(19)
(11) EP 1 428 983 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
16.06.2004  Patentblatt  2004/25

(21) Anmeldenummer: 03405821.4

(22) Anmeldetag:  19.11.2003
(51) Internationale Patentklassifikation (IPC)7F01D 25/08, F01D 25/24, F01D 25/28
(84) Benannte Vertragsstaaten:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR
Benannte Erstreckungsstaaten:
AL LT LV MK

(30) Priorität: 02.12.2002 DE 10256418

(71) Anmelder: ABB Turbo Systems AG
5400 Baden (CH)

(72) Erfinder:
  • Meier, Marcel
    5417 Untersiggenthal (CH)
  • Gwehenberger, Tobias
    8044 Zürich (CH)
  • Zehnder, Marcel
    5524 Niederwil (CH)
  • Meier, Anton
    5606 Dintikon (CH)

(74) Vertreter: ABB Patent Attorneys 
c/o ABB Schweiz AG, Intellectual Property (CH-LC/IP), Brown Boveri Strasse 6
5400 Baden
5400 Baden (CH)

   


(54) Abgasturbinengehäuse


(57) Die Abgasturbine umfasst ein Turbinengehäuse (1), eine in einem Lagergehäuse (4) drehbar gelagerte Welle (3), ein auf der Welle angeordnetes Turbinenrad (5) und eine Hitzeschutzwand (2), wobei die Hitzeschutzwand mit dem Turbinengehäuse einen Anströmkanal (6) auf das Turbinenrad begrenzt. Die Hitzeschutzwand weist zwei Auflagen auf, wobei die erste Auflage an dem Lagergehäuse (4), und die zweite Auflage an dem Turbinengehäuse (1) aufliegt.
Erhitzt sich die Hitzeschutzwand (2), werden die beiden Auflagen gegen das Lagergehäuse und das Turbinengehäuses gepresst. Das Turbinengehäuse wird in radialer Richtung nach aussen gedrückt. Durch die radial innere Auflage der Hitzeschutzwand ist eine Zentrierung der Hitzeschutzwand (2) und somit auch des Turbinengehäuses (1) sichergestellt.




Beschreibung

Technisches Gebiet



[0001] Die Erfindung bezieht sich auf das Gebiet der abgasbetriebenen Turbolader. Sie betrifft eine Abgasturbine, insbesondere ein Lagergehäuse, ein Turbinengehäuse sowie eine Hitzeschutzwand einer Abgasturbine wobei die Hitzeschutzwand in der Abgasturbine mit dem Turbinengehäuse einen Anströmkanal auf das Turbinenrad begrenzt, wobei das Turbinenrad auf einer im Lagergehäuse drehbar gelagerten Welle angeordnet ist.

Stand der Technik



[0002] Abgasturbolader werden zur Leistungssteigerung von Verbrennungsmotoren eingesetzt. Im unteren Leistungsbereich bis zu einigen Megawatt werden vorwiegend Turbolader mit radial angeströmtem Turbinenrad und Innenlagerung der Welle, auf der das Turbinenrad aufgebracht ist, eingesetzt.

[0003] Bei ungekühlten Abgasturboladern, bei denen die gasführenden Kanäle nicht gekühlt werden, liegt die Abgastemperatur am Turbineneintritt höher, wodurch der thermische Wirkungsgrad der Maschine und die an den Luftverdichter per Abgasmenge abgegebene Leistung steigt.

[0004] Das ungekühlte Gaseintritts- oder Turbinengehäuse, welches im Betrieb eine Temperatur von beispielsweise 650°C aufweist, ist meistens direkt auf dem mit beispielsweise 150°C wesentlich kühleren Lagergehäuse befestigt. In gewissen Anwendungsbereichen wird das Lagergehäuse, im Gegensatz zu den gasführenden Kanälen, auf die genannte Temperatur gekühlt. Zusätzlich kann, wie in der EP 0 856 639 dargestellt, im Bereich eines auf das Turbinenrad führenden Anströmkanals eine als Hitzeschutz dienende Zwischenwand angeordnet sein, welche das Lagergehäuse gegen das im Anströmkanal geführte heisse Abgas abschirmt. Die Zwischenwand kann dabei durch eine entsprechende Luft- oder Kühlflüssigkeitszone vom Lagergehäuse getrennt angeordnet sein und nur wenige, definierte Kontaktpunkte aufweisen, um entsprechende Wärmebrücken mit dem Lagergehäuse möglichst zu vermeiden.

[0005] Zur Befestigung des Turbinengehäuses auf dem Lagergehäuse werden bei herkömmlichen Abgasturbinen Laschen oder sogenannte Profilschellen- bzw. V-Band-Verbindungen eingesetzt. Um einen möglichst hohen Wirkungsgrad zu erzielen, ist der Luftspalt zwischen den Turbinenschaufeln dem Turbinengehäuse so klein wie möglich zu halten. Dies bedingt jedoch, dass diese Gehäusewand und das Turbinenrad jederzeit, insbesondere im Betrieb unter Volllast und bei entsprechender thermischer Belastung aller Teile, gegeneinander zentriert sind. Da sich infolge des hohen Temperaturunterschiedes zwischen dem Lagergehäuse und dem Turbinengehäuse der Zentriersitz des Turbinengehäuses zum Lagergehäuse mitunter radial aufweitet, kann sich das Turbinengehäuse gegenüber dem Lagergehäuse und insbesondere der darin gelagerten Turbinenwelle desaxieren, d.h. das Turbinengehäuse ist gegenüber der Welle und dem darauf angeordneten Turbinenrad in radialer Richtung nicht mehr zentriert. Eine solche Desaxierung, die durch äussere Krafteinwirkungen zusätzlich unterstützt werden kann, führt zu Berührungen der Turbinenschaufelspitzen mit der Gehäusewand des Turbinengehäuses, zu entsprechenden Abnutzungen oder Defekten und damit verbunden zu erheblichen Einbussen im Wirkungsgrad der Abgasturbine.

[0006] Das EP 0 118 051 zeigt, wie mittels stemförmig angeordneten, in radialer Richtung beweglichen Nut/Kamm-Verbindungen eine Desaxierung des heisseren Bauteils vermieden werden kann.

[0007] Dieser herkömmliche jedoch relativ kostenintensive Lösungsansatz, bei dem der Fertigungsprozess nebst reinen Drehoperationen auch Fräsoperationen beinhaltet, ermöglicht aufgrund der diskreten Anzahl Nut/Kamm-Verbindungen nur eine beschränkte Anzahl unterschiedlicher Gehäusepositionen. Wünschenswert ist jedoch eine Lösungsansatz bei der die Position des Turbinengehäuses gegenüber dem Lagergehäuse im wesentlichen stufenlos eingestellt werden kann.

Kurze Darstellung der Erfindung



[0008] Der Erfindung liegt folglich die Aufgabe zugrunde, eine Abgasturbine der eingangs genannten Art zu schaffen, welche eine Verbesserung des Turbinenwirkungsgrads durch Zentrierung des Turbinengehäuses gegenüber der im Lagergehäuse gelagerten Welle ermöglicht.

[0009] Erfindungsgemäss wird diese Aufgabe mit den kennzeichnenden Merkmale der Patentansprüche 1, 7 und 12 sowie mit dem Patentanspruch 16 gelöst.

[0010] Die durch die Erfindung erreichten Vorteile sind darin zu sehen, dass die Zentrierung des Turbinengehäuses gegenüber der im Lagergehäuse gelagerten Welle ohne zusätzliche Bauteile gewährleistet werden kann. Lagergehäuse, Turbinengehäuse und Hitzeschutzwand müssen lediglich geringfügig zusätzlich bearbeitet werden. Dadurch ergeben sich für die Abgasturbine keine wesentlichen zusätzlichen Kosten.

[0011] Die Position des Turbinengehäuses gegenüber dem Lagergehäuse lässt sich stufenlos einstellen, da erfindungsgemäss zwischen dem Lagergehäuse und dem Turbinengehäuse keine formschlüssige Verbindung besteht.

[0012] Diese Art von Zentrierung eignet sich für alle gängigen Verbindungsarten zwischen Lagergehäuse und Turbinengehäuse, da erfindungsgemäss die Zentrierung durch Bauteile im Innem des Turbinengehäuses erfolgt.

[0013] Weitere Vorteile ergeben sich aus den abhängigen Ansprüchen.

Kurze Beschreibung der Zeichnungen



[0014] Im folgenden sind anhand der Figuren Ausführungsbeispiele der erfindungsgemässen Abgasturbine schematisch dargestellt und näher erläutert. In allen Figuren sind gleichwirkende Elemente mit gleichen Bezugszeichen versehen. Es zeigt:
Fig. 1
eine schematische Ansicht eines ersten Ausführungsbeispiels des erfindungsgemässen Abgasturboladers,
Fig. 2
eine vergrössert dargestellte Ansicht des Abgasturboladers nach Fig. 1,
Fig. 3
eine schematische Ansicht auf ein zweites Ausführungsbeispiel des erfindungsgemässen Abgasturboladers,
Fig. 4
eine schematische Ansicht IV-IV aus Fig. 3,
Fig. 5
eine schematische Ansicht auf ein drittes Ausführungsbeispiel des erfindungsgemässen Abgasturboladers, und
Fig. 6
eine schematische Ansicht VI-VI aus Fig. 5.

Weg zur Ausführung der Erfindung



[0015] Der Abgasturbolader besteht hauptsächlich aus einem nicht dargestellten Verdichter und einer in Fig. 1 als Radialturbine schematisch dargestellten Abgasturbine. Die Abgasturbine umfasst hauptsächlich ein Turbinengehäuse 1, mit einem radial aussenliegenden, spiralförmigen Gaseintrittsgehäuse und einer gasaustrittsseitigen Gehäusewand 12, ein Lagergehäuse 4 mit einer mittels Lagern 31 drehbar gelagerten Welle 3 sowie ein auf der Welle angeordnetes Turbinenrad 5 mit Laufschaufeln 51. Verdichterseitig ist auf der Welle ein ebenfalls nicht dargestelltes Verdichterrad angeordnet.

[0016] Das Gaseintrittsgehäuse geht in Pfeilrichtung stromab in einen Anströmkanal 6 für die Abgase einer mit dem Abgasturbolader verbundenen, ebenfalls nicht dargestellten Verbrennungsmaschine über. Der Anströmkanal ist auf der einen Seite durch die gasaustrittsseitige Gehäusewand 12 begrenzt, während auf der anderen Seite eine als Hitzeschutz dienende scheibenförmige Zwischenwand 2 angeordnet ist. Die Hitzeschutzwand, welche den Anströmkanal auf der Seite des Lagergehäuses zumindest teilweise begrenzt und/ oder zumindest teilweise in axialer Richtung zwischen Turbinenrad und Lagergehäuse angeordnet ist, schirmt das dahinterliegende Lagergehäuse von den heissen Abgasen ab.

[0017] Im Anströmkanal ist femer zwischen der Hitzeschutzwand und der gasaustrittsseitigen Gehäusewand 12 ein Düsenring 7 angeordnet.

[0018] Das Turbinengehäuse 1 ist in der dargestellten Ausführungsform mit Laschen 43 am Lagergehäuse 4 befestigt, wobei die mit Schrauben 42 am Turbinengehäuse festgemachten Laschen gewisse Bewegungen des Turbinengehäuses bezüglich des Lagergehäuses 4 in radialer Richtung erlauben. Wie aus der Figur ersichtlich ist, wird durch das Festschrauben der Laschen 43 die Hitzeschutzwand 2 sowie der Düsenring 7 zwischen Turbinengehäuse 1 und Lagergehäuse 4 eingeklemmt und entsprechend in axialer Richtung befestigt. Im stehenden Zustand der Abgasturbine, wenn Turbinengehäuse und Lagergehäuse kalt sind, liegt das Turbinengehäuse auf dem Lagergehäuse auf und ist dadurch entsprechend gegenüber der Welle und dem darauf angeordneten Turbinenrad zentriert.

[0019] In der in Fig. 2 vergrössert dargestellten ersten Ausführungsform der erfindungsgemässen Abgasturbine ist an der Hitzeschutzwand 2 im radial inneren Bereich eine als umlaufende Kante ausgebildete Auflage 21 angeordnet, welche auf einer ebenfalls als umlaufenden Kante ausgebildeten Auflage 41 des Lagergehäuses aufliegt. Im stehenden Zustand der Abgasturbine, wenn neben dem Lagergehäuse auch die Hitzeschutzwand kalt ist, kann zwischen den beiden Auflagen jeweils ein geringer Luftspalt von einigen wenigen bis zu einigen hundert Mikrometern vorhanden sein, was insbesondere die einfache Montage, d.h. das Aufschieben der Hitzeschutzwand in axialer Richtung auf das Lagergehäuse ermöglicht. Im radial aussenliegenden Bereich steht die Hitzeschutzwand mit einer radial aussenliegenden Auflage 22 an einer radial nach innen gerichteten Auflage 11 des Turbinengehäuses an, wobei im stehenden Zustand der Abgasturbine ebenfalls ein entsprechender, geringer Luftspalt zwischen den beiden Auflagen vorhanden ist.

[0020] Im Betriebszustand der Abgasturbine, wenn die Hitzeschutzwand gegenüber dem Lagergehäuse eine erheblich höhere Temperatur aufweist, dehnt sich die Hitzeschutzwand thermisch bedingt insbesondere in radialer Richtung. Die beiden Luftspalte werden verringert, wobei insbesondere die innere Auflage 21 der Hitzeschutzwand mit grosser Kraft gegen die entsprechenden Auflagen 41 des kühlen Lagergehäuses gepresst wird. Der Luftspalt zwischen der äusseren Auflage 22 der Hitzeschutzwand und der Auflage 11 des Turbinengehäuses kann in der Regel nur verringert, jedoch nicht ganz geschlossen werden, da sich das Turbinengehäuse der grossen Hitze wegen ebenfalls dehnt. Durch die radial innere Auflage 21 der Hitzeschutzwand, welche an der Auflage 41 des Lagergehäuses anliegt ist eine genaue Zentrierung der Hitzeschutzwand 2 und, dank dem verringerten äusseren Luftspalt, auch des Turbinengehäuses 1 sichergestellt.

[0021] Wird für die Hitzeschutzwand ein Material mit einem grösseren Wärmeausdehnungskoeffizienten als dem des Materials des Turbinengehäuses gewählt, dehnt sich die Hitzeschutzwand stärker als das Turbinengehäuse und drückt dieses in radialer Richtung nach aussen. Dadurch verbessert sich die Zentrierung des Turbinengehäuses bezüglich der Hitzeschutzwand zusätzlich.

[0022] Fig. 3 und Fig. 4 zeigen eine zweite Ausführungsform der erfindungsgemässen Abgasturbine. Im radial inneren Bereich ist wiederum eine als umlaufende Kante ausgebildete Auflage 21 angeordnet, welche wiederum auf einer ebenfalls als umlaufenden Kante ausgebildeten Auflage 41 des Lagergehäuses aufliegt. Zusätzlich oder alternativ zur einfachen Auflage 22 im radial aussenliegenden Bereich der Hitzeschutzwand 2, sind Zentrierungsnocken 23 vorgesehen, welche entlang des Umfangs der Hitzeschutzwand verteilt angeordnet sind. Diese greifen in entsprechende Nuten 15 in dem Turbinengehäuse ein, wodurch sich eine radiale Führung des Turbinengehäuses 1 bezüglich der Hitzeschutzwand 2 ergibt. Im stehenden Zustand der Abgasturbine sind insbesondere im Bereich der inneren Auflagen entsprechende Luftspalte vorhanden, was wiederum die einfache Montage der Hitzeschutzwand ermöglicht. Dabei wird die aufgrund der Zentriemocken 23 entsprechend ausgerichtete Hitzeschutzwand 2 in axialer Richtung in das Turbinengehäuse 1 geschoben. Im Betriebszustand dehnt sich wiederum die Hitzeschutzwand in radialer Richtung. Der Luftspalt wird geschlossen und die Auflage 21 der Hitzeschutzwand wird gegen die entsprechende Auflage 41 des Lagergehäuses gepresst und entsprechend zentriert. Im radial äusseren Bereich wird die Zentrierung des Turbinengehäuses 1 durch die in den Nuten 15 geführten Zentrierungsnocken 23 gewährleistet.

[0023] Altemativ können die Zentrierungsnocken auf der Seite des Turbinengehäuses angeordnet und die entsprechenden Nuten in die Hitzeschutzwand eingelassen sein. Oder es können sowohl in das Turbinengehäuse wie in die Hitzeschutzwand Nuten eingelassen sein, in die in axialer Richtung Verbindungskeile oder-pfropfen eingeschoben werden.

[0024] Diese zweite Ausführungsform eignet sich insbesondere bei sehr hohen Temperaturen des Turbinengehäuses, da dank den radialen gerichteten Nuten und den darin geführten Zentrierungsnocken eine Zentrierung des Turbinengehäuses bezüglich der Hitzeschutzwand unabhängig von der thermisch bedingten Ausdehnung des Turbinengehäuses gewährleistet ist.

[0025] Trotz dieser formschlüssigen Verbindung zwischen Turbinengehäuse und Hitzeschutzwand lässt sich die Position des Turbinengehäuses gegenüber dem Lagergehäuse stufenlos einstellen, da zwischen der Hitzeschutzwand und dem Lagergehäuse und somit auch zwischen dem Turbinengehäuse und dem Lagergehäuse keine formschlüssige Verbindung vorhanden ist.

[0026] Fig. 5 und Fig. 6 zeigen eine gegenüber der zweiten Ausführungsform leicht abgeänderten dritte Ausführungsform der erfindungsgemässen Abgasturbine. Die Zentrierungsnocken 23 sind im radial inneren Bereich der Hitzeschutzwand vorgesehen. Dabei können die Nocken 23 auf der Hitzeschutzwand angeordnet sein und in entsprechende Nuten 45 im Lagergehäuse eingreifen, oder es können Nocken auf dem Lagergehäuse angeordnet sein, welche in entsprechende Nuten in der Hitzeschutzwand eingreifen. In letzterem Fall können die Nuten als durchgehende Löcher oder nur als oberflächliche Vertiefungen in der Hitzeschutzwand ausgebildet sein. Es ergibt sich eine radiale Führung der Hitzeschutzwand 2 bezüglich des Lagergehäuses 4. Im radial aussenliegenden Bereich steht die Hitzeschutzwand entsprechend der ersten Ausführungsform mit der radial aussenliegenden Auflage 22 an der radial nach innen gerichteten Auflage 11 des Turbinengehäuses an, wobei im stehenden Zustand der Abgasturbine wiederum ein entsprechender Luftspalt vorhanden ist, was die Montage der Hitzeschutzwand ermöglicht. Dabei wird die aufgrund der Zentriemocken entsprechend ausgerichtete Hitzeschutzwand 2 in axialer Richtung auf das Lagergehäuse 4 geschoben. Im Betriebszustand dehnt sich wiederum die Hitzeschutzwand in radialer Richtung. Wie oben beschrieben, verringert sich der Luftspalt im aussenliegenden Bereich und führt somit zur entsprechenden Zentrierung des Turbinengehäuses bezüglich der Hitzeschutzwand. Wiederum kann durch die Wahl eines Materials mit entsprechend grösserem Wärmeausdehnungskoeffizienten die Ausdehnung der Hitzeschutzwand verstärkt werden, um die Zentrierung des Turbinengehäuses bezüglich der Hitzeschutzwand zusätzlich zu verbessern. Dank der temperaturunabhängigen Zentrierung der Hitzeschutzwand bezüglich des Lagergehäuses durch die im inneren Bereich angeordneten Zentrierungsnocken eignet sich diese Ausführungsform insbesondere für den transienten Betrieb oder bei tiefen Gaseintritts-Temperaturen.

[0027] Trotz der formschlüssigen Verbindung zwischen Hitzeschutzwand und Lagergehäuse lässt sich die Position des Turbinengehäuses gegenüber dem Lagergehäuse wie schon bei den ersten beiden Ausführungsformen in jedem beliebigen Winkel einstellen, da zwischen der Hitzeschutzwand und dem Turbinengehäuse und somit auch zwischen dem Lagergehäuse und dem Turbinengehäuse keine formschlüssige Verbindung vorhanden ist.

[0028] Ein geeignetes Material für die Hitzeschutzwand aller drei Ausführungsformen wäre beispielsweise Ni-Resist, mit einem gegenüber Gusseisen rund 30 Prozent grösseren Wärmeausdehnungskoeffizienten.

[0029] Im radial aussenliegenden Bereich der Hitzeschutzwand kann die Auflage zum Turbinengehäuse auch über ein zwischen Hitzeschutzwand und Turbinengehäuse angeordnetes Zwischenstück, insbesondere über Teile des im Anströmkanal angeordneten Düsenrings, erfolgen. Dabei können der Düsenring und die Hitzeschutzwand, oder Teile des Düsenrings und die Hitzeschutzwand einteilig gefertigt sein.

Bezugszeichenliste



[0030] 
1
Turbinengehäuse
11
Auflage
12
Gasaustrittsseitige Gehäusewand
15
Zentrierungsnuten
2
Hitzeschutzwand
21
Auflage, Kante
22
Auflage
23
Zentrierungsnocken
3
Welle
31
Innenlager
4
Lagergehäuse
41
Auflage, Kante
42
Befestigung, Schraube
43
Lasche
45
Zentrierungsnuten
5
Turbinenrad
51
Schaufeln
6
Anströmkanal
7
Düsenring



Ansprüche

1. Hitzeschutzwand (2) für eine Abgasturbine, wobei die Abgasturbine ein Turbinengehäuse (1), eine in einem Lagergehäuse (4) drehbar gelagerte Welle (3) sowie ein auf der Welle angeordnetes Turbinenrad (5) aufweist und
die Hitzeschutzwand (2) mit dem Turbinengehäuse (1) einen Anströmkanal (6) auf das Turbinenrad begrenzt, dadurch gekennzeichnet, dass die Hitzeschutzwand Mittel (21, 22, 23) zum Zentrieren des Turbinengehäuses (1) bezüglich der im Lagergehäuse (4) gelagerten Welle (3) aufweist.
 
2. Hitzeschutzwand nach Anspruch 1, dadurch gekennzeichnet, dass die Hitzeschutzwand als Mittel zum Zentrieren des Turbinengehäuses bezüglich der Welle mindestens zwei Auflagen (21, 22) umfasst, wobei eine erste Auflage (21) der mindestens zwei Auflagen zum Aufliegen an dem Lagergehäuse (4) vorgesehen ist, und eine zweite Auflage (22) der mindestens zwei Auflagen zum Aufliegen an dem Turbinengehäuse (1) vorgesehen ist.
 
3. Hitzeschutzwand nach Anspruch 2, dadurch gekennzeichnet, dass mindestens eine der ersten oder zweiten Auflage als umlaufende Kante (21) ausgebildet ist, welche zum Aufliegen auf dem Lagergehäuse (4) und/ oder dem Turbinengehäuse (1) vorgesehen ist.
 
4. Hitzeschutzwand nach Anspruch 3, dadurch gekennzeichnet, dass die erste und zweite Auflage (22, 21) radial gleichgerichtet ausgebildet sind.
 
5. Hitzeschutzwand nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass die Hitzeschutzwand (2) entweder im Bereich der ersten Auflage (21) oder im Bereich der zweiten Auflage (22) Zentrierungsnocken (23) aufweist, welche zum Eingreifen in Nuten (45, 15), welche entweder in das Lagergehäuse (4) oder das Turbinengehäuse (1) eingelassen sind, vorgesehen sind.
 
6. Hitzeschutzwand nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass in die Hitzeschutzwand entweder im Bereich der ersten Auflage oder im Bereich der zweiten Auflage Nuten eingelassen sind, welche zum Aufnehmen von entweder am Lagergehäuse oder am Turbinengehäuse angebrachten Zentrierungsnocken vorgesehen sind.
 
7. Lagergehäuse (4) für eine Abgasturbine, wobei
die Abgasturbine ein Turbinengehäuse (1) , eine in dem Lagergehäuse drehbar gelagerte Welle (3), ein auf der Welle angeordnetes Turbinenrad (5) sowie eine in der Abgasturbine mit dem Turbinengehäuse einen Anströmkanal (6) auf das Turbinenrad begrenzende Hitzeschutzwand (2) aufweist, wobei
die Hitzeschutzwand Mittel (21, 22, 23) zum Zentrieren des Turbinengehäuses (1) bezüglich der im Lagergehäuse gelagerten Welle (3) aufweist,
dadurch gekennzeichnet, dass das Lagergehäuse Mittel (41, 45) zum Zentrieren des Turbinengehäuses (1) über die Hitzeschutzwand (2) und bezüglich der im Lagergehäuse gelagerten Welle (3) aufweist.
 
8. Lagergehäuse nach Anspruch 7, dadurch gekennzeichnet, dass das Lagergehäuse als Mittel zum Zentrieren des Turbinengehäuses über die Hitzeschutzwand und bezüglich der im Lagergehäuse gelagerten Welle mindestens eine Auflage (41) zum Aufliegen auf der Hitzeschutzwand umfasst.
 
9. Lagergehäuse nach Anspruch 8, dadurch gekennzeichnet, dass die Auflage des Lagergehäuses als umlaufende Kante (41) ausgebildet ist.
 
10. Lagergehäuse nach Anspruch 7, dadurch gekennzeichnet, dass das Lagergehäuse als Mittel zum Zentrieren des Turbinengehäuses über die Hitzeschutzwand und bezüglich der im Lagergehäuse gelagerten Welle Zentrierungsnocken aufweist, welche zum Eingreifen in Nuten, welche in die Hitzeschutzwand (2) eingelassen sind, vorgesehen sind.
 
11. Lagergehäuse nach Anspruch 7, dadurch gekennzeichnet, dass in das Lagergehäuse als Mittel zum Zentrieren des Turbinengehäuses über die Hitzeschutzwand und bezüglich der im Lagergehäuse gelagerten Welle Nuten (45) eingelassen sind, welche zum Aufnehmen von an der Hitzeschutzwand angebrachten Zentrierungsnocken (23) vorgesehen sind.
 
12. Turbinengehäuse (1) für eine Abgasturbine, wobei
die Abgasturbine ein Lagergehäuse (4), eine in dem Lagergehäuse drehbar gelagerte Welle (3), ein auf der Welle angeordnetes Turbinenrad (5) sowie eine in der Abgasturbine mit dem Turbinengehäuse einen Anströmkanal (6) auf das Turbinenrad begrenzende Hitzeschutzwand (2) aufweist, wobei
die Hitzeschutzwand Mittel (21, 22, 23) zum Zentrieren des Turbinengehäuses (1) bezüglich der im Lagergehäuse gelagerten Welle (3) aufweist,
dadurch gekennzeichnet, dass das Turbinengehäuse Mittel (11, 15) zum Zentrieren des Turbinengehäuses (1) über die Hitzeschutzwand (2) und bezüglich der im Lagergehäuse gelagerten Welle (3) aufweist.
 
13. Turbinengehäuse nach Anspruch 12, dadurch gekennzeichnet, dass das Turbinengehäuse als Mittel zum Zentrieren des Turbinengehäuses über die Hitzeschutzwand und bezüglich der im Lagergehäuse gelagerten Welle mindestens eine Auflage (11) zum Aufliegen auf der Hitzeschutzwand (2) umfasst.
 
14. Turbinengehäuse nach einem der Ansprüche 12 oder 13, dadurch gekennzeichnet, dass das Turbinengehäuse als Mittel zum Zentrieren des Turbinengehäuses über die Hitzeschutzwand und bezüglich der im Lagergehäuse gelagerten Welle Zentrierungsnocken aufweist, welche zum Eingreifen in Nuten, welche in die Hitzeschutzwand (2) eingelassen sind, vorgesehen sind.
 
15. Turbinengehäuse nach Anspruch 12, dadurch gekennzeichnet, dass in das Turbinengehäuse, als Mittel zum Zentrieren des Turbinengehäuses über die Hitzeschutzwand und bezüglich der im Lagergehäuse gelagerten Welle, Nuten (15) eingelassen sind, welche zum Aufnehmen von an der Hitzeschutzwand angebrachten Zentrierungsnocken (23) vorgesehen sind.
 
16. Abgasturbine mit einem Turbinengehäuse (1), einer in einem Lagergehäuse (4) drehbar gelagerten Welle (3), einem auf der Welle angeordneten Turbinenrad (5) und einer Hitzeschutzwand (2) gemäss einem der Ansprüche 1 bis 6, wobei die Hitzeschutzwand mit dem Turbinengehäuse einen Anströmkanal (6) auf das Turbinenrad begrenzt.
 
17. Abgasturbine nach Anspruch 16, dadurch gekennzeichnet, dass die Hitzeschutzwand (2) ein Material enthält, welches einen grösseren Wärmeausdehnungskoeffizienten als das Material des Turbinengehäuses (1) aufweist.
 
18. Abgasturbine mit einem Turbinengehäuse (1), einer in einem Lagergehäuse (4) drehbar gelagerten Welle (3), einem auf der Welle angeordneten Turbinenrad (5), sowie mit einer Hitzeschutzwand (2) gemäss Anspruch 4, wobei die Hitzeschutzwand mit dem Turbinengehäuse einen Anströmkanal (6) auf das Turbinenrad begrenzt, dadurch gekennzeichnet, dass am Lagergehäuse und/ oder am Turbinengehäuse eine umlaufende Kante (41) zum Aufliegen auf der umlaufenden Kante (21) der Hitzeschutzwand vorgesehen ist.
 
19. Abgasturbine mit einem Turbinengehäuse (1), einer in einem Lagergehäuse (4) drehbar gelagerten Welle (3), einem auf der Welle angeordneten Turbinenrad (5), sowie mit einer Hitzeschutzwand (2) gemäss Anspruch 5, wobei die Hitzeschutzwand mit dem Turbinengehäuse einen Anströmkanal (6) auf das Turbinenrad begrenzt, dadurch gekennzeichnet, dass entweder in das Lagergehäuse (4) oder das Turbinengehäuse (1) Nuten eingelassen sind, welche zum Aufnehmen der an der Hitzeschutzwand angebrachten Zentrierungsnocken (23) vorgesehen sind.
 
20. Abgasturbine mit einem Turbinengehäuse (1), einer in einem Lagergehäuse (4) drehbar gelagerten Welle (3), einem auf der Welle angeordneten Turbinenrad (5), sowie mit einer Hitzeschutzwand (2) gemäss Anspruch 6, wobei die Hitzeschutzwand mit dem Turbinengehäuse einen Anströmkanal (6) auf das Turbinenrad begrenzt, dadurch gekennzeichnet, dass entweder am Lagergehäuse (4) oder am Turbinengehäuse (1) Zentrierungsnocken angeordnet sind, welche zum Eingreifen in die Nuten, welche in die Hitzeschutzwand eingelassenen sind, vorgesehen sind.
 




Zeichnung



















Recherchenbericht