

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 1 437 422 A1

(12)

EUROPEAN PATENT APPLICATION
published in accordance with Art. 158(3) EPC

(43) Date of publication:
14.07.2004 Bulletin 2004/29

(51) Int Cl.7: **C22C 38/00, C21D 8/10,
B21B 17/14, B21C 37/08**

(21) Application number: **01938656.4**

(86) International application number:
PCT/JP2001/005053

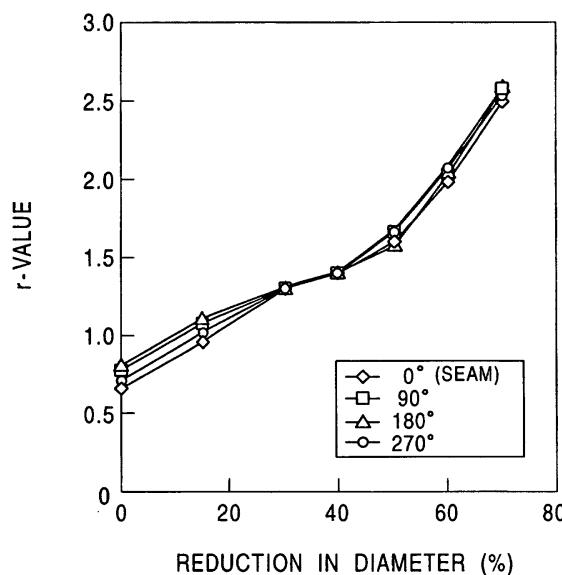
(22) Date of filing: **14.06.2001**

(87) International publication number:
WO 2002/103069 (27.12.2002 Gazette 2002/52)

(84) Designated Contracting States:
**AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE TR**

• **NISHIMORI, Masanori**
c/o KAWASAKI STEEL CORPORATION
Handa-shi, Aichi 475-8611 (JP)
• **ITADANI, Motoaki**
c/o KAWASAKI STEEL CORPORATION
Handa-shi, Aichi 475-8611 (JP)
• **OKABE, Takatoshi**
c/o KAWASAKI STEEL CORPORATION
Handa-shi, Aichi 475-8611 (JP)
• **ARATANI, Masatoshi**
c/o KAWASAKI STEEL CORPORATION
Handa-shi, Aichi 475-8611 (JP)

(71) Applicant: **JFE Steel Corporation**
Tokyo (JP)


(74) Representative: **Grünecker, Kinkeldey,
Stockmair & Schwanhäusser Anwaltssozietät**
Maximilianstrasse 58
80538 München (DE)

(72) Inventors:
• **TOYOOKA, Takaaki**
c/o KAWASAKI STEEL CORPORATION
Handa-shi, Aichi 475-8611 (JP)
• **KAWABATA, Yoshikazu**
c/o KAWASAKI STEEL CORPORATION
Handa-shi, Aichi 475-8611 (JP)
• **YORIFUJI, Akira**
c/o KAWASAKI STEEL CORPORATION
Handa-shi, Aichi 475-8611 (JP)

(54) **STEEL PIPE HAVING HIGH FORMABILITY AND METHOD FOR PRODUCTION THEREOF**

(57) The invention provides a steel pipe being superior in workability, particularly in bending workability, in which an r-value in the axial direction of the pipe in a portion where melting or transformation of a steel material has occurred during seam welding is as high as comparable to that in a portion where melting or transformation of the steel material has not occurred, and a method of producing the steel pipe. In the high-workability steel pipe, an r-value in the longitudinal direction is not less than 1.2, more preferably not less than 1.6, over an entire area in the circumferential direction, including a seamed portion. The steel pipe is produced by a method comprising the step of performing diameter-reducing rolling on a steel pipe in a temperature range of from 600°C to Ac_3 with a reduction in diameter of not less than 30%, preferably after heating the steel pipe to temperatures of not lower than Ac_1 , the steel pipe being produced by seam-welding strip steel, or a method further comprising the step of performing heat treatment of holding the rolled steel pipe in a temperature range of from 600°C to 900°C for a time of 1 second or longer during cooling subsequent to the diameter-reducing rolling or by reheating the rolled steel pipe after the cooling.

FIG. 1

REDUCTION IN DIAMETER (%)

Description

Technical Field

5 [0001] The present invention relates to a steel pipe having superior workability and a method of producing the steel pipe.

Background Art

10 [0002] For the purpose of reducing the weight and cost, the application of seam (electric resistance) welded steel pipes to automobile parts has been considered. Conventional seam welded steel pipes, however, have not been sufficient in workability. Bending is employed to manufacture, e.g., undercarriage or suspension parts of automobiles. When the conventional seam welded steel pipes are subjected to the bending, a problem has been experienced in that a pipe wall is greatly thinned on the outer side of a bent portion, and in the worst case a pipe is ruptured. Even in
15 the case of not causing a rupture, a large rate of thinning of the pipe wall requires the use of a material having a greater thickness to satisfy the design stress, and therefore a sufficient reduction in weight cannot be achieved.

20 [0003] As disclosed in Japanese Unexamined Patent Application Publication No. 55-56624, for example, it is known that improving an r-value (Lankford value) of a pipe in the axial direction is effective to overcome the problems described above. As a method for increasing the r-value of a steel pipe, however, it is only known to increase the r-value of strip steel as a base material of a steel pipe as disclosed in, for example, Japanese Unexamined Patent Application Publication No. 6-41689. When producing seam welded steel pipes, there has been a problem that the r-value is reduced in a portion where melting or transformation of a steel material has occurred during seam welding. Another problem has arisen in that the seam welding cannot be applied to steel plates not having a high r-value, such as hot-rolled steel plates, high tensile strength steel plates, and low, medium and high carbon steel plates.

25 [0004] Accordingly, it is an object of the present invention to provide a steel pipe being superior in workability, particularly in bending workability, in which an r-value of the pipe in the axial direction in a portion where melting or transformation of a steel material has occurred during seam welding is as high as comparable to that in a portion where melting or transformation of the steel material has not occurred, and a method of producing the steel pipe.

30 Disclosure of Invention

35 [0005] With the view of overcoming the problems mentioned above, the inventors have conducted studies based on a consideration that working and heat treatment of seam welded steel pipes are required to improve the r-value in a welded portion near the seam. Then, the inventors have studied a method of performing working and heat treatment of a steel pipe evenly at any positions in the circumferential direction, the steel pipe being produced by seam-welding cold-rolled steel having a high r-value. In the process of the studies, the inventors have found that the r-value of the seam welded steel pipe in the longitudinal direction (in the axial direction of the pipe) is noticeably improved to 1.2 or above, in particular to 1.6 or above, at any positions in the circumferential direction, including a seamed portion, by a method of performing diameter-reducing rolling on the seam welded steel pipe in a temperature range of from 600°C
40 to Ac₃ with a reduction in diameter of not less than 30% (referred to as a "method according to the present invention" hereinafter).

45 [0006] As a result of applying the method according to the present invention to seam welded steel pipes produced using various kinds of steel plates as base-material strip steel, the inventors have also found that a high r-value can be obtained regardless of the r-value of the original strip steel. Further, it has been found that with the method according to the present invention, the restriction of ingredients which has hitherto been employed to obtain a high r-value in steel sheets, i.e., a reduction of the C and N contents and addition of stabilizing elements such as Ti and Nb, are not required. As a result, seam welded steel pipes having a high r-value can also be produced using, as base-material strip steel, hot-rolled steel, high tensile strength steel such as dual phase steel, and low, medium and high carbon steel, which have a difficulty in achieving a high r-value in the stage of strip steel.

50 [0007] The views of the inventors regarding the reason why a steel pipe having a high r-value can be obtained from even a steel plate not having a high r-value are as follows.

55 [0008] By performing the diameter-reducing rolling on a seam welded steel pipe in a temperature range of from 600°C to Ac₃ with a reduction in diameter of not less than 30%, an ideal aggregation structure due to the rolling, in which the <110> axis is parallel to the longitudinal direction and the <111> to <110> axes are parallel to the radial direction, is formed and then further developed through restoration and recrystallization. That aggregation structure provides a high r-value. The aggregation structure due to the rolling produces very great driving forces because crystals are rotated by working strains. Unlike an aggregation structure that is created through recrystallization in the case of obtaining a high r-value in steel sheets, the aggregation structure due to the rolling is less affected by the second phase

and solid solution C. Consequently, even for the type of strip steel which has a difficulty in obtaining a high r-value in the stage of producing steel plates, a high r-value can be obtained in the stage of producing steel pipes.

[0009] Also, the reason why a high r-value is not obtained by performing the diameter-reducing rolling at low temperatures is that ideal crystal rotation is not caused because of high work hardness, or that restoration and recrystallization are not developed at a sufficient level because of low temperatures. Furthermore, the reason why a high r-value is not obtained by a method of performing the diameter-reducing rolling on a steel pipe at low temperatures and then annealing the rolled steel pipe for recrystallization is that the desired aggregation structure is not developed through the cold rolling and the recrystallization because of the effect of the second phase and solid solution C.

[0010] In the field of producing steel sheets, there is known a method of producing a steel sheet having a high r-value by rolling steel into a sheet in the hot ferrite range. This method of producing a steel sheet having a high r-value is featured in that steel containing C and N in reduced amounts and added with stabilizing elements such as Ti and Nb is rolled at low temperatures and then recrystallized. That sheet rolling at low temperatures differs from the diameter-reducing rolling at high temperatures intended by the method according to the present invention. In fact, if the known sheet rolling in the hot ferrite range is carried out at 600°C or above, the r-value is not improved, but rather noticeably lowered on the contrary. This is because, in the sheet rolling in which draft is applied in the thickness direction of a sheet, strain occurs in a direction different from that in the diameter-reducing rolling of a steel pipe in which draft is applied in the circumferential direction, and hence the aggregation structure effective in increasing the r-value is not developed.

[0011] As a result of further continuing the studies, the inventors have found that, in the method according to the present invention, the thickness deviation can be noticeably reduced and the occurrence of wrinkles near the seam can be suppressed by heating a seam welded steel pipe to temperatures of not lower than Ac_1 before the diameter-reducing rolling for austenitic transformation of a part or the whole of a steel structure, because the difference in mechanical properties between the hardened structure of the seam and the remaining portion is reduced. The present invention has been accomplished based on the findings set forth above. The features of the present invention are as follows.

- (1) A high-workability steel pipe wherein an r-value in the longitudinal direction is not less than 1.2, more preferably not less than 1.6, over an entire area in the circumferential direction, including a seamed portion.
- (2) A method of producing a high-workability steel pipe, the method comprising the step of performing diameter-reducing rolling on a steel pipe in a temperature range of from 600°C to Ac_3 with a reduction in diameter of not less than 30%, the steel pipe being produced by seam-welding strip steel.
- (3) A method of producing a high-workability steel pipe, the method comprising the steps of heating a steel pipe to temperatures of not lower than Ac_1 , the steel pipe being produced by seam-welding strip steel, and then immediately or after cooling and reheating the steel pipe, performing diameter-reducing rolling in a temperature range of from 600°C to Ac_3 with a reduction in diameter of not less than 30%.
- (4) In the method of producing a high-workability steel pipe defined in the above (2) or (3), after the diameter-reducing rolling of the steel pipe, heat treatment of holding the rolled steel pipe in a temperature range of from 600°C to 900°C for a time of 1 second or longer is performed during cooling subsequent to the diameter-reducing rolling or by reheating the rolled steel pipe after the cooling.

40 Brief Description of the Drawings

[0012]

45 Fig. 1 is a graph showing the relationship between an r-value in the longitudinal direction of a steel pipe having been subjected to diameter-reducing rolling and a reduction in diameter.
 Fig. 2 is a graph showing the relationship between an r-value in the longitudinal direction of a steel pipe having been subjected to diameter-reducing rolling and an outgoing-side temperature in the rolling process.
 Fig. 3 is a graph showing the relationship between a seam thickness deviation in a steel pipe having been subjected to diameter-reducing rolling and a heating temperature before the diameter-reducing rolling.

50 Best Mode for Carrying Out the Invention

[0013] In a high-workability steel pipe according to the present invention, an r-value in the longitudinal direction is not less than 1.2. The reason is that the bending workability of the steel pipe is noticeably improved when the r-value is not less than 1.2. More preferably, the high-workability steel pipe has an r-value of not less than 1.6 because the bending workability is further improved when the r-value is not less than 1.6.

[0014] The high-workability steel pipe according to the present invention can be produced by performing diameter-

reducing rolling on a steel pipe in a temperature range of from 600°C to Ac_3 with a reduction in diameter of not less than 30%, the steel pipe being produced by seam-welding strip steel and having a seam. The r-value is affected by the reduction in diameter and the temperature during the diameter-reducing rolling.

[0015] Fig. 1 is a graph showing the relationship between the r-value in the longitudinal direction and the reduction in diameter resulted at circumferential positions 0°, 90°, 180° and 270° of each steel pipe which was produced by performing the diameter-reducing rolling on a seam welded steel pipe under a condition of the outgoing-side temperature being set to 730°C while changing the reduction in diameter the seam welded steel pipe being produced by an ordinary method from strip steel having the same composition as steel A in Table 1 given below. The seam position is assumed to be at 0° (this is similarly applied to the following description). From Fig. 1, it is understood that, regardless of the circumferential positions, the r-value of not less than 1.3 is obtained at the reduction in diameter of not less than 30%, and the r-value of not less than 1.6 is obtained at the reduction in diameter of not less than 50%.

[0016] Fig. 2 is a graph showing the relationship between the r-value in the longitudinal direction and the outgoing-side temperature resulted at circumferential positions 0°, 90°, 180° and 270° of each steel pipe which was produced by performing the diameter-reducing rolling on a seam welded steel pipe under a condition of the reduction in diameter set to 30% while changing the outgoing-side temperature, the seam welded steel pipe being produced by an ordinary method from strip steel having the same composition as steel A in Table 1 given below. From Fig. 2, it is understood that the r-value of not less than 1.2 is obtained at the outgoing-side temperature of not lower than 600°C.

[0017] Based on the experiment results mentioned above, a lower limit of the temperature for the diameter-reducing rolling was set to 600°C and a lower limit of the reduction in diameter was set to 30%. Also, an upper limit of the temperature for the diameter-reducing rolling was set to the same as an upper limit of the temperature range in which the steel structure contains ferrite, i.e., the temperature Ac_3 . The r-value is not improved even by the diameter-reducing rolling if it is performed on steel whose structure contains no ferrite. The temperature Ac_3 depends on the chemical composition of steel, and can be determined based on experiments. A range of temperature Ac_3 is approximately not higher than 900°C. In the present invention, so long as the steel structure contains ferrite, the second phase (phase other than ferrite) is not limited to particular one. For example, austenite may be the second phase. More preferably, the diameter-reducing rolling is performed at temperatures where ferrite forms the main phase (phase having a volume ratio of 50% or more).

[0018] The gist of the present invention resides in that a steel pipe is subjected to the diameter-reducing rolling in a temperature range where the steel structure has the ferrite phase. From the standpoint of improving the r-value, there is no particular restriction upon the history prior to the diameter-reducing rolling. For example, the heating temperature prior to the diameter-reducing rolling may be any of the temperature at which the steel structure has the single austenitic phase, the temperature at which the steel structure has the two austenitic and ferrite phases, and the temperature at which the steel structure has the single ferrite phase. Further, prior to the diameter-reducing rolling, the steel pipe may be rolled at such temperatures as forming austenite as the single phase or the main phase.

[0019] Fig. 3 is a graph showing the relationship between a heating temperature and a thickness deviation resulted for each steel pipe which was produced by performing the diameter-reducing rolling on a seam welded steel pipe under conditions of the reduction in diameter set to 30% and the rolling temperature set to 700°C while changing the heating temperature, the seam welded steel pipe being produced by an ordinary method from strip steel having the same composition as steel A in Table 1 given below. From Fig. 3, it is understood that the heating prior to the diameter-reducing rolling is preferably set to be not lower than the temperature Ac_1 from the standpoint of suppressing the thickness deviation and wrinkles occurred near the seam. The temperature Ac_1 depends on the chemical composition of the steel pipe, etc., and can be determined based on experiments. A range of temperature Ac_1 is approximately not lower than 800°C. However, if the heating temperature is too high, the crystal grain size would be excessively increased, thus resulting in a problem of, for example, increasing surface roughness during the working. For that reason, the heating temperature is preferably set to be not higher than 900°C.

[0020] There is no particular restriction upon the cooling after the heating of the steel pipe. Subsequent to the heating, the diameter-reducing rolling may be performed, for example, after cooling the steel pipe down to temperatures at which ferrite forms the main phase, or by reheating the steel pipe after cooling it down to the room temperature.

[0021] Further, preferably, after the diameter-reducing rolling of the steel pipe, heat treatment of holding the rolled steel pipe in a temperature range of from 600°C to 900°C for a time of 1 second or longer is performed in the present invention.

[0022] In the present invention, since the diameter-reducing rolling is performed at temperatures of not lower than 600°C, the work hardness is low and a sufficient level of workability is obtained with additional treatment. Even so, by performing heat treatment for holding the rolled steel pipe at a certain temperature for a certain time in succession to the diameter-reducing rolling, the elongation and the r-value are further improved. This effect is developed by holding the rolled steel pipe at temperatures of not lower than 600°C for a time of 1 second or longer. However, if the holding temperature exceeds 900°C, the steel structure would be transformed into the single austenitic phase and the r-value would be reduced because of the randomized aggregation structure. For that reason, the heat treatment is preferably

performed on conditions of the holding temperature in the range of from 600°C to 900°C and the holding time of 1 second or longer. Additionally, the heat treatment may be performed during cooling subsequent to the diameter-reducing rolling or by reheating the rolled steel pipe after the cooling.

5 (Example)

[0023] Seam welded steel pipes were produced by an ordinary method from various kinds of hot-rolled steel plates having chemical compositions shown in Table 1, and the diameter-reducing rolling was performed on each steel pipe under conditions shown in Table 2. Heating of the steel pipe prior to the diameter-reducing rolling was not held at all or held for a time of 1 to 600 seconds after reaching the temperature shown in Table 2. Tensile specimens of JIS No. 10 12-A were sampled from circumferential positions 0°, 90°, 180° and 270° of each steel pipe obtained. After bonding a strain gauge with a gauge length of 2 mm to each specimen, a tensile test was carried out on the specimen by applying a nominal strain of 6 to 7%. Then, a ratio of a true strain ε_w in the width direction to a true strain ε_L in the longitudinal direction was measured. From a gradient ρ of that ratio, the r-value was calculated based on the following 15 formulae:

$$\rho = \varepsilon_L / \varepsilon_w$$

20 r-value = $\rho / (-1 - \rho)$

[0024] Further, a thickness deviation η was calculated by measuring a pipe wall thickness ts of a seamed portion and an average pipe wall thickness tb of the remaining portion. That is:

25 thickness deviation $\eta\% = (ts - tb)/tb \times 100\%$

[0025] Moreover, the presence or absence of wrinkles was determined by observing an image of an area near the seam in a cross-section perpendicular to the axis of the steel pipe, the image being enlarged at a magnification of 50 times.

30 [0026] Those results are listed in Table 3 along with the tensile strength (TS) and the elongation (EI).

[0027] The r-value is 1.2 or above at any positions in the circumferential direction in Examples of the present invention, whereas the r-value is below 1.2 in Comparative Examples. Also, in the specimens heated to temperatures of not lower than Ac_1 , the thickness deviation is smaller and wrinkles are not caused.

35 Industrial Applicability

[0028] According to the present invention, a high-workability steel pipe can be provided which has a high r-value over an entire area in the circumferential direction, including a seamed portion, and also has a good shape. Limits in bending and expanding work of the steel pipe are noticeably improved, whereby omission of steps due to the integral 40 forming and a reduction in weight can be achieved. Further, seam welded steel pipes having a high r-value can also be produced using, as base materials, hot-rolled steel, high tensile strength steel such as dual phase steel, and low, medium and high carbon steel, which have a difficulty in achieving a high r-value with a conventional method of producing a steel pipe by simply seam-welding a steel plate. As a result, the present invention is able to remarkably enlarge the applicable range of bending of steel pipes and hence greatly contributes to development of the industry.

45

50

55

Table 1

Steel	Chemical Composition (%)										AC ₁ (°C)	AC ₃ (°C)			
	C	Si	Mn	P	S	Al	N	Cr	Ti	Nb	B	Ni	Cu		
A	0.06	0.1	0.3	0.01	0.005	0.02	0.003	—	—	—	—	—	—	730	840
B	0.1	0.2	0.8	0.01	0.005	0.02	0.003	—	—	—	—	—	—	730	820
C	0.25	0.3	0.8	0.01	0.005	0.02	0.003	—	—	—	—	—	—	750	800
D	0.25	0.3	0.5	0.01	0.005	0.02	0.003	—	—	—	0.002	—	—	750	800
E	0.4	0.3	1.6	0.01	0.005	0.02	0.003	0.03	—	—	—	—	—	730	780
F	0.08	1.0	1.4	0.01	0.005	0.02	0.003	0.9	0.01	—	—	—	—	750	840
G	0.15	1.4	1.5	0.01	0.005	0.02	0.003	0.3	—	—	—	—	—	770	820
H	0.08	0.5	1.2	0.01	0.005	0.02	0.003	—	0.04	—	—	—	—	770	820
I	0.08	0.04	1.5	0.01	0.005	0.02	0.003	—	0.04	—	—	—	—	750	800
J	0.08	1.5	1.8	0.01	0.005	0.02	0.003	—	0.1	—	—	—	—	780	830
K	0.09	0.05	1.8	0.01	0.005	0.02	0.003	—	0.15	0.05	—	—	—	750	800
L	0.01	0.2	1.5	0.01	0.005	0.02	0.003	11.0	—	—	0.25	0.4	730	800	

Table 2

No.	Steel	Heating Temperature (°C)	Incoming-side Temperature in Diameter-reducing Rolling (°C)	Outgoing-side Temperature in Diameter-reducing Rolling (°C)	Total Reduction in Diameter (%)	Effective Reduction in Diameter* (%)	Heat Treatment	Remarks
1	A	800	780	730	50	50	-	Example
2	A	900	880	830	50	5	-	Comparative Example
3	A	630	610	560	50	10	-	Comparative Example
4	B	800	780	730	50	50	-	Example
5	B	800	780	730	50	50	-	Example
6	C	800	780	730	50	50	73°C × 5 min.	Example
7	D	900**	720	680	50	50	-	Example
8	D	850	720	680	50	50	-	Example
9	D	800	780	730	50	50	-	Example
10	D	800	720	680	50	50	-	Example
11	D	750	720	680	50	50	-	Example
12	D	735	720	680	50	50	-	Example
13	D	720	720	680	50	50	-	Example
14	E	800	780	730	50	50	-	Example
15	F	800	780	730	0	0	-	Comparative Example
16	F	800	780	730	15	15	-	Comparative Example
17	F	800	780	730	30	30	-	Example

* effective reduction in diameter: reduction in diameter in temperature range of 600°C to Ac₃

** rolling after cooling and reheating (for other types of steel, rolling immediately after heating)

Table 2 (continued)

No.	Steel	Heating Temperature (°C)	Incoming-side Temperature in Diameter-Reducing Rolling (°C)	Outgoing-side Temperature in Diameter-Reducing Rolling (°C)	Total Reduction in Diameter (%)	Effective Reduction in Diameter* (%)	Heat Treatment	Remarks
18	F	800	780	730	40	40	-	Example
19	F	800	780	730	50	50	-	Example
20	F	800	780	730	60	60	-	Example
21	F	800	780	730	70	70	-	Example
22	F	900	890	850	30	2	-	Comparative Example
23	F	850	840	780	30	30	-	Example
24	F	750	730	680	30	30	-	Example
25	F	700	680	600	30	30	-	Example
26	F	630	610	560	50	10	-	Comparative Example
27	G	900	780	730	50	50	-	Example
28	G	850	780	730	50	50	-	Example
29	G	800	780	730	30	30	-	Example
30	G	800	780	730	40	40	-	Example
31	G	800	780	730	50	50	-	Example
32	H	800	780	730	50	50	-	Example
33	I	800	780	730	50	50	-	Example
34	J	800	780	730	50	50	-	Example
35	K	800	780	730	50	50	-	Example
36	L	760	740	700	60	60	-	Example

* effective reduction in diameter: reduction in diameter in temperature range of 600°C to Ac₃

Table 3

No	0° (Seam)			90°			180°			270°			Seam Thickness Deviation /%	Wrinkles ○ not occurred × occurred	Remarks
	TS/ MPa	E1* /%	r-value	TS/ MPa	E1* /%	r-value	TS/MPa	E1* /%	r-value	TS/MPa	E1* /%	r-value			
1	300	55	2.0	303	54	2.0	307	54	2.1	301	55	2.1	0.3	○	Example
2	300	45	0.8	309	45	0.9	307	45	0.8	308	45	0.8	0.3	○	Comparative Example
3	450	35	1.0	450	35	1.1	459	36	1.0	451	34	1.1	10.0	×	Comparative Example
4	350	50	2.0	356	51	2.0	356	50	2.0	350	51	2.0	0.5	○	Example
5	350	50	2.4	358	51	2.4	351	49	2.5	356	49	2.4	0.5	○	Example
6	620	25	1.8	624	24	1.8	625	25	1.8	629	25	1.9	0.3	○	Example
7	640	27	1.7	646	27	1.7	641	27	1.7	647	26	1.7	0.5	○	Example
8	631	25	1.7	651	26	1.6	641	25	1.8	641	25	1.8	1.0	○	Example
9	620	28	1.8	626	29	1.8	621	29	1.9	627	28	1.9	0.5	○	Example
10	640	24	1.6	659	24	1.7	632	24	1.7	636	24	1.7	2.0	○	Example
11	644	22	1.6	650	22	1.7	635	22	1.7	632	22	1.8	3.0	○	Example
12	653	20	1.6	657	21	1.6	640	21	1.8	623	21	1.8	8.0	×	Example
13	644	19	1.7	650	19	1.7	637	19	1.9	614	19	1.8	15.0	×	Example
14	650	25	1.8	652	25	1.9	651	25	1.8	651	26	1.9	0.5	○	Example
15	500	25	0.7	508	26	0.8	503	24	0.8	501	25	0.8	0.3	○	Comparative Example
16	590	28	1.0	593	28	1.1	599	29	1.1	595	28	1.0	0.3	○	Comparative Example
17	610	28	1.3	610	28	1.3	618	28	1.3	614	29	1.3	0.9	○	Example

* sheet thickness = 1.6 mm

Table 3 (continued)

No	0° (Seam)			90°			180°			270°			Seam Thick ness Devia tion /%	Wrinkles ○ not occurred × occurred	Remarks
	TS/ MPa	E1* /%	r-value	TS/ MPa	E1* /%	r-value	TS/MPa	E1* /%	r-value	TS/MPa	E1* /%	r-value			
18	610	29	1.4	619	29	1.4	611	30	1.4	611	28	1.4	0.9	○	Example
19	610	30	1.6	617	31	1.7	611	30	1.6	615	31	1.6	0.9	○	Example
20	610	32	2.0	616	31	2.0	612	33	2.1	610	31	2.1	0.9	○	Example
21	610	35	2.5	615	35	2.6	613	35	2.6	618	36	2.6	0.8	○	Example
22	590	28	0.8	593	27	0.8	599	28	0.8	593	28	0.9	0.2	○	Comparative Example
23	610	29	1.4	612	30	1.4	614	30	1.5	616	29	1.5	0.2	○	Example
24	610	28	1.3	613	29	1.3	615	28	1.4	612	28	1.4	0.0	○	Example
25	650	27	1.2	651	26	1.2	650	27	1.2	658	26	1.2	3.0	×	Example
26	630	22	0.9	680	21	1.0	687	22	1.0	685	23	0.9	15.0	×	Comparative Example
27	630	30	1.3	638	30	1.3	639	31	1.4	640	31	1.3	0.7	○	Example
28	630	33	1.4	636	33	1.4	630	33	1.5	638	33	1.5	0.5	○	Example
29	630	30	1.3	638	30	1.3	639	31	1.4	640	31	1.3	0.3	○	Example
30	630	33	1.4	636	33	1.4	630	33	1.5	638	33	1.5	0.3	○	Example
31	630	35	1.8	637	34	1.9	635	35	1.8	633	34	1.9	0.4	○	Example
32	600	30	1.8	606	30	1.8	609	30	1.9	600	30	1.8	0.5	○	Example
33	600	30	1.8	604	29	1.8	605	31	1.9	601	29	1.9	0.8	○	Example
34	820	24	1.6	823	25	1.6	821	25	1.7	825	24	1.7	0.3	○	Example
35	820	22	1.6	821	22	1.6	823	23	1.7	830	22	1.7	0.8	○	Example
36	695	28	1.8	595	28	1.8	595	28	1.8	595	28	1.8	0.3	○	Example

* sheet thickness = 1.6 mm

Claims

1. A high-workability steel pipe wherein an r-value in the longitudinal direction is not less than 1.2 over an entire area in the circumferential direction, including a seamed portion.

5 2. A method of producing a high-workability steel pipe, said method comprising the step of performing diameter-reducing rolling on a steel pipe in a temperature range of from 600°C to Ac_3 with a reduction in diameter of not less than 30%, said steel pipe being produced by seam-welding strip steel.

10 3. A method of producing a high-workability steel pipe according to Claim 2, wherein said method comprises the steps of heating a steel pipe to temperatures of not lower than Ac_1 , said steel pipe being produced by seam-welding strip steel, and then immediately or after cooling and reheating said steel pipe, performing diameter-reducing rolling in a temperature range of from 600°C to Ac_3 with a reduction in diameter of not less than 30%.

15 4. A method of producing a high-workability steel pipe according to Claim 2 or 3, wherein after the diameter-reducing rolling of said steel pipe, heat treatment of holding the rolled steel pipe in a temperature range of from 600°C to 900°C for a time of 1 second or longer is performed during cooling subsequent to the diameter-reducing rolling or by reheating the rolled steel pipe after said cooling.

20

25

30

35

40

45

50

55

FIG. 1

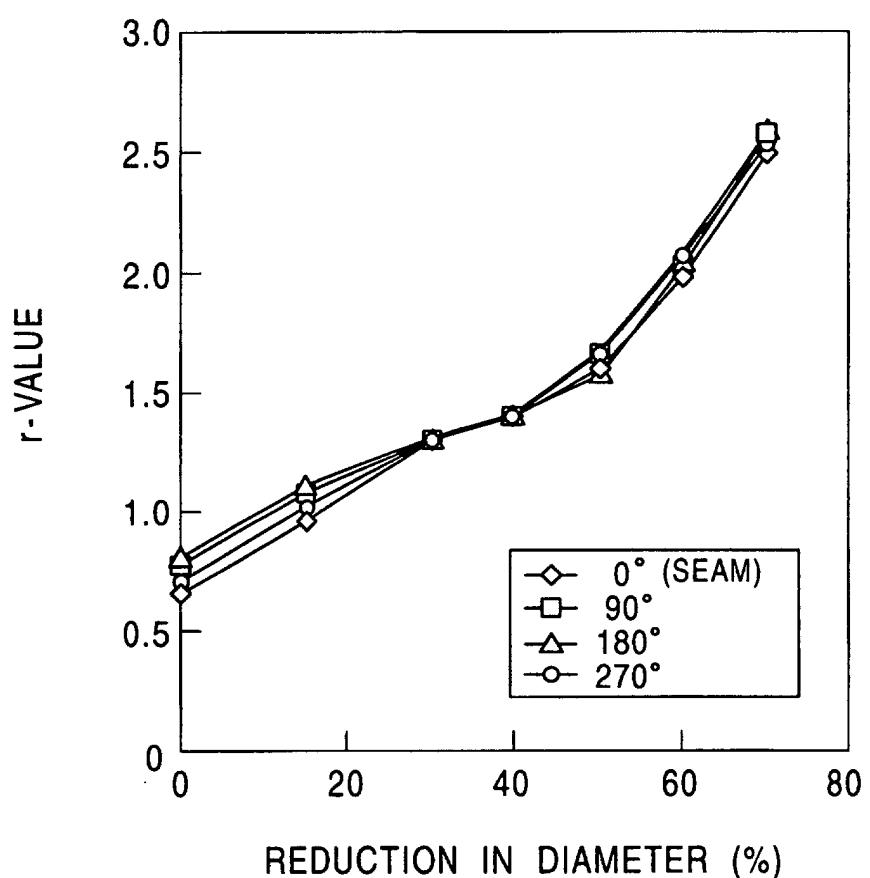


FIG. 2

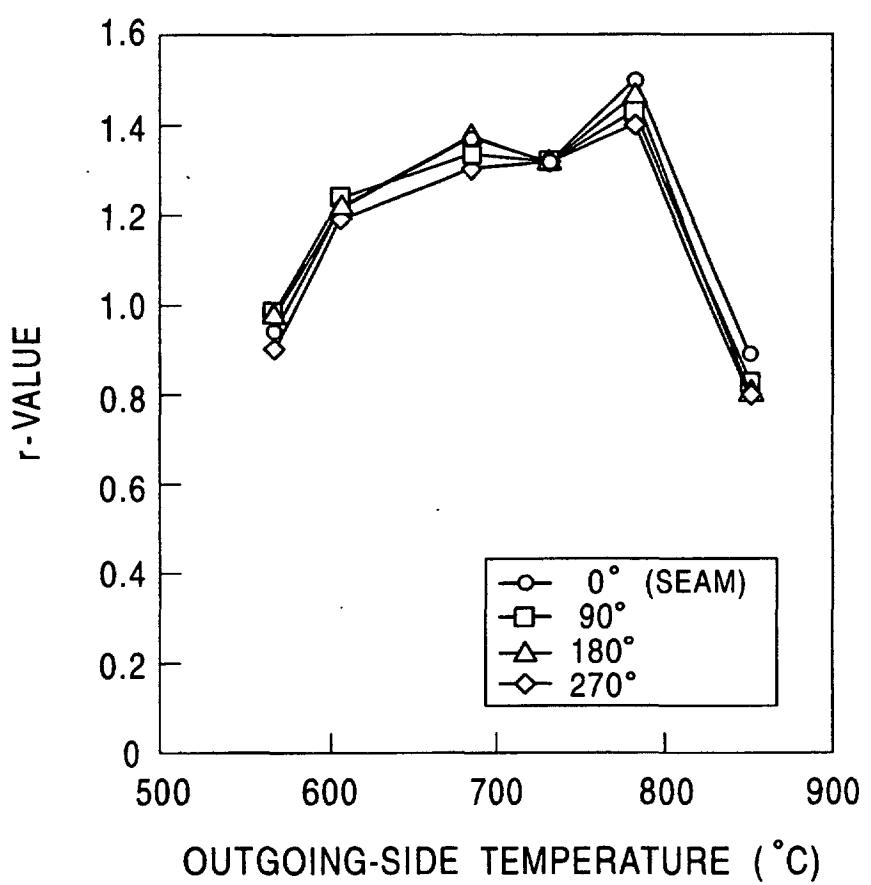


FIG. 3

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/05053

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl⁷ C22C38/00, C21D8/10, B21B17/14, B21C37/08

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ C22C38/00-38/60, C21D8/10, 9/08, B21B17/14, B21C37/08Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1926-1996 Toroku Jitsuyo Shinan Koho 1994-2001
Kokai Jitsuyo Shinan Koho 1971-2001 Jitsuyo Shinan Toroku Koho 1996-2001Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
JOIS (JICST FILE)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 10-175027 A (Nippon Steel Corporation), 30 June, 1998 (30.06.98), Claims; table (Family: none)	1 2-4
X	JP 6-41689 A (Nippon Steel Corporation), 15 February, 1994 (15.02.94), Claims (Family: none)	1 2-4
X	JP 2000-212694 A (Nippon Steel Corporation), 02 August, 2000 (02.08.00), Claims; table (Family: none)	1 2-4
E, X	JP 2001-162305 A (Kawasaki Steel Corporation), 19 June, 2001 (19.06.01), Claims; table (Family: none)	1-4
E, X	JP 2001-214218 A (Kawasaki Steel Corporation), 07 August, 2001 (07.08.01), Claims; table (Family: none)	1-4

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"F" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
29 August, 2001 (29.08.01)Date of mailing of the international search report
11 September, 2001 (11.09.01)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/05053

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP 10-58161 A (Kawasaki Steel Corporation), 03 March, 1998 (03.03.98), Claims; column 7, lines 5 to 15 (Family: none)	1-4
Y	JP 2000-96143 A (Kawasaki Steel Corporation), 04 April, 2000 (04.04.00), Claims (Family: none)	2-3
Y	JP 2000-96142 A (Kawasaki Steel Corporation), 04 April, 2000 (04.04.00), Claims (Family: none)	4
Y	EP 924312 A1 (Kawasaki Steel Corporation), 23 June, 1999 (23.06.99), Claims; table; page 8, lines 54 to 55 & JP 11-80899 A & WO 98/49362 A1 & BR 9806104 A & CN 1225690 A	2-3
X	KAWABATA et al., "Shukukei Atsuen ni yoru Koukan Shuugou Soshiki no Keisei Kikou", Zairyou to Process 01 March, 2001 (01.03.01), Vol.14, No.2, page 438	1
Y		2-4

Form PCT/ISA/210 (continuation of second sheet) (July 1992)