(11) **EP 1 467 383 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

13.10.2004 Patentblatt 2004/42

(51) Int Cl.7: **H01B 17/12**

(21) Anmeldenummer: 04005896.8

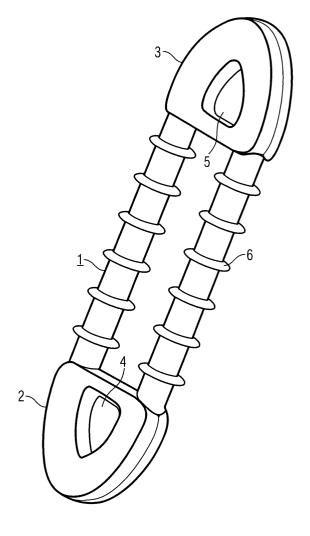
(22) Anmeldetag: 12.03.2004

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR Benannte Erstreckungsstaaten:

AL LT LV MK

(30) Priorität: 10.04.2003 DE 10316554


(71) Anmelder: SIEMENS AKTIENGESELLSCHAFT 80333 München (DE)

(72) Erfinder:

- Hoffmann, Martin 91315 Höchstadt/Aisch (DE)
- Leray, Philippe 91052 Erlangen (DE)
- Rankers, Marten
 91056 Erlangen (DE)

(54) Schlingenisolator

(57) Die Erfindung betrifft einen Schlingenisolator mit einem schlingenförmigen Isolatorbauteil (1), das mit einander gegenüberliegenden Anschlusskauschen (2, 3) verbunden ist. Es ist vorgesehen, dass jede Anschlusskausche (2, 3) eine Öffnung (4, 5) mit drei Ecken hat. Es kann auch vorgesehen sein, dass das Isolatorbauteil (1) im Bereich der Anschlusskauschen (2, 3) parabelförmig gebogen ist und auch die Aufnahmeflächen der Anschlusskauschen (2, 3) entsprechend geformt sind. Die Aufnahmeflächen der Anschlusskauschen (2, 3) für das Isolatorbauteil (1) können im Querschnitt Teil eines abgerundeten Rechtecks sein. Es sind auch Kombinationen möglich.

Beschreibung

[0001] Die Erfindung betrifft einen Schlingenisolator mit einem schlingenförmigen Isolatorbauteil, das mit einander gegenüberliegenden Anschlusskauschen verbunden ist.

[0002] Ein solcher Schlingenisolator ist beispielsweise aus der Veröffentlichung der Siemens AG mit der Bestellnummer A52813-W3001-A0001-02-00 B1 bekannt. Die dort beschriebenen Schlingenisolatoren SICAT 8WL3001/3002 werden eingesetzt, um die spannungsführende Oberleitung von elektrischen Bahnen vom Erdpotential zu isolieren. Das schlingenförmige Isolatorbauteil besteht aus glasfaserverstärktem Kunststoff, und zwar aus einem in sich geschlossenen glasfaserverstärkten Kunststoffstrang. An gegenüberliegenden Enden dieses schlingenförmigen Isolatorbauteils ist jeweils eine Anschlussarmatur angeordnet, die Anschlusskausche genannt wird. Diese Anschlusskauschen sind häufig aus einer Kupfer-Aluminium-Legierung gefertigt. Bei der Herstellung werden die mit Epoxidharz getränkten Glasfasern des Isolatorbauteils direkt auf die Anschlusskauschen gewickelt und dort gehärtet.

[0003] Die bekannten Anschlusskauschen der Schlingenisolatoren und in den Anschlusskauschen gehaltene Anschlussbauteile wie Seile, Drähte oder Bolzen bestehen unter anderem aus unterschiedlichen Metallen, die unterschiedliche elektrochemische Spannungen haben. Es kann dadurch in Folge der Luftfeuchte zur elektrochemischen Korrosion kommen. Außerdem ist eine Spannungsrisskorrosion, insbesondere, falls Anschlusskauschen aus Messing verwendet werden, nicht auszuschließen.

[0004] Die bekannten Anschlusskauschen haben stets kreisrunde Öffnungen, in denen die Anschlussbauteile gehalten werden. In den Öffnungen befinden sich Kauscheneinsätze aus Kupfer-Aluminium-Legierung, aus Kupfer, aus Messung und/oder aus Polyamid. Das schlingenförmige Isolatorbauteil umgreift die Anschlusskauschen.

[0005] In einer kreisrunden bzw. zylindrischen Öffnung einer Anschlusskausche ist eine gute Kraftübertragung zwischen dem Schlingenisolator einerseits und einem in der Anschlusskausche geführten Anschlussbauteil (Seil, Draht oder Bolzen) andererseits nur dann gegeben, wenn die Radien von Anschlusskausche und Anschlussbauteil weitgehend übereinstimmen. Das ist jedoch nicht immer gegeben. Es kommt dann zu einem Krafteintrag in den Schlingenisolator an nur einer Linie. Das ist besonders dann gegeben, wenn die in die Kauschenöffnung eingeführten Seile, Drähte oder Bolzen unterschiedliche Durchmesser haben können. Darüber hinaus ist die Montage des Seiles, des Bolzens oder des Drahtes in einem zylindrischen Durchbruch nicht immer schnell durchführbar. Außerdem ist eine Montage mehrerer Seile oder Drähte nur sehr be-

[0006] Außerdem hat sich herausgestellt, dass die

Kraftübertragung von der Anschlusskausche auf das schlingenförmige Isolatorbauteil bei außen zylinderförmigen Anschlusskauschen nicht immer optimal ist.

[0007] Der Erfindung liegt die Aufgabe zugrunde, im Schlingenisolator eine gute Lastverteilung und geringe Flächenpressungen zu gewährleisten, um eine gegenüber bekannten Schlingenisolatoren höhere Belastbarkeit zu erzielen.

[0008] Die Aufgabe wird gemäß einer ersten Ausführungsform der Erfindung dadurch gelöst, dass jede Anschlusskausche eine Öffnung mit drei Ecken hat.

[0009] Damit wird der Vorteil erzielt, dass ein Anschlussbauteil (Bolzen, Seil oder Draht), das durch diese Öffnung der Anschlusskausche verläuft, unabhängig von seinem Durchmesser stets mindestens an zwei Linien an der Anschlusskausche anliegt. Damit werden ein besser verteilter Krafteintrag und eine geringere Flächenpressung als bisher ermöglicht.

[0010] Beispielsweise sind die Begrenzungsflächen der Öffnung der Anschlusskausche abgerundet. Damit wird der weitere Vorteil erzielt, dass Anschlussbauteile leichter als bisher in die Öffnung eingefügt werden können. Man benötigt für unterschiedliche Anschlussbauteile, wie Bolzen, Seile oder Drähte keine besonders ausgeführten Schlingenisolatoren.

[0011] Die Aufgabe wird gemäß einer zweiten Ausführungsform der Erfindung dadurch gelöst, dass das Isolatorbauteil im Bereich der Anschlusskauschen parabelförmig gebogen ist und dass die Aufnahmeflächen der Anschlusskauschen entsprechend geformt sind.

[0012] Damit wird der Vorteil erzielt, dass das schlingenförmige Isolatorbauteil weniger stark über seinen Querschnitt belastet wird. Es ist dadurch eine Verminderung der Verformung des schlingenförmigen Isolatorbauteiles gegeben. Das führt zu einer höheren Belastbarkeit des Schlingenisolators und damit zu mehr Sicherheit.

[0013] Die Aufgabe wird gemäß einer dritten Ausführungsform der Erfindung dadurch gelöst, dass Aufnahmeflächen der Anschlusskauschen für das Isolatorbauteil im Querschnitt Teil eines abgerundeten Rechtecks sind.

[0014] Auch hier ist dann stets zumindest ein Krafteintrag über zwei Linien gegeben, was die Stabilität der Verbindung verbessert.

[0015] Beispielsweise können die drei Ausführungsformen in jeder beliebigen Kombination vorgesehen sein. Es ergibt sich stets eine noch stabilere und damit sicherere Ausführungsform des Schlingenisolators.

[0016] Mit den Schlingenisolatoren nach der Erfindung wird insbesonder der Vorteil erzielt, dass am gesamten Schlingenisolator und insbesondere in Verbindung mit den angebundenen übrigen Bauteilen eine gute Lastverteilung gegeben ist, so dass der Verschleiß geringer als früher ist.

[0017] Ein Ausführungsbeispiel des Schlingenisolators nach der Erfindung wird anhand der Zeichnung näher erläutert:

[0018] Die Zeichnung zeigt einen Schlingenisolator mit einem schlingenförmigen Isolatorbauteil 1, das mit einander gegenüberliegenden Anschlusskauschen 2, 3 verbunden ist. Die Anschlusskauschen 2, 3 bestehen aus nur einem einzigen nicht elektrochemisch reagierenden und stets spannungsrissfreien Metall oder aus einer Kombination von einem solchen Metall mit einem nichtmetallischen Stoff, beispielsweise Kunststoff oder Keramik. Dadurch kann es nicht zur elektrochemischen Korrosion, oder zur Spannungsrisskorrosion kommen. [0019] Jede Anschlusskausche 2, 3 hat eine Öffnung 4, 5 mit jeweils drei Ecken. Ein nicht gezeigter Bolzen oder ein Draht mit kreisrundem Querschnitt, die in den Öffnungen 4, 5 gehalten werden, liegen dann mindestens an zwei Linien an der Anschlusskausche 2, 3 an, so dass sich eine gute Lastverteilung und eine geringe Flächenpressung ergeben.

[0020] Die Begrenzungsflächen der Öffnungen 4, 5 sind abgerundet, wodurch ein Bolzen oder ein Draht oder ein Seil oder auch mehrere Drähte besser in eine 20 der Öffnungen 4, 5 einführbar sind.

[0021] Das Isolatorbauteil 1 ist im Bereich der Anschlusskauschen 2, 3 parabelförmig gebogen und die Aufnahmeflächen der Anschlusskauschen 2 und 3 sind entsprechend geformt. Dadurch ist auch an dieser Verbindung eine bessere Kraftübertragung und damit eine höhere Belastbarkeit des Schlingenisolators gegeben als früher.

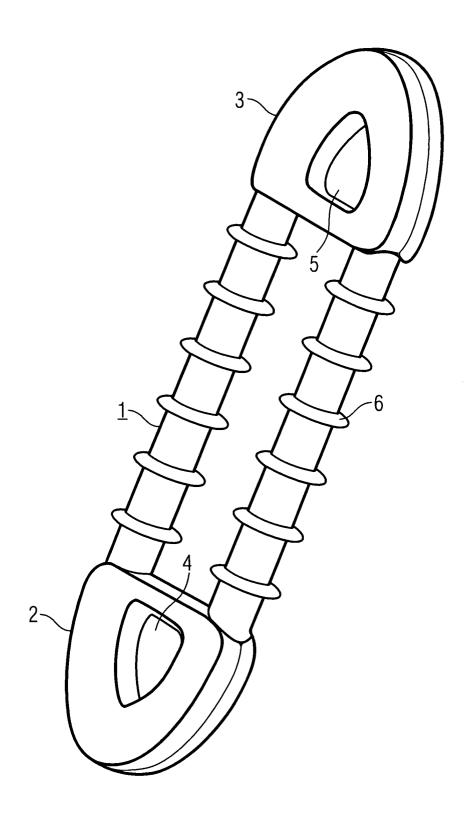
[0022] Die Aufnahmeflächen der Anschlusskauschen 2 und 3 für das Isolatorbauteil 1 sind im Querschnitt Teil eines abgerundeten Rechtecks, wodurch auch hier eine höhere Belastbarkeit und Zuverlässigkeit gegeben ist.

[0023] Die Anschlusskauschen 2, 3 überdecken in ihrem Bereich das Isolatorbauteil 1 ganz und schützen es so vor mechanischen Einwirkungen.

[0024] Um eine Schmutz- oder Wasserschicht auf dem Isolatorbauteil 1 zu vermeiden, die zu Schäden führen kann, hat das Isolatorbauteil 1 einen hydrophoben Überzug aus geeignetem Material.

[0025] Das schlingenförmige Isolatorbauteil 1 hat einen kreisförmigen Querschnitt und ist mit Abtropfkanten 6 in der Form von scheibenförmigen Ringen ausgestattet. Damit wird vermieden, dass sich ein durchgehender Wasserfilm auf dem Isolatorbauteil 1 ausbilden kann.

Patentansprüche


- Schlingenisolator mit einem schlingenförmigen Isolatorbauteil (1), das mit einander gegenüberliegenden Anschlusskauschen (2 und 3) verbunden ist, dadurch gekennzeichnet, dass jede Anschlusskausche (2, 3) eine Öffnung (4, 5) mit drei Ecken hat.
- Schlingenisolator nach Anspruch 1, dadurch gekennzeichnet, dass die Begrenzungsfläche der Öffnung abgerundet ist.

- 3. Schlingenisolator mit einem schlingenförmigen Isolatorbauteil (1), das mit einander gegenüberliegenden Anschlusskauschen (2 und 3) verbunden ist, dadurch gekennzeichnet, dass das Isolatorbauteil (1) im Bereich der Anschlusskauschen (2, 3) parabelförmig gebogen ist und dass Aufnahmeflächen der Anschlusskauschen (2, 3) entsprechend geformt sind.
- 4. Schlingenisolator mit einem schlingenförmigen Isolatorbauteil (1), das mit einander gegenüberliegenden Anschlusskauschen (2 und 3) verbunden ist, dadurch gekennzeichnet, dass Aufnahmeflächen der Anschlusskauschen (2, 3) für das Isolatorbauteil (1) im Querschnitt Teil eines abgerundeten Rechtecks sind.

55

35

45

