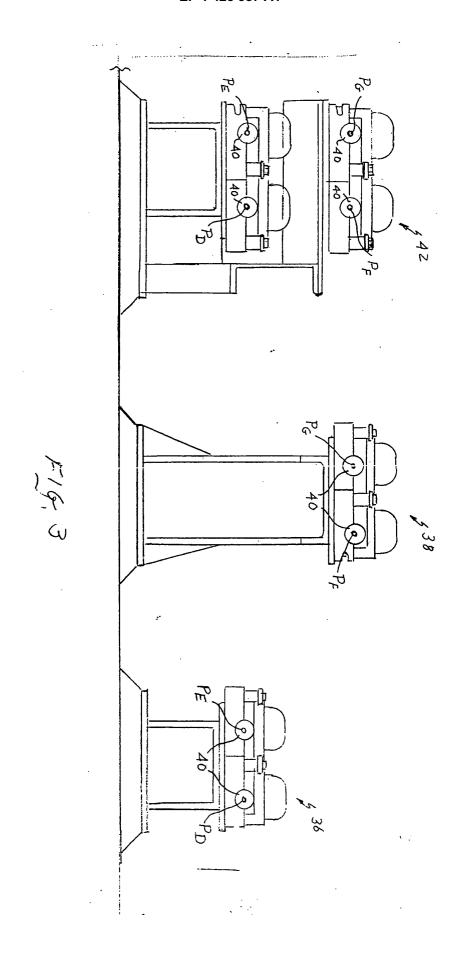
30

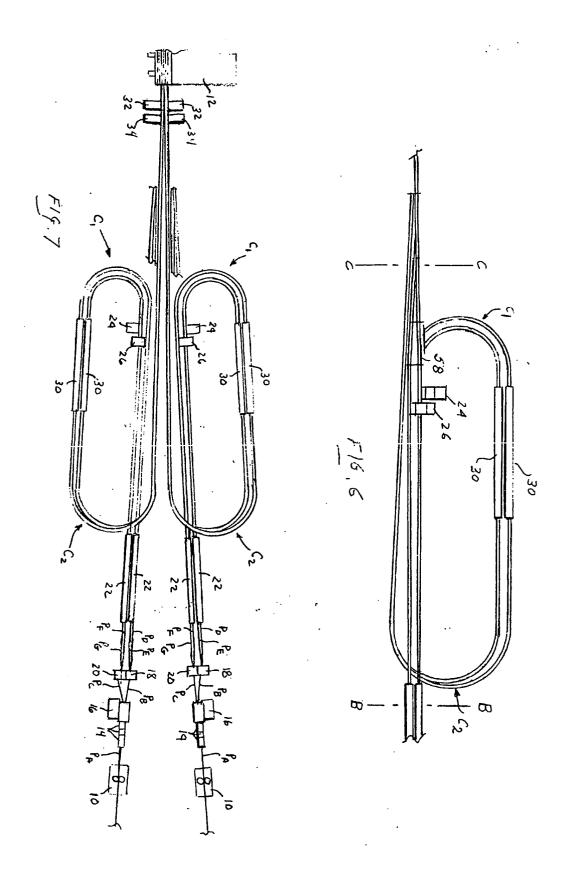

35


40


45


50


55



EUROPEAN SEARCH REPORT

Application Number EP 03 02 6500

		ERED TO BE RELEVAN			
Category	Citation of document with ir of relevant passa	ndication, where appropriate, ges		evant laim	CLASSIFICATION OF THE APPLICATION (Int.CI.7)
Х	US 2 809 545 A (MAL 15 October 1957 (19	TE NORLINDH SVEN ERI 57-10-15)		,4-7, 1,15, 19	B21B43/00
Υ	* column 2, line 63 figures 1,2,6,11 *	- column 4, line 70		i3, l7,	
Υ	EP 0 319 317 A (MOR 7 June 1989 (1989-0	GAN CONSTRUCTION CO) 6-07)	3,8, 10-1 16,1 20,2	l3,	
	* figure 1 *		,-		
Х	PATENT ABSTRACTS OF vol. 1996, no. 10, 31 October 1996 (19 & JP 08 141626 A (K 4 June 1996 (1996-0	96-10-31) OBE STEEL LTD),	1,14	,	
	* abstract; figure		3,8,	,8, 0-13,	TECHNICAL FIELDS
			16,1	.7,	SEARCHED (Int.CI.7) B21B
			20,2	. +	DZID
Α	US 3 236 084 A (TAK 22 February 1966 (1 * figure 1 *		1,14		
	The present search report has b	een drawn un for ell eleime			
	Place of search	Date of completion of the searc	h I		Examiner
	MUNICH	3 March 2004	, and the second		
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another		T : theory or pri E : earlier pater after the filing	it document, b g date ted in the appl	ng the in ut publish	
A : technological background			same patent family, corresponding		

EPO FORM 1503 03.82 (P04C01)

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 03 02 6500

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

03-03-2004

	Patent documen cited in search rep		Publication date		Patent family member(s)	Publication date
US	2809545	А	15-10-1957	BE FR GB	517421 A 1187605 A 743853 A	14-09-1959 25-01-1956
EP	0319317	А	07-06-1989	US BR EP JP	4809530 A 8806357 A 0319317 A2 1192413 A	07-03-1989 22-08-1989 07-06-1989 02-08-1989
JP	08141626	Α	04-06-1996	JP	3247017 B2	15-01-2002
us	3236084	Α	22-02-1966	NONE		

FORM P0459

o For more details about this annex : see Official Journal of the European Patent Office, No. 12/82