(19)
(11) EP 1 457 643 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
15.09.2004  Patentblatt  2004/38

(21) Anmeldenummer: 04090043.3

(22) Anmeldetag:  11.02.2004
(51) Internationale Patentklassifikation (IPC)7F01D 21/04
(84) Benannte Vertragsstaaten:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR
Benannte Erstreckungsstaaten:
AL LT LV MK

(30) Priorität: 13.03.2003 DE 10310900

(71) Anmelder: Rolls-Royce Deutschland Ltd & Co KG
15827 Dahlewitz (DE)

(72) Erfinder:
  • Rensch, Detlef
    14974 Ludwigsfelde (DE)

(74) Vertreter: Wablat, Wolfgang, Dr.Dr. 
Patentanwalt, Potsdamer Chaussee 48
14129 Berlin
14129 Berlin (DE)

   


(54) Elektronisches Sicherheitssystem zur Vermeidung eines Überdrehzahlzustandes bei einem Wellenbruch


(57) Ein elektronisches Sicherheitssystem zur Detektion eines Wellenbruchs und zur Unterbrechung der Antriebsenergiezufuhr umfasst mindestens einen in Wellenlängsrichtung fest verlegten, mit der Welle (1) rotierenden und an der Eintrittsseite (14) mit einem mit der Lichtquelle (18) verbundenen Mess-Lichtleiter (13). Bei einem Wellenbruch wird der Mess-Lichtleiter durchtrennt, wobei das Ausbleiben des Lichts an der Austrittsseite (15) von einem optischen Sensor (19) registriert und über eine Auswerte- und Steuerelektronik (20, 21) als Signal zur Abschaltung der weiteren Energiezufuhr an einem Kraftstoff-Absperrventil (22) dient. Der Mess-Lichtleiter ist an einer an beiden Enden mit der Welle verbundenen Messhülse (4) fixiert.




Beschreibung


[0001] Die Erfindung betrifft ein elektronisches Sicherheitssystem zur Vermeidung eines Überdrehzahlzustandes bei einem Wellenbruch durch Detektion des Wellenbruchs und anschließendes Unterbrechen der weiteren Energiezufuhr, insbesondere bei einem Gasturbinen-Triebwerk.

[0002] Beim Bruch einer Welle, die eine Antriebsseite und eine Abtriebsseite, das heißt eine Energie erzeugende und eine Energie verbrauchende Seite hat, besteht grundsätzlich das Problem, dass in einem solchen Fall die Antriebsseite wegen der fehlenden Energieabnahme auf der Abtriebsseite stark beschleunigt wird und dadurch erhebliche Gefahren für Menschen und Material entstehen können. Ein derartiger Überdrehzahlzustand ist besonders dort äußerst problematisch, wo die betreffende Welle Teil einer Personenbeförderungseinrichtung, zum Beispiel einem mit Gasturbinen-Triebwerken angetriebenen Flugzeug ist. Bei einem Flugzeugtriebwerk stellen insbesondere der Bruch der Niederdruckturbinenwelle und die daraus folgende unkontrollierte Erhöhung der Drehzahl der mit dem Niederdruckturbinenrotor verbundenen Antriebsseite der Niederdruckturbinenwelle, die zu einer Zerstörung des Triebwerks und zu einer Beschädigung des Flugzeugs führen kann, ein erhebliches Gefahrenpotential für Menschen und Sachwerte dar.

[0003] Insbesondere bei Gasturbinen, speziell Gasturbinen-Triebwerken, sind verschiedene Vorrichtungen zum mechanischen oder elektronischen Erfassen eines Wellenbruchs und einer daraufhin ausgelösten Unterbrechung der weiteren Kraftstoffzufuhr zur Vermeidung oder Begrenzung eines gefährlichen Überdrehzahlzustandes bekannt.

[0004] Bei einem in der US 47 12 372 beschriebenen Sicherheitssystem sind an der antriebsseitig (Turbinenrotor) und abtriebsseitig (Fan) gezahnten Turbinenwelle jeweils induktive Sensoren angeordnet, die jeweils ein der Anzahl der gezählten Impulse entsprechendes drehzahlproportionales Signal erzeugen. Im Falle einer Drehzahldifferenz durch eine höhere Geschwindigkeit des antriebsseitigen Teils der Welle und eines dadurch festgestellten Wellenbruchs wird ein magnetisches Kraftstoffventil angesteuert und die Kraftstoffzufuhr unterbrochen, so dass der Turbinenrotor nicht weiter angetrieben werden kann.

[0005] Die bei Gasturbinen-Triebwerken bekannten elektronischen Sicherheitssysteme sind ganz allgemein insofern nachteilig, als der Zeitablauf bis zum Abschalten der Kraftstoffzufuhr relativ lang ist und daraus höhere Festigkeitsanforderungen an die Niederdruckturbinenschaufeln, verbunden mit einem höheren Gewicht und höheren Kosten, resultieren. Ein hoher Aufwand ist weiterhin durch die erforderliche Kühlung bzw. Hitzeabschirmung der im Heißbereich der Niederdruckturbinenwelle liegenden Sensorik und der elektrischen Verbindungen bedingt.

[0006] Darüber hinaus sind auch mechanische Abschaltsysteme mit einer der Turbinenwelle koaxial zugeordneten, an deren abtriebsseitigem Ende befestigten Referenzwelle beschrieben. Im Falle eines Wellenbruchs wird die dadurch bedingte Verdrehung der Turbinenwelle relativ zur Referenzwelle zur mechanischen Einwirkung auf das Kraftstoffventil genutzt. Bei einer bekannten Vorrichtung dieser Art sind am antriebsseitigen Ende der Turbinenwelle und dem entsprechenden Ende der Referenzwelle versetzt angeordnete Aussparungen vorgesehen, die bei einem Wellenbruch zur Deckung kommen und dadurch einen vorgespannten Mitnehmer freigeben. Der radial ausschwenkende Mitnehmer greift in die Drahtschlinge eines Drahtseils ein, das mit dem Kraftstoff-Absperrventil verbunden ist und durch den von dem Mitnehmer der Niederdruckwelle auf das Drahtseil ausgeübten Zug geschlossen wird.

[0007] Da der erforderliche Verdrehwinkel zwischen Turbinen- und Referenzwelle bis zum Ausschwenken des vorgespannten Mitnehmers relativ groß ist, ist auch der Zeitraum bis zum Absperren der Kraftstoffzufuhr relativ lang. Zudem ist bei den mechanischen Systemen der Konstruktions- und Montageaufwand sowie der Platzbedarf hoch.

[0008] Der Erfindung liegt die Aufgabe zugrunde, ein Sicherheitssystem zum Erkennen eines Wellenbruchs und zur Unterbrechung der weiteren Zufuhr von Energie zum antriebsseitigen Ende der Welle anzugeben, das bei geringem Montage-, Konstruktions- und Platzaufwand zuverlässig und verschleißarm arbeitet und kurze Abschaltzeiten gewährleistet.

[0009] Erfindungsgemäß wird die Aufgabe mit einem gemäß den Merkmalen des Patentanspruchs 1 ausgebildeten Sicherheitssystem gelöst. Aus den Unteransprüchen ergeben sich weitere Merkmale und vorteilhafte Weiterbildungen der Erfindung.

[0010] Das Wesen der Erfindung besteht in der festen Zuordnung eines Lichtleiters zum Umfang der zu überwachenden Welle, und zwar in deren Längsrichtung und mit dieser rotierend, sowie der mit einem Wellenbruch verbundenen Durchtrennung des Lichtleiters und der entsprechenden Unterbrechung der Weiterleitung des dem auf diese Art als Messelement dienenden Lichtleiter an seiner Eintrittsseite zugeführten Lichts. Diese Unterbrechung wird am anderen Ende des Mess-Lichtleiters von einem Sensor erfasst und über eine Auswerte- und Steuerelektronik als Signal für die Abschaltung der Antriebsenergiezufuhr genutzt.

[0011] Das auf dieser Basis ausgebildete Sicherheitssystem benötigt bei der hier möglichen externen Anordnung der erforderlichen optischen Sensoren und Lichtquellen keine Kühleinrichtungen. Es ist nur eine geringe Anzahl an zudem einfachen Bauteilen notwendig. Der Montage-, Reparatur- und Wartungsaufwand ist dementsprechend gering. Aufgrund der Lichtgeschwindigkeit und der damit verbundenen schnellen Detektion eines Wellenbruchs können kurze Abschaltzeiten für die Energiezufuhr realisiert werden.

[0012] In weiterer Ausbildung der Erfindung können mehrere Mess-Lichtleiter vorgesehen sein, die auch als Schleife zur Lichteintrittsseite zurückgeführt sein können.

[0013] Die Lichtquelle und die Sensorik können dem/n Mess-Lichtleiter/n unmittelbar vorgeschaltet oder - unter Verwendung zusätzlicher Lichtleiter zur Zuführung und Wegführung des Lichts - extern angeordnet sein.

[0014] Die Eintrittseite der Mess-Lichtleiter kann axial zentrisch oder versetzt zur Mitte angeordnet sein. Der Lichtaustritt kann in axialer oder radialer Richtung erfolgen und erfasst werden. Der Zusatzlichtleiter oder die Lichtquelle zur Zuführung von Licht können ringförmig ausgebildet sein, um mehreren in einer Kreislinie angeordneten Mess-Lichtleitern Licht von nur einer Lichtquelle zuzuführen.

[0015] Gemäß einem weiteren Merkmal der Erfindung wird die feste Zuordnung des Mess-Lichtleiters zu der zu überwachenden Welle und damit die Rotation des Mess-Lichtleiters zusammen mit der Welle durch eine koaxial zur Welle angeordnete, an beiden Enden mit dieser verbundene Messhülse realisiert. Bei einem Wellenbruch wird auch die Messhülse zerstört und dadurch der Mess-Lichtleiter durchtrennt. Das aufgrund der fehlenden Lichtleitung durch den Mess-Lichtleiter am optischen Sender registrierte Signal dient nach entsprechender Auswertung in der Auswerteelektronik zur Steuerung eines Abschaltmechanismus für die Antriebsseite der Welle.

[0016] In weiterer Ausbildung der Erfindung besteht die Messhülse aus einem Innenrohr und einem Außenrohr. In dem Innenrohr befinden sich in Längsrichtung verlaufende Haltenuten zur Aufnahme der Mess-Lichtleiter, so dass bei einem mit einem Wellenbruch verbundenen Bruch der Messhülse auch der Mess-Lichtleiter sofort durchtrennt wird. Das Außenrohr, dessen Festigkeit höher als die des Innenrohrs ist, dient zur Abstützung der/des Mess-Lichtleiter/s und des Innenrohrs.

[0017] Eine Ausführungsform der Erfindung wird anhand der Zeichnung am Beispiel der Niederdruckturbinenwelle eines mit flüssigem Kraftstoff als Energieträger versorgten Gasturbinen-Triebwerks näher erläutert. Es zeigen:
Fig. 1
eine Schnittansicht des hinteren, antriebsseitigen Endes einer hinsichtlich eines Wellenbruches zu überwachenden Niederdruckturbinenwelle, an dem der Niederdruckturbinenrotor angebracht ist;
Fig. 2
eine Schnittansicht des vorderen, abtriebsseitigen Endes der Niederdruckturbinenwelle, mit dem der Fan eines Gasturbinen-Triebwerks verbunden ist; und
Fig. 3
eine Schnittansicht längs der Linie AA in Fig. 1.


[0018] An der Niederdruckturbinenwelle 1 ist, wie in den Figuren 1 und 3 lediglich angedeutet, auf der Antriebsseite der Niederdruckturbinenrotor 2 und auf der Abtriebsseite der Fan 3 (Verdichter) angebracht. Im Innern der Niederdruckturbinenwelle 1 befindet sich eine koaxial angeordnete Messhülse 4, die an beiden Enden durch Befestigungselemente 5, 6 sowohl in Umfangsrichtung als auch in axialer Richtung fest an der Niederdruckturbinenwelle 1 gehalten ist und damit deren Drehbewegung mitmacht. Die Messhülse 4 besteht aus einem Innenrohr 7 und einem Außenrohr 8, die an beiden Stirnseiten jeweils durch eine Bodenplatte 9a,b und 10a,b verschlossen sind. In der Außenumfangsfläche des Innenrohres 7 befinden sich zwei gegenüberliegende, in Längsrichtung der Messhülse 4 verlaufende Haltenuten 11, 12, in die ein Mess-Lichtleiter 13 - mit der Oberfläche des Innenrohres 7 bündig abschließend - eingelegt ist. Das Außenrohr (Stützrohr) 8 stützt den Mess-Lichtleiter 13 entgegen den hohen Fliehkräften nach außen ab und fixiert diesen radial in den Haltenuten 11, 12. Der Mess-Lichtleiter 13 ist somit in die Umfangswand der Messhülse 4 eingebettet. Das Außenrohr 8, das der Aufnahme der Fliehkräfte und der Zentrierung der Messhülse 4 dient, weist eine den herrschenden Kraftwirkungen entsprechende Festigkeit auf. Das als Sollbruchrohr fungierende Innenrohr 7 besteht hingegen aus einem weniger festen, leicht brechenden Werkstoff. In der vorliegenden Ausführungsform verläuft der Mess-Lichtleiter 13, ausgehend von einer zentrischen Eingangsbohrung 14 in der hinteren Bodenplatte 9a, zunächst zwischen den beiden hinteren Bodenplatten 9a und 10a, dann in der unteren Haltenut 12, anschließend zwischen den beiden vorderen Bodenplatten 9b und 10b und schließlich zurück zur Ausgangsseite in der oberen Haltenut 11, um in einer Ausgangsbohrung 15 am Außenrand der hinteren Bodenplatte 9a zu enden. An den Anfang (Eingangsbohrung 14) und das Ende (Ausgangsbohrung 15) des mit der Messhülse 4 rotierenden Mess-Lichtleiters 13 schließen sich im Abstand ein erste Zusatzlichtleiter (Lichtzuführungskabel) 16 mit extern angeschlossener Lichtquelle 18 und ein zweiter Zusatzlichtleiter (Lichtwegführungskabel) 17 mit extern angeschlossenem optischen Sensor 19 an. Die Lichtquelle 18 und der optische Sensor 19 können auch unmittelbar hinter der Eingangs- bzw. Ausgangsbohrung 14, 15 für den Mess-Lichtleiter 13 angeordnet sein, wobei in diesem Fall entsprechende Kühlvorrichtungen vorgesehen sein müssen. Der optische Sensor 19 ist mit einer Auswerteelektronik 20 und einer elektronischen Steuerung 21 verbunden, über die ein in die Kraftstoffzuführung eingebundenes Kraftstoff-Absperrventil 22 auf der Grundlage der von dem optischen Sensor 19 empfangenen Signale angesteuert wird.

[0019] Die Funktion des zuvor beschriebenen Sicherheitssystems ist folgende:

[0020] Über das mit seinem Licht emittierenden Ende vor der zentral angeordneten Eingangsbohrung 14 liegende Lichtzuführungskabel (erster Zusatzlichtleiter 16) wird ständig Licht durch den Mess-Lichtleiter 13 geleitet und aufgrund der Umdrehung der Messhülse 4 an der Lichtaustrittsseite (Ausgangsbohrung 15) als sich ständig wiederholender Lichtimpuls empfangen. Bei einem Bruch der Niederdruckturbinenwelle 1 bricht auch die an beiden Enden mit dieser verbundene, ansonsten mit Spiel in der Niederdruckturbinenwelle 1 angeordnete Messhülse 4 und bevorzugt deren eine geringe Festigkeit aufweisendes Innenrohr 7 (Sollbruchrohr). Aufgrund der Fixierung des Mess-Lichtleiters 13 in der Haltenut 11, 12 wird dieses ebenfalls schnell durchtrennt und der Lichtstrahl unterbrochen. Die vom optischen Sensor 19 registrierte Unterbrechung der Lichtzufuhr dient als Signal für die Auswerteelektronik 20 und die elektronische Steuerung 21 zur Anzeige eines Wellenbruchs und zur Unterbrechung der Kraftstoffzufuhr am Kraftstoff-Absperrventil 22, um die Niederdruckturbinenwelle 1 nicht weiter zu beschleunigen und die aus einer Überdrehzahl resultierenden gefährlichen Folgen einzuschränken bzw. zu verhindern.

Bezugszeichenliste



[0021] 
1
Niederdruckturbinenwelle, Welle
2
Niederdruckturbinenrotor, Antriebsseite
3
Fan (Verdichter), Abtriebsseite
4
Messhülse
5, 6
Befestigungselemente
7
Innenrohr v. 4, (Sollbruchrohr)
8
Außenrohr v. 4, (Stützrohr)
9a, 10a
hintere Bodenplatten v. 4
9b, 10b
vordere Bodenplatten v. 4
11, 12
Haltenuten v. 7
13
Mess-Lichtleiter
14
Eingangsbohrung
15
Ausgangsbohrung
16
Zusatzlichtleiter (Lichtzuführung)
17
Zusatzlichtleiter (Lichtabführung)
18
Lichtquelle
19
Optischer Sensor
20
Auswerteelektronik
21
Elektronische Steuerung
22
Kraftstoff-Absperrventil



Ansprüche

1. Elektronisches Sicherheitssystem zur Vermeidung eines Überdrehzahlzustandes bei einem Wellenbruch durch Detektion des Wellenbruchs und anschließendes Unterbrechen der weiteren Energiezufuhr, insbesondere bei einem Gasturbinen-Triebwerk, gekennzeichnet durch mindestens einen sich in Längsrichtung der Welle (1) erstreckenden und der Welle fest zugeordneten, mit dieser rotierenden Mess-Lichtleiter (13), dem eingangsseitig eine Lichtquelle (18) und an einer axialen oder radialen Lichtaustrittsseite ein optischer Sensor (19) zugeordnet sind, wobei eine durch Wellenbruch bewirkte Durchtrennung der(s) mit der Welle (1) verbundenen Mess-Lichtleiter(s) (13) und der Empfang veränderter Lichtsignale am optischen Sensor (19) über eine Auswerte- und Steuerelektronik (20, 21) den Wellenbruch detektiert und die Energiezufuhr zur Antriebsseite der Welle (1) unterbricht.
 
2. Sicherheitssystem nach Anspruch 1, dadurch gekennzeichnet, dass die Lichtquelle (18) und der Sensor (19) der Lichteintrittsseite bzw. der Lichtaustrittseite des Lichtleiters (13) unmittelbar zugeordnet sind.
 
3. Sicherheitssystem nach Anspruch 1, dadurch gekennzeichnet, dass die Lichtquelle (18) und der Sensor (19) extern angeordnet und jeweils über Zusatzlichtleiter (16, 17) dem/den an die Welle (1) gekoppelten Mess-Lichtleiter/n (13) zugeordnet sind.
 
4. Sicherheitssystem nach Anspruch 1, dadurch gekennzeichnet, dass des Eingangsseite des mindestens einen Mess-Lichtleiters (13) in der Achse der Welle (1) liegt, während der/die Mess-Lichtleiter (13) und dessen/deren Ausgangsseite analog dem Wellenumfang dezentral angeordnet sind.
 
5. Sicherheitssystem nach Anspruch 1, dadurch gekennzeichnet, dass die Eingangsseite und die Ausgangsseite des mindestens einen Mess-Lichtleiters (13) analog dem Wellenumfang dezentral angeordnet sind.
 
6. Sicherheitssystem nach Anspruch 5, dadurch gekennzeichnet, dass zur Lichtzufuhr zu den Lichtleitern (13) ein ringförmiger Lichtleiter oder eine ringförmige Lichtquelle angeordnet ist.
 
7. Sicherheitssystem nach Anspruch 6, dadurch gekennzeichnet, dass der ringförmige Lichtleiter unmittelbar mit den Mess-Lichtleitern (13) verbunden ist.
 
8. Sicherheitssystem nach Anspruch 1, dadurch gekennzeichnet, dass der mindestens eine Mess-Lichtleiter (13) als Schleife geführt ist, wobei sich die Eingangs- und Ausgangsseite an demselben Wellenende befinden.
 
9. Sicherheitssystem nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Welle (1) eine an deren Enden befestigte Messhülse (4) zugeordnet ist, an oder in der der mindestens eine Mess-Lichtleiter (13) gehalten ist.
 
10. Sicherheitssystem nach Anspruch 9, dadurch gekennzeichnet, dass die Messhülse (4) ein Innenrohr (7) mit mindestens einer in dessen Außenumfangsfläche ausgebildeter Haltenut (11, 12), in der mindestens ein Mess-Lichtleiter (13) gehalten ist, und ein das Innenrohr (7) umhüllendes Außenrohr (8) zur radialen Abstützung und im Zusammenwirken mit der Haltenut zur Abstützung in Umfangsrichtung der/des Mess-Lichtleiter/s (13) umfasst.
 
11. Sicherheitssystem nach Anspruch 11, dadurch gekennzeichnet, dass das als Sollbruchrohr fungierende Innenrohr (7) aus einem Material mit geringer Festigkeit besteht.
 




Zeichnung