(11) **EP 1 460 156 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 22.09.2004 Patentblatt 2004/39

(51) Int CI.7: **D02H 3/00**

(21) Anmeldenummer: 03025267.0

(22) Anmeldetag: 06.11.2003

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR Benannte Erstreckungsstaaten: AL LT LV MK

(30) Priorität: 18.03.2003 DE 10311832

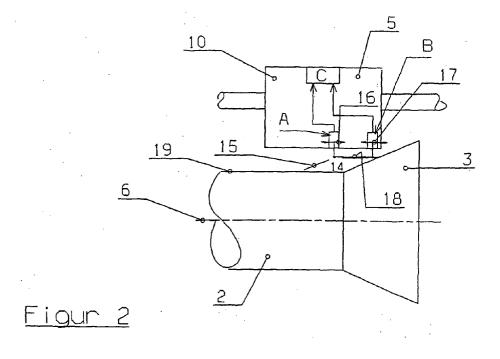
(71) Anmelder: KARL MAYER
TEXTILMASCHINENFABRIK GmbH
63179 Obertshausen (DE)

(72) Erfinder:

 Bogucki-Land, Bogdan 63057 Offenbach (DE)

 Becker, Wolfgang 63110 Rodgau (DE)

(74) Vertreter: Knoblauch, Andreas, Dr.-Ing.Schlosserstrasse 2360322 Frankfurt (DE)


(54) Konusschärmaschine und Verfahren zum Herstellen einer Kette auf einer Konusschärmaschine

(57) Es werden eine Konusschärmaschine (1) mit einer Schärtrommel (2) und einer Fadenführer-Anordnung (5) und ein Verfahren zum Herstellen einer Kette auf einer Konusschärmaschine (1) angegeben, wobei die Schärtrommel (2) einen Konus (3) aufweist und die Fadenführer-Anordnung (5) im Betrieb durch einen Antrieb (9), der eine Steuereinrichtung (C) aufweist, parallel zur Achse (6) der Schärtrommel (2) verlagerbar ist und der Schärtrommel (2) ein Band aus Fäden zuführt, die auf dem Umfang (18) der Schärtrommel (2) einen

Wickel (14) bilden.

Man möchte die Steuerung der Konusschärmaschine vereinfachen.

Hierzu ist vorgesehen, daß die Steuereinrichtung (C) mit einer Parallelitäts-Meßeinrichtung (A, B) verbunden ist, die den Umfang (18) des Wickels (14) im Bereich des Bandes auf Parallelität zur Mantelfläche (19) der Schärtrommel (2) überprüft und den Antrieb (9) in Abhängigkeit von Abweichungen zur Parallelität steuert.

Beschreibung

[0001] Die Erfindung betrifft eine Konusschärmaschine mit einer Schärtrommel und einer Fadenführer-Anordnung, wobei die Schärtrommel einen Konus aufweist und die Fadenführer-Anordnung im Betrieb durch einen Antrieb, der eine Steuereinrichtung aufweist, parallel zur Achse der Schärtrommel verlagerbar ist und der Schärtrommel ein Band aus Fäden zuführt, die auf dem Umfang der Schärtrommel einen Wickel bilden. Ferner betrifft die Erfindung ein Verfahren zum Herstellen einer Kette auf einer Konusschärmaschine, bei dem man mehrere Fäden in Form eines Bandes parallel zueinander auf den Umfang einer Schärtrommel aufwickelt, wobei das Band einen Konus hinaufgeführt wird.

[0002] Zum Herstellen einer Kette, wie sie für das Weben oder Kettenwirken erforderlich ist, verwendet man Konusschärmaschinen. Die Fäden, die später die Kette bilden, können nicht alle gleichzeitig zugeführt werden. Man unterteilt die Kette daher in mehrere Abschnitte, wobei jeder Abschnitt eine bestimmte Anzahl von Fäden aufweist, die gleichzeitig in Form eines Bandes aufgewikkelt werden. Wenn die erforderliche Anzahl von Wicklungen des Bandes auf die Schärtrommel aufgebracht worden ist, dann wird der Schärvorgang unterbrochen und die Fäden werden vom Außenumfang des Wickels, der sich auf der Schärtrommel gebildet hat, zur Oberfläche der Schärtrommel zurückgeführt, allerdings um die Breite des Bandes zum bereits gebildeten Wickel axial versetzt.

[0003] Damit die Fäden beim Aufwickeln auf die Schärtrommel eine stabile Lage behalten, kann man die Fäden nicht einfach in Radialrichtung übereinander wikkeln, sondern man versetzt die Fäden bei jeder Umdrehung um eine kleine Strecke axial, so daß sich an der Stirnseite des sich bildenden Wickels ein Konus bildet. Der Versatz der Fäden wird durch eine Fadenführer-Anordnung bewirkt, die auch als "Riet" bezeichnet wird. Im Betrieb dreht sich die Schärtrommel und zieht dabei die Fäden auf sich. Beim Wickeln eines Bändchens wird in der Regel das Riet relativ zur stationären Schärtrommel bewegt. Andere Bewegungsmöglichkeiten sind aber prinzipiell denkbar. Nach dem vollständigen Wickeln eines Bandes wird die Schärtrommel verfahren, um für das Riet wieder gleiche Ausgangspositionen zu schaffen.

[0004] Die Steuerung der Bewegung des Riets relativ zur Schärtrommel wird vielfach so vorgenommen, daß man laufend den Durchmesser des sich bildenden Wikkels im Bereich des aufzuwickelnden Bandes überprüft. Dieser Durchmesserzuwachs muß in einem festen Verhältnis zur Anzahl der aufgewickelten Windungen stehen. Um den Schärvorgang mit Hilfe der Durchmesserüberwachung steuern zu können, sind aber einige Eingaben vor dem Schären erforderlich, beispielsweise die Dicke bzw. den Durchmesser der zu schärenden Fäden. [0005] Der Erfindung liegt die Aufgabe zugrunde, die Steuerung der Konusschärmaschine zu vereinfachen.

[0006] Diese Aufgabe wird bei einer Konusschärmaschine der eingangs genannten Art dadurch gelöst, daß die Steuereinrichtung mit einer Parallelitäts-Meßeinrichtung verbunden ist, die den Umfang des Wickels im Bereich des Bandes auf Parallelität zur Mantelfläche der Schärtrommel überprüft und den Antrieb in Abhängigkeit von Abweichungen zur Parallelität steuert.

[0007] Mit dieser Ausgestaltung überwacht sich die Konusschärmaschine beim Schären sozusagen selbst. Am Beginn des Wickelns eines Bandes werden die Fäden auf der Oberfläche der Schärtrommel abgelegt. Bei den ersten Lagen des Wickels ist davon auszugehen, daß die Oberfläche des sich bildenden Wickels parallel zur Oberfläche der Schärtrommel liegt. Es kann nun vorkommen, daß der Antrieb die Fadenführer-Anordnung nicht mit der erforderlichen Geschwindigkeit steuert. Wenn der Antrieb einen zu schnellen Vortrieb einstellt, dann wird das Band zu schnell den Konus, der auf der Schärtrommel angeordnet ist, hinaufgeführt. In diesem Fall bleibt die Umfangsfläche des sich bildenden Wikkels nicht mehr parallel zur Umfangsfläche der Schärtrommel. Vielmehr neigt sich dieser Umfang in eine Richtung, die der Neigung des Konus entspricht. Der Neigungswinkel ist natürlich wesentlich geringer. Die "Schräglage" der Umfangsfläche des Wickels führt aber dazu, daß die aufgewickelten Fäden nicht alle in der gleichen Spannung vorliegen, was später beim Abwikkeln oder Umbäumen zu Schwierigkeiten führen kann. Ist der Vortrieb hingegen zu langsam, wird sich ebenfalls eine Neigung der Umfangsfläche des sich bildenden Wickels einstellen. Diese Neigung ist dann entgegengesetzt zur Neigung des Konus gerichtet. Auch hier gibt es später Schwierigkeiten mit der Fadenspannung. Wenn man hingegen überwacht, daß die Oberfläche des Wickels parallel zur Oberfläche der Schärtrommel verläuft, dann kann man bei auftretenden Differenzen den Antrieb der Fadenführer-Anordnung nachsteuern, also schneller oder langsamer fahren lassen, so daß sich tatsächlich ein Wickel mit einer parallelen Oberfläche ergibt. Dies ist eine relativ einfache Maßnahme. Eingaben über Fadendicken oder -durchmesser oder ähnliches sind nicht unbedingt erforderlich. Vielmehr läßt sich aus dem sich bildenden Wickel mit großer Zuverlässigkeit auf die Geschwindigkeit schließen, mit der die Fadenführer-Anordnung relativ zur Schärtrommel bewegt werden muß.

[0008] Vorzugsweise weist die Parallelitäts-Meßeinrichtung mindestens zwei Positionsmeßeinrichtungen auf, die eine radiale Position des Umfangs des Wickels an unterschiedlichen axialen Positionen im Bereich des Bandes ermitteln, wobei die Steuereinrichtung den Antrieb in Abhängigkeit von einer Differenz zwischen den radialen Positionen steuert. Im Idealfall sind die beiden radialen Positionen gleich. In diesem Fall liegt nämlich die Oberfläche des Wickels parallel zur Oberfläche der Schärtrommel. Wenn sich Unterschiede in den radialen Positionen ergeben, dann ist dies ein eindeutiger Hinweis darauf, daß die Oberfläche des Wickels "schief"

liegt. In Abhängigkeit vom Vorzeichen der Differenz läßt sich dann der Antrieb der Fadenführer-Anordnung anders ansteuern, so daß er die Fadenführer-Anordnung schneller oder langsamer relativ zur Schärtrommel bewegt.

[0009] Bevorzugterweise ermitteln die Positionsmeßeinrichtungen die radialen Positionen im Bereich der Ränder des Bandes. Damit steht in axialer Richtung die größte "Meßstrecke" zur Verfügung. Meßpunkte, die im Bereich der Ränder des Bandes angeordnet sind, zeigen bei einer Schieflage des Bandes eine größere Differenz als Meßpunkte, die eng benachbart sind. Man kann diese verbesserte Auflösung entweder dazu nutzen, Meßeinrichtungen mit einer geringeren Genauigkeit zu verwenden oder man kann eine Schieflage schon sehr früh erkennen, so daß man rechtzeitig gegensteuern kann.

[0010] Vorzugsweise sind die Positionsmeßeinrichtungen mit der Fadenführer-Anordnung gemeinsam verlagerbar. Damit benötigt man für den Vorschub der Positionsmeßeinrichtungen keine getrennte Steuerung mehr. Wenn man dafür sorgt, daß die Positionsmeßeinrichtungen und die Fadenführer-Anordnung immer gemeinsam an der gleichen Stelle (bezogen auf die Schärtrommel) bleiben, dann stehen die gewünschten Meßwerte an der Stelle zur Verfügung, wo sie benötigt werden.

[0011] Hierbei ist besonders bevorzugt, daß die Positionsmeßeinrichtungen an der Fadenführer-Anordnung befestigt sind. Dies ist konstruktiv eine besonders einfache Ausgestaltung. Es ist kein eigener Axialantrieb für die Positionsmeßeinrichtungen erforderlich.

[0012] Bevorzugterweise messen die Positionsmeßeinrichtungen jeweils einen Abstand zwischen dem Umfang des Wickels und einem festen Bezugsradius. Damit wird man von der Dicke des sich bildenden Wikkels praktisch unabhängig. Die Positionsmeßeinrichtungen können außerhalb der Schärtrommel angeordnet sein. Der Schärbetrieb wird durch die Positionsmeßeinrichtungen nicht gestört.

[0013] Vorzugsweise sind die Bezugsradien für alle Positionsmeßeinrichtungen gleich. Dies vereinfacht die Auswertung. Man kann im Prinzip die Ausgangssignale der Positionsmeßeinrichtungen direkt miteinander vergleichen, ohne weitere Umrechnungsmaßnahmen durchführen zu müssen.

[0014] Alternativ oder zusätzlich dazu kann die Parallelitäts-Meßeinrichtung Schärgeschwindigkeiten von mindestens zwei Fäden im Bereich der beiden Ränder des Bandes erfassen. Solange die Oberfläche des sich bildenden Wikkels parallel ist, werden die beiden Fäden immer auf den gleichen Durchmesser aufgewickelt. Sie müssen also die gleiche Geschwindigkeit haben. Wenn sich eine Geschwindigkeitsdifferenz ergibt, ist dies ein Zeichen dafür, daß der eine Faden auf einem anderen Durchmesser aufgewickelt wird als der andere Faden. Die Wickelgeschwindigkeit ist für beide Fäden gleich. Aus der Geschwindigkeitsdifferenz läßt sich dann ein

Signal gewinnen, mit dessen Hilfe der Antrieb für die Fadenführer-Anordnung angesteuert werden kann.

[0015] Vorzugsweise arbeitet die Parallelitäts-Meßeinrichtung berührungslos. Dies schont die Fäden und vermindert einen Verschleiß an der Meßeinrichtung.

[0016] Hierbei gibt es verschiedene Möglichkeiten. Die Parallelitäts-Meßeinrichtung kann beispielsweise als optische Meßeinrichtung ausgebildet sein. Laser-Meßeinrichtungen, die in der Lage sind, eine Entfernung zu messen, sind am Markt erhältlich. Alternativ dazu kann man auch eine Sonar-Meßeinrichtung oder eine kapazitive Meßeinrichtung als Parallelitäts-Meßeinrichtung verwenden. Auch derartige Meßeinrichtungen sind am Markt erhältlich und arbeiten mit der gewünschten Zuverlässigkeit.

[0017] Die Erfindung wird bei einem Verfahren der eingangs genannten Art dadurch gelöst, daß man überprüft, ob das Band beim Wickeln parallel zur Mantelfläche der Schärtrommel liegt und die Vorschubgeschwindigkeit in Abhängigkeit von der Neigung des Bandes zur Mantelfläche der Schärtrommel ändert.

[0018] Wie oben im Zusammenhang mit der Konusschärmaschine ausgeführt, ist die Vorschubgeschwindigkeit des Bandes, also die seitliche Verlagerung der das Band bildenden Fäden, dann richtig, wenn die Fäden parallel zur Umfangsfläche der Schärtrommel liegen. In diesem Fall wandert das Band mit der richtigen Geschwindigkeit den Konus hinauf. Wenn sich eine Schieflage ergibt, dann muß die Vorschubgeschwindigkeit geändert werden. Wenn die Vorschubgeschwindigkeit zu groß ist, dann wandern die vorderen Fäden zu schnell den Konus hinauf und der Wickel bekommt eine Oberfläche, die in Richtung des Konus geneigt ist. Wenn die Vorschubgeschwindigkeit zu langsam ist, dann wird die Oberfläche des Wickels in die andere Richtung geneigt. Durch einfaches Überwachen der Parallelität der Oberfläche des sich bildenden Wikkels läßt sich also die gewünschte Information für die Steuerung des Vorschubs gewinnen.

[0019] Vorzugsweise schiebt man das Band langsamer in Richtung auf den Konus vor, wenn das Band in die gleiche Richtung wie der Konus geneigt ist, und schneller, wenn das Band in die entgegengesetzte Richtung geneigt ist. Wenn der Vorschub zu schnell ist, dann wandern die Fäden zu schnell den Konus hinauf. In diesem Fall muß die Vorschubgeschwindigkeit vermindert werden. Wenn eine Neigung in die andere Richtung entsteht, dann war die Vorschubgeschwindigkeit zu langsam und man muß die Vorschubgeschwindigkeit erhöhen

[0020] Bevorzugterweise mißt man die radiale Position der Oberfläche des Wickels im Bereich des Bandes an mindestens zwei Stellen. Dies ist eine relativ einfache Maßnahme, um die Parallelität des Bandes festzustellen. Man geht dabei davon aus, daß sich die Schieflage eines Bandes anhand der zwei Meßpunkte feststellen läßt. Wenn die beiden Stellen unterschiedliche ra-

50

diale Positionen haben, dann ist davon auszugehen, daß die Oberfläche insgesamt eine Neigung aufweist. Wenn die beiden Stellen die gleiche radiale Position haben, dann ist davon auszugehen, daß die Oberfläche parallel zur Umfangsfläche der Schärtrommel liegt.

[0021] Vorzugsweise mißt man die Schärgeschwindigkeit von mindestens zwei Fäden im Bereich der beiden Ränder des Bandes. Wie oben ausgeführt, ist auch die Schärgeschwindigkeit ein Maß, aus dem man die Parallelität der Oberfläche des Wickels herleiten kann. Alle Fäden werden mit der gleichen Umdrehungszahl der Schärtrommel gewickelt. Solange die Durchmesser, auf die die Fäden aufgewickelt werden, gleich sind, ergibt sich auch die gleiche Geschwindigkeit dieser beiden Fäden. Wenn sich die Geschwindigkeiten unterscheiden, ist dies ein deutliches Zeichen dafür, daß ein Faden auf einen anderen Durchmesser aufgewickelt wird als der andere Faden. In diesem Fall ist eine Korrektur erforderlich.

[0022] Vorzugsweise nimmt man die Messung berührungslos vor. Dies gilt sowohl für die Messung der Schärgeschwindigkeit als auch für die Messung der radialen Position der Oberfläche. Eine berührungslose Messung greift nicht in den Schärvorgang ein. Sie schont die Fäden und läßt sich praktisch verschleißfrei durchführen.

[0023] Vorzugsweise speichert man den Wickelverlauf des ersten Bandes und schärt die übrigen Bänder als Kopie des ersten Bandes. Dies hält den Aufwand für die Regelung des Vorschubantriebs der Fadenführer-Anordnung klein. Wenn die Daten für das erste Band aus der Parallelitäts-Überwachung beim Wickeln zur Verfügung stehen, ist es im Grunde nicht mehr erforderlich, die Parallelität beim Wickeln von weiteren Bändern erneut zu überwachen.

[0024] Die Erfindung wird im folgenden anhand von bevorzugten Ausführungsbeispielen in Verbindung mit der Zeichnung näher beschrieben. Hierin zeigen:

- Fig. 1 eine schematische Seitenansicht einer Konusschärmaschine,
- Fig. 2 eine schematische Draufsicht auf die Konusschärmaschine nach Fig. 1 im idealen Betriebszustand,
- Fig. 3 die Schärmaschine nach Fig. 2 in einem ersten gestörten Zustand,
- Fig. 4 die Schärmaschine nach Fig. 2 in einem zweiten gestörten Zustand,
- Fig. 5 eine abgewandelte Ausführungsform und
- Fig. 6 eine schematische Darstellung zur Erläuterung eines Schärvorgangs.
- [0025] Fig. 1 zeigt schematisch eine Konusschärma-

schine 1 mit einer Schärtrommel 2, die einen Konus 3 aufweist. Die Schärtrommel 2 ist in Richtung eines Pfeiles 4 drehantreibbar. Die hierzu erforderlichen Antriebe sind aus Gründen der Übersicht nicht dargestellt.

[0026] Eine Fadenführer-Anordnung 5 ist parallel zur Achse 6 der Schärtrommel verlagerbar, was durch einen Doppelpfeil 7 dargestellt ist. Hierzu ist eine Führungsbahn 8 parallel zur Achse 6 der Schärtrommel 2 angeordnet. Ein Antrieb 9 wirkt mit der Führungsbahn 8 zusammen, um die Fadenführer-Anordnung relativ zur Schärtrommel 2 zu verlagern.

[0027] Die Fadenführer-Anordnung 5 weist einen Schlitten 10 auf, auf dem ein Riet 11 angeordnet ist. Das Riet 11 weist eine Vielzahl von Gassen 12 auf, wobei durch jede Gasse ein einzelner Faden geführt werden kann, der dann, wenn die Schärtrommel 2 in Richtung des Pfeiles 4 gedreht wird, auf die Schärtrommel 2 aufgewickelt wird.

[0028] Der Konus 3 schließt mit der Achsrichtung der Schärtrommel 2 einen Winkel 13 von ungefähr 7° bis 15° ein. Bei einem Schärvorgang möchte man nun die aufgewickelten Fäden nicht in Radialrichtung exakt übereinander anordnen. Dies hätte die Gefahr zur Folge, daß die Fäden an der Stirnseite eines Wickels 14. der sich auf dem Umfang der Schärtrommel 2 bildet (siehe Fig. 2), von dem Wickel 14 abrutschen könnten. Man versetzt vielmehr mit Hilfe der Fadenführer-Anordnung bei jeder Umdrehung der Schärtrommel 2 die Fäden um eine kleine Strecke in Richtung auf den Konus 3, so daß der sich bildende Wickel 14 langsam den Konus 3 hinaufwandert und eine Stirnfläche 15 bildet, die ebenfalls konusförmig ausgebildet ist. Die Stirnfläche 15 ist dabei parallel zur Oberfläche des Konus 3 ausgerichtet. Zumindest sollte sie dies im Idealzustand sein.

[0029] Um diese Ausbildung des Wickels 14 zu erreichen, ist es erforderlich, daß die Fadenführer-Anordnung 5 mit einer Geschwindigkeit parallel zur Achse 6 der Schärtrommel 2 verlagert wird, die auf die Umdrehungszahl der Schärtrommel 2 und die Dicke der Fäden, die aufgewickelt werden, abgestimmt ist, so daß sich der entsprechende konusförmige Wickel 14 ergibt. Die Einstellung der Vorschubgeschwindigkeit erfordert dabei ein erhebliches Maß an Erfahrung. Auch einem erfahrenen Arbeiter können dabei Fehler unterlaufen.

[0030] Um die Steuerung zu vereinfachen, verwendet man nun an der Fadenführer-Anordnung zwei Entfernungsmesser A, B. Beide Entfernungsmesser A, B sind fest an der Fadenführer-Anordnung angeordnet. Sie können aber, wie dies durch Doppelpfeile 16, 17 angedeutet ist, auf der Fadenführer-Anordnung in Axialrichtung verstellt werden. Die beiden Entfernungsmeßeinrichtungen sollten einen Abstand haben, der der Breite des Wickels 14 im wesentlichen entspricht, so daß sie die Entfernung der Umfangsfläche 18 des Wickels von der Fadenführer-Anordnung 5, genauer gesagt von deren Schlitten 10, ermitteln können. Durch die Ermittlung der Entfernung wird gleichzeitig die Position der Fäden an dem Umfang des Wickels 14 bestimmt. Die Entfer-

35

nungsmeßeinrichtungen A, B können also auch als Positionsmeßeinrichtungen bezeichnet werden. Die Entfernungsmeßeinrichtungen A, B sind mit einer Steuereinrichtung C verbunden, die den Antrieb 9 steuert und zwar, wie unten erläutert wird, in Abhängigkeit von der Differenz der Ausgangssignale der Meßeinrichtungen A. B.

[0031] Wenn nun die radialen Positionen der Fäden am vorderen, dem Konus 3 benachbarten Ende des Wickels 14 und am hinteren Ende des Wickels 14 übereinstimmen, dann verläuft die Umfangsfläche 18 des Wickels 14 parallel zur Umfangsfläche 19 der Schärtrommel 2. In diesem Fall ist die Vorschubgeschwindigkeit der Fadenführer-Anordnung richtig eingestellt. Der Wickel 14 wandert in gewünschter Weise den Konus 3 hinauf.

[0032] Anhand von Fig. 3 soll dargestellt werden, was passiert, wenn die Geschwindigkeit nicht stimmt, sondern die Fadenführer-Anordnung 5 zu schnell bewegt wird. In diesem Fall wandert der Wickel 14 zu schnell den Konus 3 hinauf. Die Oberfläche 18 des Wickels verläuft dann nicht mehr parallel zur Umfangsfläche 19 der Schärtrommel 2, sondern sie neigt sich, wobei die Richtung der Neigung übereinstimmt mit der Richtung der Neigung des Konus 3. Da sowohl die Fäden am vorderen Ende des Wikkels 14 als auch am hinteren Ende mit der gleichen Drehzahl aufgewickelt werden, liegt auf der Hand, daß bei einem derartigen Fehlerfall die Fäden am vorderen Ende des Wickels 14 entweder zu stark gespannt sind oder zu lang werden. Beides führt beim Abwickeln bzw. Umbäumen zu einer Fehlerquelle, die unerwünscht ist.

[0033] Die beiden Entfernungsmesser A, B stellen diesen Fehlerfall aber sehr schnell fest, weil die Entfernung zwischen der Fadenführer-Anordnung 5 und der Oberfläche 18 des Wickels 14 am vorderen Ende kleiner ist als am hinteren Ende. Man beeinflußt daher den Antrieb 9 so, daß die Fadenführer-Anordnung etwas langsamer in Richtung auf den Konus 3 verfahren wird. Ein derartiger Eingriff in die Geschwindigkeit wird natürlich nicht erst dann erfolgen, wenn die Situation so extrem ist, wie dies in Fig. 3 dargestellt ist. Die Fig. 3 dient hier mit ihren Übertreibungen nur dem Zweck der Erläuterung. Da die beiden Entfernungsmeßeinrichtungen A, B mit der größtmöglichen Entfernung voneinander angeordnet sind, wird man kleine Durchmesserdifferenzen am vorderen und am hinteren Ende des Wickels 14 bereits frühzeitig erfassen können.

[0034] Fig. 4 zeigt den anderen Fehlerfall, bei dem die Fadenführer-Anordnung 5 zu langsam in Richtung auf den Konus 3 bewegt worden ist. In diesem Fall ist die Oberfläche 18 des Wickels 14 ebenfalls geneigt, allerdings in die entgegengesetzte Richtung wie die Neigung des Konus 3. In diesem Fall wäre es erforderlich, die Fadenführer-Anordnung schneller vorzufahren, was nach einer Meldung der beiden Entfernungsmeßeinrichtungen an den Antrieb 9 ohne weiteres erfolgen kann. Auch in Fig. 4 ist die Situation übertrieben groß

dargestellt. Man wird nicht warten, bis der Abstand b zwischen der Entfernungsmeßeinrichtung B so viel größer geworden ist als der Abstand a zwischen der Oberfläche 18 des Wickels 14 und der Entfernungsmeßeinrichtung A.

[0035] Die Entfernungsmeßeinrichtungen A, B arbeiten vorzugsweise berührungslos. Eine besonders gut funktionierende Entfernungsmeßeinrichtung wird durch eine Laser-Meßeinrichtung gebildet, also eine optische Meßeinrichtung. Es ist aber genauso gut möglich, die Meßeinrichtung als Sonar-Meßeinrichtung oder als kapazitive Meßeinrichtung auszubilden. Wenn die beiden Meßeinrichtungen A, B in der gleichen Entfernung zur Achse 6 der Schärtrommel 2 angeordnet sind, kann man Ausgangssignale der Entfernungsmeßeinrichtungen A, B unmittelbar verwenden und durch einen Vergleich die Parallelität der Oberfläche 18 des Wickels 14 zur Oberfläche 19 der Schärtrommel 2 überprüfen.

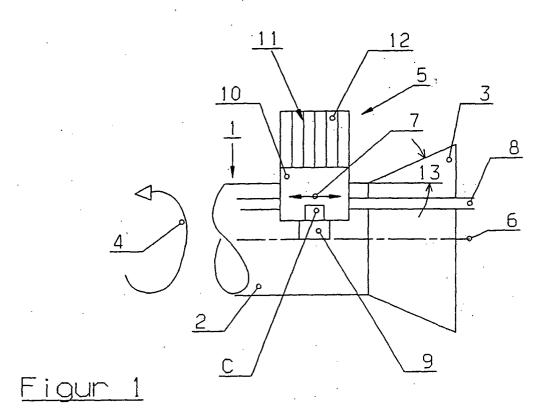
[0036] Zusätzlich oder alternativ dazu kann man, wie in Fig. 5 dargestellt, Geschwindigkeitsmeßeinrichtungen 20, 21 an der Fadenführer-Anordnung 5 verwenden. Wenn sich die Fadenführer-Anordnung zu langsam in Richtung auf den Konus 3 bewegt hat und eine (ebenfalls übertrieben dargestellte) Situation eingetreten ist, wie sie in Fig. 5 dargestellt ist, dann hat der Wickel 14 im Bereich eines Fadens am vorderen Ende einen kleineren Radius RB als am hinteren Ende RA. Da der Wikkel 14 am vorderen Ende und am hinteren Ende mit der gleichen Drehzahl gedreht wird, ist in diesem Fall die Geschwindigkeit V_B eines Fadens 23 am vorderen Ende des Wickels 14 kleiner als die Geschwindigkeit V_A eines Fadens 22 am hinteren Ende des Wickels 14. Durch einen Vergleich der Geschwindigkeiten läßt sich also ebenfalls ermitteln, ob die Oberfläche 18 des Wickels 14 parallel zur Umfangsfläche 19 der Schärtrommel 2 verläuft.

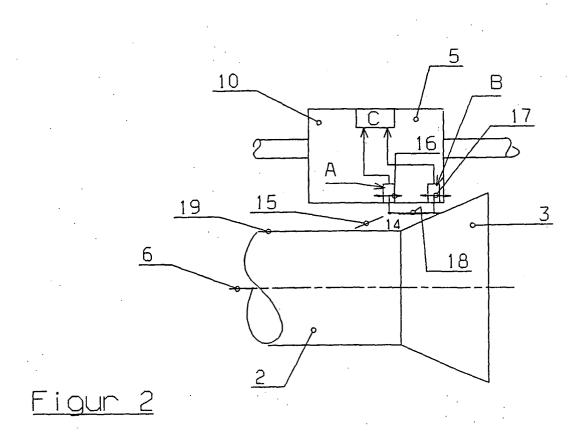
[0037] In Fig. 6 ist nun dargestellt, daß sich der auf der Schärtrommel 2 bildende Wickel 14 aus mehreren Teilwikkeln 14a, 14b, 14c zusammensetzt. Jeder Teilwickel sollte gleich aufgebaut sein. Jeder Teilwickel wird dadurch gebildet, daß eine Anzahl von parallel nebeneinander liegenden Fäden, ein sogenanntes Band oder Bändchen, auf den Umfang der Schärtrommel 2 aufgewickelt wird.

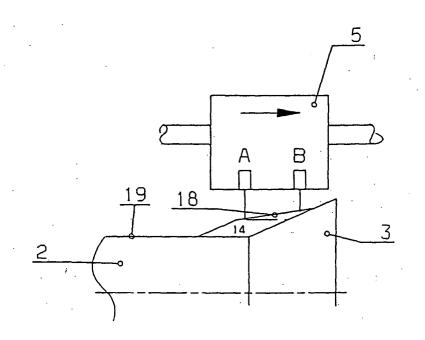
[0038] Es reicht nun aus, die oben geschilderte Regelung, bei der man in Abhängigkeit von der Parallelität der Oberfläche 18 des Wickels 14 die Vorschubgeschwindigkeit der Fadenführer-Anordnung 5 steuert, beim ersten Wickel 14a anzuwenden. Wenn man den Wickelverlauf dieses Wikkels 14a speichert und bei den folgenden Wickeln 14b, 14c, ... die Bändchen auf die gleiche Weise wickelt, dann erhält man insgesamt eine bewickelte Schärtrommel 2, bei der die Oberfläche des Wickels parallel zur Oberfläche 19 der Schärtrommel 2 verläuft.

20

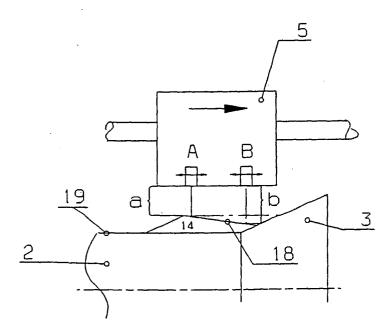
Patentansprüche

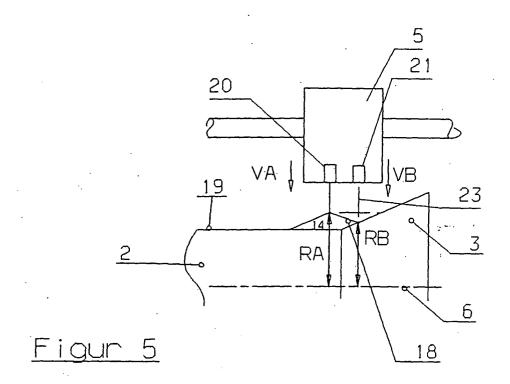

1. Konusschärmaschine mit einer Schärtrommel und einer Fadenführer-Anordnung, wobei die Schärtrommel einen Konus aufweist und die Fadenführer-Anordnung im Betrieb durch einen Antrieb, der eine Steuereinrichtung aufweist, parallel zur Achse der Schärtrommel verlagerbar ist und der Schärtrommel ein Band aus Fäden zuführt, die auf dem Umfang der Schärtrommel einen Wickel bilden, dadurch gekennzeichnet, daß die Steuereinrichtung (C) mit einer Parallelitäts-Meßeinrichtung (A, B; 20, 21) verbunden ist, die den Umfang (18) des Wickels (14) im Bereich des Bandes auf Parallelität zur Mantelfläche (19) der Schärtrommel (2) überprüft und den Antrieb (9) in Abhängigkeit von Abweichungen zur Parallelität steuert.

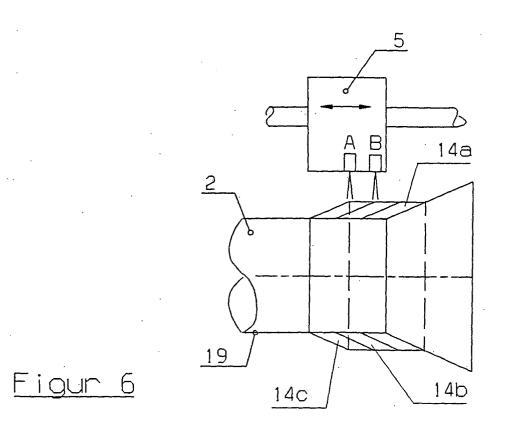

9


- 2. Maschine nach Anspruch 1, dadurch gekennzeichnet, daß die Parallelitäts-Meßeinrichtung (A, B) mindestens zwei Positionsmeßeinrichtungen aufweist, die eine radiale Position des Umfangs (18) des Wickels (14) an unterschiedlichen axialen Positionen im Bereich des Bandes ermitteln, wobei die Steuereinrichtung (C) den Antrieb (9) in Abhängigkeit von einer Differenz zwischen den radialen Positionen steuert.
- 3. Maschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Positionsmeßeinrichtungen die radialen Positionen im Bereich der Ränder des Bandes ermitteln.
- 4. Maschine nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Positionsmeßeinrichtungen mit der Fadenführer-Anordnung (5) gemeinsam verlagerbar sind.
- 5. Maschine nach Anspruch 4, dadurch gekennzeichnet, daß die Positionsmeßeinrichtungen an 40 der Fadenführer-Anordnung (5) befestigt sind.
- 6. Maschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Positionsmeßeinrichtungen jeweils einen Abstand (a, b) zwischen dem Umfang (18) des Wickels (14) und einem festen Bezugsradius messen.
- 7. Maschine nach Anspruch 6, dadurch gekennzeichnet, daß die Bezugsradien für alle Positionsmeßeinrichtungen gleich sind.
- 8. Maschine nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Parallelitäts-Meßeinrichtung (20, 21) Schärgeschwindigkeiten 55 (V_A, V_B) von mindestens zwei Fäden im Bereich der beiden Ränder des Bandes erfaßt.

- 9. Maschine nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Parallelitäts-Meßeinrichtung (A, B; 20, 21) berührungslos arbei-
- 10. Maschine nach Anspruch 9, dadurch gekennzeichnet, daß die Parallelitäts-Meßeinrichtung (A, B; 20, 21) als optische Meßeinrichtung ausgebildet
- 11. Maschine nach Anspruch 9, dadurch gekennzeichnet, daß die Parallelitäts-Meßeinrichtung (A, B; 20, 21) als Sonar-Meßeinrichtung ausgebildet
- 12. Maschine nach Anspruch 9, dadurch gekennzeichnet, daß die Parallelitäts-Meßeinrichtung (A, B; 20, 21) als kapazitive Meßeinrichtung ausgebildet ist.
- 13. Verfahren zum Herstellen einer Kette auf einer Konusschärmaschine, bei dem man mehrere Fäden in Form eines Bandes parallel zueinander auf den Umfang einer Schärtrommel aufwickelt, wobei das Band einen Konus hinaufgeführt wird, dadurch gekennzeichnet, daß man überprüft, ob das Band beim Wickeln parallel zur Mantelfläche der Schärtrommel liegt und die Vorschubgeschwindigkeit in Abhängigkeit von der Neigung des Bandes zur Mantelfläche der Schärtrommel ändert.
- 14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß man das Band langsamer in Richtung auf den Konus vorschiebt, wenn das Band in die gleiche Richtung wie der Konus geneigt ist, und schneller, wenn das Band in die entgegengesetzte Richtung geneigt ist.
- 15. Verfahren nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß man die radiale Position der Oberfläche des Wickels im Bereich des Bandes an mindestens zwei Stellen mißt.
- 16. Verfahren nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, daß man die Schärgeschwindigkeit von mindestens zwei Fäden im Bereich der beiden Ränder des Bandes mißt.
- 17. Verfahren nach Anspruch 15 oder 16, dadurch gekennzeichnet, daß man die Messung berührungslos vornimmt.
- 18. Verfahren nach einem der Ansprüche 13 bis 17, dadurch gekennzeichnet, daß man den Wickelverlauf des ersten Bandes speichert und die übrigen Bänder als Kopie des ersten Bandes schärt.


45





Figur 3

Figur 4

