(11) **EP 1 460 181 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:22.09.2004 Patentblatt 2004/39

(51) Int CI.7: **E01F 15/14**, E01F 15/02, E01F 8/00, E01D 19/10

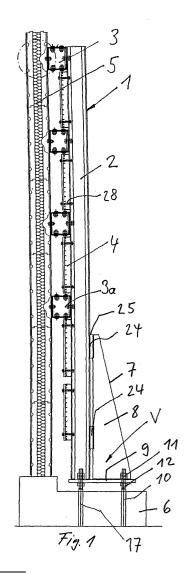
(21) Anmeldenummer: 04405159.7

(22) Anmeldetag: 16.03.2004

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IT LI LU MC NL PL PT RO SE SI SK TR
Benannte Erstreckungsstaaten:

AL HR LT LV MK


(30) Priorität: 21.03.2003 DE 20304571 U

(71) Anmelder: Schüler, Wolfgang 8166 Niederweningen (CH) (72) Erfinder: Schüler, Wolfgang 8166 Niederweningen (CH)

(74) Vertreter: Groner, Manfred et al Isler & Pedrazzini AG, Patentanwälte, Postfach 6940 8023 Zürich (CH)

(54) Anordnung mit einer Auffangvorrichtung gegen Ladungsabwurf von Fahrzeugen

(57)Die Anordnung weist eine Auffangvorrichtung (1) gegen Ladungsabwurf von Fahrzeugen (22) auf. Die Auffangvorrichtung (1) besitzt eine Mehrzahl von Pfosten (2), die jeweils mit einem Verankerungsmittel (V) entlang einer Fahrbahn (16) in einem Streifenfundament (6) verankert sind und an denen mehrere im Abstand übereinander angeordnete Längsprofile (3) sowie Gitterelemente (4) befestigt sind. Die Längsprofile (3) und die Gitterelemente (4) bilden die Aufprallseite (A). Die Auffangvorrichtung (1) ist wenigstens 3 m hoch und seitlich hinter einer Fahrzeugrückhalteeinrichtung (13) angeordnet. Das Verankerungsmittel (V) weist eine Haltekraft auf, die unter der Bruchgrenze des Streifenfundamentes (6) oder der Bauwerkskappe (30) liegt und/ oder die Pfosten (2) besitzen eine Sollknickstelle (25).

Beschreibung

[0001] Die Erfindung betrifft eine Anordnung mit einer Auffangvorrichtungen gegen Ladungsabwurf von Fahrzeugen, mit einer Mehrzahl von Pfosten, die jeweils mit einem Verankerungsmittel entlang einer Fahrbahn in einem Streifenfundament oder einer Bauwerkskappe verankert sind und an denen mehrere im Abstand übereinander angeordnete Längsprofile sowie Gitterelemente befestigt sind, wobei die Längsprofile und die Gitterelemente die Aufprallseite bilden.

[0002] Die genannte Anordnung bildet einen sogenannten passiven Schutz, der verhindern soll, dass von einem Fahrzeug bei einem Anprall an einem Fahrzeugrückhaltesystem Last auf eine Gegenfahrbahn oder ein Bahntrassee abgeworfen wird, oder dort wo ein Schutz Dritter gewährleistet sein soll.

[0003] Im Stand der Technik sind insbesondere auf Strassenbrücken passive Absturzsicherungen bekannt, die sich entlang der Fahrbahn erstrecken. Solche passive Schutzvorrichtungen können nicht verhindern, dass bei einem Anprall eines Fahrzeuges aufgrund der Richtungsänderung oder der negativen Beschleunigung das Fahrzeug eine Last abwirft und diese auf einem anderen Verkehrsweg Dritte gefährdet und erhebliche Schäden verursacht.

[0004] Im Stand der Technik ist eine Einrichtung bekannt geworden, auf welcher an Pfosten Längsprofile sowie Gitter befestigt sind. Die Einrichtung bildet eine Auffangvorrichtung, die gleichzeitig eine Fahrzeugrückhaltevorrichtung ist. Dadurch wird eine nach oben ragende Wand von beispielsweise etwa 3 m gebildet. Bei einem Anprall eines Fahrzeuges am Rückhaltesystem verhindert die sich nach oben erstreckende Wand, dass eine Ladung abgeworfen wird. Die nach oben ragende Wand hat somit die Aufgabe, eine solche Ladung aufzufangen. Bei einer solchen Anordnung besteht der Nachteil, dass auch bei einem vergleichsweise geringen Aufprall bereits erhebliche Schäden mit entsprechenden Baumassnahmen entstehen.

[0005] Der Erfindung liegt die Aufgabe zugrunde, eine Anordnung der genannten Art zu schaffen, welche die oben genannten Nachteile vermeidet.

[0006] Die Aufgabe ist bei einer gattungsgemässen Anordnung dadurch gelöst, dass die Auffangvorrichtung wenigstens 3 m hoch und seitlich hinter einer Fahrzeugrückhaltevorrichtung angeordnet ist und dass die Verankerungsmittel eine Haltekraft aufweisen, die unter der Bruchgrenze des Streifenfundamentes oder der Bauwerkskappe liegt und/oder die Pfosten jeweils eine Sollknickstelle aufweisen.

[0007] Bei der erfindungsgemässen Anordnung ist die Auffangvorrichtung seitlich im Abstand zu einer Fahrzeugrückhaltevorrichtung angeordnet. Die Auffangvorrichtung wird hier lediglich dann wirksam, wenn ein Fahrzeug an der Fahrzeugrückhaltevorrichtung anprallt und eine Ladung so verschoben wird, dass sie an der Auffangvorrichtung aufprallt. In den meisten Fällen

wird somit bei der erfindungsgemässen Anordnung lediglich die Fahrzeugrückhaltevorrichtung, jedoch nicht die Auffangvorrichtung, beschädigt. Wird die Auffangvorrichtung wirksam, so wird eine Beschädigung des Streifenfundamentes bzw. der Bauwerkskappe dadurch vermieden, dass gemäss Anspruch 1 die Verankerungsmittel eine Haltekraft aufweisen, die unter der Bruchgrenze des Streifenfundaments liegt und/oder die Pfosten jeweils eine Sollknickstelle aufweisen. Bei der erfindungsgemässen Anordnung löst sich bei einem Anprall somit die Verankerung und/oder die Pfosten werden geknickt. Das Streifenfundament wird hierbei nicht beschädigt, sodass die Anordnung in vergleichsweise kurzer zeit wieder hergestellt werden kann. Die vorgesehene Knickstelle befindet sich vorzugsweise höchstens 1200 mm, insbesondere etwas 1000 mm über einer Verankerungsplatte.

[0008] Nach einer Weiterbildung der Erfindung ist vorgesehen, dass die Verankerungsmittel jeweils eine Verankerungsplatte aufweisen, die mit wenigstens zwei, vorzugsweise vier im Abstand zueinander angeordneten Verankerungsbolzen im Streifenfundament verankert sind, wobei der Abstand zwischen zwei Verankerungsbolzen wenigstens 290 mm beträgt.

[0009] Weiter vorteilhafte Merkmale ergeben sich aus den abhängigen Patentansprüchen, der nachfolgenden Beschreibung sowie der Zeichnung.

[0010] Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand der Zeichnung näher erläutert. Es zeigen:

Figur 1 ein Vertikalschnitt durch eine Auffangvorrichtung,

Figur 2 ein Vertikalschnitt durch eine erfindungsgemässe Anordnung,

Figur 3 ein Teilschnitt durch die Auffangvorrichtung gemäss Figur 1,

Figur 4 eine Ansicht einer Auffangvorrichtung mit einer Schallschutzwand,

Figur 5 eine Draufsicht auf die Schallschutzwand,

Figur 6 eine Seitenansicht der Auffangvorrichtung,

Figur 7 schematisch ein auf die erfindungsgemässe Anordnung aufprallendes Fahrzeug,

Figur 8 eine Ansicht einer Auffangvorrichtung gemäss einer Variante und ein Schnitt durch eine Bauwerkskappe und

Figur 9 eine Ansicht einer Auffangvorrichtung gemäss einer weiteren Variante und ein Schnitt durch eine Bauwerkskappe.

[0011] Die Figur 7 zeigt seitlich neben einer Fahrbahn 16 einen Abschnitt einer erfindungsgemässen Anordnung, die eine Fahrzeugrückhaltevorrichtung 13 der Aufhaltestufe H4b sowie eine Auffangvorrichtung 1 aufweist. Kommt ein Fahrzeug 22 von der vorgesehenen Fahrtrichtung ab, so prallt es seitlich auf die Fahrzeugrückhaltevorrichtung 13. Aufgrund der negativen Beschleunigung während der Verformungsphase ist die Wahrscheinlichkeit eines Abwurfes einer Last 23 am grössten. Die Auffangvorrichtung soll in der Anprall- und Verzögerungsphase verhindern, dass die Last 23 vom Fahrzeug rutscht und dass keine "fliegende" Ladung entsteht. Dies wird erreicht, indem die Auffangvorrichtung 1 die Ladung 23 auf dem Fahrzeug 22 zurückhält. Um einen solchen Ladungsabwurf zu verhindern, ist die Dimensionierung der Auffangvorrichtung sowie der Fahrzeugrückhaltevorrichtung 13 wesentlich. So ist der in Figur 2 gezeigte Abstand D zwischen der Fahrzeugrückhalteeinrichtung 13 und der Auffangvorrichtung 1 im Bereich von 1,2 bis 0,7 m. Die Höhe H der Auffangvorrichtung 1 beträgt wenigstens 3 m. Wie die Figur 2 deutlich zeigt, überragt die Auffangvorrichtung 1 die Fahrzeugrückhaltevorrichtung 13 wesentlich.

[0012] Die Auffangvorrichtung 1 besteht aus einer Mehrzahl von vertikalen Pfosten 2, die jeweils mit Verankerungsmitteln V an einem Streifenfundament 6 verankert sind. Die Verankerungsmittel weisen jeweils vier Verankerungsbolzen 10 auf, mit denen eine Platte 9 über einem Streifenfundament 6 befestigt ist. Denkbar ist hier auch eine Ausführung, bei welcher die Verankerungsplatten 9 auf dem Streifenfundament 6 aufliegen. In der Figur 1 sind hierbei die unteren Muttern 12 weggelassen und die Platte 9 mit den Muttern 11 auf das Fundament 6 gespannt. Auf den Platten 9 ist jeweils ein Versteifungselement 8 befestigt, beispielsweise an der unteren Kante an der Platte 9 angeschweisst, der wie ersichtlich dreieckig ist und nach oben ragt. Mit zwei im Abstand zueinander angeordneten Platten 24 sind die Versteifungselemente 8 jeweils mit einem Pfosten 2 verschweisst. Eine äussere Kante 7 des Versteifungselementes 8 nähert sich gemäss Figur 1 kontinuierlich dem Pfosten 2 und endet an einer oberen Stelle 25, an der ebenfalls die obere Platte 24 endet. An dieser Stelle 25 ist damit eine Knickstelle gebildet, an welcher die Pfosten 2 bei einer entsprechend hohen Belastung knicken. Die Pfosten 2 sind so ausgebildet, dass sie bei einer entsprechenden Belastung im Wesentlichen ohne Beschädigung des Streifenfundamentes 6 im Bereich der Stelle 25 oder über dieser knicken.

[0013] Die Pfosten 2 sind mit mehreren sich horizontal erstreckenden und ineinander gesteckten Längsprofilen 3 miteinander verbunden, die im Abstand zueinander übereinander angeordnet sind. Die Längsprofile 3 besitzen jeweils gemäss Figur 3 einen Längsschlitz 26, der zur Befestigung des Längsprofils 3 an einem Pfosten 2 mit einer Platte 19 hinterlegt ist, welche mit einer Schraube 20 am Pfosten 2 angeschraubt ist. Mittels weiteren Schrauben 27 sind die einzelnen Stücke des

Längsprofils 3 miteinander verschraubt.

[0014] Zwischen den Längsprofilen 3 sind Gitterelemente 4 fest mit jeweils benachbarten Pfosten 2 verbunden. Die Verbindung erfolgt mit Schrauben 28, welche die Gitter 4 durchgreifen. Die massiven Gitter mit folgenden Mindestmassen sind:

Länge = 1980 mm Höhe = 380 mm Tiefe = 40 mm

[0015] Die Gitter 4 weisen zudem jeweils eine Randeinfassung und Querstäbe auf. Die Gitter 4 bilden zudem einen Blendschutz. Wie die Figur 1 zeigt, sind zudem unterhalb des untersten Längsprofils 3a zwei weitere Gitter 4 angeordnet.

[0016] Ist ein Schallschutz gewünscht, so wird die Auffangvorrichtung 1 mit einem Lärmschutzteil 5 versehen, der aus mehreren Lärmschutzteilen 5a zu einer Wand zusammengesetzt sind. Die Lärmschutzelemente 5a weisen zu ihrer Verbindung an Schmalseiten jeweils eine Feder 29 auf, die in eine entsprechende Schwalbenschwanznut eingesetzt ist. Das Lärmschutzteil 5 ist gemäss Figur 3 mit Schrauben 30 an den Längsprofilen 3 angeschraubt. Der Lärmschutzteil 5 besitzt gemäss Figur 2 eine Aufprallseite A, die der Fahrbahn 16 zugewandt ist. Die Lärmschutzteile 5a sind aus vergleichsweise dünnem Aluminiumblech hergestellt, sodass die Lärmschutzwand 5 bei einem Aufprall leicht verformt wird. Die weiter unten erwähnten Verbindungspfosten 21 bestehen vorzugsweise aus 4 mm starkem Stahlblech. Ist der Lärmschutzteil 5 nicht vorgesehen, so bilden die Längsprofile 3 sowie die Gitter 4 die Aufprallseite A. Das Fahrzeug bzw. die Last gleitet dann entlang den Längsprofilen 3 und gegebenenfalls entlang der Gitter 4, die vergleichsweise stabil ausgebildet sind. Die Gitter 4 können somit von einer Last bzw. einem Fahrzeug nicht ohne weiteres durchbrochen werden. Die Auffangvorrichtung 1 ist jedoch eine grundsätzlich vergleichsweise nachgiebige Konstruktion, die aber gleichzeitig die auftretenden Kräfte in Form von Zug-, Biege-, Druck- und Torsionsbeanspruchungen aufnehmen kann. Ohne das Lärmschutzteil 5 ist die Auffangvorrichtung nur bei vertikaler Ansicht durchsichtig und bildet einen Irritationsschutz beispielsweise gegen Scheinwerferlicht.

[0017] Die Pfosten 2 sind Doppelpfosten, die gemäss Figur 6 aus zwei im Querschnitt C-förmigen Profilen bestehen, die im Abstand zueinander angeordnet sind. Die Profile sind insbesondere sogenannte C 125-Profile. Dies gilt ähnlich für Verbindungspfosten 21, die gemäss den Figuren 4 und 5 aus jeweils zwei U-Profilen 21a bestehen. Die Schallschutzelemente 5a sind von oben in diese U-Profile 21a eingesetzt.

[0018] Die Auffangvorrichtung 1 tritt lediglich dann in Wirkung, wenn die Gefahr eines Ladungsabwurfes mit grosser Wahrscheinlichkeit gegeben ist. Bei der Mehrzahl der Unfälle ist lediglich die Fahrzeugrückhaltevor-

5

20

25

30

45

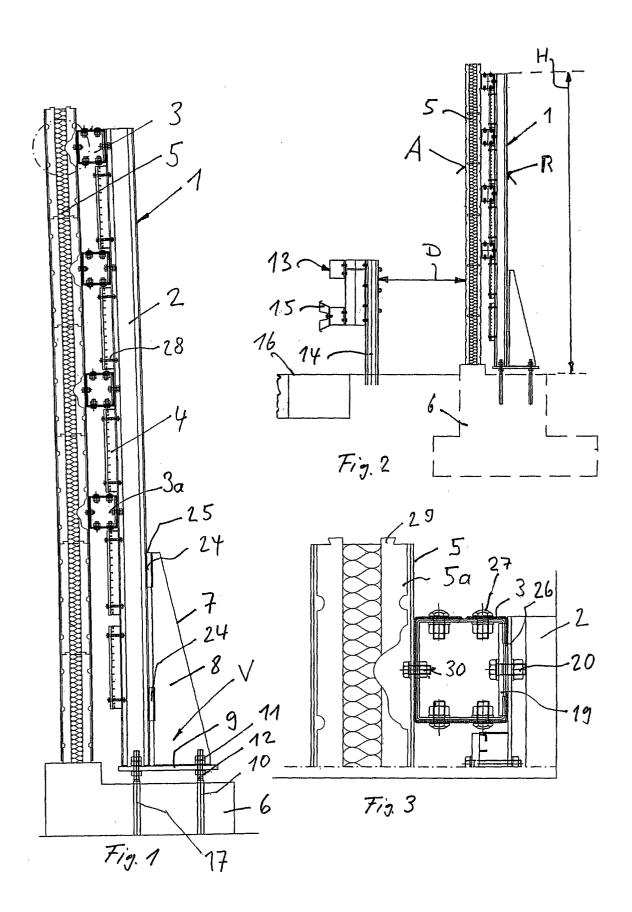
50

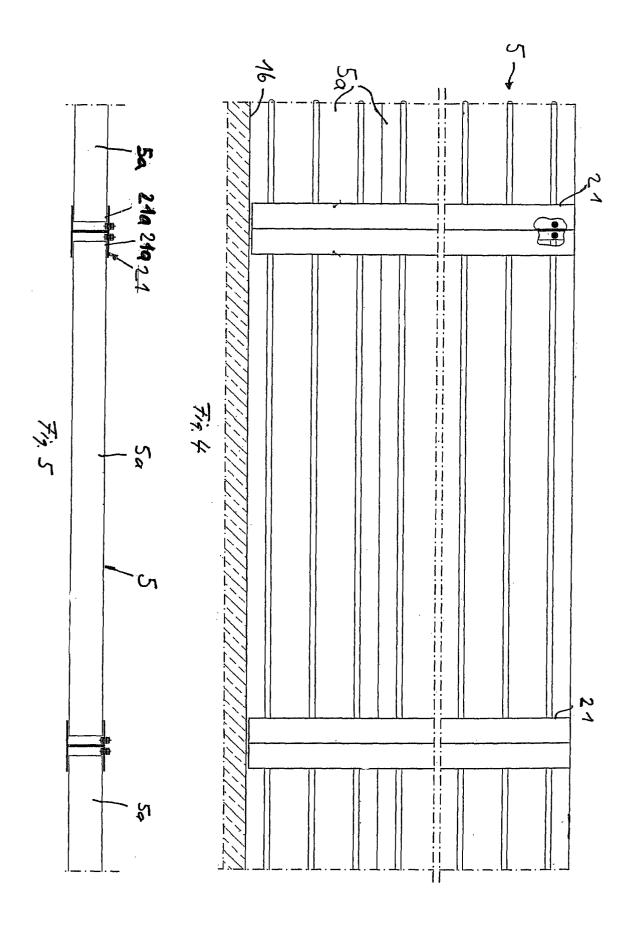
55

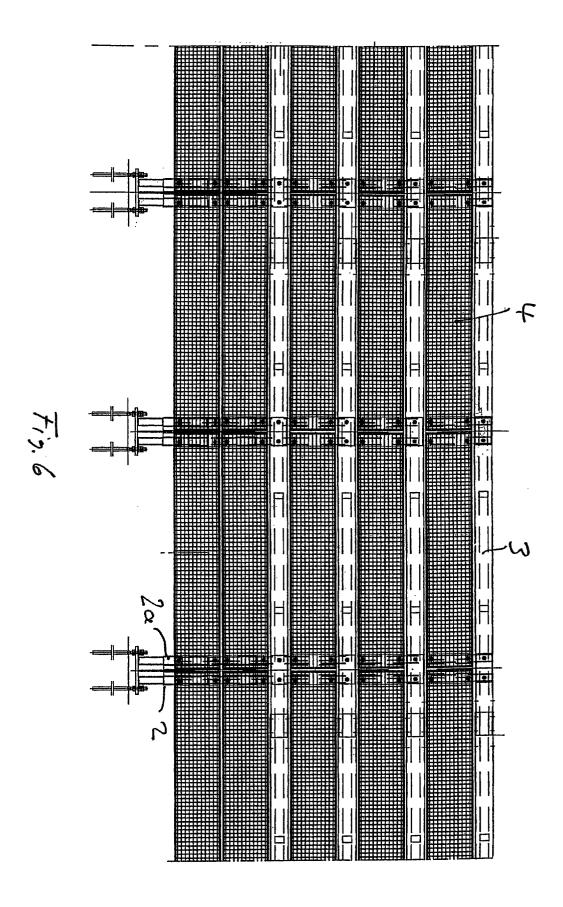
richtung 13 betroffen, die gemäss Figur 2 seitlich vor der Auffangvorrichtung 1 angeordnet ist. Diese Fahrzeugrückhalteeinrichtung 13 ist an sich bekannt und weisen beispielsweise Längselemente 15 auf, die an Pfosten 14 befestigt sind.

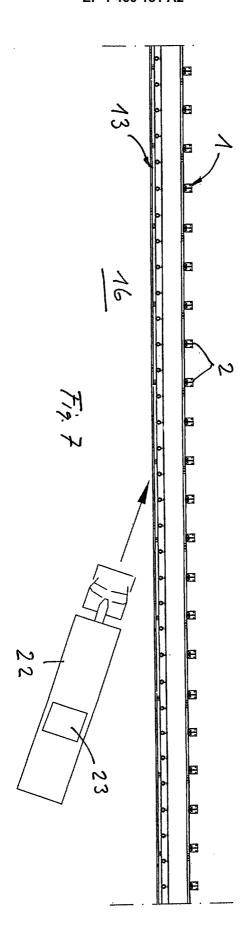
[0019] Die Figur 8 zeigt eine Anordnung, die ebenfalls eine Fahrzeugrückhaltevorrichtung 13 sowie eine Auffangvorrichtung 1' nach einer Variante aufweist. Die Auffangvorrichtung 1' ist auf einer Bauwerkskappe 30 und wie ersichtlich im Querschnitt L-förmig und mit U-förmigen Armierungseisen 32 fest auf einer Brücke 31 angeordnet. Weiter Armierungseisen 33 verstärken die Bauwerkskappe 30. Auf einem verdicktem Bereich 30a der Bauwerkskappe 30a ist eine Verankerungsplatte 34 mit vier Verankerungsbolzen 35 verankert, wobei die Verankerungsplatte 34 auf der Bauwerkskappe 30 aufliegt. Die Verankerungsplatte 34 ist mit einem Versteifungselement 36 verschweisst, an dem wiederum ein Pfosten 37 angeschweisst ist. Im Fall eines Aufpralls über dem Versteifungselement 36 werden die Pfosten 37 jeweils im Bereich 38 geknickt, sodass dieser Bereich 38, der unmittelbar über dem Versteifungselement 36 liegt, eine Knickstelle bildet. Unterhalb der Knickstelle 38 ist an den Pfosten 37 ein fünftes Längsprofil 39 befestigt, das sich etwa in der Höhe der Fahrzeugrückhaltevorrichtung 13 befindet und damit die Auffangvorrichtung 1' im unteren Bereich verstärkt. Dadurch kann die Auffangvorrichtung 1' als weitere Fahrzeugrückhaltevorrichtung dienen, wenn die Fahrzeugrückhaltevorrichtung 13 von einem Fahrzeug durchbrochen wird.

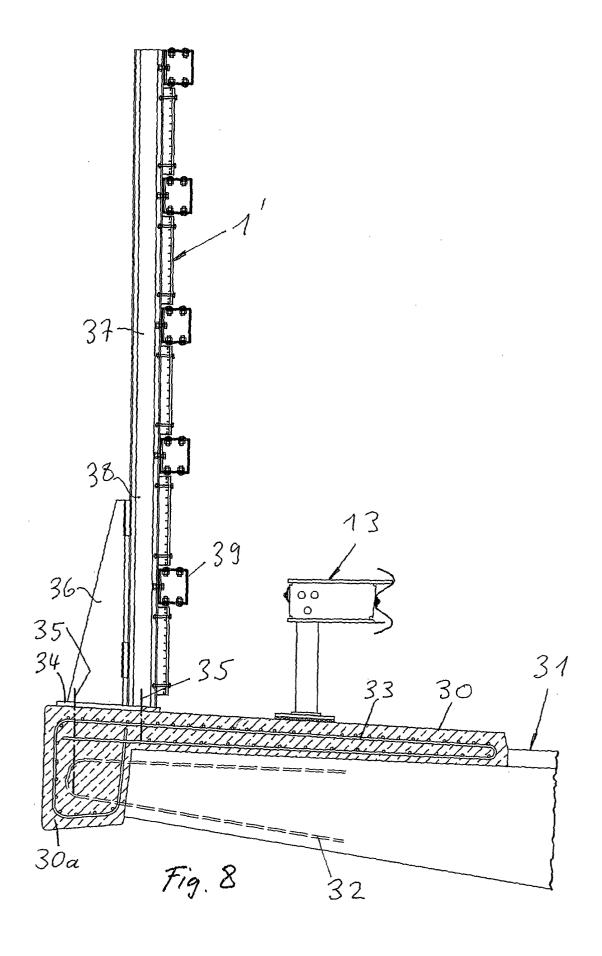
[0020] Die Figur 9 zeigt eine Auffangvorrichtung 1'', die sich von der Auffangvorrichtung 1' dadurch unterscheidet, dass eine obere Verankerungsplatte 40, die mit dem Verstärkungselement 36 verschweisst ist, auf eine untere Verankerungsplatte 42 gestellt ist. Mit Verankerungsbolzen 41 ist die untere Platte 42 fest mit der Bauwerkskappe 30 verbunden. Mit Verbindungsschrauben 43, die jeweils eine Sollbruchstelle besitzen, ist die obere Verankerungsplatte 40 mit der unteren Verankerungsplatte 42 verbunden. Bei einem Aufprall eines Fahrzeuges an der Auffangvorrichtung brechen beim Überschreiten einer vorbestimmten Kraft die Verbindungsschrauben 43 und die Verankerungsplatte 40 löst sich von der unteren Verankerungsplatte 42, ohne dass hierbei die Verankerungsbolzen 41 und die Bauwerkskappe 30 beschädigt werden. Ebenfalls können die Pfosten 37 im Bereich 38 knicken.


Patentansprüche


Anordnung mit einer Auffangvorrichtung (1, 1', 1') gegen Ladungsabwurf von Fahrzeugen (22), mit einer Mehrzahl von Pfosten (2), die jeweils mit einem Verankerungsmittel (V) entlang einer Fahrbahn (16) in einem Streifenfundament (6) oder einer Bauwerkskappe (30) verankert sind und an denen mehrere im Abstand übereinander angeordnete Längs-


profile (3) sowie Gitterelemente (4) befestigt sind, wobei die Längsprofile (3) und die Gitterelemente (4) die Aufprallseite (A) bilden, **dadurch gekennzeichnet**, **dass** die Auffangvorrichtung (1) wenigstens drei Meter hoch und seitlich hinter einer Fahrzeugrückhaltevorrichtung (13) angeordnet ist und dass die Verankerungsmittel (V) eine Haltekraft aufweisen, die unter der Bruchgrenze des Streifenfundamentes (6) oder der Bauwerkskappe (30) liegt und/oder die Pfosten (2) jeweils eine Sollknickstelle (25) besitzen.


- 2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Pfosten (2) jeweils auf einer Verankerungsplatte (9) befestigt sind, die mit wenigstens zwei, insbesondere vier im Abstand zueinander angeordneten Verankerungsbolzen (10, 17) im Streifenfundament (6) verankert sind, wobei wenigstens ein Gewindebolzen (17) in der Ebene eines Pfostens (2) und ein anderer Verankerungsbolzen (10) in rechtwinkligem Abstand zum anderen Verankerungsbolzen (17) angeordnet ist.
- Auffangvorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Verankerungsplatte (9) mit Luft befestigt oder auf der Bauwerkskappe (30) aufliegt.
- Anordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zwischen jeweils zwei Längsprofilen (3) ein Gitter (4) angeordnet ist.
- 5. Anordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass an den Längsprofilen (3) ein Lärmschutzteil (5) befestigt ist, wobei dieser Lärmschutzteil (5) aus mehreren Lärmschutzelementen (5a) zusammengebaut ist.
- 6. Anordnung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Pfosten (2) jeweils Doppelpfosten sind.
 - Anordnung nach Anspruch 6, dadurch gekennzeichnet, dass die Pfosten (2) jeweils aus zwei C-Profilen hergestellt sind.
 - Anordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Pfosten (2) jeweils an ihrem unteren Ende an einem im Wesentlichen dreieckigen Versteifungselement (8) befestigt sind.
 - 9. Anordnung nach Anspruch 8, dadurch gekennzeichnet, dass die Versteifungselemente (8) jeweils eine geneigte Kante (7) aufweisen, die an einem oberen Ende einen Knickpunkt (25) bilden, bei dem der am Versteifungselement (8) befestigte Pfosten (2) bei einem Aufprall plastisch deformiert wird.


- 10. Anordnung nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass das Lärmschutzteil (5) aus Lärmschutzelementen (5a) und Pfosten (21) hergestellt ist, die aus vergleichsweise dünnem Blech bestehen, sodass das Lärmschutzteil (5) einschliesslich der Pfosten (21) bei einem Aufprall eines Fahrzeuges plastisch deformiert werden und keinen wesentlichen Widerstand bilden.
- 11. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass eine obere Verankerungsplatte (40) auf eine untere Verankerungsplatte (42) gestellt ist und diese beiden Verankerungsplatten (40, 42) mit Befestigungsschrauben (43) miteinander verbunden sind, die jeweils eine Sollbruchstelle besitzen.

