(11) **EP 1 449 597 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:25.08.2004 Patentblatt 2004/35

(51) Int Cl.7: **B21B 31/26**, B21B 13/10

(21) Anmeldenummer: 04000189.3

(22) Anmeldetag: 08.01.2004

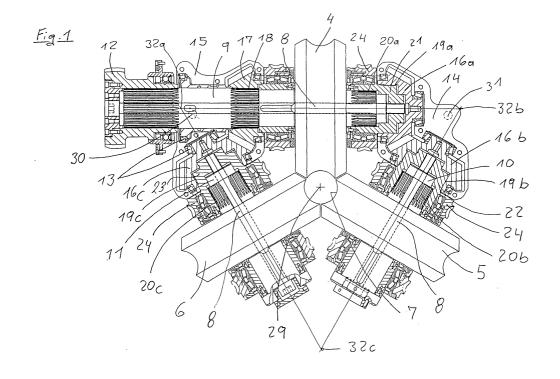
(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IT LI LU MC NL PT RO SE SI SK TR
Benannte Erstreckungsstaaten:
AL LT LV MK

(30) Priorität: 20.02.2003 DE 10307199

(71) Anmelder: SMS Meer GmbH 41069 Mönchengladbach (DE)

(72) Erfinder:


 Höffgen, Walter 41352 Korschenbroich (DE)

- Cox, Walter
 41069 Mönchengladbach (DE)
- Subanovic, Jovo 41061 Mönchengladbach (DE)
- Makowski, Andreas 41366 Schwalmtal (DE)
- (74) Vertreter: Valentin, Ekkehard Patentanwälte Valentin-Gihske-Grosse Hammerstrasse 2 57072 Siegen (DE)

(54) Walzgerüst zum Walzen von langgestrecktem Gut

(57) Bei einem Walzgerüst zum Walzen von langgestrecktem Gut, mit mehreren in einer Ebene angeordneten, eine zentrale Kaliberöffnung (7) bildenden, unter Zwischenschaltung eines gemeinsamen, drehbaren Antriebselementes in Form eines Hohlrades radial über Exzenter gemeinsam anstellbaren angetriebenen Wal-

zen (4, 5, 6), deren Walzenwellen (9, 10, 11) im Walzengehäuse in Exzenterbuchsen (24) drehbar gelagert und über miteinander kämmende Kegelräder getrieblich miteinander verbunden sind, sind die Kegelräder (16a, 16b, 16c; 17) separat in durch mechanische Kopplung (30, 31) zum Hohlrad zwangsweise verschiebbaren Kassetten (14, 15) gelagert.

Beschreibung

[0001] Die Erfindung betrifft ein Walzgerüst zum Walzen von langgestrecktem Gut, mit mehreren in einer Ebene angeordneten, eine zentrale Kaliberöffnung bildenden, unter Zwischenschaltung eines gemeinsamen, drehbaren Antriebselementes in Form eines innenverzahnten Hohlrades radial über Exzenter gemeinsam anstellbaren angetriebenen Walzen, deren Walzenwellen im Walzengehäuse in Exzenterbuchsen drehbar gelagert und über miteinander kämmende Kegelräder getrieblich miteinander verbunden sind.

[0002] Ein solches Gerüst zum Kaliber- und Maßwalzen von stab- oder rohrförmigem Walzgut ist durch die DE 42 33 557 C1 bekanntgeworden. Um eine radiale Anstellung der Walzen ohne Veränderung des Zahnspiels der Antriebskegelräder zu ermöglichen, ist dort auf jeder Walzenwelle mindestens ein Stimrad angeordnet, welches jeweils mit einem auf einer parallel zu jeder Walzenwelle im Walzgehäuse vorgesehenen Antriebswelle angeordneten Stirnrad kämmt. Alle Antriebswellen sind in einer gemeinsamen, zur ersten Ebene parallelen zweiten Ebene angeordnet.

[0003] Es liegen dort somit zwei Ebenen vor, nämlich die Getriebeebene und die Walzenebene, wodurch sich für das Walzgerüst bzw. -gehäuse eine entsprechend größere Breite ergibt. Außerdem wird zwar das Zahnspiel der Antriebskegelräder verringert, jedoch muß die durch die Exzenteranstellung bewirkte Abweichung stattdessen im Zahnspiel der Stirnräder aufgenommen werden, deren erhöhtes Spiel dann doch wieder zu Ungenauigkeiten führt. Die Exzenter- bzw. Radialverstellung der in der anderen Ebene angeordneten Walzen wird über die Getriebeebene eingeleitet. Hierzu wird eine an ihrem Ende verzahnte Verstellspindel gedreht, deren Verzahnung in eine Außenverzahnung eines Hohlrades eingreift und dieses koaxial zur Walzenwelle verdreht. Das Hohlrad ist mit einer Innenverzahnung versehen, die mit der Außenverzahnung von Spindelmuttern kämmt, welche ihrerseits Schneckentriebe aufnehmen, die beim Verdrehen der Spindel über die vorliegenden Zahnradverbindungen alle Schneckentriebe gleichzeitig und in gleicher Richtung verdrehen. Bedingt durch die mit den Schneckenrädern kämmenden Spindeltriebe wird die Exzenterverstellung der Walzen in gleicher Richtung und um gleiche Beträge durchgeführt. [0004] Aus der DE 22 59 143 B2 ist das Verschieben von Kegelrädern auf den Walzenwellen bekannt. Die Kegelräder sind im Walzengehäuse gelagert sowie stationär angeordnet und jeweils mit einer Innenverzahnung versehen, die mit an den Walzenwellen um ein Exzentermaß versetzt angeordneten, komplementären Innenzahnrädern kämmen.

[0005] Der Erfindung liegt die Aufgabe zugrunde, ein gattungsgemäßes Walzgerüst zu schaffen, das die Exzenterverstellung ohne Zahnspiel ermöglicht und zudem kleiner bauend ausgeführt werden kann.

[0006] Diese Aufgabe wird erfindungsgemäß da-

durch gelöst, daß die Kegelräder separat in durch mechanische Kopplung zum Hohlrad zwangsweise verschiebbaren Kassetten gelagert sind. Die Kegelräder sitzen vorteilhaft mit einem Vielkeilprofil verschiebbar am Ende von kurzen Wellenstücken, deren anderes Ende mit einem Innenvielkeilprofil auf den Walzenwellen angeordnet ist. Die Wellenstücke sind mittels Wälzlager in den als Schneckenräder ausgebildeten Exzenterbuchsen gelagert. In die Schneckenräder greifen Schnecken ein, an deren Enden ausgebildete Stirnräder mit dem Hohlrad kämmen. Auf dem Hohlrad mit der Innenverzahnung sind nach einem Vorschlag der Erfindung die Stirnflächen so ausgebildet, daß kreisförmige Konturabschnitte (Nuten, Absätze oder dergleichen), in die die Kassetten eingreifen, exzentrisch zur Hohlradmitte angeordnet sind. Einhergehend mit der Exzenterverstellung der Walzenwellen dreht sich daher das Hohlrad und werden zwangsweise die mit den exzentrischen Nuten oder Absätzen des Hohlrades verbundenen Kassetten verschoben.

[0007] Die Mitten der Walzenwellen bilden ein Dreieck. Bei der Exzenterverstellung der Walzen ändert sich die Größe des Dreiecks. Die Spitzen des Dreiecks wandern in Richtung der Winkelhalbierenden. In diese Richtung werden auch die Kassetten verschoben und somit auch die darin fest gelagerten Kegelräder, die sich dabei im Vielkeilprofil der Walzenwellen verschieben.

[0008] Es läßt sich damit eine gemeinsame zentrische Anstellung aller Walzen auch unter Walzdruck erreichen, wobei die Einbaulage der gemeinsam verpaßten bzw. eingepaßten - was das Tragbild der miteinander kämmenden Kegelradpaare optimiert - Kegelradpaare erhalten bleibt. Da keine in unterschiedlichen Ebenen miteinander kämmenden Stirnräder mehr erforderlich sind, wird außerdem die Gerüstbreite deutlich verringert.

[0009] Nach einer Ausführung der Erfindung ist die eine der Walzenwellen an einen Antrieb angeschlossen und mit einem antriebsseitigen Kegelrad und einem davon entfernten, wie die nur ein Kegelrad besitzenden übrigen Walzenwellen wellenendseitig angeordneten Kegelrad versehen. Das über die direkt angetriebene Walzenwelle eingeleitete Antriebsmoment wird durch einerseits den Zahneingriff zwischen den beiden Ritzeln bzw. Innenzahnrädern dieser Welle und den zugehörigen Kegelrädem und andererseits über den Zahneingriff dieser beiden Kegelräder mit jeweils einem Kegelrad der weiteren Walzenwellen verteilt.

[0010] Wenn die Walzenwellen vorzugsweise in Steckachsenbauweise ausgeführt und über Vielkeilwellenabschnitte bzw. eine Vielkeilwellenverbindung mit den Kegelrädern und von diesen aufgenommenen kurzen Wellenstücken verbunden sind, lassen sich die Walzenwellen in einfacher Weise ausbauen bzw. aus dem Gerüst demontieren und die zur Abdeckung der verschiedenen Rohrabmessungen benötigte Gerüstanzahl minimieren. Denn nach dem Ausbau brauchen die Walzenwellen durch Wechsel der drei Walzenkörper ledig-

lich mit dem benötigten neuen Kaliberwalzen bestückt und in die im Gerüst verbliebenen Kegelräder eingesteckt zu werden.

[0011] Eine weitere Ausgestaltung der Erfindung sieht vor, daß die Walzen zwischen jeweils zwei Schneckenrädern auf den Walzenwellen verkeilt sind, von denen die hinteren Schneckenräder mit ihnen jeweils zugeordneten Spindeltrieben in Eingriff sind, die ihrerseits sämtlich mit der Innenverzahnung eines sie von außen umschließenden, zur Exzenterverstellung antreibbaren Hohlrades kämmen. Die beidseitig der Walzen auf den Exzenterbuchsen angeordneten Schneckenräder führen bekanntermaßen zu einem sowohl konstruktiv als auch hinsichtlich der Krafteinleitung und -verteilung symmetrischen System. Die Anordnung der Spindeltriebe jeweils außen an den Schneckenrädern, so daß sie gleichzeitig mit diesen und dem Hohlrad kämmen, ermöglicht es, den Einbau und die Justierung zu verbessern. Außerdem stehen die Spindeltriebe, anders als bei nach dem Stand der Technik innenliegender Anordnung, beim Walzenwechsel nicht im Weg.

[0012] Weitere Merkmale und Vorteile der Erfindung ergeben sich aus den Ansprüchen und der nachfolgenden Beschreibung eines in den Zeichnungen dargestellten Ausführungsbeispiels der Erfindung. Es zeigen:

Fig. 1 einen teilgeschnittenen Querschnitt durch eine Walzenanordnung eines Walzgerüstes; und

Fig. 2 als Einzelheit eine Schemadarstellung der Exzenterverstelleinheit.

[0013] In dem in Fig. 1 gezeigten teilgeschnittenen Querschnitt durch ein Walzgerüst besteht das nicht dargestellte Walzengehäuse aus einer oberen und einer unteren Platte, die miteinander verschraubt sind. In dem Freiraum zwischen den Platten sind drei um jeweils 120° zueinander versetzte Walzen 4, 5, 6 angeordnet, die das Kaliber 7 schließen. Die Walzen 4, 5 und 6 sind mittels Paßfedern 8 auf in Steckachsenbauweise ausgeführten Walzenwellen 9, 10 und 11 befestigt.

[0014] Die Walzenwelle 9 ist über eine Kupplung 12 mit einem nicht dargestellten Antrieb verbunden. Zur Verteilung der Antriebsleistung bzw. des Antriebsdrehmomentes auf die beiden übrigen Walzenwellen 10, 11 sind in Kassetten 14 und 15 über Kegelrollenlager 13 jeweils separat in ihrer Einbaulage fixierte wellenendseitige Kegelräder 16a, 16b und 16c gelagert. Die direkt angetriebene Walzenwelle 9 weist an der dem Kupplungsanschluß 12 zugewandten Seite noch ein zweites, antriebsseitiges Kegelrad 17 auf. Das Kegelrad 17 kämmt mit dem Kegelrad 16c der Walzenwelle 11 und das wellenendseitige Kegelrad 16a der Walzenwelle 9 kämmt mit dem wellenendseitigen Kegelrad 16b der Walzenwelle 10, so daß ein geschlossener Kraftfluß vorliegt.

[0015] Zur Einleitung des Antriebsdrehmomentes in die Walzenwellen 9, 10 und 11 ist das antriebsseitige Kegelrad 17 über ein Vielkeilprofil18 mit der Walzenwelle 9 verbunden. Die jeweils wellenendseitigen Kegelräder 16a, 16b, 16c nehmen konzentrisch kurze Wellenstücke 21, 22 und 23 auf, über die sie mit Vielkeilprofilen 19a, 19b und 19c im Eingriff sind, wobei die kurzen Wellenstücke 21, 22, 23 ihrerseits auf Vielkeilprofilen 20a, 20b und 20c der Walzenwellen 9, 10 und 11 sitzen.

[0016] Der Ein und Ausbau der Walzen 4, 5 und 6 wird dadurch erreicht, daß die in Steckachsenversion ausgeführten Walzenwellen 9, 10 und 11 in den Vielkeilverbindungen 18 sowie 19a, 19b, 19c und 20a, 20b, 20c verschoben werden können.

[0017] Zur An- bzw. Verstellung der Walzen 4, 5 und 6 sind jeweils beidseitig der Walzenkörper auf den Walzenwellen 9 sowie 10 und 11 Exzenterbuchsen 24 mit darauf ausgebildeter Schneckenverzahnung angeordnet. Die Fig. 2 zeigt, daß jeweils von außen Schneckenwellen 25 mit Zahnrädem 26 zugeordnet sind, die alle gemeinsam mit einem eine Innenverzahnung 27 besitzenden, die Zahnräder 26 der Schneckenwellen 25 von außen umschließenden Hohlrad 28 kämmen, so daß die Schneckenwellen 25 in gleichzeitig mit der Schnekkenverzahnung der Exzenterbuchsen 24 und das Hohlrad 28 eingreifender Bauweise angeordnet sind. Durch Verdrehen des Hohlrades 28 in Umfangsrichtung, was in der bei dem eingangs geschilderten Walzgerüst bekannten Weise erfolgen kann, werden weg- und zeitgleich die Schneckenwellen 25 und damit entsprechend die Exzenterbuchsen 24 verdreht, womit einhergehend sich die radiale Lage der Walzen 4, 5 und 6 verändert. [0018] Die Stirnflächen des Hohlrades 28 sind so ausgebildet, daß kreisförmige Konturabschnitte 33 (Nuten, Absätze oder dergleichen), in die die Kassetten 14 und 15 mittels Mitnehmerstücken 30 und 31 eingreifen, exzentrisch zur Hohlrad- bzw. Walzmitte 29 angeordnet sind. Die Mitten der Walzenwellen 9, 10 und 11 bilden wie der Fig. 1 zu entnehmen ist - ein Dreieck, dessen Größe sich mit der Exzenterverstellung der Walzen 4, 5 und 6 verändert, womit sich auch die Spitzen 32a, 32b und 32c des Dreiecks in Richtung der Winkelhalbierenden verlagern. Durch das Drehen des Hohlrades 28, beim Verstellen des Exzenters, bewegen sich auch die kreisförmigen exzentrisch angeordneten Konturabschnitte 33 auf dem Hohlrad 28 mit und verschieben die Kassetten 14 und 15. Damit verschieben sich auch die in den Kassetten 14 und 15 gelagerten Kegelräder 16a, 16b, 16c und 17 in den Vielkeilprofilen 18, 19a, 19b und 19c. Ein Spiel zwischen den Zahneingriffen der Kegelräder 16a, 16b, 16c und 17 kann nicht auftreten.

Patentansprüche

 Walzgerüst zum Walzen von langgestrecktem Gut, mit mehreren in einer Ebene angeordneten, eine zentrale Kaliberöffnung (7) bildenden, unter Zwi-

55

schenschaltung eines gemeinsamen, drehbaren Antriebselementes in Form eines innenverzahnten Hohlrades (28) radial über Exzenter gemeinsam anstellbaren angetriebenen Walzen (4, 5, 6), deren Walzenwellen (9, 10, 11) im Walzengehäuse in Exzenterbuchsen (24) drehbar gelagert und über miteinander kämmende Kegelräder getrieblich miteinander verbunden sind,

dadurch gekennzeichnet,

daß die Kegelräder (16a, 16b, 16c, 17) separat in durch mechanische Kopplung (30, 31) zum Hohlrad (28) zwangsweise verschiebbaren Kassetten (14, 15) gelagert sind.

2. Walzgerüst nach Anspruch 1,

dadurch gekennzeichnet,

daß die eine der Walzenwellen (9) an einen Antrieb angeschlossen und mit einem antriebsseitigen Kegelrad (17) und einem davon entfernten, wie die nur ein Kegelrad (16c, 16c) besitzenden übrigen Walzenwellen (10, 11) wellenendseitig angeordneten Kegelrad (16a) versehen ist.

3. Walzgerüst nach Anspruch 1 oder 2,

dadurch gekennzeichnet,

daß die Walzenwellen (9; 10, 11) in Steckachsenbauweise ausgeführt und über Vielkeilwellenabschnitte (19a, 19b, 19c; 20a, 20b, 20c) mit den Kegelrädern (16a, 16b, 16c; 17) verschiebbar verbunden sind.

Walzgerüst nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet,

daß die Walzen (4, 5, 6) zwischen jeweils zwei Schneckenrädern (25) auf den Walzenwellen (9; 10, 11) verkeilt sind, von denen die hinteren Schnekkenräder koaxial auf kurzen Wellenstücken (21, 22, 23) lagern, und die Schneckenräder (24) mit ihnen jeweils zugeordneten Spindeltrieben (26) in Eingriff sind, die ihrerseits sämtlich mit der Innenverzahnung (27) eines sie von außen umschließenden, zur Exzenterverstellung antreibbaren Hohlrades (28) kämmen.

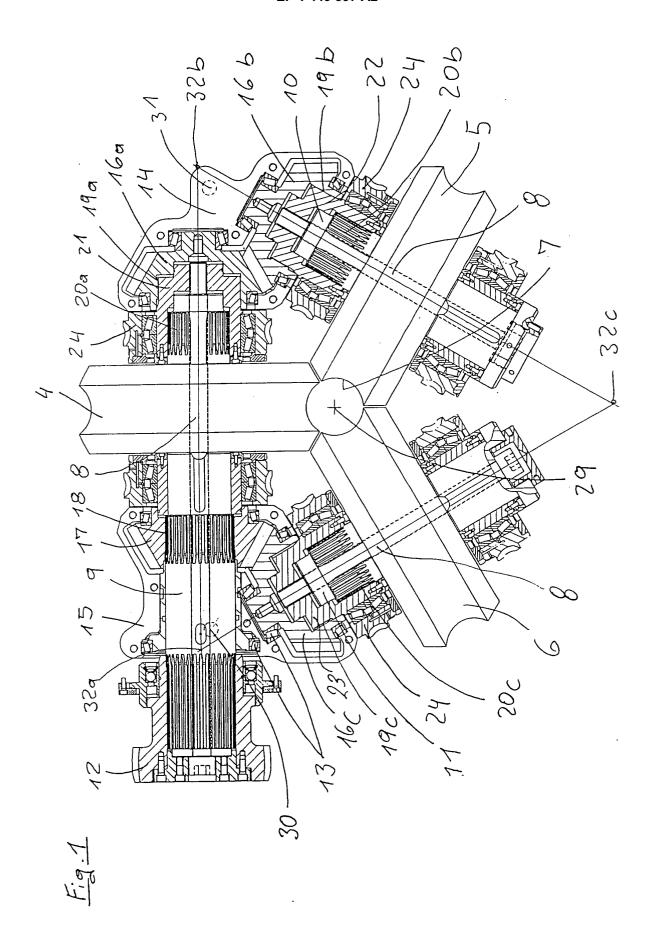
Walzgerüst nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet,

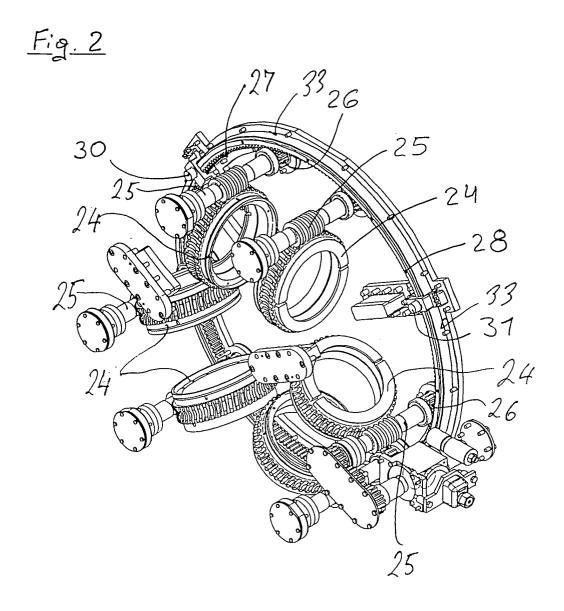
daß die Kassetten (14, 15) über Mitnehmerstücke (30, 31) mit den auf dem Hohlrad (28) vorgesehenen kreisförmigen, exzentrisch angeordneten Konturabschnitten (33) verbunden sind.

15

25

30


35


40

45

50

55

