
Printed by Jouve, 75001 PARIS (FR)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(19)

E
P

1 
46

2 
93

6
A

2
*EP001462936A2*
(11) EP 1 462 936 A2

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
29.09.2004 Bulletin 2004/40

(21) Application number: 03010808.8

(22) Date of filing: 14.05.2003

(51) Int Cl.7: G06F 9/44

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IT LI LU MC NL PT RO SE SI SK TR
Designated Extension States:
AL LT LV MK

(30) Priority: 27.03.2003 US 402268

(71) Applicant: MICROSOFT CORPORATION
Redmond, WA 98052 (US)

(72) Inventors:
• Beda, Joseph S.

Seattle, Washington 98103 (US)

• Schneider, Gerhard A.
Seattle, Washington 98122 (US)

• Gallo, Kevin T.
Woodinville, Washington 98072 (US)

• Smith, Adam M.
Kirkland, Washington 98033 (US)

• Vandenberg, Eric
Seattle, Washington 98119 (US)

• Curtis, Don
Bellevue, Washington 98006 (US)

(74) Representative: Grünecker, Kinkeldey,
Stockmair & Schwanhäusser Anwaltssozietät
Maximilianstrasse 58
80538 München (DE)

(54) Visual and scene graph interfaces

(57) A method and system implemented in an appli-
cation programming interface (API) and an object model
allows program code developers to interface in a con-
sistent manner with a scene graph data structure to out-
put graphics. Via the interfaces, program code writes
drawing primitives such as geometry data, image data,
animation data and other data to visuals that represent
a drawing surface, including validation visual objects,
drawing visual objects and surface visual objects. The
code can also specify transform, clipping and opacity
properties on visuals, and add child visuals to other vis-
uals to build up a hierarchical scene graph. A visual
manager traverses the scene graph to provide rich
graphics data to lower-level graphics components.



EP 1 462 936 A2

5

10

15

20

25

30

35

40

45

50

55

2

Description

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present invention is related to the following copending United States Patent Applications: Serial No.
10/184,795 entitled Multiple-Level Graphics Processing System and Method; Serial No. 10/184,796, entitled Generic
Parameterization for a Scene Graph; Serial No. 10/185,775 entitled "Intelligent Caching Data Structure for Immediate
Mode Graphics;" each filed on June 27, 2002; and United States Patent Application entitled "Markup Language and
Object Model for Vector Graphics" (Attorney Docket No. 3480), filed concurrently herewith. Each related application is
assigned to the assignee of the present patent application and hereby incorporated by reference in its entirety.

FIELD OF THE INVENTION

[0002] The invention relates generally to computer systems, and more particularly to the processing of graphical and
other video information for display on computer systems.

BACKGROUND OF THE INVENTION

[0003] The limits of the traditional immediate mode model of accessing graphics on computer systems are being
reached, in part because memory and bus speeds have not kept up with the advancements in main processors and/
or graphics processors. In general, the current (e.g., WM_PAINT) model for preparing a frame requires too much data
processing to keep up with the hardware refresh rate when complex graphics effects are desired. As a result, when
complex graphics effects are attempted with conventional graphics models, instead of completing the changes that
result in the perceived visual effects in time for the next frame, the changes may be added over different frames, causing
results that are visually and noticeably undesirable.
[0004] A new model for controlling graphics output is described in the aforementioned United States Patent Appli-
cation Serial Nos. 10/184,795, 10/184,796, and 10/185,775. This new model provides a number of significant improve-
ments in graphics processing technology. For example, U.S. Serial No. 10/184,795 is generally directed towards a
multiple-level graphics processing system and method, in which a higher-level component (e.g., of an operating system)
performs computationally intensive aspects of building a scene graph, updating animation parameters and traversing
the scene graph's data structures, at a relatively low operating rate, in order to pass simplified data structures and/or
graphics commands to a low-level component. Because the high-level processing greatly simplifies the data, the low-
level component can operate at a faster rate, (relative to the high-level component), such as a rate that corresponds
to the frame refresh rate of the graphics subsystem, to process the data into constant output data for the graphics
subsystem. When animation is used, instead of having to redraw an entire scene with changes, the low-level processing
may interpolate parameter intervals as necessary to obtain instantaneous values that when rendered provide a slightly
changed scene for each frame, providing smooth animation.
[0005] U.S. Serial No. 10/184,796 describes a parameterized scene graph that provides mutable (animated) values
and parameterized graph containers such that program code that wants to draw graphics (e.g., an application program
or operating system component) can selectively change certain aspects of the scene graph description, while leaving
other aspects intact. The program code can also reuse already-built portions of the scene graph, with possibly different
parameters. As can be appreciated, the ability to easily change the appearance of displayed items via parameterization
and/or the reuse of existing parts of a scene graph provide substantial gains in overall graphics processing efficiency.
[0006] U.S. Serial No. 10/185,775 generally describes a caching data structure and related mechanisms for storing
visual information via objects and data in a scene graph. The data structure is generally associated with mechanisms
that intelligently control how the visual information therein is populated and used. For example, unless specifically
requested by the application program, most of the information stored in the data structure has no external reference
to it, which enables this information to be optimized or otherwise processed. As can be appreciated, this provides
efficiency and conservation of resources, e.g., the data in the cache data structure can be processed into a different
format that is more compact and/or reduces the need for subsequent, repeated processing, such as a bitmap or other
post-processing result.
[0007] While the above improvements provide substantial benefits in graphics processing technology, there still
needs to be a way for programs to effectively use this improved graphics model and its other related improvements in
a straightforward manner. What is needed is a comprehensive yet straightforward way for programs to take advantage
of the many features and graphics processing capabilities provided by the improved graphics model and thereby output
complex graphics in an efficient manner.



EP 1 462 936 A2

5

10

15

20

25

30

35

40

45

50

55

3

SUMMARY OF THE INVENTION

[0008] Briefly, the present invention provides an object model, and an application programming interface (API) for
accessing that object model in a manner that allows program code developers to consistently interface with a scene
graph data structure to produce graphics. A base object in the model and API set is a visual, which represents a virtual
surface to the user; the scene graph is built of visual objects. Such Visuals include container visual objects, validation
visual objects, drawing visual objects and surface visual objects. Visuals themselves can hold onto resource objects,
such as clip objects, transform objects and so forth, and some type of Visuals (e.g., DrawingVisual, ValidationVisual)
can hold on to drawing instruction lists that may reference resource objects, such as images, brushes and/or gradients.
[0009] Typical resource objects in the scene graph are immutable once created, that is, once they are created they
cannot be changed. Note that visuals are generally not considered resources, and that visuals not considered immu-
table to an extent, e.g., program code can replace the transform to which a Visual is pointing, but cannot change the
transform itself, because the transform is immutable. The objects can be defined with a constructor or by using a
companion builder object.
[0010] Via the application programming interfaces, program code writes drawing primitives such as geometry data,
image data, animation data and other data to the visuals. For example, program code writes drawing primitives such
as draw line instructions, draw geometry instructions, draw bitmap instructions and so forth into the visuals. Those
drawing instructions are often combined with complex data like geometry data that describes how a path is drawn, and
they also may reference resources like bitmaps, videos, and so forth.
[0011] The code can also specify transform, clipping and opacity properties on visuals, and methods for pushing and
popping transform, opacity and hit test identification are provided. In addition, the visual has flags controlling how it
participates in hit testing. The program code also interfaces with the visuals to add child visuals, and thereby build up
a hierarchical scene graph. A visual manager processes (e.g., traverses or transmits) the scene graph to provide rich
graphics data to lower-level graphics components.
[0012] Container visuals provide for a collection of children visuals and in one implementation, are the only visuals
that can define hierarchy. The collection of children on a container visual allows for arbitrary insertion, removal and
reordering of children visuals.
[0013] Drawing visuals are opened with an open call that returns a drawing context (e.g., a reference to a drawing
context object) to the caller. In general, a drawing context is a temporary helper object that is used to populate a visual.
The program code then uses the drawing context to add drawing primitives to the visual. The open call may clear the
contents (children) of a visual, or an append call may be used to open a visual for appending to that current visual. In
addition to receiving static values as drawing parameters, drawing contexts can be filled with animation objects.
[0014] A validation visual operates in a similar manner to a drawing visual, except that its drawing context is filled
when the system requests that it be filled, instead of when the program code wants to fill it. A surface visual is provided
to display a bitmap of pixel data, which can correspond to a drawing context filled with the pixel data, or another visual
subgraph traversed by a surface visual manager that provides the pixel data. The system provides a drawing context
implementation that can directly draw into the surface, and a SurfaceVisualManager can be used to compose a Visual
scene graph into a surface. Other types of visuals are also described.
[0015] Thus, different types of primitives may be drawn into a visual using a drawing context, including geometry,
image data and video data. Geometry is a type of class that defines a vector graphics skeleton without stroke or fill,
e.g., a rectangle. Each geometry object corresponds to a simple shape (LineGeometry, EllipseGeometry, Rectangle-
Geometry), a complex single shape (PathGeometry), or a list of such shapes (GeometryList) with a combine operation
specified (e.g., union, intersection and so forth.) These objects form a class hierarchy. There are also shortcuts for
drawing frequently used types of geometry, such as a DrawRectangle method.
[0016] When geometry is drawn, a brush or pen may be specified. A brush object defines how to graphically fill a
plane, and there is a class hierarchy of brush objects. A pen also has a brush specified on it describing how to fill the
stroked area. A special type of brush object (the VisualBrush) can reference a visual to define how that brush is to be
drawn.
[0017] Other benefits and advantages will become apparent from the following detailed description when taken in
conjunction with the drawings, in which:

BRIEF DESCRIPTION OF THE DRAWINGS

[0018]

FIGURE 1 is a block diagram representing an exemplary computer system into which the present invention may
be incorporated;
FIG. 2 is a block diagram generally representing a graphics layer architecture into which the present invention may
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be incorporated;
FIG. 3 is a representation of a scene graph of visuals and associated components for processing the scene graph
such as by traversing the scene graph to provide graphics commands and other data in accordance with an aspect
of the present invention;
FIG. 4 is a representation of a scene graph of validation visuals, drawing visuals and associated drawing primitives
constructed in accordance with an aspect of the present invention;
FIG. 5 is a representation of a visual class, of an object model, in accordance with an aspect of the present invention;
FIG. 6 is a representation of various other objects of the object model, in accordance with an aspect of the present
invention;
FIG. 7 is a diagram representing transformation of a visual's data in accordance with an aspect of the present
invention;
FIGS. 8A and 8B are representations of transformations of a visual's data in a geometry scale and a non-uniform
scale, respectively, in accordance with an aspect of the present invention;
FIGS. 9A-9C are block diagrams of surface visual objects and other visuals and components in accordance with
an aspect of the present invention;
FIGS. 10A and 10B are diagrams representing HWnd visual objects in accordance with an aspect of the present
invention;
FIG. 11 is a diagram representing a layered visual object in accordance with an aspect of the present invention;
FIG. 12 is a representation of geometry classes of the object model, in accordance with an aspect of the present
invention;
FIG. 13 is a representation of a PathGeometry structure, in accordance with an aspect of the present invention;
FIG. 14 is a representation of a scene graph of visuals and drawing primitives showing example graphics produced
by the primitives, in accordance with an aspect of the present invention;
FIG. 15 is a representation of brush classes of the object model, in accordance with an aspect of the present
invention;
FIG. 16 is a representation of rendered graphics resulting from data in a linear gradient brush object, in accordance
with an aspect of the present invention;
FIG. 17 is a representation of rendered graphics resulting from data in a radial gradient brush object, in accordance
with an aspect of the present invention;
FIG. 18 is a representation of rendered graphics resulting from having various stretch values, in accordance with
an aspect of the present invention;
FIG. 19 is a representation of rendered graphics resulting from having various tile values, in accordance with an
aspect of the present invention;
FIG. 20 is a flow diagram generally representing logic for interpreting a visual, including a brush object, to generate
graphics in accordance with an aspect of the present invention;
FIG. 21 is a representation of a grid and transformed grid, resulting from data in a visual brush object, in accordance
with an aspect of the present invention;
FIG. 22 is a representation of the grid and transformed grid, with rendered graphics therein drawn from a visual,
in accordance with an aspect of the present invention;
FIG. 23 is a representation of a rendered nine grid brush object in accordance with an aspect of the present
invention; and
FIG. 24 is a representation of transform classes of the object model, in accordance with an aspect of the present
invention.

DETAILED DESCRIPTION

EXEMPLARY OPERATING ENVIRONMENT

[0019] FIGURE 1 illustrates an example of a suitable computing system environment 100 on which the invention
may be implemented. The computing system environment 100 is only one example of a suitable computing environment
and is not intended to suggest any limitation as to the scope of use or functionality of the invention. Neither should the
computing environment 100 be interpreted as having any dependency or requirement relating to any one or combination
of components illustrated in the exemplary operating environment 100.
[0020] The invention is operational with numerous other general purpose or special purpose computing system en-
vironments or configurations. Examples of well known computing systems, environments, and/or configurations that
may be suitable for use with the invention include, but are not limited to, personal computers, server computers, hand-
held or laptop devices, tablet devices, multiprocessor systems, microprocessor-based systems, set top boxes, pro-
grammable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing envi-
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ronments that include any of the above systems or devices, and the like.
[0021] The invention may be described in the general context of computer-executable instructions, such as program
modules, being executed by a computer. Generally, program modules include routines, programs, objects, components,
data structures, and so forth, which perform particular tasks or implement particular abstract data types. The invention
may also be practiced in distributed computing environments where tasks are performed by remote processing devices
that are linked through a communications network. In a distributed computing environment, program modules may be
located in both local and remote computer storage media including memory storage devices.
[0022] With reference to FIG. 1, an exemplary system for implementing the invention includes a general purpose
computing device in the form of a computer 110. Components of the computer 110 may include, but are not limited to,
a processing unit 120, a system memory 130, and a system bus 121 that couples various system components including
the system memory to the processing unit 120. The system bus 121 may be any of several types of bus structures
including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architec-
tures. By way of example, and not limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro
Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local
bus, Accelerated Graphics Port (AGP) bus, and Peripheral Component Interconnect (PCI) bus also known as Mezza-
nine bus.
[0023] The computer 110 typically includes a variety of computer-readable media. Computer-readable media can
be any available media that can be accessed by the computer 110 and includes both volatile and nonvolatile media,
and removable and non-removable media. By way of example, and not limitation, computer-readable media may com-
prise computer storage media and communication media. Computer storage media includes both volatile and nonvol-
atile, removable and non-removable media implemented in any method or technology for storage of information such
as computer-readable instructions, data structures, program modules or other data. Computer storage media includes,
but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic stor-
age devices, or any other medium which can be used to store the desired information and which can accessed by the
computer 110. Communication media typically embodies computer-readable instructions, data structures, program
modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes
any information delivery media. The term "modulated data signal" means a signal that has one or more of its charac-
teristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation,
communication media includes wired media such as a wired network or direct-wired connection, and wireless media
such as acoustic, RF, infrared and other wireless media. Combinations of the any of the above should also be included
within the scope of computer-readable media.
[0024] The system memory 130 includes computer storage media in the form of volatile and/or nonvolatile memory
such as read only memory (ROM) 131 and random access memory (RAM) 132. A basic input/output system 133
(BIOS), containing the basic routines that help to transfer information between elements within computer 110, such as
during start-up, is typically stored in ROM 131. RAM 132 typically contains data and/or program modules that are
immediately accessible to and/or presently being operated on by processing unit 120. By way of example, and not
limitation, FIG. 1 illustrates operating system 134, application programs 135, other program modules 136 and program
data 137.
[0025] The computer 110 may also include other removable/non-removable, volatile/nonvolatile computer storage
media. By way of example only, FIG. 1 illustrates a hard disk drive 141 that reads from or writes to non-removable,
nonvolatile magnetic media, a magnetic disk drive 151 that reads from or writes to a removable, nonvolatile magnetic
disk 152, and an optical disk drive 155 that reads from or writes to a removable, nonvolatile optical disk 156 such as
a CD ROM or other optical media. Other removable/non-removable, volatile/nonvolatile computer storage media that
can be used in the exemplary operating environment include, but are not limited to, magnetic tape cassettes, flash
memory cards, digital versatile disks, digital video tape, solid state RAM, solid state ROM, and the like. The hard disk
drive 141 is typically connected to the system bus 121 through a non-removable memory interface such as interface
140, and magnetic disk drive 151 and optical disk drive 155 are typically connected to the system bus 121 by a remov-
able memory interface, such as interface 150.
[0026] The drives and their associated computer storage media, discussed above and illustrated in FIG. 1, provide
storage of computer-readable instructions, data structures, program modules and other data for the computer 110. In
FIG. 1, for example, hard disk drive 141 is illustrated as storing operating system 144, application programs 145, other
program modules 146 and program data 147. Note that these components can either be the same as or different from
operating system 134, application programs 135, other program modules 136, and program data 137. Operating system
144, application programs 145, other program modules 146, and program data 147 are given different numbers herein
to illustrate that, at a minimum, they are different copies. A user may enter commands and information into the computer
110 through input devices such as a tablet (electronic digitizer) 164, a microphone 163, a keyboard 162 and pointing
device 161, commonly referred to as mouse, trackball or touch pad. Other input devices (not shown) may include a
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joystick, game pad, satellite dish, scanner, or the like. These and other input devices are often connected to the process-
ing unit 120 through a user input interface 160 that is coupled to the system bus, but may be connected by other
interface and bus structures, such as a parallel port, game port or a universal serial bus (USB). A monitor 191 or other
type of display device is also connected to the system bus 121 via an interface, such as a video interface 190. The
monitor 191 may also be integrated with a touch-screen panel 193 or the like that can input digitized input such as
handwriting into the computer system 110 via an interface, such as a touch-screen interface 192. Note that the monitor
and/or touch screen panel can be physically coupled to a housing in which the computing device 110 is incorporated,
such as in a tablet-type personal computer, wherein the touch screen panel 193 essentially serves as the tablet 164.
In addition, computers such as the computing device 110 may also include other peripheral output devices such as
speakers 195 and printer 196, which may be connected through an output peripheral interface 194 or the like.
[0027] The computer 110 may operate in a networked environment using logical connections to one or more remote
computers, such as a remote computer 180. The remote computer 180 may be a personal computer, a server, a router,
a network PC, a peer device or other common network node, and typically includes many or all of the elements described
above relative to the computer 110, although only a memory storage device 181 has been illustrated in FIG. 1. The
logical connections depicted in FIG. 1 include a local area network (LAN) 171 and a wide area network (WAN) 173,
but may also include other networks. Such networking environments are commonplace in offices, enterprise-wide
computer networks, intranets and the Internet.
[0028] When used in a LAN networking environment, the computer 110 is connected to the LAN 171 through a
network interface or adapter 170. When used in a WAN networking environment, the computer 110 typically includes
a modem 172 or other means for establishing communications over the WAN 173, such as the Internet. The modem
172, which may be internal or external, may be connected to the system bus 121 via the user input interface 160 or
other appropriate mechanism. In a networked environment, program modules depicted relative to the computer 110,
or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation, FIG.
1 illustrates remote application programs 185 as residing on memory device 181. It will be appreciated that the network
connections shown are exemplary and other means of establishing a communications link between the computers
may be used.

INTERFACES TO SCENE GRAPH DATA STRUCTURES

[0029] One aspect of the present invention is generally directed to allowing program code, such as an application
or operating system component, to communicate drawing instructions and other information (e.g., image bitmaps) to
graphics components in order to render graphical output on the system display. To this end, the present invention
provides a number of defined functions and methods, e.g., in the form of application programming interfaces (APIs) to
an object model, that enable programs to populate a scene graph with data structures, drawing primitives (commands),
and other graphics-related data. When processed, the scene graph results in graphics being displayed on the screen.
[0030] FIG. 2 represents a general, layered architecture 200 into which the present invention may be implemented.
As represented in FIG. 2, program code 202 (e.g., an application program or operating system component or the like)
may be developed to output graphics data in one or more various ways, including via imaging 204, via vector graphic
elements 206, and/or via function / method calls placed directly to a visual application programming interface (API)
layer 212, in accordance with an aspect of the present invention. In general, imaging 204 provides the program code
202 with a mechanism for loading, editing and saving images, e.g., bitmaps. As described below, these images may
be used by other parts of the system, and there is also a way to use the primitive drawing code to draw to an image
directly. Vector graphics elements 206 provide another way to draw graphics, consistent with the rest of the object
model (described below). Vector graphic elements 206 may be created via a markup language, which an element /
property system 208 and presenter system 210 interprets to make appropriate calls to the visual API layer 212. Vector
graphic elements 206, along with the element / property system 208 and presenter system 210, are described in the
aforementioned copending patent application entitled "Markup Language and Object Model for Vector Graphics."
[0031] In one implementation, the graphics layer architecture 200 includes a high-level composition and animation
engine 214, which includes or is otherwise associated with a caching data structure 216. The caching data structure
216 contains a scene graph comprising hierarchically-arranged objects that are managed according to a defined object
model, as described below. In general, the visual API layer 212 provides the program code 202 (and the presenter
system 210) with an interface to the caching data structure 216, including the ability to create objects, open and close
objects to provide data to them, and so forth. In other words, the high-level composition and animation engine 214
exposes a unified media API layer 212 by which developers may express intentions about graphics and media to
display graphics information, and provide an underlying platform with enough information such that the platform can
optimize the use of the hardware for the program code. For example, the underlying platform will be responsible for
caching, resource negotiation and media integration.
[0032] In one implementation, the high-level composition and animation engine 214 passes an instruction stream
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and possibly other data (e.g., pointers to bitmaps) to a fast, low-level compositing and animation engine 218. As used
herein, the terms "high-level" and "low-level" are similar to those used in other computing scenarios, wherein in general,
the lower a software component is relative to higher components, the closer that component is to the hardware. Thus,
for example, graphics information sent from the high-level composition and animation engine 214 may be received at
the low-level compositing and animation engine 218, where the information is used to send graphics data to the graphics
subsystem including the hardware 222.
[0033] The high-level composition and animation engine 214 in conjunction with the program code 202 builds a scene
graph to represent a graphics scene provided by the program code 202. For example, each item to be drawn may be
loaded with drawing instructions, which the system can cache in the scene graph data structure 216. As will be described
below, there are a number of various ways to specify this data structure 216, and what is drawn. Further, the high-level
composition and animation engine 214 integrates with timing and animation systems 220 to provide declarative (or
other) animation control (e.g., animation intervals) and timing control. Note that the animation system allows animate
values to be passed essentially anywhere in the system, including, for example, at the element property level 208,
inside of the visual API layer 212, and in any of the other resources. The timing system is exposed at the element and
visual levels.
[0034] The low-level compositing and animation engine 218 manages the composing, animating and rendering of
the scene, which is then provided to the graphics subsystem 222. The low-level engine 218 composes the renderings
for the scenes of multiple applications, and with rendering components, implements the actual rendering of graphics
to the screen. Note, however, that at times it may be necessary and/or advantageous for some of the rendering to
happen at higher levels. For example, while the lower layers service requests from multiple applications, the higher
layers are instantiated on a per-application basis, whereby is possible via the imaging mechanisms 204 to perform
time-consuming or application-specific rendering at higher levels, and pass references to a bitmap to the lower layers.
[0035] FIGS. 3 and 4 show example scene graphs 300 and 400, respectively, including a base object referred to as
a visual. In general, a visual comprises an object that represents a virtual surface to the user and has a visual repre-
sentation on the display. As represented in FIG. 5, a base class visual provides the base functionality for other visual
types, that is, the visual class 500 is an abstract base class from which visual types (e.g., 501-506) derive.
[0036] As represented in FIG. 3, a top-level (or root) visual 302 is connected to a visual manager object 304, which
also has a relationship (e.g., via a handle) with a window (HWnd) 306 or similar unit in which graphic data is output for
the program code. The VisualManager 304 manages the drawing of the top-level visual (and any children of that visual)
to that window 306. FIG. 6 shows the VisualManager as one of a set of other objects 620 in the object model of the
graphics system described herein.
[0037] To draw, the visual manager 304 processes (e.g., traverses or transmits) the scene graph as scheduled by a
dispatcher 308, and provides graphics instructions and other data to the low level component 218 (FIG. 2) for its
corresponding window 306, such as generally described in U.S. Patent Application Serial Nos. 10/184,795, 10/184,796,
and 10/185,775. The scene graph processing will ordinarily be scheduled by the dispatcher 308 at a rate that is relatively
slower than the refresh rate of the lower-level component 218 and/or graphics subsystem 222. FIG. 3 shows a number
of child visuals 310-315 arranged hierarchically below the top-level (root) visual 302, some of which are represented
as having been populated via drawing contexts 316, 317 (shown as dashed boxes to represent their temporary nature)
with associated instruction lists 318 and 319, respectively, e.g., containing drawing primitives and other visuals. The
visuals may also contain other property information, as shown in the following example visual class:
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[0038] As can be seen, visuals offer services by providing transform, clip, opacity and possibly other properties that
can be set, and/or read via a get method. In addition, the visual has flags controlling how it participates in hit testing,
as described below. A Show property is used to show/hide the visual, e.g., when false the visual is invisible, otherwise
the visual is visible.
[0039] A transformation, set by the transform property, defines the coordinate system for the sub-graph of a visual.
The coordinate system before the transformation is called pre-transform coordinate system, the one after the transform
is called post-transform coordinate system, that is, a visual with a transformation is equivalent to a visual with a trans-
formation node as a parent. FIG. 7 generally provides an example of transformation, identifying the pre-transformation
and post-transformation coordinate systems relative to a visual. To get or set the transformation of a visual, the Trans-
form property may be used.
[0040] Note that the coordinate transforms may be applied in a uniform way to everything, as if it were in a bitmap.
Note that this does not mean that transformations always apply to bitmaps, but that what gets rendered is affected by
transforms equally. By way of example, if the user draws a circle with a round pen that is one inch wide and then applies
a scale in the X direction of two to that circle, the pen will be two inches wide at the left and right and only one inch
wide at the top and bottom. This is sometimes referred to as a compositing or bitmap transform (as opposed to a
skeleton or geometry scale that affects the geometry only). FIG. 8A is a representation of scaling transformation, with
a non-transformed image 800 appearing on the left and a transformed image 802 with a non-uniform scale appearing
on the right. FIG. 8B is a representation of scaling transformation, with the non-transformed image 800 appearing on
the left and a transformed image 804 with geometry scaling appearing on the right.
[0041] With respect to coordinate transformation of a visual, TransformToDescendant transforms a point from the
reference visual to a descendant visual. The point is transformed from the post-transformation coordinate space of the
reference visual to the post-transformation coordinate space of the descendant visual. TransformFromDescendant
transforms a point from the descendant visual up the parent chain to the reference visual. The point is transformed
from post-transformation coordinate space of the descendant visual to post-transformation coordinate space of the
reference visual. The CalculateBounds method returns the bounding box of the content of the Visual in Post-Transfor-
mation coordinate space. Note that there may be an alternative version of the API where more specific specifications
are allowed as to how the transform on a visual is interpreted during a coordinate transformation. For example, the
transform on the reference and descendant visual may or may not be taken into account. In this alternative, there are
thus four options, e.g., coordinates can be transformed from pre-transformation to pre-transformation space, pre-trans-
formation to post-transformation space, post-transformation to pre-transformation space, and post-transformation to
post-transformation space. The same concept applies to hit-testing, e.g., hit-testing may be started in pre-transforma-
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tion or post-transformation transform coordinate space, and the hit-test results might be in pre-transformation or post-
transformation coordinate space.
[0042] The clip property sets (and gets) the clipping region of a visual. Any Geometry (the geometry class is described
below with reference to FIG. 12) can be used as a clipping region, and the clipping region is applied in Post-Transfor-
mation coordinate space. In one implementation, a default setting for the clipping region is null, i.e., no clipping, which
can be thought of as an infinite big clipping rectangle from (-∞, -∞) to (+∞, +∞) ,
[0043] The Opacity property gets/sets the opacity value of the visual, such that the content of the visual is blended
on the drawing surface based on the opacity value and the selected blending mode. The BlendMode property can be
used to set (or get) the blending mode that is used. For example, an opacity (alpha) value may be set between 0.0
and 1.0, with linear alpha blending set as the mode, e.g., Color = alpha * foreground color + (1.0-alpha) * background
color). Other services, such as special effects properties, may be included in a visual, e.g., blur, monochrome, and so on.
[0044] The various services (including transform, opacity, clip) can be pushed and popped on a drawing context,
and push/ pop operations can be nested, as long as a pop call matches a push call. For example PushTransform(...);
PushOpacity (...) ; PopTransform(...); is illegal, because before the PopTransform call, PopOpacity needs to be called.
[0045] The PushTransform method pushes a transformation. Subsequent drawing operations are executed with re-
spect to the pushed transformation. The PopTransform pops the transformation pushed by the matching PushTrans-
form call:

void PushTransform(Transform transform);
void PushTransform(Matrix matrix);
void PopTransform();.

[0046] Similarly, the PushOpacity method pushes an opacity value. Subsequent drawing operations are rendered
on a temporary surface with the specified opacity value and then composite into the scene. PopOpacity pops the
opacity pushed by the matching PushOpacity call:

void PushOpacity(float opacity);
void PushOpacity(NumberAnimationBase opacity);
void PopOpacity();.

[0047] The PushClip method pushes a clipping geometry. Subsequent drawing operations are clipped to the geom-
etry. The clipping is applied in post transformation space. PopClip pops the clipping region pushed by the matching
PushClip call:

void PushClip(Geometry clip);
void PopClip();.

[0048] Note that push operations can be arbitrarily nested as long as the pop operations are matched with a push.
For example, the following is valid:

[0049] Hit-testing is performed in the Post-Transformation coordinate space, and returns an identity of each hit-
testable visual that is hit, e.g., when a pen or mouse click is detected. An alternate version of the interface may allow
for hit-testing to start at a Pre-Transformation coordinate space relative to the visual where the hit test is started. Visuals
that are hit are returned in right-to-left, depth-first order. Hit-testing may be controlled with various flags, including
HitTestable, which determines if the visual is hit-testable (the default is true), and HitTestFinal, which determines if hit-
testing stops when the visual is hit, i.e. if a Visual is hit and the HitTestFinal property of the visual is true, hit-testing
aborts and returns the results collected up to this point (the default is false). Another flag is HitTestIgnoreChildren,
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which determines if the children of a visual should be considered when hit-testing is performed on a visual (the default
is false).
[0050] A ProxyVisual is a visual that may be added more than once into the scene graph. Since any visual referred
to by a ProxyVisual may be reached by multiple paths from the root, read services (TransformToDescendent, Trans-
formFromDescendent and HitTest) do not work through a ProxyVisual. In essence, there is one canonical path from
any visual to the root of the visual tree and that path does not include any ProxyVisuals.
[0051] As represented in FIG. 5, various types of visuals are defined in the object model, including ContainerVisuals
501, DrawingVisuals 502, ValidationVisuals 503, SurfaceVisuals 504 and HwndVisuals 505. The table below sets forth
example methods of a DrawingVisual:

[0052] A DrawingVisual is a container for graphical content (e.g. lines, text, images, and so forth). Note that it is
possible to add a Visual into a DrawingVisual, but in some implementations this is not allowed. The DrawingVisual 502
includes an Open method, which returns an IDrawingContext that can be used to populate the DrawingVisual, e.g.,
with other visuals and drawing primitives, as described below. In one implementation, for various reasons also described
below, a DrawingVisual may be only opened once to populate its drawing context; in other words, such a DrawingVisual
is immutable with respect to what can be put into it (although program code can replace a resource object to which a
visual is pointing). After the DrawingVisual has been populated, the DrawingVisual is closed using a Close method, e.
g., on the drawing context. Note that an Open call may clear any contents (children) of a visual, however in one alter-
native implementation, there is provided an Append method, to open a current visual in a manner that appends to that
visual. In other words, an OpenForAppend call works like Open, except the current content of the DrawingVisual is not
cleared out on the open.
[0053] The following is an example of how a drawing context is used to populate a visual:
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[0054] In general, a ValidationVisual 503 is conceptually similar to a DrawingVisual, except that a ValidationVisual
is populated when the system requests that it be filled, instead of when the program code wants to populate it. For
example, as described in U.S. Serial No. 10/185,775, the high-level composition and animation engine 214 (FIG. 2)
may invalidate scene graph data as resources are needed, such as when part of a scene graph is not visible. For
example if some parts are scrolled off the display, clipped, and so on. If the invalidated scene graph data is later needed,
the program code 202 called will be called back to redraw (validate) the invalidated portion of the scene graph. To this
end, one typical usage scenario is for a program code to subclass the ValidationVisual and override the OnValidate
method. When the system calls the OnValidate method, a drawing context is passed in, and the program the uses the
drawing context repopulate the ValidationVisual.
[0055] The example below shows one way to implement a simple ValidationVisual, e.g., one that draws a line with
a certain color. The color of the line can be changed by calling SetColor. To force the update of the ValidationVisual,
SetColor calls Invalidate to force the graphics sub-system to revalidate the ValidationVisual:
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[0056] This example shows how to use the ValidationVisual:

[0057] FIG. 4 shows an example scene graph 400 in which ContainerVisuals and DrawingVisuals are related in a
scene graph, and have associated data in the form of drawing primitives, (e.g., in corresponding drawing contexts).
The ContainerVisual is a container for Visuals, and ContainerVisuals can be nested into each other. The children of a
ContainerVisual can be manipulated with a VisualCollection returned from a Children property of the VisualContainer.
The order of the Visuals in the VisualCollection determines in which order the Visuals are rendered, i.e. Visuals are
rendered from the lowest index to the highest index from back to front (painting order). For example, with proper
parameters with three drawing visuals representing red, green, and blue rectangles hierarchically under a container
visual, the following code would result in three rectangles being drawn (translating to the right and down), a red rectangle
in back, a green rectangle in the middle and a blue rectangle in front:
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[0058] As represented in FIG. 5, another type of visual object is a SurfaceVisual 504. In general, as represented in
FIG. 3, a SurfaceVisual object 315 references an in-memory surface (bitmap) 322 that the program code 202 (FIG. 2)
can access. The client program code 202 can supply its own surface memory, or it can request that the memory be
allocated by the surface object.
[0059] The program code 202 has the option to open a SurfaceVisual and get a drawing context 323, into which the
program code 202 can write pixel data 324 or the like and directly put those pixels onto the surface. This is represented
in FIG. 3 by the dashed line between the surface object 322, the drawing context 323 (shown as a dashed box to
represent its temporary nature) and the pixel data 324.
[0060] The program code 202 also has an option to create a surface visual manager 330 and associate a visual
subgraph 332 with the SurfaceVisual 315. This option is represented in FIG. 3 by the dashed line between the surface
object 322 and the surface visual manager 330. Note that the visual subgraph 332 can also nest other surface visuals,
as also shown in FIG 3. The surface visual manager 330 (also shown as a type of other object in the set 620 of FIG.
6) walks the visual subgraph 332 to update the SurfaceVisual bitmap 322. Further, note that this traversal is scheduled
by the dispatcher 308, and for efficiency may be throttled to control how often this bitmap 322 is updated. The surface
visual manager 330 does not have to traverse the visual subgraph 322 each time and/or at the same rate that the top
level visual manager 302 walks the rest of the scene graph.
[0061] With respect to surfaces, as further described with reference to FIGS. 9A-9C, in general, the present graphics
model thus allows compositing a set of visuals to a surface, immediate-mode rendering of vector and bitmap primitives
into a surface, compositing a surface onto the desktop or onto another surface, and controlling which surface in a
surface list is used to composite into or to draw into. A surface list is defined as a collection of one or more surfaces
(i.e. frames/buffers) of physical (system or video) memory used to store compositions of visuals or graphical drawings,
or both. One of the surfaces of the surface list may be set as a current back buffer where drawing and/or compositing
is done, and one of the surfaces of the surface list is set as a current primary, or front buffer, which is used to composite
onto another render target.
[0062] Surfaces may be used in a number of ways. By way of example, FIG. 9A shows compositing to a surface. In
FIG. 9A, a surface visual manager object 900 connects a surface list 902 as a render target for a visual tree 904. During
each compositing cycle, the visuals are composited into the surface of the surface list that is currently serving as the
active back buffer for the surface list. The surface being composited to can include a surface owned by the client/high
level compositing engine 214 (FIG. 2) for in-process compositing scenarios, a surface owned by the low-level com-
positing engine 218 for scenarios where the client does not need the bits but the low-level compositing engine 218
needs them to composite the surface onto another render target, or a cross-process surface, for scenarios where the
client needs access to the surface bits, but the low-level compositing engine 218 also needs the surface for other
compositing work.
[0063] The compositing is controlled by a timing service that is attached to the Visual Manager. One example of a
timing service, is a manual mode that might be used as in the example below:
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[0064] Another way to use a surface is with immediate-mode rendering to a surface, via a context. Attaching a surface
list to a visual (a surface visual) enables immediate-mode rendering to the surface of the surface list that is currently
serving as the active back buffer for the surface list. This rendering is done by obtaining a drawing context from the
surface visual and executing drawing commands on that context, as described above. Note that obtaining a drawing
context locks the surface so that other compositing operations cannot be done to it. Each drawing command is executed
immediately, and vectors and other surfaces can be drawn (blended) onto the surface. However, other visuals cannot
be drawn onto the surface, but instead can be composited into the surface by associating it with a visual manager, as
previously described (e.g., in FIG. 9A).

[0065] Another use for surfaces is when compositing a surface onto another render target. To this end, once a surface
list is attached to a surface visual, the surface can then be attached as a node in a visual tree, and the surface of the
surface list that is currently serving as the primary or front buffer can be composited to another surface or to the desktop.
This is illustrated in FIG. 9B and in the example below:

[0066] Live composition to/from a surface is represented in FIG. 9C, where the above-described capabilities are
combined so that compositing to the back buffer surface of a surface list and compositing from the front buffer surface



EP 1 462 936 A2

5

10

15

20

25

30

35

40

45

50

55

15

of a surface list (e.g. to the desktop) happen simultaneously. Note that to eliminate the undesirable video effect known
as tearing, the surface list should have at least two surfaces, a front and a back buffer surface. A surface used as in
FIG. 9C is likely owned by the low-level engine 218, or is a cross-process surface to make the composition in the low
level engine 218 perform better.
[0067] Surfaces are constructed as independent objects, as set forth in the examples of constructors below:
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[0068] Once constructed, a surface and/or a surface list can be attached to a surface visual object or to a visual
manager object.

[0069] Further, a surface can get data from a decoder, and/or send its data to an encoder for writing to a specific file
format. Surfaces can also receive/send data from/to effect interfaces. A surface can be constructed for any pixel format
from the full set of supported surface format types. However, some adjustments may be made to the specified pixel
format, e.g., if the specified pixel format is less than 32 bits per pixel, then the format will be promoted to 32 bits per
pixel. Whenever bits are requested from a surface in the original format, the surface will be copied to a buffer of the
requested pixel format using a format conversion filter.
[0070] Returning to FIG. 5, yet another visual is an HwndVisual 505, which positions a Win32 child HWnd in the
scene graph. More particularly, legacy programs will still operate via the WM_PAINT method (or the like) that draws
to a child HWnd (or the like) based on prior graphics technology. To support such programs in the new graphics process-
ing model, the HwndVisual allows the Hwnd to be contained in a scene graph and moved as the parent visual is
repositioned, as represented in FIG. 10A. As a result of limitations with existing Hwnds, however, when rendered, a
child Hwnd can only be on top of other windows, and cannot be rotated or scaled like other visuals described above.
Some clipping is possible, as represented in FIG. 10B, where the dashed lines indicate the HWnd's displayed rectangle
being clipped during relative movement with respect to its parent visual.
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[0071] Other types of visuals 506 are also feasible, and the present object model is extensible to allow others to be
developed. For example, as represented in FIG. 11, a layered visual 1100 enables an application developer to sepa-
rately control the information in a visual via multiple data streams, providing a finer granularity of control relative to
visuals having a single data stream. Note that similar granularity of control can be accomplished by having (e.g., three)
separate child visuals under a single parent visual, however this requires that the program code work with multiple
visuals, which is more complicated than working with a single layered visual having indexes to multiple layers.
[0072] By way of example, in FIG. 11, background data, content data and border data are contained in a single
layered visual, but are separated from one another as indexed by a layer value, e.g., 0, 1 or 2, respectively. Layers
can be inserted, including tacked onto either end, and/or deleted, with the layering order (e.g., left-to-right as shown)
defining an implied Z-order for display. Note that for security, child content and other data in a layered visual cannot
be enumerated.
[0073] Other types of visuals include container visuals, and redirected child HWnd visuals, in which content is drawn
to a bitmap, and incorporated into a surface visual. Three-dimensional visuals enable a connection between two-
dimensional and three dimensional worlds, e.g., a camera-like view is possible via a two-dimensional visual having a
view into a three-dimensional world.
[0074] Many of the resource objects are immutable once created, that is, once they are created they cannot be
changed for various reasons, including simplifying threading issues, preventing corruption by others, and simplifying
the interaction with elements and APIs. Note that this generally simplifies the system. It should be noted, however, that
it is feasible to have a system where such objects are mutable, but for example would require managing a dependency
graph. For example, while it is possible to have a system where such objects are mutable, if program code changed
the clip set on a Visual, the visual would need to be re-rendered, thus requiring a notification / registration mechanism,
e.g., if a new clip is assigned to a visual, the visual registers itself with the clip for notifications (e.g., a clip changed
notification). Thus, in one implementation, for simplification purposes, resource objects are immutable.
[0075] These resource objects can be defined with a constructor, which is a straightforward, generic way to create
an object, or by using a companion builder object, as described below. For instance, to create a SolidColorBrush,
(brush objects are described below), a constructor may be used:

Brush MyBrush = new SolidColorBrush(Colors.Red);

[0076] The user can also use the static members on the Brushes class to get a set of predefined colors.
[0077] Because immutable objects cannot be changed, to effectively change an object, the user needs to create a
new object and replace the old one with it. To this end, many of the resource objects in the system may utilize the
builder pattern, in which immutable objects are created with a builder class, which is a companion class that is mutable.
The user creates an immutable object to mirror the parameters set on the builder, creates a new builder for that object,
and initializes it from the immutable object. The user then changes the builder as necessary. Once done, the user can
build a new object, by changing the builder and reusing it to create another immutable object. Note that having immu-
table objects with set properties is desirable, and that immutable objects cannot be changed, but only replaced by firing
a property change event.
[0078] Thus, instead of using a constructor to create a SolidColorBrush as described above, a SolidColorBrushBuild-
er may be used:

SolidColorBrushBuilder MyBuilder = new
SolidColorBrushBuilder();
MyBuilder.Color = Colors.Red;
Brush MyBrush = MyBuilder.ToBrush();

[0079] Most objects that take static values can also take animation objects. For instance, on the DrawingContext
there is an override on DrawCircle that takes a PointAnimationBase for the center of the circle. In this way, the user
can specify rich animation information at the primitive level. For resource objects there exists an animation collection
in addition to the base value. These are composited, whereby if the user wanted to animate the above example, the
user could specify the following example line before the brush is built:

MyBuilder.ColorAnimations.Add(new ColorAnimation (...));

[0080] Note that an object with animation parameters is still immutable, because its animation parameters are static.
However, when the scene graph is processed (e.g., traversed), the meaning of animation parameters changes over
time, giving the appearance of animated, not static, data.
[0081] As described above, visuals can be drawn on by populating their drawing contexts with various drawing prim-
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itives, including Geometry, ImageData and VideoData. Furthermore, there are a set of resources and classes that are
shared through this entire stack. This includes Pens, Brushes, Geometry, Transforms and Effects. The IDrawingContext
exposes a set of drawing operations that can be used to populate a DrawingVisual, ValidationVisual. ISurfaceDraw-
ingContext, a base interface to IDrawing context, can be used to populate a SurfaceVisual. In other words, the drawing
context exposes a set of drawing operations; for each drawing operation there are two methods, one that takes con-
stants as arguments, and one that takes animators as arguments.
[0082] The DrawLine method draws a line with the specified pen from the start point to the end point.

[0083] The DrawRoundedRectangle method draws a rounded rectangle with the specified brush and pen; brush and
pen can be null.

[0084] The DrawGeometry method draws a path with the specified brush and pen; brush and pen can be null.
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[0085] The DrawRectangle method draws a rectangle with the specified brush and pen; brush and pen can be null.

[0086] The DrawSurface method draws a surface.

[0087] Geometry is a type of class (FIG. 12) that defines a vector graphics skeleton, without stroke or fill. Each
geometry object is a simple shape (LineGeometry, EllipseGeometry, RectangleGeometry), a complex single shape
(PathGeometry) or a list of such shapes GeometryList with a combine operation (e.g., union, intersection, and so forth)
specified. These objects form a class hierarchy as represented in FIG. 12.
[0088] As represented in FIG. 13, the PathGeometry is a collection of Figure objects. In turn, each of the Figure
objects is composed of one or more Segment objects which actually define the figure's shape. A Figure is a sub-section
of a Geometry that defines a segment collection. This segment collection is a single connected series of two-dimen-
sional Segment objects. The Figure can be either a closed shape with a defined area, or just a connected series of
Segments that define a curve, but no enclosed area.
[0089] The filled area of the PathGeometry is defined by taking the contained Figures that have their Filled property
set to true, and applying a FillMode to determine the enclosed area. Note that the FillMode enumeration specifies how
the intersecting areas of Figure objects contained in a Geometry are combined to form the resulting area of the Ge-
ometry. An "Alternate" rule determines whether a point is inside the canvas, by conceptually drawing a ray from that
point to infinity in any direction, and then examining the places where a segment of the shape crosses the ray. By
starting with a count of zero and adding one each time a Segment crosses the ray from left to right and subtracting
one each time a path segment crosses the ray from right to left, after counting the crossings, if the result is zero then
the point is outside the path. Otherwise, it is inside. A "winding" rule determines whether a point on the canvas is inside,
and works by conceptually drawing a ray from that point to infinity in any direction and counting the number of path
Segments from the given shape that the ray crosses. If this number is odd, the point is inside; if even, the point is outside.
[0090] As represented in FIG. 14, when geometry (e.g., a rectangle) is drawn, a brush or pen can be specified, as
described below. Furthermore, the pen object also has a brush object. A brush object defines how to graphically fill a
plane, and there is a class hierarchy of brush objects. This is represented in FIG. 14 by the filled rectangle 1402 that
results when the visual including the rectangle and brush instructions and parameters is processed.
[0091] As described below, some types of Brushes (such as gradients and nine grids) size themselves. When used,
the size for these brushes is obtained from the bounding box, e.g., when the GradientUnits/DestinationUnits for the
Brush is set to ObjectBoundingBox, the bounding box of the primitive that is being drawn is used. If those properties
are set to UserSpaceOnUse, then the coordinate space is used.
[0092] A Pen object holds onto a Brush along with properties for Width, LineJoin, LineCap, MiterLimit, DashArray
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and DashOffset, as represented in the example below:
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[0093] As mentioned above, the graphics object model of the present invention includes a Brush object model, which
is generally directed towards the concept of covering a plane with pixels. Examples of types of brushes are represented
in the hierarchy of FIG. 15, and, under a Brush base class, include SolidColorBrush, GradientBrush, ImageBrush,
VisualBrush (which can reference a Visual) and NineGridBrush. GradientBrush includes LinearGradient and Radial-
Gradient objects. As described above, Brush objects are immutable.

[0094] The following sets forth an example BrushBuilder class:
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[0095] Note that Brush objects may recognize how they relate to the coordinate system when they are used, and/or
how they relate to the bounding box of the shape on which they are used. In general, information such as size may be
inferred from the object on which the brush is drawn. More particularly, many of the brush types use a coordinate
system for specifying some of their parameters. This coordinate system can either be defined as relative to the simple
bounding box of the shape to which the brush is applied, or it can be relative to the coordinate space that is active at
the time that the brush is used. These are known, respectively, as ObjectBoundingBox mode and UserSpaceOnUse
mode.

[0096] A SolidColorBrush object fills the identified plane with a solid color. If there is an alpha component of the color,
it is combined in a multiplicative way with the corresponding opacity attribute in the Brush base class. The following
sets forth an example SolidColorBrush object:
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[0097] The GradientBrush objects, or simply gradients, provide a gradient fill, and are drawn by specifying a set of
gradient stops, which specify the colors along some sort of progression. The gradient is by drawn by performing linear
interpolations between the gradient stops in a gamma 2.2 RGB color space; interpolation through other gammas or
other color spaces (HSB, CMYK and so forth, is also a feasible alternative. Two types of gradient objects include linear
and radial gradients.
[0098] In general, gradients are composed of a list of gradient stops. Each of these gradient stops contains a color
(with the included alpha value) and an offset. If there are no gradient stops specified, the brush is drawn as a solid
transparent black, as if there were no brush specified at all. If there is only one gradient stop specified, the brush is
drawn as a solid color with the one color specified. Like other resource classes, the gradient stop class (example in
the table below) is immutable.
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[0099] There is also a collection class, as set forth in the following example:
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[0100] As represented in the table below, the GradientSpreadMethod specifies how the gradient should be drawn
outside of the specified vector or space. There are three values, including pad, in which the edge colors (first and last)
are used to fill the remaining space, reflect, in which the stops are replayed in reverse order repeatedly to fill the space,
and repeat, in which the stops are repeated in order until the space is filled:

[0101] FIG. 16 shows examples of the GradientSpreadMethod. Each shape has a linear gradient going from white
to grey. The solid line represents the gradient vector.
[0102] The LinearGradient specifies a linear gradient brush along a vector. The individual stops specify colors stops
along that vector. An example is shown in the table below:
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[0103] The RadialGradient is similar in programming model to the linear gradient. However, whereas the linear gra-
dient has a start and end point to define the gradient vector, the radial gradient has a circle along with a focal point to
define the gradient behavior. The circle defines the end point of the gradient, that is, a gradient stop at 1.0 defines the
color at the circle. The focal point defines center of the gradient. A gradient stop at 0.0 defines the color at the focal point.
[0104] FIG. 17 shows a radial gradient that from white to grey. The outside circle represents the gradient circle while
the dot denotes the focal point. This example gradient has its SpreadMethod set to Pad:
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[0105] Another brush object represented in FIG. 15 is a VisualBrush object. Conceptually, the VisualBrush provides
a way to have a visual drawn in a repeated, tiled fashion as a fill. This is represented in FIG. 14 by the visual brush
referencing a visual (and any child visuals) that specifies a single circular shape 1420, with that circular shape filling
a rectangle 1422. Thus, the VisualBrush object may reference a visual to define how that brush is to be drawn, which
introduces a type of multiple use for visuals. In this manner, a program may use an arbitrary graphics "metafile" to fill
an area via a brush or pen. Since this is a compressed form for storing and using arbitrary graphics, it serves a graphics
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resource. The following sets forth an example VisualBrush object:

[0106] A VisualBrush's contents have no intrinsic bounds, and effectively describe an infinite plane. These contents
exist in their own coordinate space, and the space which is being filled by the VisualBrush is the local coordinate space
at the time of application. The content space is mapped into the local space based on the ViewBox, ViewPort, Align-



EP 1 462 936 A2

5

10

15

20

25

30

35

40

45

50

55

30

ments and Stretch properties. The ViewBox is specified in content space, and this rectangle is mapped into the ViewPort
(as specified via the Origin and Size properties) rectangle.
[0107] The ViewPort defines the location where the contents will eventually be drawn, creating the base tile for this
Brush. If the value of DestinationUnits is UserSpaceOnUse, the Origin and Size properties are considered to be in
local space at the time of application. If instead the value of DestinationUnits is ObjectBoundingBox, then an Origin
and Size are considered to be in the coordinate space, where 0,0 is the top/left corner of the bounding box of the object
being brushed, and 1,1 is the bottom/right corner of the same box. For example, consider a RectangleGeometry being
filled which is drawn from 100,100 to 200,200. In such an example, if the DestinationUnits is UserSpaceOnUse, an
Origin of 100,100 and a Size of 100,100 would describe the entire content area. If the DestinationUnits is ObjectBound-
ingBox, an Origin of 0,0 and a Size of 1,1 would describe the entire content area. If the Size is empty, this Brush renders
nothing.
[0108] The ViewBox is specified in content space. This rectangle is transformed to fit within the ViewPort as deter-
mined by the Alignment properties and the Stretch property. If the Stretch is none, then no scaling is applied to the
contents. If the Stretch is Fill, then the ViewBox is scaled independently in both X and Y to be the same size as the
ViewPort. If the Stretch is Uniform or UniformToFill, the logic is similar but the X and Y dimensions are scaled uniformly,
preserving the aspect ratio of the contents. If the Stretch is Uniform, the ViewBox is scaled to have the more constrained
dimension equal to the ViewPort's size. If the Stretch is UniformToFill, the ViewBox is scaled to have the less constrained
dimension equal to the ViewPort's size. In other words, both Uniform and UniformToFill preserve aspect ratio, but
Uniform ensures that the entire ViewBox is within the ViewPort (potentially leaving portions of the ViewPort uncovered
by the ViewBox), and UniformToFill ensures that the entire ViewPort is filled by the ViewBox (potentially causing portions
of the ViewBox to be outside the Viewport). If the ViewBox is empty, then no Stretch will apply. Note that alignment will
still occur, and it will position the "point" ViewBox.
[0109] FIG. 18 provides representations of a single tile 1800 of graphics rendered with various stretch settings,
including a tile 800 when stretch is set to "none." The tile 1802 is a representation of when the stretch is set to "Uniform,"
the tile 1804 when stretch is set to "UniformToFill," and the tile 1806 when stretch is set to "Fill."
[0110] Once the ViewPort is determined (based on DestinationUnits) and the ViewBox's size is determined (based
on Stretch), the ViewBox needs to be positioned within the ViewPort. If the ViewBox is the same size as the ViewPort
(if Stretch is Fill, or if it just happens to occur with one of the other three Stretch values), then the ViewBox is positioned
at the Origin so as to be identical to the ViewPort. Otherwise, HorizontalAlignment and VerticalAlignment are consid-
ered. Based on these properties, the ViewBox is aligned in both X and Y dimensions. If the HorizontalAlignment is
Left, then the left edge of the ViewBox will be positioned at the Left edge of the ViewPort. If it is Center, then the center
of the ViewBox will be positioned at the center of the ViewPort, and if Right, then the right edges will meet. The process
is repeated for the Y dimension.
[0111] If the ViewBox is (0,0,0,0), it is considered unset, whereby ContentUnits are considered. If the ContentUnits
are UserSpaceOnUse, no scaling or offset occurs, and the contents are drawn into the ViewPort with no transform. If
the ContentUnits are ObjectBoundingBox, then the content origin is aligned with the ViewPort Origin, and the contents
are scale by the object's bounding box's width and height.
[0112] When filling a space with a VisualBrush, the contents are mapped into the ViewPort as above, and clipped
to the ViewPort. This forms the base tile for the fill, and the remainder of the space is filled based on the Brush's
TileMode. Finally, if set, the Brush's transform is applied - it occurs after all the other mapping, scaling, offsetting, etc.
[0113] The TileMode enumeration is used to describe if and how a space is filled by its Brush. A Brush which can
be tiled has a tile rectangle defined, and this tile has a base location within the space being filled. The rest of the space
is filled based on the TileMode value. FIG. 19 provides a representation of example graphics with various TileMode
settings, including "None" 1900, "Tile" 1092, "FlipX" 1904, "FlipY" 1906 and "FlipXY" 1908. The top left-most tile in the
various example graphics comprises the base tile.
[0114] FIG. 20 represents a process for generating the pixels for this brush. Note that the logic described in FIG. 20
is only one possible way to implement of the logic, and it should be understood that other ways, including more efficient
ways, are feasible. For example, there are likely more efficient ways processing the data, e.g., such that the content
is not drawn for each repetition, with the tile drawn and cached. However, FIG. 20 provides a straightforward description.
[0115] In general, each time the contents of the pattern are drawn, a new coordinate system is created. The origin
and offset of each repetition is specified by the Origin and Size properties, as filtered through the DestinationUnits and
Transform properties.
[0116] A coordinate frame is set up based on the DestinationUnits property. To this end, if at step 2000, the Desti-
nationUnits property is UserSpaceOnUse, the current coordinate frame at the time the brush was used is the starting
coordinate frame, via step 2002. If instead at step 2004 the property is ObjectBoundingBox, the bounding box of the
geometry to which this brush is applied is used, as represented by step 2004, to set a new coordinate frame such that
the upper left corner of the bounding box maps to (0,0) and the lower left corner of the bounding box maps to (1,1). In
either case, at step 2006 the Transform property is applied to this coordinate frame, which essentially defines a grid.
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[0117] FIG. 21 represents a VisualBrush Grid that is defined for the tiles in a VisualBrush. The first circle is a simple
grid, and the second has a Transform with a Skew in the x direction of 47.
[0118] At step 2008, the visual is drawn into each cell of the grid, as represented in FIG. 22, where the visual draws
the appropriate data. If at step 2010 there is a ViewBox specified, the Visual is fitted into the grid cell as specified by
the ViewBox, Stretch, HorizontalAlign and VerticalAlign attributes, via step 2012. The DestinationUnits and Transform
properties are used to apply the correct transform such that the visual lines up in the grid box.
[0119] If there is no ViewBox specified, then a new coordinate system is established for drawing the content at step
2014.
[0120] The coordinate frame is set such that its origin is at the Origin point for that particular grid cell being drawn.
[0121] A clip is applied at step 2018 based on the Size property such that this tile will not draw outside of the bounds
of the cell. The Origin and Size are modified appropriately based on the DestinationUnits property.
[0122] The coordinate system is then modified, based on the SourceUnits property. To this end, if at step 2020 the
SourceUnits property is ObjectBoundingBox, the appropriate scaling transform is applied at step 2026, otherwise it is
UserSpaceOnUse, and no new transform is applied. The Transform property is applied at step 2024, and the content
is drawn at step 2026.
[0123] Note that if any part of size is zero, nothing is drawn, and if Stretch is "None," the transform for the viewbox
is set up such that one unit in the new coordinate frame is equal to one unit in the old coordinate frame. The transform
essentially becomes an offset based on the align attributes and the size of the ViewBox. As described above at steps
2010 and 2012, Stretch and the alignment properties only apply when there is a ViewBox specified. The ViewBox
specifies a new coordinate system for the contents, and Stretch helps to specify how those contents map into the
ViewBox. The alignment options align the ViewBox, not the contents. Thus, for example, if the viewbox is set to "0 0
10 10" and something is drawn at -10,-10 and aligned to the upper left corner, that thing will be clipped out.
[0124] Returning to FIG. 15, image brush can be thought of as a special case of VisualBrush. Although a program
can create a visual, put an image into it and attach it to VisualBrush, the API for doing so would be cumbersome. Since
there is no necessary content coordinate frame, the ViewBox and ContentUnits property members no longer apply.
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[0125] NineGridBrush is very similar to ImageBrush except the image is warped based on the size. In essence,
NineGridBrush may be thought of a custom type of Stretch, in which certain parts of the image stretch, while others
(e.g., borders) do not. Thus, while the Size of the image in the ImageBrush will cause a simple scale, the NineGridBrush
will produce a non-uniform scale up to the desired size. The units for the non-scaled areas are the user units when the
brush is applied, which means that ContentUnits (if it existed for NineGridBrush) would be set to UserUnitsOnUse.
The Transform property of the Brush can be used effectively. Note that the border members count in from the edge of
the image.
[0126] By way of example, FIG. 23 represents a nine-grid image being enlarged from a first instance 2302 to a second
instance 2304, with four types of areas. As represented in FIG. 23, to keep the border the same, the areas marked "a"
expand horizontally, the areas marked "b" expand vertically, the areas marked "c" expand horizontally and vertically,
and the areas marked "d" do not change in size.
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[0127] As generally described above, the graphics object model of the present invention includes a Transform object
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model, which includes the types of transforms represented in the hierarchy of FIG. 24, under a Transform base class.
These different types of components that make up a transform may include TransformList, TranslateTransform, Rota-
teTransform, ScaleTransform, SkewTransform, and MatrixTransform. Individual properties can be animated, e.g., a
program developer can animate the Angle property of a RotateTransform.
[0128] Matrices for 2D computations are represented as a 3x3 matrix. For the needed transforms, only six values
are needed instead of a full 3x3 matrix. These are named and defined as follows.

[0129] When a matrix is multiplied with a point, it transforms that point from the new coordinate system to the previous
coordinate system:

[0130] Transforms can be nested to any level. Whenever a new transform is applied it is the same as post-multiplying
it onto the current transform matrix:

[0131] Most places in the API do not take a Matrix directly, but instead use the Transform class, which supports
animation.
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CONCLUSION

[0132] As can be seen from the foregoing detailed description, there is provided a system, method and object model
that provide program code with the ability to interface with a scene graph. The system, method and object model are
straightforward to use, yet powerful, flexible and extensible.
[0133] While the invention is susceptible to various modifications and alternative constructions, certain illustrated
embodiments thereof are shown in the drawings and have been described above in detail. It should be understood,
however, that there is no intention to limit the invention to the specific forms disclosed, but on the contrary, the intention
is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention.

Claims

1. In a computing environment, a method comprising:

receiving, at a defined interface, a request to create a visual to contain graphic information in a scene graph,
and in response, creating the visual;
providing a drawing context for the visual;
maintaining data in association with the visual, the data received via the drawing context; and
processing the scene graph including the visual to provide graphics data to a graphics subsystem.

2. The method of claim 1 wherein providing a drawing context comprises receiving a request to open the visual and
in response, providing a reference to the drawing context.

3. The method of claim 1 wherein maintaining data in the visual comprises maintaining at least one drawing primitive
received via the drawing context.

4. The method of claim 1 further comprising receiving a request to close the drawing context and in response, closing
the drawing context.

5. The method of claim 1 wherein the visual comprises a drawing visual accessed by program code.

6. The method of claim 1 wherein the visual comprises a validation visual accessed by program code, and further
comprising, invalidating the visual, and communicating data to the program code to validate the visual.

7. The method of claim 1 wherein the visual comprises a surface visual and wherein the data maintained in association
with the visual comprises pixel data.

8. The method of claim 1 wherein the visual comprises a surface visual, and further comprising a surface visual
manager that relates the surface visual to a subgraph of at least one other visual by traversing the subgraph to
provide an image to the surface visual.

9. The method of claim 1 wherein maintaining data in association with the visual includes receiving at least one
drawing primitive via the drawing context.
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10. The method of claim 1 wherein receiving at least one drawing primitive comprises receiving an image data primitive.

11. The method of claim 1 wherein receiving at least one drawing primitive comprises receiving a video data primitive.

12. The method of claim 1 wherein receiving at least one drawing primitive comprises receiving a geometry primitive.

13. The method of claim 12 wherein receiving a geometry primitive comprises receiving data corresponding to at least
one property of a line.

14. The method of claim 12 wherein receiving a geometry primitive comprises receiving data corresponding to at least
one property of an ellipse.

15. The method of claim 12 wherein receiving a geometry primitive comprises receiving data corresponding to at least
one property of a rectangle.

16. The method of claim 12 wherein receiving a geometry primitive comprises receiving data corresponding to at least
one property of a complex single shape.

17. The method of claim 12 wherein receiving a geometry primitive comprises receiving data corresponding to at least
one property of a list of shapes and an operation for combining the listed shapes.

18. The method of claim 1 wherein at least one drawing primitive is associated with brush object data.

19. The method of claim 18 wherein the brush object data comprises solid color brush data.

20. The method of claim 18 wherein the brush object data comprises gradient brush data.

21. The method of claim 20 wherein the gradient brush object data comprises linear gradient object data, including at
least a start point and an end point.

22. The method of claim 20 wherein the gradient brush object data comprises radial gradient object data, including
circle data and a focal point.

23. The method of claim 18 wherein the brush object data comprises image brush data.

24. The method of claim 18 wherein the brush object data comprises nine grid brush data.

25. The method of claim 18 wherein the brush object data comprises visual brush data.

26. The method of claim 18 wherein the visual brush data comprises a reference to another visual.

27. The method of claim 1 wherein maintaining data in association with the visual includes receiving brush data via
the drawing context.

28. The method of claim 1 wherein maintaining data in association with the visual includes receiving pen data via the
drawing context.

29. The method of claim 28 wherein the pen data comprises at least one of: width data, line join data, line cap data,
miter limit data, dash array data and dash offset data.

30. The method of claim 1 wherein maintaining data in association with the visual includes receiving effects data via
the drawing context.

31. The method of claim 1 wherein maintaining data in association with the visual includes receiving opacity data via
the drawing context.

32. The method of claim 1 wherein maintaining data in association with the visual includes receiving clipping data via
the drawing context.
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33. The method of claim 1 wherein maintaining data in association with the visual includes receiving transform data
via the drawing context.

34. The method of claim 33 wherein the transform data comprises transform list data.

35. The method of claim 33 wherein the transform data comprises translation data.

36. The method of claim 33 wherein the transform data comprises rotation data.

37. The method of claim 33 wherein the transform data comprises scaling data.

38. The method of claim 33 wherein the transform data comprises skew data.

39. The method of claim 33 wherein the transform data comprises transform matrix data.

40. The method of claim 33 wherein the transform data comprises transform animation data for at least one property
of a transform.

41. The method of claim 1 wherein maintaining data in association with the visual includes receiving viewbox data via
the drawing context by which the visual is fit into a grid cell.

42. The method of claim 41 wherein the viewbox data is specified by at least one of: stretch, horizontal alignment and
vertical alignment properties.

43. The method of claim 1 wherein processing the scene graph comprises traversing the scene graph.

44. The method of claim 1 wherein processing the scene graph comprises transmitting the scene graph.

45. A computer-readable medium having computer-executable instructions for performing the method of claim 1.

46. A computer-implemented method, comprising:

receiving function calls at an interface to a scene graph data structure; and
processing data associated with the function calls to create objects in the scene graph and hierarchically
arrange those objects with respect to one another, the objects corresponding to a scene graph object model.

47. The method of claim 46 wherein one of the objects comprises a validation visual, and further comprising, calling
a program to repopulate the validation visual.

48. The method of claim 46 wherein one of the objects comprises a visual, and further comprising, providing a drawing
context to populate the object with drawing data received via the drawing context.

49. The method of claim 48 further comprising receiving data via the drawing context comprising image data.

50. The method of claim 48 further comprising receiving data via the drawing context comprising video data.

51. The method of claim 48 further comprising receiving data via the drawing context comprising geometry data.

52. The method of claim 51 wherein the geometry data comprises at least one of: line data, ellipse data, rectangle
data or a complex single shape data.

53. The method of claim 51 wherein the geometry data comprises a list of shapes and an operation for combining the
listed shapes.

54. The method of claim 48 further comprising receiving data via the drawing context comprising brush data.

55. The method of claim 54 wherein the brush data comprises solid color brush data.
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56. The method of claim 54 wherein the brush data comprises gradient brush data.

57. The method of claim 54 wherein the brush data comprises image brush data.

58. The method of claim 54 wherein the brush data comprises nine grid brush data.

59. The method of claim 54 wherein the brush data comprises visual brush data.

60. The method of claim 48 further comprising receiving data via the drawing context comprising pen data.

61. The method of claim 60 wherein the pen data comprises at least one of: width data, line join data, line cap data,
miter limit data, dash array data and dash offset data.

62. The method of claim 48 further comprising receiving opacity data via the drawing context.

63. The method of claim 48 further comprising receiving clipping data via the drawing context.

64. The method of claim 48 further comprising receiving transform data via the drawing context.

65. The method of claim 48 further comprising receiving viewbox data comprising at least one of: stretch, horizontal
alignment and vertical alignment properties.

66. The method of claim 46 further comprising, processing the scene graph to provide graphics data to a graphics
subsystem.

67. The method of claim 46 wherein one of the objects comprises a surface visual, and further comprising, maintaining
pixel data in association with the surface visual.

68. The method of claim 67 further comprising, relating the surface visual to a subgraph of at least one other visual
by traversing the subgraph.

69. A computer-readable medium having computer-executable instructions for performing the method of claim 46.

70. In a computing environment, a system comprising:

a scene graph data structure configured to contain objects of a scene graph object model;
an interface between a program and the scene graph data structure, the interface configured to:

1) receive function calls from the program to create objects in the scene graph, and
2) hierarchically arrange those objects with respect to one another, the objects corresponding to a scene
graph object model.

71. The system of claim 70 wherein the interface instantiates a builder to create at least one of the objects.

72. The system of claim 70 wherein one of the objects comprises a visual.

73. The system of claim 72 further comprising a drawing context, the interface returning a reference to the drawing
context for populating the visual with data.

74. The system of claim 72 wherein the visual comprises a drawing visual.

75. The system of claim 72 wherein the visual comprises a validation visual.

76. The system of claim 72 further comprising a visual manager configured to process the scene graph to provide
graphics data to at least one lower-level graphics component.

77. The system of claim 72 wherein the visual comprises a surface visual.
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78. The system of claim 77 wherein the surface visual includes a subgraph, and further comprising a surface visual
manager configured to traverse the subgraph.



EP 1 462 936 A2

41



EP 1 462 936 A2

42



EP 1 462 936 A2

43



EP 1 462 936 A2

44



EP 1 462 936 A2

45



EP 1 462 936 A2

46



EP 1 462 936 A2

47



EP 1 462 936 A2

48



EP 1 462 936 A2

49



EP 1 462 936 A2

50



EP 1 462 936 A2

51



EP 1 462 936 A2

52



EP 1 462 936 A2

53



EP 1 462 936 A2

54



EP 1 462 936 A2

55



EP 1 462 936 A2

56



EP 1 462 936 A2

57



EP 1 462 936 A2

58



EP 1 462 936 A2

59


	bibliography
	description
	claims
	drawings

