BACKGROUND OF THE INVENTION
[0001] Inflammation is a process resulting from the dilation and increased permeability
of blood vessels at site of injury or infection. Chemokines and cytokines released
at the site increase the expression of cell surface proteins on endothelial cells,
allowing circulating leukocytes to stick to the vessel wall and migrate to the site
of injury/infection within the tissue. These cell surface proteins, termed "cell adhesion
molecules" allow the interaction between the leukocytes and the endothelial cells,
and mediate the migration of leukocytes into the tissue. Additionally, cell adhesion
molecules are required for many of the cell-to-cell interactions in the inflammatory
and immune responses. There are three classes of adhesion molecules: selectins, integrins
and immunmoglobulin-related proteins which can be expressed on leukocytes and endothelial
cells. Several of the adhesion molecules, including E-selectin and ICAM, are induced
by cytokines such as IL-1 and TNF, and their expression is mediated by the transcriptional
factor, NF-κB.
[0002] Sustained or inappropriate expression of adhesion molecules can lead to inflammatory
or autoimmune disorders. Exaggerated expression of E-selectin and/or ICAM can result
in chronic inflammation and has been associated with several inflammatory or autoimmune
disorders. Therefore, inhibitors of cell adhesion molecules may be useful for the
treatment of these diseases.
[0003] Inflammatory and autoimmune diseases are not well managed by current therapy and
developments of better drugs are widely pursued. For example, rheumatoid arthritis
is a state of chronic inflammation within the joint characterized by cartilage and
bone destruction. Traditional therapies for inflammatory or autoimmune disease, such
as rheumatoid arthritis, include nonsteroidal anti-inflammatory drugs and salicylates,
gold compounds, hydroxychloroquine, sulfasalazine, corticosteroids, oral penicillamines,
and cytotoxic or immunosuppressive drugs. However, many of these therapies are not
always sufficiently effective and have resulted in serious side effects. More recently,
injectable forms of TNFα neutralizing proteins have been successfully marketed for
the treatment of rheumatoid arthritis and Crohn's Disease; however, an orally available
inhibitor has not been developed for these inflammatory or autoimmune diseases.
[0004] Clearly, there remains a need to identify new classes of therapeutic agents for the
treatment of inflammatory or autoimmune and proliferative diseases, preferably that
are orally available, and are free of serious side effects. It would also be desirable
to define new classes of therapeutic agents for the treatment of inflammatory or autoimmune
and proliferative disorders in general.
SUMMARY OF THE INVENTION
[0005] As discussed above, there remains a need for the development of novel therapeutic
agents useful for treating inflammatory or autoimmune and proliferative diseases.
The present invention provides novel compounds of general formula (I),

and pharmaceutical compositions thereof, as described generally and in classes and
subclasses herein, as well as methods of making and using such compounds
DESCRIPTION OF CERTAIN PREFERRED EMBODIMENTS OF THE INVENTION
[0006] In recognition of the need to investigate and define new classes of therapeutic agents
for the treatment of rheumatoid arthritis and other disorders (in certain embodiments,
inflammatory or autoimmune and proliferative disorders), the present invention provides
novel deazapurines and analogues thereof, as described in more detail herein, which
are useful generally in the treatment of inflammatory or autoimmune and proliferative
disorders. In certain embodiments, the compounds of the present invention can be used
for the treatment of diseases and disorders including, but not limited to, rheumatoid
arthritis, ulcerative colitis/Crohn's disease, central nervous system diseases (CNS)
such as multiple sclerosis, systemic lupus erythematosus, asthma, allograft rejection/graft
versus host disease (GVHD), psoriasis, atopic dermatitis, eczema, uticaria, allergic
rhinitis, myasthenia gravis, diabetes, idiopathic thrombocytopenia purpura, glomerulonephritis,
cardiovascular disease, and cancer.
[0007] 1) General Description of Compounds of the Invention
[0008] The compounds of the invention include compounds of the general formula (I) (and
tautomers thereof) as further defined below:

and pharmaceutically acceptable derivatives thereof,
wherein n is an integer from 0-4;
R
1 is hydrogen, -NH
2, -NHMe, -NHAc, -OH F, -OMe, -CN, or -NH(C=O)OEt;
R
2 is hydrogen, -NR
AR
B, -OR
A, an aliphatic, heteroaliphatic, aryl, or heteroaryl moiety, wherein R
A and R
B are each independently hydrogen or an aliphatic, heteroaliphatic, aryl or heteroaryl
moiety;
each occurrence of R
3 is independently hydrogen, halogen, cyano, or an aliphatic, heteroaliphatic, aryl
or heteroaryl moiety, or a group -G-R
C, wherein G is absent or is -CH
2-, -NR
D-, -O-, or (C=O), and wherein R
C is hydrogen, -NR
FR
G, -OR
F, -SR
F, or an aliphatic, heteroaliphatic, aryl, or heteroaryl moiety, wherein R
D, R
F and R
G are each independently hydrogen, -NR
xR
y, an aliphatic, cycloaliphatic, heteroaliphatic, cycloheteroaliphatic, aryl, or heteroaryl
moiety, -C(O)R
Z wherein R
Z is an aliphatic, heteroaliphatic, aryl or heteroaryl moiety, or wherein R
D and R
C or R
F and R
G taken together are a 3-, 4-, 5-, 6-, 7- or 8-membered substituted or unsubstituted
cycloaliphatic or cycloheteroaliphatic moiety; wherein each occurrence of R
x and R
y is independently hydrogen, an aliphatic, cycloaliphatic, heteroaliphatic, cycloheteroaliphatic,
aryl, or heteroaryl moiety, -C(O)R
Z wherein R
Z, an aliphatic, heteroaliphatic, aryl or heteroaryl moiety, or wherein R
x and R
y taken together are a 4-, 5- or 6-membered substituted or unsubstituted, saturated
or unsaturated cycloaliphatic or cycloheteroaliphatic moiety;
whereby each of the foregoing aliphatic or heteroaliphatic moieties may be independently
substituted or unsubstituted, cyclic or acyclic, linear or branched, saturated or
unsaturated and wherein each of the foregoing aryl or heteroaryl moieties may be independently
substituted or unsubstituted.
[0009] In certain embodiments, the present invention defines certain classes of compounds
which are of special interest For example, one class of compounds of special interest
includes those compounds substituted with two occurrences of R
3 in which the compound has the structure:

wherein R
3a and R
3b are each independently hydrogen, halogen, cyano, or an aliphatic, heteroaliphatic,
aryl or heteroaryl moiety, or a group -G-R
c, wherein G is absent -CH
2-,
-NR
D-, -0-, or (C=O), and wherein R
c is hydrogen, -NR
FR
G, -OR
F, -SR
F, or an aliphatic, heteroaliphatic, aryl, or heteroaryl moiety, wherein R
D, R
F and R
G are each independently hydrogen, -NR
xR
y, an aliphatic, cycloaliphatic, heteroaliphatic, cycloheteroaliphatic, aryl, or heteroaryl
moiety, -((O)R
Z wherein R
Z is an aliphatic, heteroaliphatic, aryl or heteroaryl moiety, or wherein R
D and R
C or R
F and R
G taken together are a 3-, 4-, 5-, 6-, 7- or 8-membered substituted or unsubstituted
cycloaliphatic or cycloheteroaliphatic moiety; wherein each occurrence of R
x and R
y is independently hydrogen, an aliphatic, cycloaliphatic, heteroaliphatic, cyclobeteroaliphatic,
aryl, or heteroaryl moiety, -C(O)R
Z wherein R
Z is an aliphatic, hetemaliphatic, aryl or heteroaryl moiety, or wherein R
x and R
y taken together are a 4-, 5- or 6-membered substituted or unsubstituted, saturated
or unsaturated cycloaliphatic or cycloheteroaliphatic moiety;
whereby each of the foregoing aliphatic or heteroaliphatic moieties may be independently
substituted or unsubstituted, cyclic or acyclic, linear or branched, saturated or
unsaturated; and wherein each of the foregoing aryl or heteroaryl moieties may be
independently substituted or unsubstituted.
[0010] Another class of compounds of special interest comprises compounds having the structure:

wherein R
3a and R
3b are each independently hydrogen, halogen, cyano, or an aliphatic, heteroaliphatic,
aryl or heteroaryl moiety, or a group -G-R
c, wherein G is absent, -CH
2-,
-NR
D-, -0-, or (C=O), and wherein R
C is hydrogen, NR
FR
G, -OR
F, -SR
F, or an aliphatic, heteroaliphatic, aryl, or heteroaryl moiety, wherein R
D, R
F and R
G are each independently hydrogen, NR
xR
y, an aliphatic, cycloaliphatic, heteroaliphatic, cycloheteroaliphatic, aryl, or heteroaryl
moiety, -C(O)R
Z wherein R
Z is an aliphatic, heteroaliphatic, aryl or heteroaryl moiety, or wherein R
D and R
C or R
F and R
G taken together are a 3-, 4-, 5-, 6-, 7- or 8-membered substituted or unsubstituted
cycloaliphatic or cycloheteroaliphatic moiety; wherein each occurrence of R
x and R
y is independently hydrogen, an aliphatic, cycloaliphatic, heteroaliphatic, cycloheteroaliphatic,
aryl, or heteroaryl moiety, -C(O)R
Z wherein R
Z is an aliphatic, heteroaliphatic, aryl or heteroaryl moiety, or wherein R
x and R
y taken together are a 4-, 5- or 6-membered substituted or unsubstituted, saturated
or unsaturated cycloaliphatic or cycloheteroaliphatic moiety;
whereby each of the foregoing aliphatic or heteroaliphatic moieties may be independently
substituted or unsubstituted, cyclic or acyclic, linear or branched, saturated or
unsaturated; and wherein each of the foregoing aryl or heteroaryl moieties may be
independently substituted or unsubstituted.
[0011] Another class of compounds of special interest comprises compounds having the structure
of formula (I) in which R
3a is -CH
2NR
FR
G and R
3b is hydrogen and the compound has the structure:

wherein R
1, R
2, R
F and R
G are as defined generally above and in classes and subclasses herein.
[0012] Another class of compounds of special interest comprises compounds having the structure
of formula (I) in which R
3b is -CH
2NR
FR
G and R
3a is hydrogen and the compound has the structure:

wherein R
1, R
2, R
F and R
G are as defined generally above and in classes and subclasses herein.
[0013] Another class of compounds of special interest comprises compounds having the structure
of formula (I) in which R
3c is -CH
2NR
FR
G and R
3d is hydrogen and the compound has the structure:

wherein R
1, R
2, R
F and R
G are as defined generally above and in classes and subclasses herein.
[0014] Another class of compounds of special interest comprises compounds having the structure
of formula (I) in which R
3a is -(CH=CH)
qCH
2(CH
2)
rNR
FR
G and R
3b is hydrogen and the compound has the structure:

wherein q and r are each independently 0 or 1; and R
1, R
2, R
F and R
G are as defined generally above and in classes and subclasses herein.
[0015] Another class of compounds of special interest comprises compounds having the structure
of formula (I) in which R
3a is hydrogen and R
3b is - (CH=CH)
qCH
2(CH
2)
rNR
FR
G and the compound has the structure:

wherein q and r are each independently 0 or 1; and R
1, R
2, R
F and R
G are as defined generally above and in classes and subclasses herein.
[0016] Another class of compounds of special interest includes compounds having the structure
of formula (I) in which R
3a is -(C=O)NR
FR
G and R
3b is hydrogen and the compound has the structure:

wherein R
1, R
2, R
F and R
G are as defined generally above and in classes and subclasses herein.
[0017] Another class of compounds of special interest includes compounds having the structure
of formula
(I) in which R
3b is -(C=)NR
FR
G and R
3a is hydrogen and the compound has the structure:

wherein R
1, R
2, R
F and R
G are as defined generally above and in classes and subclasses herein.
[0018] Another class of compounds of special interest comprises compounds having the structure
of formula (I) in which R
3a is -CH
2S(=O)
mNR
FR
G and R
3b is hydrogen and the compound has the structure:

;
wherein R
1 and R
2 are as defined generally above and in classes and subclasses herein;
m is 0, 1 or 2; and
R
F is an aliphatic, cycloaliphatic, heteroaliphatic, cycloheteroaliphatic, aryl, or
heteroaryl moiety;
whereby each of the foregoing aliphatic or heteroaliphatic moieties may be independently
substituted or unsubstituted, cyclic or acyclic, linear or branched, saturated or
unsaturated; and wherein each of the foregoing aryl or heteroaryl moieties may be
independently substituted or unsubstituted.
[0019] Another class of compounds of special interest comprises compounds having the structure
of formula (
I) in which R
3a is -CH
2OR
F and R
3b is hydrogen and the compound has the structure:

wherein R
1 and R
2 are as defined generally above and in classes and subclasses herein; and
R
F is hydrogen, a protective group or an aliphatic, cycloaliphatic, heteroaliphatic,
cycloheteroaliphatic, aryl, or heteroaryl moiety;
whereby each of the foregoing aliphatic or heteroaliphatic moieties may be independently
substituted or unsubstituted, cyclic or acyclic, linear or branched, saturated or
unsaturated; and wherein each of the foregoing aryl or heteroaryl moieties may be
independently substituted or unsubstituted.
[0020] A number of important subclasses of each of the foregoing classes deserve separate
mention; these subclasses include subclasses of the foregoing classes in which:
[0022] ii) R
1 is hydrogen;
[0025] v) R
2 is NH
2, OH, C
1-C
6 alkyl or C
1-C
6 alkenyl, said alkyl and alkenyl groups optionally substituted with halogen or hydroxyl;
[0026] vi) R
2 is C
1-C
2 alkyl;
[0027] vii) R
2 is methyl;
[0028] viii) R
2 is hydrogen;
[0029] ix) one of R
F or R
G is hydrogen or lower alkyl; and the other is an alkyl, heteroalkyl, aryl, heteroaryl,
alkylaryl or alkylheteroaryl, optionally independently substituted for each occurrence
with one or more of halogen, alkoxy, thioalkyl, or substituted or unsubstituted alkyl,
heteroalkyl, aryl, or heteroaryl, or wherein R
F and R
G taken together are a 6-membered substituted or unsubstituted heterocyclic moiety;
[0030] x) one of R
F or R
G is hydrogen or lower alkyl; and the other is an aryl, heteroaryl, alkylaryl or alkylheteroaryl
moiety, optionally independently substituted for each occurrence with one or more
of halogen, alkoxy, thioalkyl, or substituted or unsubstituted alkyl, heteroalkyl,
aryl, or heteroaryl, or wherein R
F and R
G taken together are a 6-membered substituted or unsubstituted cyclic or heterocyclic
moiety;
[0031] xi) one of R
F or R
G is hydrogen or lower alkyl; and the other is phenyl, pyridyl, (alkyl)phenyl, or (alkyl)pyridyl,
optionally substituted with one or more occurrences of halogen, trifluromethoxy, methoxy,
trifluoromethyl, methylthio, or substituted or unsubstituted lower alkyl, lower heteroalkyl,
aryl or heteroaryl; and
[0032] xii) one of R
F or R
G is hydrogen or lower alkyl; and the other is a cyclic or acyclic, linear or branched
aliphatic moiety optionally substituted with one or more of substituted or unsubstituted
aryl, heteroaryl, amide, alkoxy, hydroxyl, thioalkyl, thiol, acyl or amino;
[0033] xiii) R
F is an alkyl, cycloalkyl, heteroalkyl, cycloheteroalkyl, aryl, heteroaryl, alkylaryl
or alkylheteroaryl, optionally independently substituted for each occurrence with
one or more of halogen, alkoxy, thioalkyl, or substituted or unsubstituted alkyl,
heteroalkyl, aryl, or heteroaryl; and/or
[0034] xiv) R
F is hydrogen, a protecting group, or an alkyl, cycloalkyl, heteaoalkcyl, cycloheteroalkyl,
aryl, heteroaryl, alkylaryl or alkylheteroaryl, optionally independently substituted
for each occurrence with one or more of halogen, alkoxy, thioalkyl, or substituted
or unsubstituted alkyl, heteroalkyl, aryl, or heteroaryl.
[0035] As the reader will appreciate, compounds of particular interest include, among others,
those which share the attributes of one or more of the foregoing subclasses. Some
of those subclasses are illustrated by the following sorts of compounds:
[0036] I) Compounds of the formula (and pharmaceutically acceptable derivatives thereof):

wherein R
1 and R
2 are as defined generically and in classes and subclasses herein; G is CH
2 or -(C=O) and one of R
G or R
F is hydrogen or lower alkyl and the other is an alkyl, heteroalkyl, aryl, heteroaryl,
alkylaryl or alkylheteroaryl moiety , optionally independently substituted for each
occurrence with one or more of halogen, alkoxy, thioalkyl, or substituted or unsubstituted
alkyl, heteroalkyl, aryl, or heteroaryl, or wherein R
F and R
G taken together are a 3 to 8-membered substituted or unsubstituted cyclic or heterocyclic
moiety.
[0037] In certain embodiments, one of R
F or R
G is hydrogen or lower alkyl; and the other is an aryl, heteroaryl, alkylaryl or alkylheteroaryl
moiety, optionally independently substituted for each occurrence with one or more
of halogen, alkoxy, thioalkyl, or substituted or unsubstituted alkyl, heteroalkyl,
aryl, or heteroaryl, or wherein R
F and R
G taken together are a 3 to 8-membered substituted or unsubstituted cyclic or heterocyclic
moiety.
[0038] In certain other embodiments, one of R
F or R
G is hydrogen or lower alkyl; and the other is phenyl, pyridyl (alkyl)phenyl, or (alkyl)pyridyl,
optionally substituted with one or more occurrences of halogen, trifluromethoxy, methoxy,
trifluoromethyl, methylthio, or substituted or unsubstituted lower alkyl, lower heteroalkyl,
aryl or heteroaryl.
[0039] In still other embodiments, one of R
F or R
G is hydrogen or lower alkyl; and the other is a cyclic or acyclic, linear or branched
aliphatic moiety optionally substituted with one or more of substituted or unsubstituted
aryl, heteroaryl, amide, alkoxy, hydroxyl, thioalkyl thiol, acyl or amino.
[0040] II) Compounds of the formula (and pharmaceutically acceptable derivatives thereof):

wherein R
1 and R
2 are as defined generically and in classes and subclasses herein; G is CH
2 or -(C=O) and X is O, S, C=O, S=O, C=CR
4R
5, NR
4, or CR
4R
5; wherein each occurrence of R
4 and R
5 is independently hydrogen, hydroxyl, halogen, cyano an aliphatic, heteroaliphatic,
aryl, or heteroaryl moiety, or is -C(O)R
Z wherein R
Z is an aliphatic, heteroaliphatic, aryl or heteroaryl moiety;
whereby each of the foregoing aliphatic or heteroaliphatic moieties may be independently
substituted or unsubstituted, cyclic or acyclic, linear or branched, and wherein each
of the foregoing aryl or heteroaryl moieties may be independently substituted or unsubstituted.
[0041] III) Compounds of the formula (and pharmaceutically acceptable derivatives thereof):

wherein R
1 and R
2 are as defined generically and in classes and subclasses herein; G is CH
2 or -(C=O) and one of R
G or R
F is hydrogen or lower alkyl; and the other is an alkyl, heteroalkyl, aryl, heteroaryl,
alkylaryl or alkylheteroaryl, optionally independently substituted for each occurrence
with one or more of halogen, alkoxy, thioalkyl, or substituted or unsubstituted alkyl,
heteroalkyl, aryl, or heteroaryl, or wherein R
F and R
G taken together are a 3 to 8-membered substituted or unsubstituted cyclic or heterocyclic
moiety.
[0042] In certain embodiments, one of R
F or R
G is hydrogen or lower alkyl; and the other is an aryl, heteroaryl, alkylaryl or alkylheteroaryl
moiety, optionally independently substituted for each occurrence with one or more
of halogen, alkoxy, thioalkyl, or substituted or unsubstituted alkyl, heteroalkyl,
aryl, or heteroaryl, or wherein R
F and R
G taken together are a 3 to 8-membered substituted or unsubstituted cyclic or heterocyclic
moiety.
[0043] In certain other embodiments, one of R
F or R
G is hydrogen or lower alkyl; and the other is phenyl, pyridyl, (alkyl)phenyl, or (alkyl)pyridyl,
optionally substituted with one or more occurrences of halogen, trifluromethoxy, methoxy,
trifluoromethyl, methylthio, or substituted or unsubstituted lower alkyl, lower heteroalkyl,
aryl or heteroaryl.
[0044] In still other embodiments, one of R
F or R
G is hydrogen or lower alkyl; and the other is a cyclic or acyclic, linear or branched
aliphatic moiety optionally substituted with one or more of substituted or unsubstituted
aryl, heteroaryl, amide, alkoxy, hydroxyl, thioalkyl, thiol, acyl or amino.
[0045] IV) Compounds of the formula (and pharmaceutically acceptable derivatives thereof):

wherein R
1 and R
2 are as defined generically and in classes and subclasses herein; G is CH
2 or -(C=O) and X is O, S, C=O, S=O, C=CR
4R
5, NR
4, or CR
4R
5; wherein each occurrence of R
4 and R
5 is independently hydrogen, hydroxyl, halogen, cyano an aliphatic, heteroaliphatic,
aryl, or heteroaryl moiety, or is C(O)R
Z wherein R
Z is an aliphatic, heteroaliphatic, aryl or heteroaryl moiety;
whereby each of the foregoing aliphatic or heteroaliphatic moieties may be independently
substituted or unsubstituted, cyclic or acyclic, linear or branched, and wherein each
of the foregoing aryl or heteroaryl moieties may be independently substituted or unsubstituted.
[0046] V) Compounds of the formula (and pharmaceutically acceptable derivatives thereof):

wherein R
1 and R
2 are as defined generically and in classes and subclasses herein; G is CH
2 or -(C=O) and one of R
G or R
F is hydrogen or lower alkyl; and the other is an alkyl, heteroalkyl, aryl, heteroaryl,
alkylaryl or alkylheteroaryl, optionally independently substituted for each occurrence
with one or more of halogen, alkoxy, thioalkyl, or substituted or unsubstituted alkyl,
heteroalkyl, aryl, or heteroaryl, or wherein R
F and R
G taken together are a 3 to 8-membered substituted or unsubstituted cyclic or heterocyclic
moiety.
[0047] In certain embodiments, one of R
F or R
G is hydrogen or lower alkyl; and the other is an aryl, heteroaryl, alkylaryl or alkylheteroaryl
moiety, optionally independently substituted for each occurrence with one or more
of halogen, alkoxy, thioalkyl, or substituted or unsubstituted alkyl, heteroalkyl,
aryl, or heteroaryl, or wherein R
F and R
G taken together are a 3 to 8-membered substituted or unsubstituted cyclic or heterocyclic
moiety.
[0048] In certain other embodiments, one of R
F or R
G is hydrogen or lower alkyl; and the other is phenyl, pyridyl, (alkyl)phenyl, or (alkyl)pyridyl,
optionally substituted with one or more occurrences of halogen, trifluromethoxy, methoxy,
trifluoromethyl, methylthio, or substituted or unsubstituted lower alkyl, lower heteroalkyl,
aryl or heteroaryl.
[0049] In still other embodiments, one of R
F or R
G is hydrogen or lower alkyl; and the other is a cyclic or acyclic, linear or branched
aliphatic moiety optionally substituted with one or more of substituted or unsubstituted
aryl, heteroaryl, amide, alkoxy, hydroxyl, thioalkyl, thiol, acyl or amino.
[0050] VI) Compounds of the formula (and pharmaceutically acceptable derivatives thereof):

wherein R
1 and R
2 are as defined generically and in classes and subclasses herein; G is CH
2 or -(C=O) and X is O, S, C=O, S=O, C=CR
4R
5, NR
4, or CR
4F
5; wherein each occurrence of R
4 and R
5 is independently hydrogen, hydroxyl, halogen, cyano an aliphatic, heteroaliphatic,
aryl, or heteroaryl moiety, or is -C(O)R
Z wherein R
Z is an aliphatic, heteroaliphatic, aryl or heteroaryl moiety;
whereby each of the foregoing aliphatic or heteroaliphatic moieties may be independently
substituted or unsubstitubed, cyclic or acyclic, linear or branched, and wherein each
of the foregoing aryl or heteroaryl moieties may be independently substituted or unsubstituted.
[0051] VII) Compounds of the formula (and pharmaceutically acceptable derivatives thereof):

wherein R
F, R
1 and R
2 are as defined generically and in classes and subclasses herein; p is an integer
from 0-3; s is an integer from 0-4; A, B, D, E and each occurrence of K are independently
absent, O, S, C=O, S=O, C=CR
4R
5, NR
4, or CR
4R
5, wherein each occurrence of R
4 and R
5 is independently hydrogen, hydroxyl, halogen, cyano, -OR
x, -SR
x, -NR
xR
y, an aliphatic, heteroaliphatic, aryl, or heteroaryl moiety, or is -((O)R
Z werein R
Z is an aliphatic, heteroaliphatic, aryl or heteroaryl moiety; and wherein A and B,
B and D, D and E, E and K and any two adjacent K groups may be linked by a single
or double bond as valency permits; wherein each occurrence of R
x and R
y is independently hydrogen, a protecting group, or an aliphatic, heteroaliphatic,
aryl, heteroaryl, aliphaticaryl, heteroaliphatic aryl, aliphaticheteroaryl or heteroaliphaticheteroaryl
moiety,
whereby each of the foregoing aliphatic or heteroaliphatic moieties may be independently
substituted or unsubstituted, cyclic or acyclic, linear or branched, saturated or
unsaturated and wherein each of the foregoing aryl, heteroaryl aliphaticaryl, heteroaliphatic
aryl, aliphaticheteroaryl or heteroaliphaticheteroaryl moieties may be independently
substituted or unsubstituted.
[0052] In certain exemplary embodiments,

represents a substituted or unsubstituted phenyl, pyridyl or furanyl moiety. In certain
other embodiments,

represents a substituted or unsubstituted, saturated or unsaturated 3-, 4-, 5-, 6-,
7-, or 8-membered cycloalkyl or cycloheteroalkyl moiety. In certain exemplary embodiments,

represents substituted or unsubstituted cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl,
cycloheptyl or cyclooctyl. In certain exemplary embodiments,

represents a substituted or unsubstituted bicyclic aliphatic moiety.
[0053] In certain exemplary embodiments, R
F is hydrogen or lower alkyl. In cerain embodiments, R
F is hydrogen or methyl.
[0054] It will also be appreciated that for each of the subgroups I-VII described above,
a variety of other subclasses are of special interest, including, but not limited
to those classes described above i)-xiv) and classes, subclasses and species of compounds
described above and in the examples herein.
[0055] Some of the foregoing compounds can comprise one or more asymmetric centers, and
thus can exist in various isomeric forms, e.g., stereoisomers and/or diastereomers.
Thus, inventive compounds and pharmaceutical compositions thereof may be in the form
of an individual enantiomer, diastereomer or geometric isomer, or may be in the form
of a mixture of stereoisomers. In certain embodiments, the compounds of the invention
are enantiopure compounds. In certain other embodiments, a mixture of stereoisomers
or diastereomers are provided.
[0056] Additionally, any and all tautomers of the foregoing compounds are encompassed by
the invention. The invention is not limited to the tautomeric structures depicted
herein. As but one example, compounds described and depicted generally as:

may also be described and depicted as:

[0057] Furthermore, certain compounds, as described herein may have one or more double bonds
that can exist as either the Z or E isomer, unless otherwise indicated. The invention
additionally encompasses the compounds as individual isomers substantially free of
other isomers and alternatively, as mixtures of various isomers, e.g., racemic mixtures
of stereoisomers. In addition to the above-mentioned compounds
per se, this invention also encompasses pharmaceutically acceptable derivatives of these
compounds and compositions comprising one or more compounds of the invention and one
or more pharmaceutically acceptable excipients or additives.
[0058] Compounds of the invention may be prepared by crystallization of compound of formula
(I) under different conditions and may exist as one or a combination of polymorphs
of compound of general formula (I) forming part of this invention. For example, different
polymorphs may be identified and/or prepared by using different solvents, or different
mixtures of solvents for recrystallization; by performing crystallizations at different
temperatures; or by using various modes of cooling, ranging from very fast to very
slow cooling during crystallizations. Polymorphs may also be obtained by heating or
melting the compound followed by gradual or fast cooling. The presence of polymorphs
may be determined by solid probe NMR spectroscopy, IR spectroscopy, differential scanning
calorimetry, powder X-ray diffractogram and/or other techniques. Thus, the present
invention encompasses inventive compounds, their derivatives, their tautomeric forms,
their stereoisomers, their polymorphs, their pharmaceutically acceptable salts their
pharmaceutically acceptable solvates and pharmaceutically acceptable compositions
containing them.
[0059] 2) Compounds and Definitions
[0060] As discussed above, this invention provides novel compounds with a range of biological
properties. Compounds of this invention have biological activities relevant for the
treatment of inflammatory or autoimmune disorders and/or proliferative disorders.
In certain embodiments, the compounds of the invention are useful for the treatment
of rheumatoid arthritis, ulcerative colitis/Crohn's disease, central nervous system
diseases (CNS) such as multiple sclerosis, systemic lupus erythematosus, asthma, allograft
rejection/graft versus host disease (GVHD), psoriasis, atopic dermatitis, eczema,
uticaria, allergic rhinitis, myasthenia gravis, diabetes, idiopathic thrombocytopenia
purpura, glomerulonephritis, cardiovascular disease, and cancer.
[0061] Compounds of this invention include those specifically set forth above and described
herein, and are illustrated in part by the various classes, subgenera and species
disclosed elsewhere herein.
[0062] Additionally, the present invention provides pharmaceutically acceptable derivatives
of the inventive compounds, and methods of treating a subject using these compounds,
pharmaceutical compositions thereof, or either of these in combination with one or
more additional therapeutic agents. The phrase, "pharmaceutically acceptable derivative",
as used herein, denotes any pharmaceutically acceptable salt, ester, or salt of such
ester, of such compound, or any other adduct or derivative which, upon administration
to a patient, is capable of providing (directly or indirectly) a compound as otherwise
described herein, or a metabolite or residue thereof. Pharmaceutically acceptable
derivatives thus include among others pro-drugs. A prodrug is a derivative of a compound,
usually with significantly reduced pharmacological activity, which contains an additional
moiety which is susceptible to removal
in vivo yielding the parent molecule as the pharmacologically active species. An example
of a pro-drug is an ester which is cleaved
in vivo to yield a compound of interest. Pro-drugs of a variety of compounds, and materials
and methods for derivatizing the parent compounds to create the pro-drugs, are known
and may be adapted to the present invention. Certain exemplary pharmaceutical compositions
and pharmaceutically acceptable derivatives will be discussed in more detail herein
below.
[0063] Certain compounds of the present invention, and definitions of specific functional
groups are also described in more detail below. For purposes of this invention, the
chemical elements are identified in accordance with the Periodic Table of the Elements,
CAS version, Handbook of Chemistry and Physics, 75
th Ed., inside cover, and specific functional groups are generally defined as described
therein. Additionally, general principles of organic chemistry, as well as specific
functional moieties and reactivity, are described in "
Organic Chemistry", Thomas Sorrell, University Science Books, Sausalito: 1999, the entire contents of which are incorporated herein by reference. Furthermore,
it will be appreciated by one of ordinary skill in the art that the synthetic methods,
as described herein, utilize a variety of protecting groups. By the term "protecting
group", has used herein, it is meant that a particular functional moiety,
e.g., O, S, or N, is temporarily blocked so that a reaction can be carried out selectively
at another reactive site in a multifunctional compound. In preferred embodiments,
a protecting group reacts selectively in good yield to give a protected substrate
that is stable to the projected reactions; the protecting group must be selectively
removed in good yield by readily available, preferably nontoxic reagents that do not
attack the other functional groups; the protecting group forms an easily separable
derivative (more preferably without the generation of new stereogenic centers); and
the protecting group has a minimum of additional functionality to avoid further sites
of reaction. As detailed herein, oxygen, sulfur, nitrogen and carbon protecting groups
may be utilized. For example, in certain embodiments, as detailed herein, certain
exemplary oxygen protecting groups are utilized. These oxygen protecting groups include,
but are not limited to methyl ethers, substituted methyl ethers (
e.g., MOM (methoxymethyl ether), MTM (methylthiomethyl ether), BOM (benzyloxymethyl ether),
PMBM (p-methoxybenzyloxymethyl ether), to name a few), substituted ethyl ethers, substituted
benzyl ethers, silyl ethers (e.g., TMS (trimethylsilyl ether), TES (triethylsilylether),
TIPS (triisopropylsilyl ether), TBDMS (t-butyldimethylsilyl ether), tribenzyl silyl
ether, TBDPS (t-butyldiphenyl silyl ether), to name a few), esters (e.g., formate,
acetate, benzoate (Bz), trifluoroacetate, dichloroacetate, to name a few), carbonates,
cyclic acetals and ketals. In certain other exemplary embodiments, nitrogen protecting
groups are utilized. These nitrogen protecting groups include, but are not limited
to, carbamates (including methyl, ethyl and substituted ethyl carbamates (e.g., Troc),
to name a few) amides, cyclic imide derivatives, N-Alkyl and N-Aryl amines, imine
derivatives, and enamine derivatives, to name a few. Certain other exemplary protecting
groups are detailed herein, however, it will be appreciated that the present invention
is not intended to be limited to these protecting groups; rather, a variety of additional
equivalent protecting groups can be readily identified using the above criteria and
utilized in the present invention. Additionally, a variety of protecting groups are
described in "
Protective Groups in Organic Synthesis" Third Ed. Greene, T.W. and Wuts, P.G., Eds.,
John Wiley & Sons, New York: 1999, the entire contents of which are hereby incorporated by reference.
[0064] It will be appreciated that the compounds, as described herein, may be substituted
with any number of substituents or functional moieties. In general, the term "substituted"
whether preceded by the term "optionally" or not, and substituents contained in formulas
of this invention, refer to the replacement of hydrogen radicals in a given structure
with the radical of a specified substituent When more than one position in any given
structure may be substituted with more than one substituent selected from a specified
group, the substituent may be either the same or different at every position. As used
herein, the term "substituted" is contemplated to include all permissible substituents
of organic compounds. In a broad aspect, the permissible substituents include acyclic
and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and nonaromatic
substituents of organic compounds. For purposes of this invention, heteroatoms such
as nitrogen may have hydrogen substituents and/or any permissible substituents of
organic compounds described herein which satisfy the valencies of the heteroatoms.
Furthermore, this invention is not intended to be limited in any manner by the permissible
substituents of organic compounds. Combinations of substituents and variables envisioned
by this invention are preferably those that result in the formation of stable compounds
useful in the treatment, for example of inflammatory or autoimmune and proliferative
disorders, including, but not limited to rheumatoid arthritis, psoriasis, asthma and
cancer. The term "stable", as used herein, preferably refers to compounds which possess
stability sufficient to allow manufacture and which maintain the integrity of the
compound for a sufficient period of time to be detected and preferably for a sufficient
period of time to be useful for the purposes detailed herein.
[0065] The term "aliphatic", as used herein, includes both saturated and unsaturated, straight
chain
(i.e., unbranched), branched, cyclic, or polycyclic aliphatic hydrocarbons, which are optionally
substituted with one or more functional groups. As will be appreciated by one of ordinary
skill in the art, "aliphatic" is intended herein to include, but is not limited to,
alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, and cycloalkynyl moieties. Thus,
as used herein, the term "alkyl" includes straight, branched and cyclic alkyl groups.
An analogous convention applies to other generic terms such as "alkenyl", "alkynyl"
and the like. Furthermore, as used herein, the terms "alkyl", "alkenyl", "alkynyl"
and the like encompass both substituted and unsubstituted groups. In certain embodiments,
as used herein, "lower alkyl" is used to indicate those alkyl groups (cyclic, acyclic,
substituted, unsubstituted, branched or unbranched) having 1-6 carbon atoms.
[0066] In certain embodiments, the alkyl, alkenyl and alkynyl groups employed in the invention
contain 1-20 aliphatic carbon atoms. In certain other embodiments, the alkyl, alkenyl,
and alkynyl groups employed in the invention contain 1-10 aliphatic carbon atoms.
In yet other embodiments, the alkyl, alkenyl, and alkynyl groups employed in the invention
contain 1-8 aliphatic carbon atoms. In still other embodiments, the alkyl, alkenyl,
and alkynyl groups employed in the invention contain 1-6 aliphatic carbon atoms. In
yet other embodiments, the alkyl, alkenyl, and alkynyl groups employed in the invention
contain 1-4 carbon atoms. Illustrative aliphatic groups thus include, but are not
limited to, for example, methyl, ethyl, n-propyl, isopropyl, cyclopropyl, -CH
2-cyclopropyl, allyl, n-butyl, sec-butyl, isobutyl, tert-butyl, cyclobutyl, -CH
2-cyclobutyl, n-pentyl, sec-pentyl, isopentyl, tert-pentyl, cyclopentyl, -CH
2-cyclopentyl-n, hexyl, sec-hexyl, cyclohexyl, -CH
2-cyclohexyl moieties and the like, which again, may bear one or more substituents.
Alkenyl groups include, but are not limited to, for example, ethenyl, propenyl, butenyl,
1-methyl-2-buten-1-yl, and the like. Representative alkynyl groups include, but are
not limited to, ethynyl, 2-propynyl (propargyl), 1-propynyl and the like.
[0067] The term "alkoxy" (or "alkyloxy"), or "thioalkyl" as used herein refers to an alkyl
group, as previously defined, attached to the parent molecular moiety through an oxygen
atom or through a sulfur atom. In certain embodiments, the alkyl group contains 1-20
aliphatic carbon atoms. In certain other embodiments, the alkyl group contains 1-10
aliphatic carbon atoms. In yet other embodiments, the alkyl, alkenyl, and alkynyl
groups employed in the invention contain 1-8 aliphatic carbon atoms. In still other
embodiments, the alkyl group contains 1-6 aliphatic carbon atoms. In yet other embodiments,
the alkyl group contains 1-4 aliphatic carbon atoms. Examples of alkoxy, include but
are not limited to, methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, tert-butoxy, neopentoxy
and n-hexoxy. Examples of thioalkyl include, but are not limited to, methylthio, ethylthio,
propylthio, isopropylthio, n-butylthio, and the like.
[0068] The term "alkylamino" refers to a group having the structure - NHR' wherein R' is
alkyl, as defined herein. The term "aminoalkyl" refers to a group having the structure
NH
2R'-, wherein R' is alkyl, as defined herein. In certain embodiments, the alkyl group
contains 1-20 aliphatic carbon atoms. In certain other embodiments, the alkyl group
contains 1-10 aliphatic carbon atoms. In yet other embodiments, the alkyl, alkenyl,
and alkynyl groups employed in the invention contain 1-8 aliphatic carbon atoms. In
still other embodiments, the alkyl group contains 1-6 aliphatic carbon atoms. In yet
other embodiments, the alkyl group contains 1-4 aliphatic carbon atoms. Examples of
alkylamino include, but are not limited to, methylamino, ethylamino, iso-propylamino
and the like.
[0069] Some examples of sutstituents of the above-described aliphatic (and other) moieties
of compounds of the invention include, but are not limited to aliphatic; heteroaliphatic;
aryl; heteroaryl; alkylaryl; alkylheteroaryl; alkoxy; aryloxy; heteroalkoxy; heteroaryloxy;
alkylthio; arylthio; heteroalkylthio; heteroarylthio; F; C1; Br, 1; -OH; -NO
2; -CN; -CF
3; -CH
2CF
3; -CHCl
2; -CH
2OH; -CH
2CH
2OH; -CH
2NH
2; -CH
2SO
2CH
3; -C(O)R
x; -CO
2(R
x); -CON(R
x)
2; -OC(O)R
x; -OCO
2R
x; -OCON(R
x)
2; -N(R
x)
2; -S(O)
2R
x; -NR
x(CO)R
x wherein each occurrence of R
x independently includes, but is not limited to, aliphatic, heteroaliphatic, aryl,
heteroaryl, alkylaryl, or alkylheteroaryl, wherein any of the aliphatic, heteroaliphatic,
alkylaryl, or alkylheteroaryl substituents described above and herein may be substituted
or unsubstituted, branched or unbranched, cyclic or acyclic, and wherein any of the
aryl or heteroaryl substituents described above and herein may be substituted or unsubstituted.
Additional examples of generally applicable substituents are illustrated by the specific
embodiments shown in the Examples that are described herein.
[0070] In general, the terms "aryl" and "heteroaryl", as used herein, refer to stable mono-
or polycyclic, heterocyclic, polycyclic, and polyheterocyclic unsaturated moieties
having preferably 3-14 carbon atoms, each of which may be substituted or unsubstituted.
It will also be appreciated that aryl and heteroaryl moieties, as defined herein may
be attached via an aliphatic, heteroaliphatic, alkyl or heteroalkyl moiety and thus
also include -(aliphatic)aryl, -(heteroaliphatic)aryl, -(aliphatic)heteroaryl, - (heteroaliphatic)heteroaryl,
-(alkyl)aryl, -(heteroalkyl)aryl, -(heteroalkyl)aryl, and - (heteroalkyl)heteroaryl
moieties. Thus, as used herein, the phrases "aryl or heteroaryl" and "aryl, heteroaryl,
-(aliphatic)aryl, -(heteroaliphatic)aryl, - (aliphatic)heteroaryl, -(heteroaliphatic)heteroaryl,
-(alkyl)aryl, -(heteroalkyl)aryl, -(heteroalkyl)aryl, and -(heteroalkyl)heteroaryl"
are interchangeable. Substituents include, but are not limited to, any of the previously
mentioned substitutents,
i.
e., the substituents recited for aliphatic moieties, or for other moieties as disclosed
herein, resulting in the formation of a stable compound. In certain embodiments of
the present invention, "aryl" refers to a mono- or bicyclic carbocyclic ring system
having one or two aromatic rings including, but not limited to, phenyl, naphthyl,
tetrahydronaphthyl, indanyl, indenyl and the like. In certain embodiements of the
present invention, the term "heteroaryl", as used herein, refers to a cyclic aromatic
radical having from five to ten ring atoms of which one ring atom is selected from
S, O and N; zero, one or two ring atoms are additional heteroatoms independently selected
from S, O and N; and the remaining ring atoms are carbon, the radical being joined
to the rest of the molecule via any of the ring atoms, such as, for example, pyridyl,
pyrazinyl, pyrimidinyl, pyrrolyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl, isooxazolyl,
thiadiazolyl, oxadiazolyl, thiophenyl, furanyl, quinolinyl, isoquinolinyl, and the
like.
[0071] It will be appreciated that aryl and heteroaryl groups (including bycyclic aryl groups)
can be unsubstituted or substituted, wherein substitution includes replacement of
one, two or three of the hydrogen atoms thereon independently with any one or more
of the following moieties including, but not limited to: aliphatic; heteroaliphatic;
aryl; heteroaryl; alkylaryl; alkylheteroaryl; alkoxy; aryloxy; heteroalkoxy; heteroaryloxy;
alkylthio; arylthio; heteroalkylthio; heteroarylthio; F; Cl; Br, I; -OH; -NO
2; -CN; -CF
3; -CH
2CF
3; -CHCl
2; -CH
2OH; -CH
2CH
2OH; -CH
2NH
2; -CH
2SO
2CH
3; -C(O)R
x; -CO
2(R
x); -CON(R
x)
2; -OC(O)R
x; -OCO
2R
x; -OCON(R
x)
2; -N(R
x)
2; -S(O)
2R
x; -NR
x(CO)R
x wherein each occurrence of R
x independently includes, but is not limited to, aliphatic, heteroaliphatic, aryl,
heteroaryl, alkylaryl, or alkylheteroaryl, wherein any of the aliphatic, heteroaliphatic,
alkylaryl, or alkylheteroaryl substituents described above and herein may be substituted
or unsubstituted, branched or unbranched, cyclic or acyclic, and wherein any of the
aryl or heteroaryl substituents described above and herein may be substituted or unsubstituted.
Additional examples of generally applicable substituents are illustrated by the specific
embodiments shown in the Examples that are described herein.
[0072] The term "cycloalkyl", as used herein, refers specifically to groups having three
to seven, preferably three to ten carbon atoms. Suitable cycloalkyls include, but
are not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and
the like, which, as in the case of other aliphatic, heteroaliphatic or hetercyclic
moieties, may optionally be substituted with substituents including, but not limited
to aliphatic; heteroaliphatic; aryl; heteroaryl; alkylaryl; alkylheteroaryl; alkoxy;
aryloxy; heteroalkoxy; heteroaryloxy; alkylthio; arylthio; heteroalkylthio; heteroarylthio;
F; Cl; Br; I; -OH; -NO
2; -CN; -CF
3; -CH
2CF
3; -CHCl
2; -CH
2OH; -CH
2CH
2OH; -CH
2NH
2; -CH
2SO
2CH
3; -C(O)R
x; -CO
2(R
x); -CON(R
x)
2; -OC(P)R
x; -OCO
2R
x; -OCON(R
x)
2; N(R
x)
2; -S(O)
2R
x; -NR
x(CO)R
x wherein each occurrence of R
x independently includes, but is not limited to, aliphatic, heteroaliphatic, aryl,
heteroaryl, alkylaryl, or alkylheteroaryl, wherein any of the aliphatic, heteroaliphatic,
alkylaryl, or alkylheteroaryl substituents described above and herein may be substituted
or unsubstituted, branched or unbranched, cyclic or acyclic, and wherein any of the
aryl or heteroaryl substituents described above and herein may be substituted or unsubstituted.
Additional examples of generally applicable substituents are illustrated by the specific
embodiments shown in the Examples that are described herein.
[0073] The term "heteroaliphatic", as used herein, refers to aliphatic moieties which contain
one or more oxygen sulfur, nitrogen, phosphorus or silicon atoms, e.g., in place of
carbon atoms. Heteroaliphatic moieties may be branched, unbranched, cyclic or acyclic
and include saturated and unsaturated heterocycles such as morpholino, pyrrolidinyl,
etc. In certain embodiments, heteroaliphatic moieties are substituted by independent
replacement of one or more of the hydrogen atoms thereon with one or more moieties
including, but not limited to aliphatic; heteroaliphatic; aryl; heteroaryl; alkylaryl;
alkylheteroaryl; alkoxy; aryloxy; heteroalkoxy; heteroaryloxy; alkylthio; arylthio;
heteroalkylthio; heteroarylthio; F; Cl; Br, I; -OH; -NO
2; -CN; - CF
3; -CH
2CF
3; -CHCl
2; -CH
2OH; -CH
2CH
2OH; -CH
2NH
2; -CH
2SO
2CH
3; -C(O)R
x; - CO
2(R
x); -CON(R
x)
2; -OC(O)R
x; -OCO
2R
x; -OCON(R
x)
2; -N(R
x)
2; -S(O)
2Rx; - NR
x(CO)R
x wherein each occurrence of R
x independently includes, but is not limited to, aliphatic, heteroaliphatic, aryl,
heteroaryl, alkylaryl, or alkylheteroaryl, wherein any of the aliphatic, heteroaliphatic,
alkylaryl, or alkylheteroaryl substituents described above and herein may be substituted
or unsubstituted, branched or unbranched, cyclic or acyclic, and wherein any of the
aryl or heteroaryl substituents described above and herein may be substituted or unsubstituted.
Additional examples of generally applicable substituents are illustrated by the specific
embodiments shown in the Examples that are described herein.
[0074] The terms "halo" and "halogen" as used herein refer to an atom selected from fluorine,
chlorine, bromine and iodine.
[0075] The term "haloalkyl" denotes an alkyl group, as defined above, having one, two, or
three halogen atoms attached thereto and is exemplified by such groups as chloromethyl,
bromoethyl, trifluoromethyl, and the like.
[0076] The term "heterocycloalkyl" or "heterocycle", as used herein, refers to a non-aromatic
5-, 6- or 7- membered ring or a polycyclic group, including, but not limited to a
bi- or tri-cyclic group comprising fused six-membered rings having between one and
three heteroatoms independently selected from oxygen, sulfur and nitrogen, wherein
(i) each 5-membered ring has 0 to 1 double bonds and each 6-membered ring has 0 to
2 double bonds, (ii) the nitrogen and sulfur heteroatoms may be optionally be oxidized,
(iii) the nitrogen heteroatom may optionally be quatemized, and (iv) any of the above
heterocyclic rings may be fused to a benzene ring. Representative heterocycles include,
but are not limited to, pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl,
piperidinyl, piperazinyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl,
isothiazolidinyl, and tetrahydrofuryl. In certain embodiments, a "substituted heterocycloalkyl
or heterocycle" group is utilized and as used herein, refers to a heterocycloalkyl
or heterocycle group, as defined above, substituted by the independent replacement
of one, two or three of the hydrogen atoms thereon with but are not limited to aliphatic;
heteroaliphatic; aryl; heteroaryl; alkylaryl; alkylheteroaryl; alkoxy; aryloxy; heteroalkoxy;
heteroaryloxy; alkylthio; arylthio; heteroalkylthio; heteroarylthio; F; Cl; Br; I;
- OH; -NO
2; -CN; -CF
3; -CH
2CF
3; -CHCl
2; -CH
2OH; -CH
2CH
2OH; -CH
2NH
2; -CH
2SO
2CH
3; -C(O)Rx; -CO
2(R
x); -CON(R
x)2; -OC(O)R
x; -OCO
2R
x; -OCON(R
x)
2; -N(R
x)
2; -S(O)
2R
x; -NR
x(CO)R
x wherein each occurrence of R
x independently includes, but is not limited to, aliphatic, heteroaliphatic, aryl,
heteroaryl, alkylaryl, or alkylheteroaryl, wherein any of the aliphatic, heteroaliphatic,
alkylaryl, or alkylheteroaryl substituents described above and herein may be substituted
or unsubstituted, branched or unbranched, cyclic or acyclic, and wherein any of the
aryl or heteroaryl substitutents described above and herein may be substituted or
unsubstituted. Additional examples or generally applicable substituents are illustrated
by the specific embodiments shown in the Examples which are described herein.
[0077] 3)
Research Uses, Formulation and Administration
[0078] According to the present invention, the inventive compounds may be assayed in any
of the available assays known in the art for identifying compounds having a pre-determined
biological activity. For example, the assay may be cellular or non-cellular,
in vivo or
in vitro, high- or low-throughput format, etc. In certain exemplary embodiments, the inventive
compounds are tested in assays to identify those compounds having antiproliferative/anticancer
activity, inflammatory cytokine signaling pathway inhibitory activity, adhesion molecule
expression inhibitory activity and/or anti-inflammatory effect.
[0079] Thus, in one aspect, compounds of this invention which are of particular interest
include those which:
- exhibit activity generally as inhibitors of adhesion molecule expression on the endothelial
cell surface upon stimulation with inflammatory cytokines;
- exhibit activity as inhibitors of inflammatory cytokine signaling pathway;
- exhibit an anti-inflammatory effect on suitable cell lines maintained in vitro, or in animal studies using a scientifically acceptable model;
- exhibit an antiproliferative and/or anticancer effect on suitable cell lines maintained
in vitro, or in animal studies using a scientifically acceptable model; and
- exhibit a favorable therapeutic profile (e.g., safety, efficacy, and stability).
[0080] As discussed above, certain compounds as described herein exhibit activity generally
as inhibitors cell adhesion molecules on endothelial cells (E-selectin and ICAM) and
transcriptional activation induced by inflammatory cytokine signaling. More specifically,
compounds of the invention demonstrate inmmunomodulatory activity and thus the invention
further provides a method for treating an inflammatory or autoimmune disorder or a
proliferative disorder. The method involves the administration of a therapeutically
effective amount of the compound or a pharmaceutically acceptable derivative thereof
to a subject (including, but not limited to a human or animal) in need of it. In certain
embodiments, the inventive compounds as useful for the treatment of rheumatoid arthritis,
ulcerative colitis/Crohn's disease, central nervous system diseases (CNS) such as
multiple sclerosis, systemic lupus erythematosus, asthma, allograft rejection/graft
versus host disease (GVHD), psoriasis, atopic dermatitis, eczema, uticaria, allergic
rhinitis, myasthenia gravis, diabetes, idiopathic thrombocytopenia purpura, glomerulonephritis,
cardiovascular disease, and cancer.
[0081] In certain embodiments, the method involves administration of a therapeutically effective
amount of the compound or a pharmaceutically acceptable derivative thereof to a subject
(including, but not limited to a human or animal) in need of it. In certain embodiments,
a pharmaceutical composition comprising an inventive compound (or pharmaceutically
acceptable derivative thereof), a carrier or diluent and optionally an additional
therapeutic agent is provided.
[0082] Pharmaceutical Compositions
[0083] As discussed above this invention provides novel compounds that have biological properties
useful for the treatment of inflammatory and proliferative disorders, including, but
not limited to rheumatoid arthritis, ulcerative colitis/Crohn's disease, central nervous
system diseases (CNS) such as multiple sclerosis, systemic lupus erythematosus, asthma,
allograft rejection/graft versus host disease (GVHD), psoriasis, atopic dermatitis,
eczema, uticaria, allergic rhinitis, myasthenia gravis, diabetes, idiopathic thrombocytopenia
purpura, glomerulonephritis, cardiovascular disease, and cancer.
[0084] Accordingly, in another aspect of the present invention, pharmaceutical compositions
are provided, which comprise any one of the compounds described herein (or a prodrug,
pharmaceutically acceptable salt or other pharmaceutically acceptable derivative thereof),
and optionally comprise a pharmaceutically acceptable carrier. In certain embodiments,
these compositions optionally further comprise one or more additional therapeutic
agents. Alternatively, a compound of this invention may be administered to a patient
in need thereof in combination with the administration of one or more other therapeutic
agents. For example, additional therapeutic agents for conjoint administration or
inclusion in a pharmaceutical composition with a compound of this invention may be
an anti-inflammatory agent (
e.g., an agent for the treatment of rheumatoid arthritis or psoriasis) or cytotoxic agent
or anticancer agent approved for the treatment of cancer, as discussed in more detail
herein, or it may be any one of a number of agents undergoing approval in the Food
and Drug Administration that ultimately obtain approval for the treatment of an immune
disorder or cancer. It will also be appreciated that certain of the compounds of present
invention can exist in free form for treatment, or where appropriate, as a pharmaceutically
acceptable derivative thereof. According to the present invention, a pharmaceutically
acceptable derivative includes, but is not limited to, pharmaceutically acceptable
salts, esters, salts of such esters, or a prodrug or other adduct or derivative of
a compound of this invention which upon administration to a patient in need is capable
of providing, directly or indirectly, a compound as otherwise described herein, or
a metabolite or residue thereof.
[0085] As used herein, the term "pharmaceutically acceptable salt" refers to those salts
which are, within the scope of sound medical judgment, suitable for use in contact
with the tissues of humans and lower animals without undue toxicity, irritation, allergic
response and the like, and are commensurate with a reasonable benefit/risk ratio.
Pharmaceutically acceptable salts of amines, carboxylic acids, and other types of
compounds, are well known in the art. For example, S.M. Berge,
et al. describe pharmaceutically acceptable salts in detail in
J. Pharmaceutical Sciences, 66: 1-19 (1977), incorporated herein by reference. The salts can be prepared
in situ during the final isolation and purification of the compounds of the invention, or
separately by reacting a free base or free acid function with a suitable reagent,
as described generally below. For example, a free base function can be reacted with
a suitable acid. Furthermore, where the compounds of the invention carry an acidic
moiety, suitable pharmaceutically acceptable salts thereof may, include metal salts
such as alkali metal salts, e.g. sodium or potassium salts; and alkaline earth metal
salts, e.g. calcium or magnesium salts. Examples of pharmaceutically acceptable, nontoxic
acid addition salts are salts of an amino group formed with inorganic acids such as
hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric
acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric
acid, citric acid, succinic acid or malonic acid or by using other methods used in
the art such as ion exchange. Other pharmaceutically acceptable salts include adipate,
alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate,
camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate,
ethanesulfonate, - formate, fumarate, glucoheptonate, glycerophosphate, gluconate,
hernisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate,
lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate,
nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate,
phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate,
thiocyanate, p-toluenesulfonate, undecanoate, valerate salts, and the like. Representative
alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium,
magnesium, and the like. Further pharmaceutically acceptable salts include, when appropriate,
nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions
such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, loweralkyl sulfonate
and aryl sulfonate.
[0086] Additionally, as used herein, the term "pharmaceutically acceptable ester" refers
to esters that hydrolyze
in vivo and include those that break down readily in the human body to leave the parent compound
or a salt thereof. Suitable ester groups include, for example, those derived from
pharmaceutically acceptable aliphatic carboxylic acids, particularly alkanoic, alkenoic,
cycloalkanoic and alkanedioic acids, in which each alkyl or alkenyl moiety advantageously
has not more than 6 carbon atoms. Examples of particular esters include formates,
acetates, propionates, butyrates, acrylates and ethylsuccinates.
[0087] Furthermore, the term "pharmaceutically acceptable prodrugs" as used herein refers
to those prodrugs of the compounds of the present invention which are, within the
scope of sound medical judgment, suitable for use in contact with the issues of humans
and lower animals with undue toxicity, irritation, allergic response, and the like,
commensurate with a reasonable benefit/risk ratio, and effective for their intended
use, as well as the zwitterionic forms, where possible, of the compounds of the invention.
The term "prodrug" refers to compounds that are rapidly transformed
in vivo to yield the parent compound of the above formula, for example by hydrolysis in blood.
A thorough discussion is provided in
T. Higuchi and V. Stella, Pro-drugs as Novel Delivery Systems, Vol. 14 of the A.C.S.
Symposium Series, and in
Edward B. Roche, ed., Bioreversible Carriers in Drug Design, American Pharmaceutical
Association and Pergamon Press, 1987, both of which are incorporated herein by reference.
[0088] As described above, the pharmaceutical compositions of the present invention additionally
comprise a pharmaceutically acceptable carrier, which, as used herein, includes any
and all solvents, diluents, or other liquid vehicle, dispersion or suspension aids,
surface active agents, isotonic agents, thickening or emulsifying agents, preservatives,
solid binders, lubricants and the like, as suited to the particular dosage form desired.
Remington's Pharmaceutical Sciences, Sixteenth Edition, E. W. Martin (Mack Publishing
Co., Easton, Pa., 1980) discloses various carriers used in formulating pharmaceutical compositions and known
techniques for the preparation thereof. Except insofar as any conventional carrier
medium is incompatible with the compounds of the invention, such as by producing any
undesirable biological effect or otherwise interacting in a deleterious manner with
any other component(s) of the pharmaceutical composition, its use is contemplated
to be within the scope of this invention. Some examples of materials which can serve
as pharmaceutically acceptable carriers include, but are not limited to, sugars such
as lactose, glucose and sucrose; starches such as corn starch and potato starch; cellulose
and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose
acetate; powdered tragacanth; malt; gelatine; talc; excipients such as cocoa butter
and suppository waxes; oils such as peanut oil, cottonseed oil; safflower oil, sesame
oil; olive oil; corn oil and soybean oil; glycols; such as propylene glycol; esters
such as ethyl oleate and ethyl laurate; agar, buffering agents such as magnesium hydroxide
and aluminum hydroxide; alginic acid; pyrogenfree water, isotonic saline; Ringer's
solution; ethyl alcohol, and phosphate buffer solutions, as well as other non-toxic
compatible lubricants such as sodium lauryl sulfate and magnesium stearate, as well
as coloring agents, releasing agents, coating agents, sweetening, flavoring and perfuming
agents, preservatives and antioxidants can also be present in the composition, according
to the judgment of the formulator.
[0089] Uses and Formulations of Compounds of the Invention
[0090] As described in more detail herein, in general, the present invention provides compounds
useful for the treatment of inflammatory or autoimmune disorders and the treatment
of proliferative disorders. Without wishing to be bound by any particular theory,
more generally, the compounds of the invention have been shown to inhibit adhesion
molecule expression such as E-selectin and ICAM-1 on the endothelial cell surface
induced by stimulation with inflammatory cytokines. Such cell surface molecules play
a critical role for inflammatory cell infiltration and cell-cell interactions within
inflammatory and immune responses. The compounds also reduce activation of the transcriptional
factor NF-κB and inhibit the transcriptional activation in inflammatory cytokine signaling
pathways, which regulates many genes such as IL-1α and TNF α involved in the pathology
of several inflammatory diseases. More generally, the identification of NF-κB as a
key player in the pathogenesis of inflammation suggest that NF-κB targeted therapeutics
may be effective in inflammatory and immune disorders
(see, generally, NF-κB in Defense and Disease,
J. Clin. Investig. 2001, 107, 7).
[0091] As detailed in the exemplification herein in assays to determine the ability of compounds
to inhibit cytokine-induced adhesion molecule expression by endothelial cells, certain
inventive compounds, (generally where one occurrence of R
3 is hydrogen, and the other occurrence of R
3 is a moiety as described generally herein) exhibited IC
50 values (E-Selectin and ICAM-1) less than 1 µM. In other embodiments, exemplary compounds
exhibited IC
50 values less than 10 µM.
[0092] As discussed above, compounds of the invention exhibit immunomodulatory activity
and exhibit activity for the inhibition of tumor cell growth. As such, compounds of
the invention are particularly useful for the treatment of diseases and disorders
including, but not limited to, rheumatoid arthritis, ulcerative colitis/Crohn's disease,
central nervous system diseases (CNS) such as multiple sclerosis, systemic lupus erythematosus,
asthma, allograft rejection/graft versus host disease (GVHD), psoriasis, atopic dermatitis,
eczema, uticaria, allergic rhinitis, myasthenia gravis, diabetes, idiopathic thrombocytopenia
purpura, glomerulonephritis, cardiovascular disease, and cancer.
[0093] Thus, as described above, in another aspect of the invention, methods for the treatment
of inflammatory or autoimmune and proliferative disorders are provided comprising
administering a therapeutically effective amount of a compound of formula (I), as
described herein, to a subject in need thereof. In certain embodiments, the inventive
compounds are useful for the treatment of rheumatoid arthritis, ulcerative colitis/Crohn's
disease, central nervous system diseases (CNS) such as multiple sclerosis, systemic
lupus erythematosus, asthma, allograft rejection/graft versus host disease (GVHD),
psoriasis, atopic dermatitis, eczema, uticaria, allergic rhinitis, myasthenia gravis,
diabetes, idiopathic thrombocytopenia purpura, glomerulonephritis, cardiovascular
disease, and cancer.
[0094] It will be appreciated that the compounds and compositions, according to the method
of the present invention, may be administered using any amount and any route of administration
effective for the treatment of inflammatory or autoimmune and proliferative disorders.
Thus, the expression "effective amount" as used herein, refers to a sufficient amount
of agent to kill or inhibit the growth of tumor cells, or refers to a sufficient amount
to reduce the effects of an inflammatory or autoimmune response or disorder. The exact
amount required will vary from subject to subject, depending on the species, age,
and general condition of the subject, the severity of the infection, the particular
therapeutic agent, its mode of administration, and the like. The compounds of the
invention are preferably formulated in dosage unit form for ease of administration
and uniformity of dosage. The expression "dosage unit form" as used herein refers
to a physically discrete unit of therapeutic agent appropriate for the patient to
be treated. It will be understood, however, that the total daily usage of the compounds
and compositions of the present invention will be decided by the attending physician
within the scope of sound medical judgment. The specific therapeutically effective
dose level for any particular patient or organism will depend upon a variety of factors
including the disorder being treated and the severity of the disorder; the activity
of the specific compound employed; the specific composition employed; the age, body
weight, general health, sex and diet of the patient; the time of administration, route
of administration, and rate of excretion of the specific compound employed; the duration
of the treatment; drugs used in combination or coincidental with the specific compound
employed; and like factors well known in the medical arts (see, for example,
Goodman and Gilman's, "The Pharmacological Basis of Therapeutics", Tenth Edition,
A. Gilman, J.Hardman and L. Limbird, eds., McGraw-Hill Press, 155-173, 2001, which is incorporated herein by reference in its entirety).
[0095] Furthermore, after formulation with an appropriate pharmaceutically acceptable carrier
in a desired dosage, the pharmaceutical compositions of this invention can be administered
to humans and other animals orally, rectally, parenterally, intracisternally, intravaginally,
intraperitoneally, topically (as by powders, ointments, or drops), bucally, as an
oral or nasal spray, or the like, depending on the severity of the infection being
treated. In certain embodiments, the compounds of the invention may be administered
at dosage levels of about 0.001 mg/kg to about 50 mg/kg, from about 0.01 mg/kg to
about 25 mg/kg, or from about 0.1 mg/kg to about 10 mg/kg of subject body weight per
day, one or more times a day, to obtain the desired therapeutic effect. It will also
be appreciated that dosages smaller than 0.001 mg/kg or greater than 50 mg/kg (for
example 50-100 mg/kg) can be administered to a subject. In certain embodiments, compounds
are administered orally or parenterally.
[0096] Liquid dosage forms for oral administration include, but are not limited to, pharmaceutically
acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs.
In addition to the active compounds, the liquid dosage forms may contain inert diluents
commonly used in the art such as, for example, water or other solvents, solubilizing
agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate,
ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol,
dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive,
castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols
and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the
oral compositions can also include adjuvants such as wetting agents, emulsifying and
suspending agents, sweetening, flavoring, and perfuming agents.
[0097] Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions
may be formulated according to the known art using suitable dispersing or wetting
agents and suspending agents. The sterile injectable preparation may also be a sterile
injectable solution, suspension or emulsion in a nontoxic parenterally acceptable
diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable
vehicles and solvents that may be employed are water, Ringer's solution, U.S.P. and
isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally
employed as a solvent or suspending medium. For this purpose any bland fixed oil can
be employed including synthetic mono- or diglycerides. In addition, fatty acids such
as oleic acid are used in the preparation of injectables.
[0098] The injectable formulations can be sterilized, for example, by filtration through
a bacterial-retaining filter, or by incorporating sterilizing agents in the form of
sterile solid compositions which can be dissolved or dispersed in sterile water or
other sterile injectable medium prior to use.
[0099] In order to prolong the effect of a drug, it is often desirable to slow the absorption
of the drug from subcutaneous or intramuscular injection. This may be accomplished
by the use of a liquid suspension or crystalline or amorphous material with poor water
solubility. The rate of absorption of the drug then depends upon its rate of dissolution
that, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed
absorption of a parenterally administered drug form is accomplished by dissolving
or suspending the drug in an oil vehicle. Injectable depot forms are made by forming
microencapsule matrices of the drug in biodegradable polymers such as polylactide-polyglycolide.
Depending upon the ratio of drug to polymer and the nature of the particular polymer
employed, the rate of drug release can be controlled. Examples of other biodegradable
polymers include (poly(orthoesters) and poly(anhydrides). Depot injectable formulations
are also prepared by entrapping the drug in liposomes or microemulsions which are
compatible with body tissues.
[0100] Compositions for rectal or vaginal administration are preferably suppositories which
can be prepared by mixing the compounds of this invention with suitable non-irritating
excipients or carriers such as cocoa butter, polyethylene glycol or a suppository
wax which are solid at ambient temperature but liquid at body temperature and therefore
melt in the rectum or vaginal cavity and release the active compound.
[0101] Solid dosage forms for oral administration include capsules, tablets, pills, powders,
and granules. In such solid dosage forms, the active compound is mixed with at least
one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate
or dicalcium phosphate and/or a) fillers or extenders such as starches, lactose, sucrose,
glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose,
alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, c) humectants such
as glycerol, d) disintegrating agents such as agar--agar, calcium carbonate, potato
or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution
retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium
compounds, g) wetting agents such as, for example, cetyl alcohol and glycerol monostearate,
h) absorbents such as kaolin and bentonite clay, and i) lubricants such as talc, calcium
stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and
mixtures thereof. In the case of capsules, tablets and pills, the dosage form may
also comprise buffering agents.
[0102] Solid compositions of a similar type may also be employed as fillers in soft and
hard-filled gelatin capsules using such excipients as lactose or milk sugar as well
as high molecular weight polyethylene glycols and the like. The solid dosage forms
of tablets, dragees, capsules, pills, and granules can be prepared with coatings and
shells such as enteric coatings and other coatings well known in' the pharmaceutical
formulating art. They may optionally contain opacifying agents and can also be of
a composition that they release the active ingredient(s) only, or preferentially,
in a certain part of the intestinal tract, optionally, in a delayed manner. Examples
of embedding compositions that can be used include polymeric substances and waxes.
Solid compositions of a similar type may also be employed as fillers in soft and hard-filled
gelatin capsules using such excipients as lactose or milk sugar as well as high molecular
weight polethylene glycols and the like.
[0103] The active compounds can also be in micro-encapsulated form with one or more excipients
as noted above. The solid dosage forms of tablets, dragees, capsules, pills, and granules
can be prepared with coatings and shells such as enteric coatings, release controlling
coatings and other coatings well known in the pharmaceutical formulating art. In such
solid dosage forms the active compound may be admixed with at least one inert diluent
such as sucrose, lactose and starch. Such dosage forms may also comprise, as in normal
practice, additional substances other than inert diluents, e.g., tableting lubricants
and other tableting aids such as magnesium stearate and microcrystalline cellulose.
In the case of capsules, tablets and pills, the dosage forms may also comprise buffering
agents. They may optionally contain opacifying agents and can also be of a composition
that they release the active ingredient(s) only, or preferentially, in a certain part
of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions
which can be used include polymeric substances and waxes.
[0104] Dosage forms for topical or transdermal administration of a compound of this invention
include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants
or patches. The active component is admixed under sterile conditions with a pharmaceutically
acceptable carrier and any needed preservatives or buffers as may be required. Ophthalmic
formulation, ear drops, and eye drops are also contemplated as being within the scope
of this invention. Additionally, the present invention contemplates the use of transdermal
patches, which have the added advantage of providing controlled delivery of a compound
to the body. Such dosage forms are made by dissolving or dispensing the compound in
the proper medium. Absorption enhancers can also be used to increase the flux of the
compound across the skin. The rate can be controlled by either providing a rate controlling
membrane or by dispersing the compound in a polymer matrix or gel.
[0105] It will also be appreciated that the compounds and pharmaceutical compositions of
the present invention can be formulated and employed in combination therapies, that
is, the compounds and pharmaceutical compositions can be formulated with or administered
concurrently with, prior to, or subsequent to, one or more other desired therapeutics
or medical procedures. The particular combination of therapies (therapeutics or procedures)
to employ in a combination regimen will take into account compatibility of the desired
therapeutics and/or procedures and the desired therapeutic effect to be achieved.
It will also be appreciated that the therapies employed may achieve a desired effect
for the same disorder (for example, an inventive compound may be administered concurrently
with another anti-inflammatory agent or anticancer agent), or they may achieve different
effects (
e.g., control of any adverse effects).
[0106] For example, other therapies or anticancer agents that may be used in combination
with the inventive compounds of the present invention include surgery, radiotherapy
(in but a few examples, γ-radiation, neutron beam radiotherapy, electron beam radiotherapy,
proton therapy, brachytherapy, and systemic radioactive isotopes, to name a few),
endocrine therapy, biologic response modifiers (interferons, interleukins, and tumor
necrosis factor (TNF) to name a few), hyperthermia and cryotherapy, agents to attenuate
any adverse effects (
e.g., antiemetics), and other approved chemotherapeutic drugs, including, but not limited
to, alkylating drugs (mechlorethamine, chlorambucil, Cyclophosphamide, Melphalan,
Ifosfamide), antimetabolites (Methotrexate), purine antagonists and pyrimidine antagonists
(6-Mercaptopurine, 5-Fluorouracil, Cytarabile, Gemcitabine), spindle poisons (Vinblastine,
Vincristine, Vinorelbine, Paclitaxel), podophyllotoxins (Etoposide, Irinotecan, Topotecan),
antibiotics (Doxorubicin, Bleomycin, Mitomycin), nitrosoureas (Carmustine, Lomustine),
inorganic ions (Cisplatin, Carboplatin), enzymes (Asparaginase), and hormones (Tamoxifen,
Leuprolide, Flutamide, and Megestrol), to name a few. For a more comprehensive discussion
of updated cancer therapies see, http://www.nci.nih.gov/, a list of the FDA approved
oncology drugs at http://www.fda.gov/cder/cancer/druglistframe.htm, and
The Merck Manual, Seventeenth Ed. 1999, the entire contents of which are hereby incorporated by reference.
[0107] In certain embodiments, the pharmaceutical compositions of the present invention
further comprise one or more additional therapeutically active ingredients (
e.g., chemotherapeutic and/or palliative). For purposes of the invention, the term
"Palliative" refers to treatment that is focused on the relief of symptoms of a disease and/or
side effects of a therapeutic regimen, but is not curative. For example, palliative
treatment encompasses painkillers, antinausea medications and anti-sickness drugs.
In addition, chemotherapy, radiotherapy and surgery can all be used palliatively (that
is, to reduce symptoms without going for cure;
e.g., for shrinking tumors and reducing pressure, bleeding, pain and other symptoms of
cancer).
TREATMENT KITS
[0108] In other embodiments, the present invention relates to a kit for conveniently and
effectively carrying out the methods in accordance with the present invention. In
general, the pharmaceutical pack or kit comprises one or more containers filled with
one or more of the ingredients of the pharmaceutical compositions of the invention.
Such kits are especially suited for the delivery of solid oral forms such as tablets
or capsules. Such a kit preferably includes a number of unit dosages, and may also
include a card having the dosages oriented in the order of their intended use. If
desired, a memory aid can be provided, for example in the form of numbers, letters,
or other markings or with a calendar insert, designating the days in the treatment
schedule in which the dosages can be administered. Alternatively, placebo dosages,
or calcium dietary supplements, either in a form similar to or distinct from the dosages
of the pharmaceutical compositions, can be included to provide a kit in which a dosage
is taken every day. Optionally associated with such container(s) can be a notice in
the form prescribed by a governmental agency regulating the manufacture, use or sale
of pharmaceutical products, which notice reflects approval by the agency of manufacture,
use or sale for human administration.
EQUIVALENTS
[0109] The representative examples that follow are intended to help illustrate the invention,
and are not intended to, nor should they be construed to, limit the scope of the invention.
Indeed, various modifications of the invention and many further embodiments thereof,
in addition to those shown and described herein, will become apparent to those skilled
in the art from the full contents of this document, including the examples which follow
and the references to the scientific and patent literature cited herein. It should
further be appreciated that the contents of those cited references are incorporated
herein by reference to help illustrate the state of the art.
[0110] The following examples contain important additional information, exemplification
and guidance that can be adapted to the practice of this invention in its various
embodiments and the equivalents thereof.
EXEMPLIFICATION
[0111] The compounds of this invention and their preparation can be understood further by
the examples that illustrate some of the processes by which these compounds are prepared
or used. It will be appreciated, however, that these examples do not limit the invention.
Variations of the invention, now known or further developed, are considered to fall
within the scope of the present invention as described herein and as hereinafter claimed.
[0112] According to the present invention, any available techniques can be used to make
or prepare the inventive compounds or compositions including them. For example, a
variety of solution phase synthetic methods such as those discussed in detail below
may be used. Alternatively or additionally, the inventive compounds may be prepared
using any of a variety combinatorial techniques, parallel synthesis and/or solid phase
synthetic methods known in the art.
[0113] It will be appreciated as described below, that a variety of inventive compounds
can be synthesized according to the methods described herein. The starting materials
and reagents used in preparing these compounds are either available from commercial
suppliers such as Aldrich Chemical Company (Milwaukee, WI), Bachem (Torrance, CA),
Sigma (St. Louis, MO), or are prepared by methods well known to a person of ordinary
skill in the art following procedures described in such references as
Fieser and Fieser 1991, "Reagents for Organic Synthesis", vols 1-17, John Wiley and
Sons, New York, NY, 1991;
Rodd 1989 "Chemistry of Carbon Compounds", vols. 1-5 and supps, Elsevier Science Publishers,
1989; "
Organic Reactions", vols 1-40, John Wiley and Sons, New York, NY, 1991;
March 2001, "Advanced Organic Chemistry", 5th ed. John Wiley and Sons, New York, NY; and
Larock 1989, "Comprehensive Organic Transformations", VCH Publishers. These schemes are merely illustrative of some methods by which the compounds of
this invention can be synthesized, and various modifications to these schemes can
be made and will be suggested to a person of ordinary skill in the art having regard
to this disclosure.
[0114] The starting materials, intermediates, and compounds of this invention may be isolated
and purified using conventional techniques, including filtration, distillation, crystallization,
chromatography, and the like. They may be characterized using conventional methods,
including physical constants and spectral data.
[0115] 1) Exemplary Compounds
[0117] 2) Experimental Procedures:
[0118] As described above, the present invention provides novel deazapurines having formula
(I) as described above and in certain classes and subclasses herein. The synthesis
of several exemplary compounds is described in detail below. It will be appreciated
that the methods as described herein can be applied to each of the compounds as disclosed
herein and equivalents thereof. Additionally, certain reagents and starting materials
are well known to those skilled in the art. Although the following examples describe
certain exemplary compounds, it will be appreciated that the use of alternate starting
materials will readily yield other analogues encompassed by the invention.
[0119] General Reaction Procedures:
[0120] Unless mentioned specifically, reaction mixtures were stirred using a magnetically
driven stirrer bar. An inert atmosphere refers to either dry argon or dry nitrogen.
Reactions were monitored either by thin layer chromatography, or by proton nuclear
magnetic resonance, of a suitably worked up sample of the reaction mixture.
[0121] General Work Up Procedures:
[0122] Unless mentioned specifically, reaction mixtures were cooled to room temperature
or below then quenched, when necessary, with either water or a saturated aqueous solution
of ammonium chloride or sodium bicarbonate. Desired products were extracted by partitioning
between water and a suitable water-immiscible solvent (e.g. ethyl acetate, dichloromethane,
diethyl ether). The desired product containing extracts were washed appropriately
with water followed by a saturated solution of brine. On occasions where the product
containing extract was deemed to contain residual oxidants, the extract was washed
with a 10% solution of sodium sulphite in saturated aqueous sodium bicarbonate solution,
prior to the aforementioned washing procedure. On occasions where the product containing
extract was deemed to contain residual acids, the extract was washed with saturated
aqueous sodium bicarbonate solution, prior to the aforementioned washing procedure
(except in those cases where the desired product itself had acidic character). On
occasions where the product containing extract was deemed to contain residual bases,
the extract was washed with 10% aqueous citric acid solution, prior to the aforementioned
washing procedure (except in those cases where the desired product itself had basic
character). Post washing, the desired product containing extracts were dried over
anhydrous sodium or magnesium sulphate, then filtered. The crude products were then
isolated by removal of solvent(s) by rotary evaporation under reduced pressure, at
an appropriate temperature (generally less than 45°C).
[0123] General Purification Procedures:
[0124] Unless mentioned specifically, chromatographic purification refers to flash column
chromatography on silica gel, using a single solvent or mixed solvent as eluent. Suitably
purified desired product containing elutes were combined and concentrated under reduced
pressure at an appropriate temperature (generally less than 45°C) to constant mass.
[0125] Experimentals for Certain Exemplary Compounds:

[0127] Dry HCl (gas) was bubbled through a 2 M solution of nitrile (R
2-CN) in ethyl ether containing 1 mole equivalent of ethanol at -10 °C for 1-2 hours.
After stirring from additional an hour to overnight at room temperature, nitrogen
was bubbled through to purge excess HCl gas and ether. The remaining slurry or suspension
was filtered, washed with ether three times and then dried under vacuum to give the
corresponding ethyl imidate hydrogen chloride.
[0128] A mixture of 1 (1 mmol) and the ethyl imidate hydrogen chloride (1.1 mmol) in 5 mL
of ethanol was heated at 65-70 °C until reaction was completed (1.5 h to overnight).
The mixture was cooled to room temperature, diluted with 20 mL of water, stirred for
30 min., filtered and washed with water. The cake was collected and dried under vacuum
to give the desired product 3.

[0129] A solution of 3 (1 mmol) in 2.8 mL of 57% HI (aq., 20 mmol) was heated at reflux
until reaction was completed (12 -20 h). The mixture was cooled to 0 °C, slowly diluted
with 5 N NaOH solution (19 mmol) and then with 1 mL, of sat. NaHCO
3 to pH-9. The resulting mixture was extracted with either ethyl acetate or ethyl acetate/THF
mixture until extraction was completed. The combined extracts was dried over Na
2SO
4, filtered and concentrated to give the desired product 4 as free form. Washing the
product with ethyl acetate resulted in a better purity if necessary in certain cases.
The HI mono-salt form of 4 was obtained after cooling the reaction mixture to room
temperature, filtration, washing with water and drying the collected yellow solid
in high vacuumn.

[0130] A mixture of
1 (300 mg, 1.3 mmol) and tetraethyl orthocarbonate (2.6 mmol) in 10 mL of acetic acid
was stirred at room temperature overnight and reaction was completed. The reaction
mixture was concentrated under reduced vacuum and the residue was diluted with sat
NaHCO
3, extracted with EtOAc, dried over Na
2SO
4, filtered, concentrated to give a brownish solid. This solid was dissolved in 24
mL of H
2O-MeOH (1:1) solution containing 1.2 g of KOH and heated at reflux for 2.5 h. After
cooling to room temperature, the mixture was extracted with EtOAc. The extracts was
washed with water, dried over Na
2SO
4, filtered, concentrated and the product was purified by chromatography (10% MeOH-EtOAc)
to give 5 (45 mg, 16%).

[0131] A solution of 1 (203 mg, 0.88 mmol) in trifluoroacetic acid (2 mL) was heated at
70 °C for 12 h, cooled to room temperature, concentrated and the residue was diluted
with sat NaHCO
3 (10 ml) and EtOAc (10 mL). The separated aqueous phase was extracted with 4x10 mL
of EtOAc and the combined organic layer was dried over Na
2SO
4, filtered and concentrated to give a yellow solid. This yellow solid was mixed with
3 mL of polyphosphoric acid, heated at 200 °C for 3 h and cooled to room temperature.
The reaction mixture was carefully quenched with sat. NaHCO
3 (80 ml) and extracted with 4x20 mL of EtOAc. The combined organic layer was dried
over Na
2SO
4, filtered and concentrated to give a brownish yellow solid. This solid was dissolved
in 5 mL of 57% HI solution and heated at 110 °C for 12 h. After cooling to room temperature,
the reaction mixture was carefully poured into sat. NaHCO
3 (60 ml) containing 3 mL of 1 N NaOH and extracted with 4x20 mL of EtOAc. The combined
organic layer was dried over Na
2SO
4, filtered and concentrated and the product was purified by chromatography (50 to
100% EtOAc-hexanes) to give the desired product 6 (132 mg, 46% for 3 steps).

[0132] A mixture of methyl indole-5-carboxylate (27 g, 155 mmol) (or the corresponding 4-,
6- and 7-carboxylate), di-t-butyl dicarbonate (40 g, 1.2 eq.), Et
3N (26 mL, 1.2 eq.) and DMAP (0.1 g, 0.005 eq.) in THF (165 mL) was stirred at room
temperature overnight. The reaction mixture was quenched by addition of sat. NaHCO
3 (350 mL). The separated aqueous layer was extracted once with EtOAc. The combined
organic phase was concentrated and the product was purified by chromatography (5%
and 10% EtOAc-hexanes) to provide 7 (42 g, 100%).

[0133] To a solution of 7 (42 g, 152 mmol) in dichloromethane (400 mL) at - 78 °C was added
a 1 M solution of DIBAL-H in toluene (460 mL, 3.0 eq.) during 30 min of period. The
cooling bath was replaced with -40 °C, the reaction mixture was stirred and warmed
to -30 °C and TLC showed reaction was completed. The reaction was quenched with careful
addition of MeOH (57 mL, 9.0 eq.) and water (19 mL, 9.0 eq.), diluted with EtOAc (150
mL) and then warmed to rt. The resulting suspension mixture was filtered through celite
washing with EtOAc until the product was no longer detected. The filtrate was concentrated
and the product was purified by chromatography (15% and 30% EtOAc-hexanes) to provide
8 (29 g, 75%).

[0134] Methanesulfonyl chloride (10.1 mL, 1.2 eq.) was added to a solution of 8 (27.0 g,
109 mmol, 1.0 eq.) and diisopropylethylamine (57 mL, 3.0 eq.) in dichloromethane (250
mL) at 0 °C during 5 min. After stirring additional 15 min, morpholine (14.3 mL, 1.5
eq.or cyclic or acyclic R'R"NH) was added to the reaction mixture and stirred at room
temperature overnight The mixture was poured into sat. NaHCO
3 (100 mL) and water (20 mL), the separated aqueous phase was extracted with 4x50 mL
of EtOAc. The combined organic phase was dried over Na
2SO
4, filtered, concentrated and the product was purified by chromatography (15% to 40%
EtOAc-hexanes) to provide 9 (34.0 g, 99%).

[0135] Method A: To a solution of diisopropylamine (17.0 mL, 1.2 eq.) in THF (350 mL) at -78°C was
added nBuLi (2.5 M in hexanes, 48.6 mL, 1.2 eq.) over a 15 min period and the reaction
mixture was stirred and warmed to room temperature after removing the cooling bath.
The reaction mixture was cooled back to -78°C and a solution of 9 (32 g, 101 mmol)
in THF (120 mL) was introduced by cannulation during 15 min. The resulting mixture
was stirred and warmed to -20°C during 15 min and then Bu
3SnCl (31.5 mL, 1.15 eq.) was introduced. The mixture was stirred and warmed to room
temperature and poured into a sat. NH
4Cl (300 mL). The separated aqueous phase was extracted with 3x100 mL of EtOAc. The
combined organic phase was dried over Na
2SO
4, filtered, concentrated and the product was purified by vacuum chromatography (5%
to 50% EtOAc-hexanes) to provide 10 (55 g, 89%).
[0136] Method B: This reaction was also carried out by following the same protocol as that used for
the preparation of 15 from 14.

[0137] Compound 11 was prepared from indole-1-carboxylic acid tert-butyl ester in 86% following
the same procedure for the preparation of 10 from 9.

[0138] Compound 12 was prepared from mono- or di-substituted indole following similar procedures
for the preparation of 7 and 10.

[0140] To a mixture of
8 (5-hydroxymethyl-indole-1-carboxylic acid
tert-butylester as an example, 24.4 g, 98.8 mmol), Et
3N (41 mL, 3 eq.) and DMAP (1.2 g, 0.1 eq.) in dichloromethane (185 mL) was added TBSCl
(23.1 g, 1.5 eq.) at room temperature and the resulting mixture was stirred overnight
The reaction was quenched with the addition of sat NaHCO
3 (200 mL) and the separated aqueous layer was extracted with 3x50 mL dichloromethane.
The combined organic phase was dried over Na
2SO
4, filtered, concentrated and the product was purified by vacuum chromatography (3%
EtOAc-hexanes) to provide
14 (5-
tert-butyl-dimethyl-silanyloxymethyl)-indole-1-carboxylic acid
tert-butyl ester) as a colorless oil (33.9 g, 95%).

[0141] To a solution of
14 (5-
tert-butyl-dimethyl-silanyloxymethyl-indole-1-carboxylic acid
tert-butyl ester as an example, 33.5 g, 92.7 mmol) in THF (650 mL) below -72°C was added
tBuLi (63 mL, 1.7 M in pentane, 1.2 eq.) dropwise over a period of 45 min and stirring
was continued for an additional 40 min. The resulting brown solution was briefly warmed
to -60 °C and then cooled back to below -72 °C. Bu
3SnCl (31.6 mL, 1.3 eq.) was then introduced to the reaction mixture and stirred at
-40 °C for 15 min. The reaction was quenched at -35 °C with sat NaHCO
3 (250 mL) and the separated aqueous layer was extracted with 3x150 mL EtOAc. The combined
organic phase was dried over Na
2SO
4, filtered, concentrated and the product was purified by vacuum chromatography (hexanes)
to provide
15 (5-(
tert-butyl-dimethyl-silanyloxymethyl)-2-tributylstannyl-indole-1-carboxylic acid
tert-butyl ester) as a colorless oil (60.6 g, 100%).

[0142] A solution of
15 (5-(
tert-butyl-dimethyl-silanyloxymethyl)-2-tributylstannyl-indole-1-carboxylic acid
tert-butyl ester as an example, 60.6 g, 3.0 eq.) in DMF (100 mL) was added in four portions
during 24 h period to a solution of
4 (R
2=Me, 8.51 g, 31.0 mmol), Pd(Ph
3P)
4 (3.2 g, 0.09 eq.) and Et
3N (26 mL, 3.0 eq.) in DMF (100 mL) with or without K
2CO
3 (1.0 eq.) at 110 °C under nitrogen atmosphere. The resulting mixture was stirred
for 20 h, cooled to room temperature and concentrated. The residue was diluted with
sat. NaHCO
3 (300 mL) and EtOAc (300 mL), filtered and washed with EtOAc to get rid of dark gray
sludge. The separated aqueous phase from the filtrate was extracted with 6x200 mL
EtOAc until no desired product detected by TLC. The combined organic phase was dried
over Na
2SO
4, filtered and concentrated. The residue was diluted with EtOAc and the resulting
suspension was filtered, washed with EtOAc and 2xMeOH to give
16 (4.27 g). The filtrate was concentrated and the residual product was purified by
chromatography (0 to 5% MeOH-EtOAc) to give additional 16 (2.59 g). The products were
combined to give
16 (7-[5-(
tert-butyl-dimethyl-silanyloxymethyl)-1H-indol-2-yl]-2-methyl-3H-imidazo[4,5-b]pyridin-5-ylamine)
as a greenish gray solid (6.86 g, 54%).

[0143] A solution of tBuOK in THF (1.66 M, 96.3 mL, 9.5 eq.) was added to a mixture of
16 (7-[5-(
tert-butyl-dimethyl-silanyloxymethyl)-1H-indol-2-yl]-2-methyl-3
H-imidazo[4,5-b]pyridin-5-ylamine as an example, 6.86 g, 16.8 mmol) and di-tert-butyl
dicarbonate (39 mL, 10 eq.) in THF (1.1 L) at below -28 °C during 40 min period. After
stirring for 10 min, the reaction was quenched by addition of sat. NaHCO
3 (300 mL) and warmed to room temperature. The separated aqueous layer was extracted
by 3x150 mL of EtOAc. The combined organic phase was dried over Na
2SO
4, filtered, concentrated and the product was purified by vacuum chromatography (10
to 20% EtOAc/hexanes) to provide a di-Boc-protected intermediate.
[0144] The di-Boc-protected intermediate was then dissolved in 55 mL THF containing Et
3N (55 mL), DIBOC (22.5 g, 6.0 eq.) and DMAP (021 g, 0.1 eq.) and heated at 65 °C for
5 h. After cooling to room temperature, the mixture was concentrated and the product
was purified by vacuum chromatography (10% EtOAc-hexanes) to provide tetra-Boc-protected
intermediate.
[0145] The tetra-Boc-protected intermediate was then dissolved in a solution of HF/pyridine
in THF (0.89 M, 5.3 eq., HF/pyridine solution was prepared by mixing of 10 g of 70%
HF/pyridine, 52.5 mL of pyridine and 330 mL of THF) and stirred at room temperature
for 40 h. The reaction mixture was then carefully quenched with sat. NaHCO
3 (250 mL) and the separated aqueous layer was extracted by 3x50 mL of EtOAc. The combined
organic phase was washed with brine (50 mL), dried over Na
2SO
4, filtered, concentrated and the product was purified by vacuum chromatography (10
to 50% EtOAc-hexanes) to provide
17 (5-di-(
tert-butoxycarbonyl)amino-7-(1-
tert-butoxycarbonyl-5-hydroxylmethyl-1H-indol-2-yl)-2-methyl-imidazo[4,5-b]pyridine-3-carboxylic
acid
tert-butyl ester, 5.64 g, 48% for three steps) as a light yellow solid.

[0146] Methylsulfonylchloride (0.14 mL, 1.5 eq.) was added to a mixture of
17 (5-di-(
tert-butoxycarbonyl)amino-7-(1-
tert-butoxycarbonyl-5-hydroxylmethyl-1
H indol-2-yl)-2-methyl-imidazo[4,5-b]pyridine-3-carboxylic acid
tert-butyl ester as an example, 830 mg, 1.2 mmol) and diisopropylethylamine (2.08 mL,
10 eq.) in dichloromethane (10 mL) at 0 °C and the resulting mixture was stirred and
warmed to room temperature. After stirring for 7 h at room temperature, the mixture
was kept at 0 °C for two days, warmed to room temperature and concentrated to half
of its volume. The product was then purified by chromatography (20% to 30% EtOAc/hexanes)
to give
18 (5-di-(
tert-butoxycarbonyl)amino-7-(1-
tert-butoxycarbonyl-5-chloromethyl-1
H-indol-2-yl)-2-methyl-imidazo[4,5-b]pyridine-3-carboxylic acid
tert-butyl ester, 770 mg, 90%).

[0147] A mixture of
17 (5-di-(
tert-butoxycarbonyl)amino-7-(1-
tert butoxycarbonyl-5-hydroxylmethyl-1
H-indol-2-yl)-2-methyl-imidazo[4,5-b]pyridine-3-carboxylic acid
tert-butyl ester as an example, 122 mg, 0.18 mmol) and Dess-Martin periodinane (223 mg,
3.0 eq.) in dichloromethane (4 mL) was stirred at room temperature for 1 h. The resulting
mixture was diluted with diethyl ether (60 mL), stirred for 20 min and filtered through
celite washing with diethyl ether. The filtrate was washed with sat NaHCO
3 (20 mL) containing Na
2S
2O
3 (500 mg) and the aqueous phase was back extracted with 2x25 mL diethyl ether. The
combined organic layer was dried over Na
2SO
4, filtered, concentrated and the product was purified by chromatography (10 to 30%
EtOAc-hexanes) to provide
19 (5-di-(
tert-butoxycarbonyl)amino-7-(1-
tert-butoxycatbonyl-5-formyl-1
H-indol-2-yl)-2-methyl-imidazo[4,5-b]pyridine-3-carboxylic acid
tert-butyl ester, 117 mg, 96%).

[0148] A solution of KMnO
4 (436 mg, 2 eq.) and KH
2PO
4 (563 mg, 3 eq.) in water (15 mL) was added to a solution of 19 (S-di-(
tert-butoxycarbonyl)amino-7-(1-
tert-butoxycarbonyl-5-formyl-1
H-indol-2-yl)-2-methyl-imidazo[4,5-b]pyridine-3-carboxylic acid
tert-butyl ester as an example, 958 mg, 1.38 mmol) in tBuOH (10 mL) at room temperature
during 3 min and the resulting mixture was stirred for 30 min. The mixture was then
diluted with EtOAc (20 mL), filtered through celite washing with EtOAc. The filtrate
was diluted with brine (60 mL), water (40 mL) and EtOAc (200 mL). The separated aqueous
phase was extracted with 3x30 mL of EtAOc. The combined organic layer was dried over
Na
2SO
4, filtered, concentrated and the product was purified by chromatography (30 to 100%
EtOAc/hexanes) to provide
20 (2-(3-
tert-butylcarbonyl-5-di-(tert butylcarbonyl)amino-2-methyl-3
H imadazo[4,5 b]pyridin-7-yl)-indole-1,5-carboxylic acid 1-tert-butyl ester, 678 mg,
69%).

[0149] A mixture of (mono- or di-) substituted benzyl chloride (or bromide) or bromomethylnaphthalene
or chloromethyl pyridine hydrochloride (20 mmol) and methylamine (22 mL, 40% in water,
10 eq.) in MeOH (18 mL) was stirred at room temperature for 1-5 days until reaction
was completed. After concentration, the reaction mixture was diluted with sat. NaHCO
3 (50 mL), extracted with EtAOc until there was no product detected. The combine extracts
were dried over Na
2SO
4, filtered, concentrated to give the product
21.

[0150] Amines
22-26 were prepared following a modified procedure disclosed in published PCT application
number
WO 01/00610 A1.

[0151] Methanesulfonyl chloride (0.80 mL, 1.2 eq.) was added to a solution of 2-(ethyl-phenyl-amino)-ethanol
(1.43 g, 8.65 mmol) and diisopropylethylamine (3.0 mL, 2.0 eq.) in dichloromethane
(10 mL) at 0 °C and the resulting mixture was stirred for 15 min. A solution of ammonia
(20 mL, 2 M in MeOH) was then introduced and the resulting mixture was stirred at
room temperature for five days and concentrated. The residue was diluted with a solution
of HCl (7 mL, 1 N) and washed with 3xEtOAc. The aqueous phase was treated with a solution
of NaOH (15 mL, 1 N) and extracted once with EtOAc. The extract was dried over Na
2SO
4, filtered, concentrated to give the product 27.

[0152] To a solution of 2-benzyloxy-propane-1,3-diol (5.0 g, 27.4 mmol) in 5:1 THF-DMF (200
mL) at 0 °C was added NaH (1.5 g, 2.3 eq.) followed by methyl iodide (5.1 mL, 3.0
eq.). The resulting white slurry mixture was stirred at room temperature over weekend.
The reaction mixture was quenched with sat. NH
4Cl, extracted with EtOAc, dried over Na
2SO
4, filtered, concentrated and the product was purified by chromatography (50% EtOAc/hexanes)
to give (2-methoxy-1-methoxymethyl-2-ethoxymethyl)-benzene (5.6 g, 97%).
[0153] A mixture of (2-methoxy-1-methoxymethyl-2-ethoxymethyl)-benzene (5.5g) and Pd(OH)
2 (0.4 g) in MeOH (150 mL) was stirred at room temperature under hydrogen gas until
reaction was completed. The reaction mixture was filtered and concentrated to give
1,3-dimethoxy-propan-2-ol (3.0 g, 96%).
[0154] Methanesulfonyl chloride (0.61 mL, 2.0 eq.) was added to a solution of 1,3-dimethoxy-propan-2-ol
(0.50 g, 4.14 mmol) and triethylamine (2.3 mL, 4.0 eq.) in dichloromethane (2 mL)
at 0 °C and the resulting mixture was stirred for 15 min. The reaction was quenched
by sat. NaHCO
3 and the mixture was extracted with EtOAc. The combined extracts were dried over Na
2SO
4, filtered and concentrated. The residue and NaN
3 (0.80 g, 3.0 eq.) was dissolved in DMSO (10 mL) and heated at 90 °C over weekend.
After cooling to room temperature, the mixture was diluted with sat. NaHCO
3 and extracted with diethyl ether. The combined extracts were dried over Na
2SO
4, filtered and concentrated to give azide intermediate (320 mg, 48%).
[0155] A mixture of the azide intermediate (320 mg) and Pd(OH)
2 in MeOH (15 mL) was stirred at room temperature under hydrogen gas for 1 h. The reaction
mixture was filtered and concentrated to give 28 (150 mg, 63%).

[0156] A mixture of ethyl-phenyl-amine (4.15 mL, 33 mmol), allyl bromide (4.3 mL, 1.5 eq.)
and K
2CO
3 (9.1 g, 2.0 eq.) in acetone (50 mL) was heated at reflux for overnight. After cooling
to room temperature, the reaction mixture was diluted with water (50 mL) and EtOAc
(100 m). The separated organic phase was dried over Na
2SO
4, filtered and concentrated and the product was purified by chromatography (10% EtOAc/hexanes)
to give allyl-ethyl-phenyl-amine (5.32 g, 100%).
[0157] A solution of OsO
4 (7.8 mL, 0.1 M in water, 0.03 eq.) was added to a mixture of allyl-ethyl-phenyl-amine
(4. 10 g, 25.3 mmol) and NMO (5.92 g, 2.0 eq.) in 9:1 acetone-water (40 mL) at room
temperature and the resulting mixture was stirred overnight. The mixture was diluted
with sat. NaHCO
3 (80 mL), sat. Na
2S
2O
3 (20 mL) and 1:1 Et
2O-hexanes (100 mL). The separated aqueous phase was extracted with 2x30 mL of EtOAc
and the combined organic phase was dried over Na
2SO
4, filtered and concentrated and the product was purified by chromatography (30% EtOAc-hexanes)
to give 3-(ethyl-phenyl-amino)-propane-1,2-diol (4.25 g, 86%).
[0158] Methanesulfonyl chloride (2.5 mL, 1.5 eq.) was added to a solution 3-(ethyl-phenyl-amino)-propane-1,2-diol
(4.22 g, 21.6 mmol) and triethylamine (9.03 mL, 3.0 eq.) in dichloromethane (20 mL)
at -30 to -35°C and the resulting mixture was stirred and warmed to 0 °C. The reaction
was quenched by sat. NaHCO
3 (30 mL) and the separated aqueous phase was extracted with 2x20 mL CH
2Cl
2 and 20 mL EtOAc. The combined extracts were dried over Na
2SO
4, filtered and concentrated. The residue was dissolved in MeOH (30 mL) and treated
with NaOMe (2.3 g, 2.0 eq.) at 65-70 °C for 3 h. After cooling to room temperature,
the mixture was diluted with sat. NaHCO
3 (50 mL) and extracted with 3x30 mL of EtOAc. The combined extracts were dried over
Na
2SO
4, filtered and concentrated and the product was purified by chromatography (10% EtOAc/hexanes)
to give ethyl-oxiranylmethyl-phenyl-amine (1.72 g, 45%).
[0159] A solution of ethyl-oxiranylmethyl-phenyl-amine (1.72 g, 9.65 mmol) and NaOMe (1.04
g, 2.0 eq.) in MeOH (8 mL) was heated at reflux for over weekend. After cooling to
room temperature, the mixture was diluted with sat NaHCO
3 (20 mL) and extracted with 3x20 mL of EtOAc. The combined extracts were dried over
Na
2SO
4, filtered and concentrated and the product was purified by chromatography (30% EtOAc-hexanes)
to give 1-(ethyl-phenyl-amino)-3-methoxy-propan-2-ol (1.95 g, 97%).
[0160] A solution of 1-(ethyl-phenyl-amino)-3-methoxy-propan-2-ol (1.95 g, 9.32 mmol) and
NMO (2.18 g, 2.0 eq.) in dichloromethane (15 mL) was treated with TPAP (150 mg, 0.05
eq.) at room temperature until reaction was completed. The reaction mixture was diluted
with sat. NaHCO
3 (50 mL) and extracted with 3x30 mL. EtOAc. The combined extracts were dried over
Na
2SO
4, filtered and concentrated and the product was purified by chromatography (10 to
15% EtOAc-hexanes) to give 1-(ethyl-phenyl-amino)-3-methoxy-propan-2-one (0.98 mg,
51%).
[0161] A mixture of 1-(ethyl-phenyl-amino)-3-methoxy-propan-2-one (17 mg, 0.08 mmol), hydroxylamine
hydrochloride (30 mg) and pyridine (0.3 mL) in MeOH (0.4 mL) was stirred at room temperature
for 1.5 h. The reaction mixture was diluted with sat. NaHCO
3 and extracted with 3xEtOAc. The combined extracts were dried over Na
2SO
4, filtered and concentrated. The residue was dissolved in THF (0.8 mL) and treated
with lithium aluminum hydride (0.3 mL, 1 M in THF) at room temperature for overnight.
Work-up and purification by chromatography (5:95 ratio of 2 M NH
3 in MeOH:CH
2Cl
2) gave
29 as light yellow oil.

[0162] Compound 30 was prepared from 3-phenoxy-propane-1,2-diol in 21% overall yield following
the same procedures for the preparation of 29 from 3-(ethyl-phenyl-amino)-propane-1
,2-diol.

[0163] A mixture of 3-(bromo-propyl)-benzene or bromomethyl-cyclohexane (1 M, 1.0 eq.) in
MeOH and 40% MeNH
2 in water (60 eq.) was stirred at room temperature or at 45 °C until reaction was
completed. After cooling to room temperature, the mixture was concentrated and the
residue was diluted with saturated NaHCO
3 and extracted with 3xCH
2Cl
2 (or/and 3xEtOAc). The combined extracts were dried over Na
2SO
4, filtered and concentrated to give 31 or 32.

[0164] Methanesulfonylchloride (0.8 mL, 1.0 eq.) was added to a mixture of cyclopentyl-methanol
(1.1 mL, 1.0 eq.) and ethyldiiospropylamine (3.9 mL, 10 eq.) in CH
2Cl
2 (5 mL) at 0 °C and the resulting mixture was stirred and warmed to room temperature.
After addition of saturated NaHCO
3, the separated aqueous phase was extracted with CH
2Cl
2 and the combined organic layer was concentrated to give crude mesylate intermediate.
This mesylate was then treated with MeNH
2 following the same procedure for the preparation of 31/32 to give 33.

[0165] A solution of TiCl
4 in CH
2Cl
2 (1 M, 1.56 mmol) was added to a mixture of 1,2-diphenyl-ethanone (307 mg, 1.56 mmol),
Et
3N (655 µL) and methylamine (1.02 mL) in THF (5 mL) at 0 °C. After stirring 1.5 h,
a solution of NaBH
4 (280 mg, 37.8 mmol) in MeOH (8 mL) was added and the resulting mixture was stirred
for 2 h. A saturated Na
2CO
3 was then added and the reaction mixture was stored in freezer overnight After thawing,
the organic layer was removed and the aqueous phase was extracted with 3xCH
2Cl
2. The combined organic phases were dried over Na
2SO
4, filtered and concentrated. Purification by preparative thin layer chromatography
(80% EtOAc/hexanes) afforded 34 (195 mg, 59%).
[0166] Compounds 35 and 36 were prepared in a similar manner from 2-methoxy-1-phenyl-ethanone
and cycloheptanone, respectively.

[0167] To a solution of Boc-nortropinone (0.5 g, 2.2 mmol, 1.0 equiv) in CH
2Cl
2 (10 mL) was added TFA (10 mL). The reaction mixture was stirred for 2 hours and then
was concentrated. After addition of EtOAc and saturated NaHCO
3, the reaction mixture was extracted with 3xEtOAc. The combined organic layers were
dried over Na
2SO
4, filtered and concentrated to give 37 (0.25 g).

[0168] To a solution of 2,5-dihydro-pyrole-1-carboxylic acid phenyl ester (2 g, 10 mmol,
1.0 eq.) in Acetone/water (9:1, 20 mL) was added OsO
4 (4% in water, 1 mL) and NMO (2.3 g, 20 mmol, 2 eq.). The mixture was stirred at room
temperature overnight, concentrated to remove most of the Acetone, poured into saturated
NaHCO
3 and extracted with 3xEtOAc. The combined organic layers were dried over Na
2SO
4, filtered and concentrated. The crude mixture was purified by silica chromatography
(70% to 90% EtOAc-Hexanes) to give 3,4-dydroxy-pyrrolidine-1-carboxylic acid phenyl
ester (2.04g, 88%).
[0169] To a solution of 3,4-dihydroxy-pyrrolidine-1-carboxylic acid phenyl ester (1.93 g,
8.1 mmol, 1.0 eq.) in MeOH (20 mL) was added Palladium hydroxide and placed under
H
2 for 4 h. The catalyst was filtered off through celite and rinsed with MeOH. The filtrate
was concentrated (25 °C) to give 38 as reddish oil (840 mg, 100%).

[0170] To a suspension of NaH (8.99 g, 0.225 mol, 4.6 eq.) in DME (70 mL) at 0 °C was slowly
added a solution of 1,4-dioxa-spiro[4.5]decan-8-one (7.56 g, 0.048 mol, 1.0 eq.) in
DME (24 mL). After stirring for 30 minutes, a solution of MeI (14 mL, 0.225 mol, 4.6
eq.) in DME (70 ml) was slowly introduced over 7 h and the resulting mixture was lowly
warmed to room temperature and stirred overnight. The reaction was quenched by slow
addition of water until no more bubbling observed. The reaction mixture was poured
over iced water and extracted with 3xhexanes. The organic layers were combined, dried
over MgSO
4, filtered and concentrated. The crude mixture was purified by chromatography (100%
hexanes to remove oil, then 5:1 Hexanes-EtOAc) to give 7,7,9,9-tetramethyl-1,4-dioxa-spiro[4.5]decan-8-one
(4.16 g, 40%).
[0171] To a solution of 7,7,9,9-tetramethyl-1,4-dioxa-spiro[4.5]decan-8-one (4.15 g, 0.019
mol, 1,0 eq.) in THF (60 mL) was added 1 N HCl (30 mL) and the resulting mixture was
stirred at room temperature overnight, concentrated to remove most of the THF, extracted
with 3xEtOAc. The organic layers were combined, dried over MgSO
4, filtered and concentrated to give 2,2,6,6-tetramethyl-cyclohexane-1,4-dione as awhite
solid (3.43 g, >100%).
[0172] To a solution of 2,2,6,6-tetramethyl-cyclohexane-1,4-dione (0.40 g, 2.4 mmol, 1.0
eq.) in THF (8 mL) was added molecular sieves (4Å, 80 mg), 2 M solution of MeNH
2 in THF (1.3 mL, 2.6 mmol, 1.1 eq.), and AcOH (0.17 mL, 3.0 mmol, 1,2 eq.). After
5 minutes of stirring, NaBH(OAc)
3 (0.71 g, 3.33 mmol, 1.4 eq.) was added and the resulting mixture was stirred at room
temperature overnight. The reaction was quenched with the addition of saturated NaHCO
3. The mixture was then concentrated and the aqueous layer was extracted with 3xEtOAc.
The combined organic layers were washed once with saturated NaHCO
3, dried over MgSO
4, filtered and concentrated to give a crude pale yellow oil that was crystallized
to give 39 as a white crystals (0.40 g, >100%).

[0173] To solution of methyltriphenylphosphonium bromide (17 g, 1.5 eq.) in THF (100 mL)
at 0 °C was added dropwise n-butyllithium (2.5 M in hexanes, 18 mL, 1.4 eq.) and the
resulting mixture was stirred for 1 h. A solution of 1,4-dioxaspiro[4.5]decan-8-one
(5.0 g, 32 mmol, 1.0 eq.) in THF (10 mL) was then introduced dropwise and the resulting
mixture was warmed to room temperature and stirred overnight The reaction was quenched
by addition of sat NaHCO
3 and the separated aqueous layer was extracted with 4xEtOAc. The combined organic
phase was dried over Na
2SO
4, filtered and concentrated. The residue was purified by chromatography (5% to 10%
EtOAc/hexanes) to give 8-methyene-1,4-dioxa-spiro[4.5]decane (3.92 g, 79%).
[0174] To a solution of 8-methyene-1,4-dioxa-spiro[4.5]decane (2.0 g, 13 mmol, 1.0 eq.)
in THF (10 mL) at 0 °C was added dropwise 9-BBN (0.5 M in THF, 104 mL, 4.0 eq.) and
the resulting mixture was stirred for 15 min and then warmed to room temperature and
stirred overnight. Then NaBO
4- 4H
2O (32 g, 16 eq.) was introduced at 0 °C portionwise and the resulting mixture was
warmed to room temperature and stirred overnight, diluted with hexanes (30 mL) and
the separated aqueous phase was extracted with EtOAc. The combined organic phase was
dried over over Na
2SO
4, filtered and concentrated. The residue was purified by silica gel chromatography
(50% to 100% EtOAc-hexanes) to give (1,4-dioxa-spiro[4.5]dec-8-yl)-methanol (1.5 g,
67%).
[0175] To a solution of (1,4-dioxa-spiro[4.5]deo-δ-yl)-methanol (1.0 g, 5.8 mmol, 1.0 eq.)
and ethyldiisopropylamine (17 mL, 3.0 eq.) in methylene chloride (4 mL) at 0 °C was
added dropwise MsCl (0.46 mL, 1.0 eq.) and the resulting mixture was warmed to room
temperature and stirred for 2 h. The reaction was quenched by addition of sat. NaHCO
3 and the separated aqueous phase was extracted with 3x methylene chloride and 4x EtOAc.
The combined organic phase was dried over over Na
2SO
4, filtered and concentrated to give a crude methanesulfonic acid 1,4-dioxa-spiro[4.5]dec-8-ylmethyl
ester.
[0176] A mixture of the crude methanesulfonic acid 1,4-dioxa-spiro[4.5]dec-8-ylmethyl ester
(400 mg) in MeOH (2 mL) and aqueous MeNH
2 (40% w/w, 5 mL) was heated at reflux (60 °C oil both) for overnight. The reaction
was quenched by addition of sat NaHCO
3 and the separated aqueous phase was extracted with 4x methylene chloride and 4x EtOAc.
The combined organic phase was dried over over Na
2SO
4, filtered and concentrated to give crude
40 as brown oil.

[0177] To a solution of 4-oxo-piperidine-1-carboxylic acid benzyl ester (0.50 g, 2.14 mmol,
1.0 eq.) in THF (20 mL) was added dibromodifluoromethane (0.90 mL, 4.5 eq.) at -30
°C followed by HMPA (1.75 mL, 4.5 eq.). The cooling bath was removed and the reaction
mixture was swirled periodically. After 30 min, zinc dust (0.63 g, 4.5 eq.) and HMPA
(80 µL 0.4 eq.) was added and the mixture was heated at reflux for 18 h. Upon cooling
to room temperature, the residue was washed with diethyl ether several times. The
combined ether washings were washed successively with saturated aqueous copper (II)
sulphate, brine, dried over Na
2SO
4 and concentrated. The residue was purification by chromatography (20% EtOAc-hexanes)
to afford 4-difluoromethylene-piperidine-1-carboxylic acid benzyl ester (0.32 g, 56%)
as a colorless oil.
[0178] A mixture of 4-difluoromethylene-piperidine-1-carboxylic acid benzyl ester (269 mg)
and Pearlman's catalyst in methanol (2.5 mL) was stirred under hydrogen atmosphere
(using hydrogen filled balloon) for 4 h at room temperature. The reaction mixture
was filtered through celite and the filtrate was concentrated to give 41 (138 mg)
as pale yellow oil.

[0179] Following the same procedure to prepare
41, 4-difluoromethylene-piperidine-1-carboxylic acid 2,2-dimethyl-propyl ester (368
mg) was prepared using 4-oxo-piperidine-1-carboxylic acid 2,2-dimethyl-propyl ester
(500 mg). The 4-difluoromethylene-piperidine-1-carboxylic acid 2,2-dimethyl-propyl
ester (368 mg) in methylene chloride (1.0 mL) at room temperature was treated with
trifluoroacetic acid (TFA, 0.5 mL) for 1.5 h. After concentration of of the reaction
mixture, the crude 42 was used directly without further purification.

[0180] To a solution of 2-amino-cyclohexanol (3.50 g, 23.0 mmol, 1.0 eq.) in CH
2Cl
2 (100 mL) was added ethylchloroformate (2.65 mL, 1.2 eq.) followed by an aqueous solution
of K
2CO
3 (16.0 g in 200 mL of H
2O). The mixture was stirred vigorously for 1h. The separated aqueous layer was extracted
twice with CH
2Cl
2. The combined organic layers were dried over MgSO
4, filtered and concentrated to give (2-hydroxy-cyclohexyl)-carbamic acid ethyl ester
(4.36 g, >100 %).
[0181] To a solution of (2-hydroxy-cyclohexyl)-carbamic acid ethyl ester (2.06 g, 11.0 mmol,
1.0 eq.) in THF (80 mL) was added LiA1H
4 (1.09 g, 28.7 mmol, 2.6 eq.) and the resulting mixture was heated at 65 °C for 2
h. The reaction mixture was cooled to 0 °C, quenched with water, and the separated
aqueous phase was extracted with 3xEtOAc. The combined organic phase was dried over
MgSO
4, filtered and concentrated to give 2-methylamino-cyclohexanol (1.19 g, 84%).
[0182] To a solution of 2-methylamino-cyclohexanol (0.204 g, 1.58 mmol, 1.0 eq.) and di-
tert-butyl dicarbonate (0.422 g, 1.2 eq.) in CH
2Cl
2 (7.0 mL) was added was added a solution of K
2CO
3 in water (1.09 g in 14.0 mL of H
2O) and the resulting mixture was stirred vigorously for 1 h. The separated aqueous
layer was extracted twice with CH
2Cl
2. The combined organic phase was dried over MgSO
4, filtered and concentrated to give (2-hydroxy-cyclohexyl)-methyl-carbamic acid
tert-butyl ester (0.332 g, 92%).
[0183] To a solution of (2-hydroxy-cyclohexyl)-methyl-carbamic acid
tert-butyl ester (0.237 g, 1.03 mmol, 1.0 eq.) in CH
2Cl
2 (7.0 mL) at 0 °C was added molecular sieves (4A, 3 mL). The reaction was stirred
for 5 minutes and then NMO (0.422 g, 3.5 eq.) and TPAP (0.025 g, 0.07 eq.) were introduced.
The reaction mixture was stirred at 0 °C for 5 minutes, and then 40 minutes at room
temperature. After diluted with hexanes, the reaction mixture was passed through a
silica gel pad, using hexanes at the beginning to remove CH
2Cl
2, and then using a 1:1 mixture of hexanes-EtOAc to get the desired product. After
concentration of the hexanes-EtOAc filtrate, methyl-(2-oxo-cyclohexyl)-carbamic acid
tert-butyl ester was obtained as a white solid (0.235 g, 100%).
[0184] To a solution of methyl-(2-oxo-cyclohexyl)-carbamic acid
tert-butyl ester (0.202 g, 0.89 mmol, 1.0 eq.) in CH
2Cl
2 (3.0 mL) was added TFA (1.0 mL) and the reaction mixture was stirred at room temperature
for 3 h. The reaction mixture was then concentrated to give 43 (0.285 g, >100%).

[0185] To a solution of cyclopentylamine (5.8 mL, 59 mmol, 1.0 eq.) in CH
2Cl
2 (250 mL) at room temperature was added ethylchloroformate (7.3 mL, 1.3 eq.) followed
by an aqueous solution of KaCO
3 (37 g in 500 mL of H
2O). The mixture. was stirred vigorously for 1 h. The separated aqueous layer was extracted
twice with CH
2Cl
2. The combined organic layers were dried over MgSO
4, filtered and concentrated to give cyclopentyl-carbamic acid ethyl ester (9.6g, 88%).
[0186] To a solution of the cyclopentyl-carbamic acid ethyl ester (6.00g, 32.4 mmol, 1.0
eq.) in THF (250 mL) was added LiAlH
4 (3.08g, 2.5 eq.) and the resulting mixture was heated at 65 °C for 2 h. The reaction
was then cooled to 0 °C and quenched by addition of water. The separated aqueous layer
was extracted with 3xEtOAc. The combined organic phase was dried over MgSO
4, filtered and concentrated to give 44 (2.01 g, 62%).

[0187] Compounds 4
5-58 were prepared following the same procedures for the preparation of 44 from the corresponding
primary amines.

[0188] To a solution of cyclopentanone (25.0 mL, 0.28 mol, 1.0 eq.) in toluene (100 mL),
was added pyrrolidine (27.5 mL, 1.2 eq.). The reaction was equipped with a Dean-Stark
and heated at reflux overnight The reaction mixture was cooled to room temperature
and concentrated to give the crude 1-cyclopent 1-enyl-pyrrolidine (45.8 g, >100%).
[0189] To a solution of Pd(OAc)
2 (0.06 g, 0.06 eq.), PPh
3 (0.32 g, 0.24 eq.) and carbonic acid 2-ethoxycarbonyloxymethyl-allyl ester ethyl
ester (1.23 g, 5.30 mmol, 1.0 eq., prepared following
Tetrahedron 1998, 54(49), 14885-14904) in CH
3CN (30 ml) was added 1-cyclopent-1-enyl-pyrrolidine (1.01 g, 1.4 eq.) and the resulting
mixture was heated at 45 °C for 35 minutes. Then water (15 mL) was introduced and
the reaction mixture was heated at 50°C for 1 h, cooled to room temperature and diluted
with EtOAc (30 mL). The separated aqueous phase was extracted twice with EtOAc. The
combined organic phase was dried over MgSO
4, filtered and concentrated. The residue was purified by silica gel chromatography
(10% to 15% EtOAc-hexanes) to give 3-methylene-bicyclo[3,2,1]octan-8-one (0.14 g,
70%) as a pale yellow liquid.
[0190] To a solution of 3-methylene bicyclo[3,2,1]octan-8-one (0.14 g, 1.04 mmol, 1.0 eq.)
in benzene (10 mL) was added ethylene glycol (0.65 g, 16 eq.) and PTSA (0.01 g, 0.06
eq.). The reaction was equipped with a Dean-Stark and heated at reflux overnight After
cooling to room temperature, Et
3N (0.15 mL) was introduced and the resulting mixture was passed through a cake of
SiO
2 and MgSO
4. The cake was washed with CH
2Cl
2 and the combined filtrates were concentrated to give 3-methylene bicyclo[3,2,1]octan-8-one
ethylene ketal (0.21 g, >100%).
[0191] To a solution of 3-methylenyl bicyclo[3,2,1]octan-8-one ethylene ketal (0.21 g, 1.15
mmol, 1.0 eq.) in CH
2Cl
2 (2 mL) at -78 °C was bubbled O
3 until the reaction stayed blue (about 3 min). The O
3 bubbling was stopped and the reaction mixture was stirred for 5 min at -78 °C. The
reaction was quenched by addition of triphenylphosphine (0.43 g, 1.4 eq.) and stirring
at -78 °C for 10 minutes. The reaction mixture was allowed to warm at room temperature,
stirred for 40 minutes and concentrated. The residue was ppurified by silica gel chromatography
(10% to 15% EtOAc-hexanes) to give bicyclo[3,2,1]octane-3,8-dione 8-ethylene ketal
as a colorless oil (0.08 g, 40%).
[0192] To a solution of bicyclo[3,2,1]octane-3,8-dione8-ethylene ketal (53.1 mg, 0.27 mmol,
1.0 eq.) in THF (1.0 mL) at 0 °C was added Et
3N (0.11 mL, 2.9 eq.) followed by MeNH
2 (2.0 M in THF, 0.21 mL, 1.5 eq.). After stirring at room temperature for 5 minutes,
TiCl
4 (0.30 mL, 10.0 eq.) was introduced dropwise and the resulting mixture was stirred
at 0 °C for 45 minutes. A solution of NaBH
4 (53.1 mg, 5.1 eq.) in MeOH (2.0 mL) was then introduced and the resulting mixture
was stirred at 0 °C for 1 h. The reaction was quenched with saturated NaHCO
3 and the separated aqueous layer was extracted with 3xEtOAc. The combined organic
phase was dried over MgSO
4, filtered and concentrated to give the crude product, 3-methylamino-bicyclo[3,2,
1]octan-8-one ethylene ketal (24.1 mg).
[0193] To a solution of 3-methylamino-bicyclo[3,2,1]octan-8-one ethylene ketal (94.5, 0.48
mmol, 1.0 eq.) in acetone (2.0 mL) was added 1N HCl (1.5 mL) and the reaction was
stirred overnight at room temperature. The reaction mixture was neutralized with saturated
NaHCO
3 until pH was higher than 7, extracted with 3xEtOAc. The combined organic phase was
dried over MgSO
4, filtered and concentrated to give 49 (40.0 mg, 54%).

[0194] To a solution of (3,3-dimethyl-1,5-dioxa-spiro[5,5]undec-9-yl)-methyl-amine hydrochloride
(1.0 g, 4 mmol, 1.0 eq.) in THF (12 mL) was added di-
tert-butyl dicarbonate (1.1 mL, 1.2 eq.), triethylamine (2 mL) and DMAP (catalytical amount).
The resulting mixture was heated at 90 °C for 6, cooled to room temperature, poured
in saturated NaHCO
3, and the separated aqueous layer was extracted with 3xEtOAc. The combined organic
layers were dried over Na
2SO
4, filtered and concentrated. The residue was purified by silica gel chromatography
(10% EtOAc/hexanes) to give (3,3-dimethyl-1,5-dioxa-spiro[5,5]undec-9-yl)-methyl-carbamic
acid tert-butyl ester (1.4 g, 91%) as a white solid.
[0195] To a solution of (3,3-dimethyl-1,5-dioxa-spiro[5,5]undec-9-yl)-methyl-carbamic acid
tert-butyl ester (1.27 g, 3.63 mmol, 1.0 eq.) in acetone (40 mL) and water (20 mL)
was added PPTS (228 mg, 0.25 eq.) and the resulting reaction was heated to reflux
overnight, cooled to room temperature, concentrated to 20 mL, poured in saturated
NaHCO
3 and extracted with 3xEtOAc. The combined organic layers were dried over Na
2SO
4, filtered and concentrated. The residue was purified by silica gel chromatography
(hexanes to 20% EtOAc/hexanes) to give methyl-(4-oxo-cyclohexyl)-carbamic acid
tert-butyl ester (735 mg, 88%) as a white solid.
[0196] To a solution of methyl-(4-oxo-cyclohexyl)-carbamic acid
tert-butyl ester (0.69 g, 3.04 mmol, 1.0 eq.) in THF (25 mL) at -30 °C was added CBr
2F
2 (1.25 mL, 4.5 eq.) followed slow addition of by P(N(CH
3)
2)
3. The resulting mixture was warmed to room temperature over 0.5 h and Zn was introduced.
The resulting mixture was stirred at reflux for 16 h, cooled to room temperature and
diluted with Et
2O. The organic phase was decanted and the aqueous phase extracted with 2xEt
2O. The combined organic phase was washed with saturated CuSO
4 solution until it stayed blue, dried over Na
2SO
4, filtered and concentrated. The residue was purified by chromatography (20% EtOAc-Hexanes)
to give (4-difluoromethylene-cyclohexyl)-methyl-carbamic acid
tert-butyl ester (475 mg, 60%) as a white solid.
[0197] To a solution of (4-difluoromethylene-cyclohexyl)-methyl-carbamic acid
tert-butyl ester (150 mg, 0.57 mmol, 1.0 eq.) in CH
2Cl
2 (1.5 mL) was added TFA (1.5 mL). The reaction mixture was stirred for 4 h and then
was concentrated to give 50 (85 mg). The crude compound was taken to the next step
without further purification.

[0198] To a solution of cyclopropylamine (5.0 g, 87.5 mmol) and triethylamine (30 mL) in
dichloromethane (100 mL) at 0 °C was added dropwise benzyl chloroformate (15.0 mL,
10.5 mmol) and the resulting mixture was stirred for 2 h. Additional benzyl chloroformate
(1 mL) was added and the resulting reaction mixture was stirred overnight The reaction
was then quenched by addition of a saturated NaHCO
3 and the separated aqueous phase was extracted several times with dichloromethane.
The combined dichloromethane extracts were dried over Na
2SO
4, filtered and concentrated. The residue was purified by chromatography (15% EtOAc
to 5% MeOH/EtOAc) to give cyclopropyl-carbamic acid benzyl ester (11.8 g, 71%).
[0199] To a solution of cyclopropyl-carbamic acid benzyl ester (11.8 g) and methyl iodide
(excess) in THF (80 mL) and DMF (20 mL) at 0 °C was added NaH (2.20 g, 91.6 mmol)
and the resulting mixture was warmed to room temperature and stirred overnight. The
reaction was then quenched at 0 °C by sat NaHCO
3. The separated aqueous phase was extracted several times with EtOAc. The combined
extracts were dried over Na
2SO
4, filtered and concentrated. The residue was purified by chromatography (5% to 20%
EtOAc/hexanes) to give cyclopropyl-methyl-carbamic acid benzyl ester (11.32 g, 91%).
[0200] A mixture of cyclopropyl-methyl-carbamic acid benzyl ester (10.7 g) and Pd(OH)
2 in MeOH (100 mL) was stirred at room temperature under H
2 balloon for 17 h, diluted with concentrated HCl (4.8 mL), filtered through celite
and concentrated. The residue was azeotroped with toluene several times to give cyclopropyl-methyl-amine
hydrochloride (51, 5.75 g). The crude material was used without further purification.

[0201] To a solution of (tetrahydro-furan-3-yl)-methanol (1.00 g, 9.79 mmol, 1.0 eq.), PPh
3 (3.85 g, 1.5 eq.) and imidazole (1.33 g, 2.0 eq.) in CH
2Cl
2 (15 mL) at 0 °C was added I
2 (3.73 g, 1.5 eq.) and the resulting mixture was stirred at 0 °C for 30 min and then
at room temperature for 30 min. The reaction mixture was diluted with sat. Na
2S
2O
3 solution and the separated aqueous layer was extracted by 3xEtOAc and 4x CH
2Cl
2. The combined extracts were dried over Na
2SO
4, filtered and concentrated. The residue was purified by chromatography (15% EtOAc/hexanes)
to give 3-iodomethyl-tetrahydro-furan as yellow oil (1.59 g, 76%).
[0202] A mixture of 3-iodomethyl-tetrahydro-furan (500 mg, 2.36 mmol, 1.0 eq.) and MeNH
2 (40% in H
2O, 1.62 mL, 8.0 eq.) in MeOH (1 mL) was heated at 60 °C for 3 h. After cooling to
room temperature, the reaction mixture was diluted with excess Et
3N and concentrated. This process was repeated until no MeNH
2 was detected by
1HNMR. The residual yellow oil (52) was used directly without further purification.

[0203] To a solution of 1-methoxymethyl-propylamine (2.50 g, 24.3 mmol, 1.0 eq.) in dioxane
(15 mL) was added an aqueous solution of K
2CO
3 (15 g in 15 mL of H
2O) and the mixture was cooled to 0°C. CBZ-Cl (4.16 mL, 1.2 eq.) was then introduced
and the resulting mixture was warmed to room temperature and stirred for 3 h, extracted
with EtOAc. The combined organicphase was dried over Na
2SO
4, filtered and concentrated. The residue was purified by chromatography (hexanes to
40% EtOAc/hexanes) to give (1-methoxymethyl-propyl)-carbamic acid benzyl ester (4.4
g, 76%) as a white solid.
[0204] To a solution of (1-methoxymethyl-propyl)-carbamic acid benzyl ester (4.4 g, 18.5
mmol, 1.0 eq.) and MeI (6.9 mL, 111 mmol, 6 eq.) in THF/DMF (4:1, 50 mL) at 0 °C was
slowly added NaH (1.35 g, 55.5 mmol, 3 eq.). The resulting mixture was warmed to room
temperature and stirred over night. The reaction was quenched carefully by slow addition
of water until no bubbling (H
2) was observed. The reaction mixture was poured over ice water and extracted with
3xEtOAc. The combined organic phase was dried over Na
2SO
4, filtered and concentrated. The residue was purified by silica gel chromatography
(30% to 50% EtOAc-hexanes) to give (1-methoxymethyl-propyl)-methyl-carbamic acid benzyl
ester (4.4 g, 94%).
[0205] To a solution of (1-methoxymethyl-propyl)-methyl-carbamic acid benzyl ester (4.4
g, 17.5 mmol, 1.0 eq.) in MeOH (30 mL) was added Palladium hydroxide and the resulting
mixture was stirred at room temperature under H
2 for 1.5 h. The mixture was then filtered through celite and washed with MeOH. The
filtrate was treated with concentrated HCl (1.6 mL, 1 eq.) and concentrated to give
53 (2.67 g, 100%).
1H NMR confirmed the compound. The crude compound was used to the next step without
further purification.

[0206] Compound 54 was prepared from (1-benzyl-2-hydroxy-ethyl)-carbamic acid benzyl ester
following the same procedures of step 2 and 3 for the parparation of 53.

[0207] (1-cyclohexyhnethyl-2-hydroxy-ethyl)-methyl-carbamic acid benzyl ester was prepared
from (1-cyclohexylmethyl-2-hydroxy-ethyl)-carbamic acid benzyl ester following the
same procedure of step 2 for the preparation of 53. (1-Cyclohexylmethyl-2-hydroxy-ethyl)-methyl-carbamic
acid benzyl ester was then treated with TFA-CH
2Cl
2 (1:1) at room temperature for 4 h. The mixture was then concentrated to give 55.

[0208] To a solution of (R)-(-)-leucinol (2.0 g, 17 mmol, 1.0 eq.), Et
3N (3.6 mL, 1.5 eq.) and DMAP (10 mg) in THF (2 mL) was added Boc
2O (4.5 g, 1.2 eq.) at room temperature. After stirring for 5h, the reaction was quenched
by water and the separated aqueous phase was extracted with 4xether. The combined
organic phase was dried over Na
2SO
4, filtered and concentrated. The residue was purified by chromatography (20% to 30%
EtOAc/hexanes) to give (1-hydroxymethyl-3-methylbutyl)-carbamic acid
tert-butyl ester (1.9 g, 53%).
1H NMR confirmed the compound.
[0209] Compound
56 was prepared from (1-hydroxymethyl-3-methyl-butyl)-carbamic acid
tert-butyl ester following the same procedures for the preparation of 55.

[0210] Methyllithium (1M in THF) (120 mL, 3.5 eq.) was added to a solution of 4-hydroxy-cyclohexanecarboxylic
acid (cis/trans mixture) (5.00 g, 1 eq.) in THF (350 mL) at -78 °C. After stirring
at -78 °C for 45 min, the cooling bath was removed and the resulting mixture was warmed
to room temperature and stirred overnight. After total 24 h, the resulting reaction
mixture was poured into ice/water (800 mL). This mixture was vigorously stirred. The
separated aqueous phase was extracted with MeOH/EtOAc (~1/20). The combined organic
layer was dried over Na
2SO
4, filtered and concentrated. The crude product was purified by chromatography (50%
to 100% EtOAc/hexanes) to give 1-(4-hydroxy-cyclohexyl)-ethanone (2.08 g, 42%).
[0211] A mixture of 1-(4-hydroxy-cyclohexyl)-ethanone (2.24g, 1 eq.), toluene (160 mL),
neopentylglycol (1.96 g, 1.2 eq.) and pTsOH (150 mg, 0.05 eq.) in a flask equipped
with Dean-Stark apparatus was heated to reflux overnight The mixture was cooled down
to room temperature and contentrated. The crude product was purified by silic gel
column chromatography (25% to 50% EtOAc/hexanes) to give 4-(2,5,5-trimethyl-[1,3]dioxan-2-yl)-cyclohexanol
(2.23 g, 62%).
[0212] TPAP (161 mg, 0.05 eq.) was added to a solution of 4-(2,5,5-trimethyl-[1,3]dioxan-2-yl)-cyclohexanol
(2.22 g, 1 eq.) and NMO (2.28 g, 2 eq.) in MeCN (65 mL). The reaction mixture was
stirred at room temperature overnight. Saturated aqueous solution of Na
2S
2O
3 was added to the mixture and the resulting mixture was stirred vigorously for 15
minutes. The separated aqueous phase was extracted with CH
2Cl
2. The combined organic layer was dried over Na
2SO
4, filtered through Celite and concentrated. The crude product was purified by silica
gel column chromatography (25% to 50% EtOAc/hexanes) to give 4-(2,5,5-trimethyl-[1,3]dioxan-2-yl)-cyclohexanone
(1.87 g, 85%)
[0213] Compound 57 was prepared from 4-(2,5,5-trimethyl-[1,3]dioxan-2-yl)-cyclohexanone
following the procedure for the preparation of 34 from 1,2-diphenyl-ethanone.

[0214] To a suspension of (3,3-dimethyl-1,5-dioxa-spiro[5,5]undec-9-yl)-methyl-amine hydrochloride
(6.9 g, 27.6 mmol, 1.0 eq.), Et3N (15 mL, 4.0 eq.) and DMAP (catalytic amount) in
THF-1W7F (1:1, 100 mL) was added di-t-butyl dicarbonate (7.6 mL, 1.2 eq.) and the
resulting mixture was heated at 90°C for 6 h. After cooling to room temperature, he
reaction mixture was diluted with sat NaHCO
3 and the separated aqueous layer was extracted with 2xEtOAc. The combined organic
layer was dried over Na
2SO
4, filtered and concentrated. The crude product was purified by chromatography (10%
to 20% EtOAc/hexanes) to give (3,3-dimethyl-1,5-dioxa-spiro[5,5]undec-9-yl)-methyl-carbamic
acid
tert-butyl ester as a white solid (9.53 g, 99%).
[0215] A solution of (3,3-dimethyl-1,5-dioxa-spiro[5,5]undec-9-yl)-methyl-carbamic acid
tert-butyl ester (9.53 g, 27.2 mmol, 1.0 eq.) and PPTS (2.1 g, 0.3 eq.) in acetone-water
(2:1, 500 mL) was heated at 80 °C for 18 h, cooled to room temperature and concentrated
to remove acetone. The residual aqueous solution was diluted with NaHCO
3 and extracted with 2xEtOAc. The combined organic layer was dried over Na
2SO
4, filtered and concentrated. The crude product was purified by chromatography (20%
to 50% EtOAc/hexanes) to give methyl-(4-oxo-cyclohexyl)-carbamic acid
tert-butyl ester as a white solid (5.38 g, 87%).
[0216] To a solution of methyl-(4-oxo-cyclohexyl)-carbamic acid
tert-butyl ester (134 mg, 0.59 mmol, 1.0 eq.) in CH
2Cl
2 (0.5 mL) at room temperature was added (MeOCH
2CH
2)
2NSF
3 (217 µL, 2.0 eq.) followed by ethanol (10 µL, 0.3 eq.). After stirring for 1 h, the
reaction was quenched carefully by addition of sat NaHCO
3 and stirred until gas evolution ceased. The separated aqueous phase was extracted
with CH
2Cl
2. The combined organic extracts were dried over Na
2SO
4, filtered and concentrated. The crude mixture was purified by chromatography (5%
to 10% EtOAc/hexanes) to give mixture of (4,4-difluoro-cyclohexyl)-methyl-carbamic
acid
tert-butyl ester and (4-difluoro-cyclohex-3-enyl)-methyl-carbamic acid
tert-butyl ester. To a solution of the mixture products in CH
2Cl
2 (1.5 mL) at room temperature was added trifluoroacetic acid (1.5 mL) at room temperature
and the resulting mixture was stirred for 2.5 h and concentrated to give a mixture
of 58 and 59 (2:1 ratio by H
1-NMR).

[0217] To a solution of 3-chloro-2-chloromethy-1-propene (20.0 g, 160 mmol, 1.0 eq.) in
THF (40 mL) at 0 °C was added NaOMe (100 mL of 25% solution in methanol, 2.8 eq.).
After cooling bath was removed, the reaction mixture was stirred at room temperature
for 20 h and at 35 °C for 20 h. The reaction was quenched with sat NH
4Cl (10 mL) and the mixture was diluted with ether (200 mL) and filtered washing with
ether. The filtrate was concentrated by distillation of ether, THF and EtOH at atmospheric
pressure to give light yellow liquid residue. Fractional distillation of the residue
gave 3-methoxy-2-methoxymethy-1 propene (8.9 g, 43%). b.p. =120-130 °C.
[0218] To a solution of the 3-methoxy-2-methoxymethy-1-propene (3.5 g, 30 mmol, 1.0 eq.)
in THF (10 mL) at 0 °C was added BH
3•THF (1M in THF, 18 mL, 0.6 eq.) and the resulting mixture was stirred for 40 min.
The reaction was quenched with water followed by sodium perborate (10.6 g, 2.3 eq.),
warmed to room temperature, stirred overnight, diluted with CH
2Cl
2 and filtered through celite. The filtrate was diluted with brine and the separated
aqueous layer was extracted with CH
2Cl
2. The combined extracts were dried over Na
2SO
4 and filtered. The filtrate was didstilled at atmospheric pressure to give light yellow
liquid residue. Fractional distillation of the residue at 40 milliTorr gave 3-methoxy-2-methoxymethypropan-1-ol
(1.93 g, 48%). b.p. = 90-110 °C.
[0219] To a solution of alcohol 3-methoxy-2-methoxymethypropan-1-ol (0.90 g, 6.7 mmol, 1.0
eq.) in CH
2Cl
2 (10 mL) at 0 °C was added Et
3N (1.9 mL, 2.0 eq.) followed by MsCl (0.63 mL, 1.2 eq.). After stirring for 40 min,
the reaction was quenched with methylamine (40% in water). After concentration of
the reaction mixture at room temperature, the residue was diluted with methanol (2
mL) and methylamine (3 mL, 40% in water), heated at 50 °C for 18 h cooled to room
temperature, saturated with Na
2CO
3 and extracted with ether. The combined extracts were dried over Na
2SO
4 and filtered. The filtrate was didstilled at atmospheric pressure to give crude product
60 (0.78 g, 80%) as a light yellow liquid.

[0220] To a solution of trans-4-amino-cyclohexanol hydrochloride (5.0 g, 32.9 mmol, 1.0
eq.) in water (80 mL) and THF (60 mL) at room temperature was added NaHCO
3 (6.4 g, 2.3 eq.) and (Boc)
2O (14.8 mL, 2.0 eq.). After stirring for 48 h, most of THF from reaction mixture was
removed by concentration and the aqueous residue was extracted with EtOAc. The combined
organic extracts were dried over Na
2SO
4, filtered and concentrated. The crude product was crystallized from EtOAc-hexanes
(9:1) to give (4-trans-hydroxy-cyclohexyl)-carbamic acid
tert-butyl ester (5.2 g, 75%).
[0221] To a solution of (4-trans-hydroxy-cyclohexyl)-carbamic acid
tert-butyl ester (3.0 g, 13.9 mmol, 1.0 eq.) and methyl iodide (4.3 mL, 5.0 eq.) in N-methyl-2-pyrrolidinone
(NMP) (50 mL) at 0 °C was added 60% NaH in mineral oil (1.67 g, 3.0 eq.) in a controlled
portion wise manner and the resulting mixture was stirred for 3 h at room temperature.
The reaction mixture was quenched with methanol (3.0 mL), stirred for 30 min, diluted
with sat. NH
4Cl and the mixture was extracted three times with EtOAc. The combined organic extracts
were dried over Na
2SO
4, filtered and concentrated. The crude mixture was purified by silica gel chromatography
(20% EtOAc/hexanes) to give (4-trans-methoxy-cyclohexyl)-methyl-carbamic acid
tert-butyl ester (3.25 g, 96%).
[0222] To a solution of trans-(4-methoxy-cyclohexyl)-methyl-carbamic acid
tert-
butyl ester (445 mg, 1.83 mmol, 1.0 eq.) in CH
2Cl
2 (2 mL) at room temperature was added trifluoroacetic acid (2 mL). After stirring
for 2 h, the reaction mixture was concentrated to give 61 (685 mg, 145%, contains
residual TFA).
1H NMR confirmed the structure and the product was used without further purification.
[0223] Alternatively, compound 61 may be prepared according to the following scheme:

[0224] Thus, oxidation of 4-methoxy cyclohexanol under suitable conditions (
e.
g., TPAP, NMO) in a suitable solvent (
e.
g., methylene chloride) gives the corresponding ketone. Reductive amination of 4-methoxy
cyclohexanone under suitable conditions (
e.
g., dimethylamine, NaBH(OAc)
3, AcOH in THF) gives access to the corresponding amine 61 with good stereoselectivity
(i.e., trans).

[0225] To a suspension of methyl-(4-oxo-cyclohexyl)-carbamic acid
tert-butyl ester (an intermediate for the preparation of 58 and 59, 580 mg, 2.56 mmol,
1.0 eq.) in THF (8 mL) at -78 °C was added LS-selectride (1 M solution in THF, 5.7
mL, 2.2 eq.). After stirring for 2.5 h, the reaction mixture was warmed to 0 °C and
stirred for 30 min. The reaction was quenched with sat NH
4Cl and the separated aqueous layer was extracted with EtOAc-hexanes (1:1). The combined
organic extracts were dried over Na
2SO
4, filtered and concentrated. The crude mixture was purified by silica gel chromatography
(33% to 50% EtOAc/hexanes) to give (4-cis-hydroxy-cyclohexyl)-methyl-carbamic acid
tert-butyl ester (391 mg, 67%).
[0226] Compound 62 was prepared from (4-cis-hydroxy-cyclohexyl)-methyl-carbamic acid tert-butyl
ester following the same procedure for the preparation of 61 from (4-trans-hydroxy-cyclohexyl)-carbamic
acid
tert-butyl ester.

[0227] To a solution of (4-cis-hydroxy-cyclohexyl)-methyl-carbamic acid
tert-butyl ester (1.95 g, 8.52 mmol, 1.0 eq.) in DMF (20 mL) at 0 °C was added NaH (559
mg, 2.5 eq.). After stirring for 10 min, methyl iodide (3.9 mL, 7.6 eq.) was introduced
and the cooling bath was removed. After stirring for 5 h atr room temperature, the
reaction was quenched with methanol (1.5 mL), stirred for 15 min and diluted with
sat NH
4Cl. The mixture was extracted with EtOAc-hexanes (1:1). The combined organic extracts
were dried over Na
2SO
4, filtered and concentrated. The crude mixture was purified by silica gel chromatography
(10% to 25% EtOAc/hexanes) to give (4-cis-methoxy-cyclohexyl)-methyl-carbamic acid
tert-butyl ester (1.73 g, 84%).
[0228] To a solution of (4-cis-methoxy-cyclohexyl}-methyl-carbamic acid
tert-butyl ester (1.73 g, 7.12 mmol, 1.0 eq.) in CH
2Cl
2 (4 mL) at room temperature was added trifluoroacetic acid (4 mL). After stirring
for 3.5 h, the reaction mixture was concentrated to give a crude product. This product
was dissolved in CH
2Cl
2 (50 mL) and washed with sat Na
2CO
3 (40 mL). The aqueos layer was back extracted with 5xCH
2Cl
2. The combined organic extracts were dried over Na
2SO
4, filtered and concentrated to give free amine 63 (1.12 g, 109%, contains residual
CH
2Cl
2).

[0229] A mixture of 18 (0.01-0.1 M, 1.0 eq.), diisopropylethylamine (5.0 eq.) and any one
of amine from 21-63 or other commercially available primary or secondary alkylamine
(3-10 eq.) in dichloromethane was stirred at room temperature or at 40°C for several
hours to five days until reaction was completed. The reaction mixture was concentrated
and the intermediate product, either with or without purification by chromatography
(EtOAc/hexanes), was dissolved in 1:1 mixture of dichloromethane and trifluoroacetic
acid (0.05 M) and stirred at room temperature with or without anisole (5-10 eq.) for
3-4 h until reaction was completed. The reaction was then carefully quenched with
sat. NaHCO
3, extracted with EtOAc until there was no product detected. The combined extracts
were dried over Na
2SO
4, filtered, concentrated and the product 64 was purified by reverse phase HPLC (MeOH-water).
[0230] The following procedure has been used for aromatic amines (R
F and/or R
G =Ar). To a solution of N-ethylaniline (47 µL, 6 eq.) in THF (1 mL) at -78 °C was
added nBuLi ( 148 µL, 2.5 M in hexanes, 6 eq.) followed by HMPA (200 µL) and stirred
for 10 min. A solution of 18 (44 mg, 0.062 mmol) in THF (0.7 mL) was introduced by
rinsing with THF (0.3 mL). After 10 min stirring, the reaction mixture was quenched
with sat NaHCO
3 (15 mL), extracted with 3xEtOAc. The combine extracts were dried over Na
2SO
4, filtered, concentrated and the product was purified by chromatography (EtOAc) to
give an intermediate. This intermediate and anisole (100 µL) was dissolved in 1:1
mixture of dichloromethane and trifluoroacetic acid (2 mL) and stirred at room temperature
3 h. The reaction was then carefully quenched with sat. NaHCO
3, extracted with 4xEtOAc. The combine extracts were dried over Na
2SO
4, filtered, concentrated and the product 64 was purified by reverse phase HPLC (MeOH-water).

[0231] Diisopropylethylamine (1.6 eq.) was added to a solution of 20 (0.03-0.05 M, 1.0 eq.)
and TOTU (1.5 eq.) in DMF at room temperature and stirred for 15 min. To the resulting
mixture was added any one amine from 21-63 or other commercially available primary
or secondary amine (1.5 eq.). The reaction mixture was stirred for several hours to
overnight until reaction completed. The reaction mixture was concentrated and the
intermediate product, either with or without purification by chromatography (EtOAc/hexanes),
was dissolved in 1:1 mixture of dichloromethane and trifluoroacetic acid (0.01-0.05M)
and stirred at room temperature with or without anisole (5-10 eq.) for 3-4 h until
reaction was completed. The reaction was then carefully quenched with sat. NaHCO
3, extracted with EtOAc until there was no product detected. The combine extracts were
dried over Na
2SO
4, filtered, concentrated and the product 65 was purified by reverse phase HPLC (MeOH-water).
[0233] Diethyl azodicarboxylate (9.1 µL, 2.0 eq.) was added to a solution of 17 (20 mg,
0.03 mmol, 1.0 eq.), triphenylphosphine (15 mg, 2.0 eq.) and phthalimide (8.5 mg,
2.0 eq.) in toluene (2 mL) at room temperature and the resulting mixture was stirred
for 19 h. The reaction mixture was concentrated and the intermediate was purified
by chromatography (30% EtOAc-hexanes) to give 19.3 mg (81 %). This intermediate was
dissolved in 1:1 mixture of dichloromethane and trifluoroacetic acid (2 mL) and stirred
at room temperature for 2 h until reaction was completed. The reaction was then carefully
quenched with sat NaHCO
3 (15 mL), extracted with 7x10 mL of EtOAc. The combine extracts were dried over Na
2SO
4, filtered, concentrated and the product was purified by reverse phase HPLC (MeOH-water)
to give ER-806286 (2.4 mg, 24%). MS (ES) 423.2 (M+H)
+

[0234] Compound
ER-806287 was prepared from 4-trifluoromethylphenol following the same procedure for the preparation
of
ER-806286. MS (ES) 438.2 (M+H)
+.

[0235] A mixture of
18 (12.5 mg, 0.018 mmol), diisopropylethylamine (0.2 mL, 65 eq.) and thiophenol (10
µL, 5.5 eq.) in DMF (0.5 mL) at room temperature was stirred for two days. The reaction
mixture was concentrated and purified by chromatography (30% EtOAc-hexanes) to give
an intermediate12.7 mg (92%). This intermediate and anisole (100 µL ) were dissolved
in 1:1 mixture of dichloromethane and trifluoroacetic acid (2 mL) and stirred at room
temperature for 40 min. The reaction was then carefully quenched with sat. NaHCO
3 (15 mL), extracted with 7xEtOAc. The combine extracts were dried over Na
2SO
4, filtered, concentrated and the product was purified by chromatography (5% MeOH-EtOAc)
to give
ER-806311 (4.5 mg, 65%). MS (ES) 386.2 (M+H)
+.

[0236] Methylsulfonyl chloride (9 µL, 2 eq.) was added to a solution of
17 (40.5 mg, 0.058 mmol) and diisopropylethylamine (100 µL, 10 eq.) in dichloromethane
(1 mL) at 0 °C and stirred for 30 min. 4-hydroxypiperidine (30 mg, 5.0 eq.) and DMF
(0.5 mL) were introduced and the reaction mixture was warmed to room temperature and
stirred for 2.5 days. The reaction was quenched with sat. NaHCO
3 (10 mL) and the separated aqueous phase was extracted with 4xEtOAc. The combine organic
extracts were dried over Na
2SO
4, filtered and concentrated and the product was purified by reverse HPLC (MeOH-water)
to give an intermediate (25 mg, 65%). This intermediate was dissolved in dichloromethane
(0.5 mL) and treated with TPAP (5 mg) and NMO (20 mg) at room temperature for 10 min.
The reaction was quenched by addition of water and Na
2S
2O
3 extracted with 4xEtOAc.. The combine organic extracts were dried over Na
2SO
4, filtered and concentrated and the product was purified by chromatography (15% EtOAc-hexanes)
to give an intermediate (13.7 mg). This intermediate and anisole (100 µL) were dissolved
in dichloromethane (1 mL) and treated with trifluoroacetic acid (1 mL) at room temperature
for 4 h. The reaction was then carefully quenched with sat NaHCO
3 (15 mL), extracted with 4xEtOAc. The combine extracts were dried over Na
2SO
4, filtered, concentrated and the product was purified by reverse phase HPLC (MeOH-water)
to give
ER-806355 (3.4 mg, 16% for three steps).
1H NMR (DMSO-d
6) δ 2.35 (t, J=6 Hz, 4H), 2.49 (s, 3H), 2.70 (t, J=6 Hz, 4H), 3.67 (s, 2H), 5.74 (s,
2H), 6.73 (s, 1H), 7.16 (dd, J=8.2 and 1.2 Hz, 1H), 7.28 (d, J=1.2 Hz, 1H), 7.53 (d,
J=8.2, 1H), 7.55 (s, 1H).

[0237] Hydrogen peroxide (4 mL, 30% in water, 3.6 eq.) was added to a solution of thiomorpholine
(1.0 g, 9.7 mmol) in acetic acid (12 mL) at room temperature. The resulting mixture
was stirred at 100 °C overnight, cooled to room temperature and concentrated. Thiomorpholine
sulfoxide from the residue was crystallized from ethanol as a deep colored solid.
Following the general procedure for the preparation of
64, compound
ER-806401 was prepared from
18 and Thiomorpholine sulfoxide. MS (ES) 417.2 (M+Na)
+.

[0238] A mixture of
18 (5 mg) and benzyl alcohol (100 µL) was treated with tBuOK (1 mL, 1.66 M in THF) at
room temperature overnight. The reaction mixture was quenched with sat. NaHCO
3 and extracted with 3xEtOAc. The combine extracts were dried over Na
2SO
4, filtered, concentrated and the crude intermediate and anisole (50 µL) were dissolved
in dichloromethane (0.5 mL) and treated with trifluoroacetic acid (0.5 mL) at room
temperature for 3 h. The reaction was then carefully quenched with sat. NaHCO
3, extracted with 4xEtOAc. The combine extracts were dried over Na
2SO
4, filtered, concentrated and the product was purified by thin layer chromatograph
(10% MeOHIEtOAc) to give
ER-806404 (1.0 mg, 37%). MS (ES) 384.2 (M+H)
+.

[0239] To a solution of 5-iodoindole (5.0 g, 20.6 mmol), phenylacetylene (3.4 mL, 1.5 eq.)
and diethylamine (10 mL) in DMF (2 mL) was added Pd(Ph
3P)
4 (120 mg, 0.005 eq.) and CuI (39 mg, 0.01 eq.) under nitrogen atmosphere at cooling
water both temperature and the resulting mixture was stirred for 3h at room temperature.
The reaction was diluted with sat NaHCO
3 (50 mL), extracted with 4x30 mL of EtOAc. The combined extracts were dried over Na
2SO
4, filtered, concentrated and the product was purified by chromatograph (15 to 20%
EtOAc/hexanes) to give 5-phenylethynyl-1
H-lindole (4.41 g, 98%).
[0240] Compound 5-phenylethynyl-lindole-1-carboxylic acid
tert-butyl ester was prepared from 5-phenylethynyl-1
H-lindole following the procedure for the preparation of 7 (indole-1,5-dicarboxylic
acid 1-
tert-butyl ester 5-methyl ester as an example) from methyl indole-5-carboxylate.
[0241] Compound 5-phenylethynyl-2-tributylstannanyl-indole-1-carboxylic acid
tert-butyl ester was prepared from 5-phenylethynyl-lindole-1-carboxylic acid
tert-butyl ester following the procedure for the preparation of
10 from
9.
[0242] Compound
ER-806644 was prepared from 5-phenylethynyl-2-tributylstannanyl-indole-1-carboxylic acid
tert-butyl ester and 4 (R
1=Me) following the procedure for the preparation of 13. MS (ES) 364.2 (M+H)
+.

[0243] A solution of
ER-806644 (6.5 mg) and Lindlar catalyst (50 mg) in THF (2 mL) was stirred at room temperature
under hydrogen gas for 1 h. The resulting mixture was filtered through celite and
the filtrate was concentrated. The residual solid was washed several times with EtOAc
to give
ER-806645 as a light yellow solid (2.0 mg, 31%). MS (ES) 366.3 (M+H)
+.

[0244] A solution of
ER-806644 (5 mg) and Pd(OH)
2 (10 mg) in THF (2 mL) was stirred at room temperature under hydrogen gas for overnight
The resulting mixture was filtered through celite and the filtrate was concentrated
and the product was purified by reverse phase HPLC (MeOH-water) to give
ER-806646 (1.3 mg, 26%). MS (ES) 368.3 (M+H)
+.

[0245] A solution of 16 (20 mg) in 1:1 THF-MeOH (3 mL) at room temperature was treated with
a solution of 1 N HCl (0.5 mL) for 30 min. The reaction mixture was diluted with sat.
NaHCO
3 and extracted with EtOAc. The combined extracts were dried over Na
2SO
4, filtered, concentrated and the product was purified by reverse phase HPLC (MeOH-water)
to give
ER-806095 (2.6 mg, 18%).
1H NMR.

[0246] A solution of
ER-806393 (1.3 mg) in MeOH (0.5 mL) was treated at room temperature with a solution of 1 N
LiOH (0.1 mL) for overnight The reaction mixture was then neutralized with a solution
of 1 N HCl (0.1 mL) to pH=5 and concentrated. The residue was taken up in 1:1 MeOH-EtOAc
and filtered. The filtrate was concentrated and purified by reverse phase HPLC (MeOH-water)
to give
ER-806420 (0.5 mg, 40%). MS (ES) 496.3 (M-H)
-.

[0247] A mixture of
18 (15.5 mg, 0.02 mmol) and methylamine (0.11 mL, 2.0 M in THF, 1.0 eq.) in dichloromethane
(0.5 mL) was stirred at room temperature overnight, diluted with sat.NaHCO
3 and extracted with 3xEtOAc. The combined extracts were dried over Na
2SO
4, filtered and concentrated. The residue was dissolved in DMF (0.5 mL) as a solution
A.
[0248] Diisopropylethylamine (5.3 µL,, 1.4 eq.) was added to a solution of benzoic acid
(3.4 mg, 1.3 eq.) and TOTU (10 mg, 1.4 eq.) in DMF (0.3 mL) at room temperature and
stirred for 15 min. Solution A was then introduced by rinsing with 3x0.5 mL of DMF
and the resulting mixture was stirred overnight, concentrated, diluted with sat.NaHCO
3 and extracted with 3xEtOAc. The combined extracts were dried over Na
2SO
4, filtered and concentrated. The residue and anisole (50 µL) was dissolved in dichloromethane
(0.5 mL) and treated with trifluoroacetic acid (0.5 mL) at room temperature for 3
h. The reaction mixture was carefully quenched with sat.NaHCO
3 and EtOAc and the separated aqueous phase was extracted with 3xEtAOc. The combined
extracts were dried over Na
2SO
4, filtered, concentrated and the product was purified by reverse phase HPLC (MeOH-water)
to give
ER-806432 (1.4 mg, 16% for three steps). MS (ES) 411.2 (M+H)
+.

[0249] 5-nitro-indole-1-carboxylic acid
tert-butyl ester was prepared from 5-nitroindole following the same procedure for the
preparation of 7 from methyl indole-5-carboxylate.
[0250] A solution of 5-nitro-indole-1-carboxylic acid
tert-butyl ester (0.50 g) and catalytic amount of Pd(OH)
2 in a mixture of MeOH-EtOAc was stirred at room temperature under hydrogen for 1 h.
The reaction mixture was filtered through celite and the filtrate was concentrated
to provide 5-amino-2,3-dihydro-indole-1- carboxylic acid tert-butyl ester (0.44 g,
98%).
[0251] Benzoyl chloride (305 µL, 1.5 eq.) was added to a solution of 5-amino-2,3-dihydro-indole-1-
carboxylic acid
tert-butyl ester (407 mg, 1.74 mmol) and triethylamine (1.2 mL, 5.0 eq.) in dichloromethane
(5 mL) at 0°C and the resulting mixture was stirred for 15 min. The reaction was then
quenched by addition of sat. NaHCO
3 and the mixture was extracted with 3xEtOAc. The combined extracts were dried over
Na
2SO
4, filtered, concentrated and the product was purified by chromatography (20 to 100%
EtOAc-hexanes) to give 5-benzoylamino-2,3-dihydro-indole-1- carboxylic acid
tert-butyl ester (588 mg, 100%).
[0252] Sodium hydride (60 mg, 1.5 eq.) was added to a mixture of 5-benzoylamino-2,3-dihydro-indole-1-
carboxylic acid
tert-butyl ester (570 mg, 1.68 mmol) and methyl iodide (0.42 mL, 4.0 eq.) in DMF (10 mL)
at 0 °C and the resulting mixture was stirred for 20 min. After concentration, the
residue from reaction mixture was diluted with sat. NaHCO
3 and extracted with 3xEtOAc. The combined extracts were dried over Na
2SO
4, filtered, concentrated and the product was purified by chromatography (30% EtOAc-hexanes)
to give 5-(benzoyl-methyl-amino)-2,3-dihydro-indole-1- carboxylic acid
tert-butyl ester (547 mg, 93%).
[0253] A mixture of 5-(benzoyl-methyl-amino)-2,3-dihydro-indole-1-carboxylic acid
tert-butyl ester (500 mg) and MnO
2 (5 g) in toluene (20 mL) was heated at 80 °C for 1h. Additional MnO
2 (5 g) was introduced and the resulting mixture was stirred at 80 °C for 1h. After
cooling to room temperature, the mixture was filtered through celite and the filtrate
was concentrated. The product was purified by chromatography (30% EtOAc-hexanes) to
give 5-(benzoyl-methyl-amino)-indole-1-carboxylic acid
tert-butyl ester (372 mg, 75%).
[0254] 5-(benzoyl-methyl-amino)-2-tributylstrannanyl-indole-1-carboxylic acid
tert-butyl ester was prepared from 5-(benzoyl-methyl-amino)-indole-1-carboxylic acid
tert-butyl ester following the procedure for the preparation of
10 from
9.
[0255] Compound
ER-807313 was prepared from 5-(benzoyl-methyl-amino)-2-tributylstrannanyl-indole-l-carboxylic
acid
tert-butyl ester and
4 (R
1=Me) following the procedure for the preparation of
13. MS (ES) 397.2 (M+H)
+ and 419.1 (M+Na)
+.

[0256] Compound
ER-807015 was prepared as a by-product during preparation of 65 from sterically hindered amines
and yielded a satisfactory
1H NMR spectrum.

[0257] A mixture of
18 (51 mg, 1.0 eq.), (3,3-dimethyl-1,5-dioxaspiro[5,5]undec-9-yl)-methyl-amine, hydrochloride
(71 mg, 4.0 eq.), ethyldiisopropylamine (0.25 mL, 20 eq.) and DMF (0.3 mL) in CH
2Cl
2 (2.5 mL) was stirred at room temperature for 23 h. After concentration, the residue
was dissolved in 1 N HCl (0.6 mL) and acetone (0.6 mL) and heated at reflux for 16
h. After cooling to room temperature, the reaction was then carefully quenched with
sat. NaHCO
3, extracted with EtOAc until there was no product detected. The combine extracts were
dried over Na
2SO
4, filtered, concentrated and the product was purified by reverse phase HPLC (MeOH-water)
to give
ER-807586 (6.4 mg, 22%).
1HNMR and MS (ES) 403.5 (M + H)
+.

[0258] ER-807759 was prepared following the same procedure for
13 (ER-805639 as an example) in Stille coupling reaction and for
ER-807586 in ketal hydrolysis reaction.
1HNMR and MS (ES) 389 (M + H)
+.

[0259] To a suspension of
ER-807586 (5 mg, 0.0124 mmol, 1.0 eq.) in water (0.5 mL) was added NH
2OMeHCl (5.2 mg, 0.623 mmol, 50 eq.). The solid became soluble and saturated NaHCO
3 (0.3 mL) was slowly added and the resulting mixture was stirred overnight. The reaction
mixture was diluted with EtOAc and saturated NaHCO
3, and extracted with 4xEtOAc. The organic layers were combined, dried over MgSO
4, filtered and concentrated. The crude mixture was purified by silica gel chromatography
(10% MeOH-EtOAc) to give
ER-807789 as a white solid (5.3 mg, 100%).
1HNMR and MS (ES) 432 (M + H)
+.

[0260] To a solution of
ER-807586 (15 mg) in MeOH-THF (1:1, 1 mL) was added NaBH
4 (20 mg) and the mixture was stirred for 30 min, diluted with saturated NaHCO
3 and extracted with 4xEtOAc. The organic layers were combined, dried over MgSO
4, filtered and concentrated. The crude mixture was purified by reverse HPLC (MeOH-H
2O) to give
ER-807790.
1HNMR and MS (ES) 405.5 (M + H)
+.

[0261] To a solution of n-BuLi (1.6 M in hexanes, 0.35 mL, 0.56 mmol, 31.3 eq.) in THF (2.0
mL) at 0 °C was added methyl triphenylphosphonium bromide (0.20 g, 0.56 mmol, 31 eq.).
The reaction was wormed to room temperature and stirred for 40 minutes. A portion
of the solution (0.6 mL) was transferred to another flask and ER-807586 (7.2 mg, 0.0179
mmol, 1.0 eq.) was added. The resulting mixture was stirred at room temperature for
18 hours and water was added and the mixture was extracted with 3xEtOAc. The organic
layers were combined, dried over MgSO
4, filtered and concentrated. The crude mixture was purified by reverse HPLC (MeOH-H
2O) to give
ER-807835 (0.8 mg, 12 %).
1H NMR and MS (ES) 401.5 (M +
1H).

[0262] To a solution of
ER-807586 (11.5 mg, 0.0286 mmol, 1.0 eq.) in THF (2.0 mL) at 0 °C was added MeMgCl (3.0 M in
THF, 0.25 mL, 0.75 mmol, 26.3 eq.). The reaction was warmed and stirred at room temperature
for 18 hours. The reaction was quenched with saturated NaHCO
3, and then was extracted with 3xEtOAc. The organic layers were combined, dried over
MgSO
4, filtered and concentrated. The resulting mixture was purified by silica gel chromatography
(100% EtOAc, then 10% to 30% MeOH-EtOAc) to give
ER-807837 (0.8 mg, 7%).
1H NMR and MS (ES) 419.4 (M +
1H).

[0263] 5-chloromethyl-indole-1-carboxylic acid
tert-butyl ester was prepared from 8 following the procedure for the preparation of 9
but without the addition of morpholine.
[0264] A mixture of 5-chloromethyl-indole-1-carboxylic acid
tert-butyl ester (0.82 g, 3.10 mmol, 1.0 eq.), cyclohexyl mercaptan (0.53 mL, 1.4 eq.)
and K
2CO
3 (0.90 g, 2.0 eq.) in DMF (6 mL) was heated at 40 °C until reaction completed. The
reaction mixture was cooled to room temperature, diluted with sat NH
4Cl and extracted with diethyl ether. The organic extracts were dried over MgSO
4, filtered and concentrated. The resulting mixture was purified by chromatography
(5% EtOAc/hexanes) to give 5-cyclohexylsulfanylmethyl-indole-1-carboxylic acid
tert-butyl ester (0.79 g, 74%).
[0265] ER-808036 was prepared from 5-cyclohexylsulfanylmethyl-indole-1-carboxylic acid
tert-butyl ester following the procedures for the preparation of 16 from 14.

[0266] To a solution of
ER-808036 (60 mg, 0.15 mmol, 1.0 eq.) in THF (2.5 mL) and MeOH (1.5 mL) at -78 °C was added
a solution of mCPBA (60 mg, -70%, 1.6 eq.) in THF. After stirring for 2 h, the reaction
was quenched by addition of sat. Na
2S
2O
3 and sat NaHCO
3. The separated aqueous layer was extracted with 5xEtOAc, and the combined organic
phase was dried over Na
2SO
4, filtered and concentrated. The crude mixture was purified by chromatography (5%
to 10% MeOH/EtOAc) to give semipure products (18 mg and 32 mg each). After further
purification by reverse phase HPLC (MeOH-water),
ER-808082 (3.2 mg) and
ER-808083 (3.2 mg) were obtained.
1NMR confirmed both of the products.

[0267] A mixture of 5-chloromethyl-indole-1-carboxylic acid
tert-butyl ester (0.41 g, 1.55 mmol, 1.0 eq.), cyclohexanol (0.82 mL, 5.0 eq.) and Ag
2O (1.80 g, 5.0 eq.) in diethyl ether (5 mL) was stirred at 35°C over weekend. After
cooling to room temperature, the reaction mixture was filtered through celite washing
with ether. The filtrate was concentrated and the residue was purified by chromatography
(3% EtOAc/hexanes) to give N-Boc-5-cyclohexyloxymethylindole (160 mg, 28%) as colorless
oil.
1HNMR comfirmed the compound.
[0268] ER-808103 was prepared from 5-cyclohexyloxylmethyl-indole-1-carboxylic acid
tert-butyl ester following the procedures for the preparation of 16 from 14. Both MS (ES)
and
1HNMR comfirmed the compound.

[0269] To a suspension of compound 3 (R=Me, 300 mg, 1.03 µmol, 1.0 eq.) in THF (5 mL) at
room temperature was added dropwise LiAH
4 (1.0 M in THF, 2.56 mL, 2.5 eq.) and the resulting mixture was then heated at 65
°C for 30 min. Afetr cooling to 0 °C, the reaction was quenched by addition ofMeOH
(1.2 mL, 30 eq.) and water (30 eq.), stirred and warmed to room temperature and filtered
through celite washing with EtOAc. The filtrate was concentrated and the residue was
purified by silica gel chromatography (EtOAc then 10% MeOH-EtOAc) to give 7-chloro-2-methyl-5-methylamino-3H
imidazo[4,5-b]pyridine as a white solid (190 mg, 94%).
[0270] ER-808040 was prepared from 7-chloro-2-methyl-5-methylamino-3
H imidazo[4,5-b]pyridine and 5-[(cyclohexyl-methyl-amino)-methyl]-2-tributylstannanyl-indole-1-carboxylic
acid
tert-butyl ester (prepared from 8 and cyclohexyl-methyl-amine following the procedures
for the preparation of 10) following the procedure for the preparation of 13.
1HNMR confirmed the compound.

[0271] To a solution of
ER-807790 (17 mg, 0.042 mmol, 1.0 eq.) in CH
2Cl
2 (1 mL) at 0 °C was added (MeOCH
2CH
2)
2NSF
3 (14 µL, 1.8 eq.) and the resulting mixture was stirred for 1 h at 0 °C and 1 h at
room temperature. The reaction was quenched with sat NaHCO
3 and the separated aqueous layer was extractred with CH
2Cl
2 followed by EtOAc-THF (1:1). The combined organic extracts were dried over Na
2SO
4, filtered and concentrated. The residue was purified by reverse HPLC (MeOH-water)
to give
ER-808128 (2 mg, 13%).
1H NMR and MS confirmed the structure.

5-formyl-indole-1-carboxylic acid tert-butyl ester or 6-formyl-indole-1-carboxylic acid tert butyl ester
[0272] To a solution of the 8 (8.0 g, 32.4 mmol, 1 eq.) in CH
2Cl
2 (24 mL) was added portionwise Dess-Martin reagent (17.9 g, 1.3 eq.) at 0 °C and the
resulting mixture was warmed slowly to room temperature and stirred for 30 min. The
reaction mixture was diluted with Et
2O (100 mL), filtered through celite rinsing with Et
2O (50 m). The filtrate was washed with sat. NaHCO
3, dried over Na
2SO
4, filtered and concentrated. The crude product was azeotroped with tolune to give
5-formyl-indole-1-carboxylic acid
tert-butyl ester (7.3 g, 95%) or similarly 6-formyl-indole-1-carboxylic acid
tert-butyl ester

[0273] Mg (turnings) was activated by washing with 1N HCl and Et
2O, and dried on high vacuum overnight. Bromomethylcyclohexane (0.8 mL, 1 eq.) in Et
2O (4 mL) was added to the activated Mg (418 mg, 3 eq.) in Et
2O (10 mL) slowly to keep the internal temperature at 30-33 °C. The resulting reaction
mixture was heated at 34 °C for 1 h and cooled to 0 °C. A solution of 5-formyl-indole-1-carboxylic
acid
tert-butyl ester (900 mg) in Et
2O (15 mL) was then introduced and the resulting mixture was warmed to room temperature,
heated at 30-32 °C for 4 h, cooled to room temperature and then quenched with the
addition of sat. NH
4Cl. The separated aqueous phase was extracted with EtOAc, the combined organic layer
was dried over MgSO
4, filtered and concentrated. The crude product was purified by chromatography (10%
to 25% EtOAc/hexanes) to give the corresponding alcohol (949 mg, 85%).
[0274] To a mixture of the alcohol (513 mg, 1 eq.) and Et
3N (625 µL, 3 eq.) in CH
2Cl
2 (15 mL) at 0 °C was added methanesulfonic anhydride (390 mg, 1.5 eq.). The cooling
bath was removed and the resulting mixture was stirred for 2.5 h and diluted with
sat. NaHCO
3. The separated aqueous layer was extracted with CH
2Cl
2. The combined organic layer was dried over Na
2SO
4, filtered and concentrated. The crude product was purified by chromatography (hexanes
to 10% EtOAc/hexanes) to give 5-(2-cyclohexyl-vinyl)-indole-1-carboxylic acid
tert-butyl ester (380 mg, 78%).
[0275] ER-808281 was prepared from 5-(2-cyclohexyl-vinyl)-indole-1-carboxylic acid
tert-butyl ester following the procedures for the preparation of 16 from 14. MS (ES) and
1HNMR confirmed the compound.

[0276] A solution of
ER-808281 (~10 mg, 1 eq.) in MeOH (5 mL) with 10% Pd/C (catalytic) was kept under positive
H
2 atmosphere overnight at room temperature. The mixture was then loaded onto silica
gel eluting with EtOAc to 20% MeOH(EtOAc to give
ER-808469 (7.5 mg). MS (ES) and
1HMMR confirmed the compound.

5-vinyl-indole-1-carboxylic acid tert-butyl ester or 6-vinyl-indole-1-carbozylic acid tert-butyl ester
[0277] T a suspension of methyltriphenylphosphonium bromide (8.1 g, 22.7 mmol) in THF (140
mL) at 0°C was added nBuLi (1.6 M in hexanes, 14.2 mL, 22.7 mmol) dropwise over 10
min. After 20 min of stirring, a solution of the 5-formyl-indole-1-carboxylic acid
tert-butyl ester (4.63 g, 14.8 mmol) in THF (20 mL) was introduced slowly over 20 min.
The reaction was warmed slowly to room temperature, stirred 30 min. The reaction mixture
was poured into saturated ammonium chloride and the separated aqueous phase was extracted
with ethylacetate (3x100 mL). The combined organic phase was dried over sodium sulfate,
filtered and concentrated. The residue was purified by chromatography (methylene chloride
to 1% acetone-methylene chloride) to give 5-vinyl-indole-1-carboxylic acid
tert-butyl ester (4.7 g, 100%) or similarly 6-vinyl-indole-1-carboxylic acid
tert-butyl ester.

5-(2-hydroxy-ethyl)-indole-1-carboxylic acid tert-butyl ester or 6-(2-hydroxyethyl)-indole-1-carboxylic acid tert-butyl ester
[0278] To a solution of 5-vinyl-indole-1-carboxylic acid
tert-butyl ester (4.5 g, 18.5 mmol, 1.0 eq.) in THF (46 mL) at 0 °C was added 9-BBN (0.5
M in THF, 87 mL, 2.4 eq.) over 10 min. The resulting reaction mixture was stirred
for 2.5 h and diluted with THF (150 mL) and water (150 mL) while keeping the temperature
at 0 °C. Then NaBO
3 4H
2O (44g) was introduced and resulting reaction mixture was stirred and warmed to room
temperature and stirred. The reaction mixture was diluted with methylene chloride
(100 mL) and the separated aqueous layer was extracted 3x100 mL methylene chloride.
The combined organic layers were dried over sodium sulfate, filtered and concentrated.
The residue was purified by chromatography (methylene chloride to 5% acetone/methylene
chloride) to give 5-(2-hydroxy-ethyl)-indole-1-carboxylic acid
tert-butyl ester (3.82 g, 76%) or similarly 6-(2-hydroxyethyl)-indole-1-carboxylic acid
tert-butyl ester.

5-(2-morpholin-4-yl-ethyl)-indole-1-carboxylic acid tert-butyl ester or 5-[2-(cyclohexyl-methyl-amino)-ethyl]-indole-1-carboxylic acid tert-butyl ester or 6-(2-morpholin-4-yl-ethyl)-indole-1-carboxylic acid tert-butyl ester or 6-[2-(cyclohexyl-methyl-amino)-ethyl]-indole-1-carboxylic acid tert-butyl ester
[0279] To a solution of 5-(2-hydroxy-ethyl)-indole-1-carboxylic acid
tert-butyl ester (260 mg, 1mmol, 1.0 eq.), triphenyl phosphine (391 mg, 1.5 eq.) and Imidazole
(136 mg, 2 eq.) in methylene chloride (5 mL) was added iodine (328 mg, 1.3eq.) in
small portions over 20 min at room temperature. The reaction mixture was poured into
water and extracted with 4x100 mL of methylene chloride. The combined organic phase
was dried over sodium sulfate, filtered and concentrated. The residue was purified
by silica gel chromatography (20% EtOAc/hexanes) to give a semipure iodide (600 mg).
This iodide was then dissolved in MeOH (10 mL) and treated with morphoiline (1.73
mL, 20 eq.) at 60°C for overnight. The reaction mixture was cooled to room temperature,
poured into water and extracted with methylene chloride. The combined organic layers
were dried over sodium sulfate, filtered and concentrated. The residue was purified
by silica gel column chromatography (methylene chloride to 15% acetone/methylene chloride)
to give 5-(2-morpholin-4-yl-ethyl)-indale-1-carbaxylic acid
tert-butyl ester (290 mg, 88%) or similarly or 5-[2-(cyclohexyl-methyl-amino)-ethyl)-indole-1-carboxylic
acid
tert-butyl ester or 6-(2-morpholin-4-yl-ethyl)-indole-1-carboxylic acid
tert-butyl ester or 6-[2-(cyclohexyl-methyl-amino)-ethyl)-indole-1-carboxylic acid
tert-butyl ester.

5-(2-metboxycarbonyl-vinyl)-indole-1-carboxylic acid tert-butyl ester or 6-(2-methoxycarbonyl-vinyl)-indole-1-carboxylic acid tert-butyl ester
[0280] To a solution of the 5-formyl-indole-1-carboxylic acid
tert-butyl ester (3.4 g, 13.8 mmol, 1.0 eq.) in toluene (35 mL) was added Ph
3P=CHCO
2Me (5.5 g, 1.2 eq.) at room temperature and the resulting mixture was stirred overnight.
After concentration, the crude product purified by silica gel column chromatography
(methylene chloride to 1% acetone-methylene chloride) to give 5-(2-methoxycarbonyl-vinyl)-indole-1-carboxylic
acid
tert-butyl ester (5.03 g, 90%) or similarly 6-(2-memoxycarbonyl-vinyl)-indole-1-carboxylic
acid
tert-butyl ester.

5-(3-hydroxy-propenyl)-indole-1-carbosylic acid tert-butyl ester or 6-(3-hydroxy-propenyl)-indole-1-carboxylic acid tert-butyl ester
[0281] To a solution of methyl 5-(2-methoxycarbonyl-vinyl)-indole-1-carboxylic acid
tert-
butyl ester (4.64g, 15.3 mmol, 1.0 eq.) in THF (87 mL) at -30 °C was added LiA1H
4 (I N in THF, 18.6 mL, 1.2 eq.) by syringe pump over 20 min and the resulting mixture
was stirred and warmed to -5 °C. After cooling back to -30 °C, the reaction was then
quenched by slow addition of acetone (10 mL) keeping temperature below -15 °C, poured
into Rochelle salt at 0 °C, stirred for 1 h and the separated aqueous layer was extracted
with EtOAc. The combunede organic phase was dried over sodium sulfate, filtered and
concentrated. The residue was purification by column chromatography (methylene chloride
to 2% acetone/methylene chloride) to give 5-(3-hydroxy-propenyl)-indole-l-carboxylic
acid
tert-butyl ester (2.89 g, 70%) or or similarly 6-(3-hydroxy-propenyl)-indole-1-carboxylic
acid
tert-butyl ester.

5-(3-morpholin-4-yl-propenyl)-indole-1-carboxylic acid tert-butyl ester or 6-(3-morpholin-4-yl-propenyl)-mdole-l-carboxylic acid tert-butyl ester
[0282] To a solution 5-(3-hydroxy-propenyl)-indole-1-carboxylic acid
tert-butyl ester (0.95 mg, 3.48 mmol, 1.0 eq.) and Et
3N (1.8 mL, 3.0 eq.) in methylene chloride (10 mL) at 0 °C was added MsCl (0.40 mL,
1.5 eq.). The resulting mixture was stirred for 30 min and wormed to room temperature
and stirred for additional 1 h. Then cyclohexyl-methyl-amine (8.3 mL, 18 eq.) was
introduced and the resulting mixture was stirred over weekend, diluted with sat. NaHCO
3 and the separated aqueous phase was extracted with 3xEtOAc. The combined organic
phase was dried over Na
2SO
4, filtered and concentrated. The residue was purified by silica gel chromatography
(50% EtOAc/hexanes) to give
5-(3-morpholin-4-yl-propenyl)-indole-1-carboxylic acid tert-butyl ester or similarly 6-(3-morpholin-4-yl-propenyl)-indole-1-carboxylic acid tert-butyl ester.

[0283] Analogs
ER-808501, ER 808514, ER-8085042 and
ER-808544 are prepared from 5-(2-morpholin-4-yl-ethyl)-indole-1-carboxylic acid
tert-butyl ester, 5-(3-morpholin-4-yl-propenyl)-indole-1-carboxylic acid
tert-butyl ester, 6-(3-morpholin-4-yl-propenyl)-indole-1-carboxylic acid
tert-butyl ester and 6-(2-morpholin-4-yl-ethyl)-indole-1-carboxylic acid
tert-butyl ester following the same procedures for the preparation of 16 from 14.

[0284] A solution of
20 (51 mg) in methylene chloride (1 mL) was treated at room temperature with trifluoroacetic
acid (1 mL) for 3 h and concentrated. The solid residue was washed with Et
2O and MeOH to give crude product (18.2 mg). The crude product was then purified by
reverse phase HPLC (MeOH-water) to give
ER-809047 (9.6 mg, 44%). MS (ES),
19F and
1HNMR. confirmed the structure.

[0285] A mixture of 7-chloro-3
H-imidazo[4,-b]pyridine
(J. Heterocyclic. Chem. 1982, 19, 513) (250 mg, contain 25% of 5-chloro-3
H-imidazo[4,5-b)pyridine), 2-tributylstannanyl-indole-1-carboxylic acid
tert-butyl ester (11, 822 mg) and tetrakis(triphenyphosphine) palladium(0) (188 mg) in
DMF (10 mL) was heated at 120°C for 6 h. The reaction mixture was extracted with AcOEt,
and washed with water and brine. Organic layer was dried over MgSO
4 and evaporated. The residue was purified by chromatography (AcOEt/hexane) to give
7-(1
H-indol-2-yl)-3
H-imidazo[4,5-b]pyridine IC-261 (28 mg) as a pale brown solid.
1H NMR confirmed the structure.

[0286] A mixture of
2 (1.66 g, 6 mmol), 2-tributylstannanyl-indole-1-carboxylic acid
tert-butyl ester (11, 3.6 g, 7 mmol), triethylamine (0.83 ml, 6 mmol), and tetrakis(triphenylphosphine)palladium(0)
(600 mg,10 mol%) in DMF (10 mL) was heated at 130° C for 6 h. During the reaction,
11 was added in two portions (1.01g X 2). The reaction mixture was extracted with ethyl
acetate and washed with water, and dried over anhydrous magnesium sulfate. After filtration,
silica gel (400 mesh) was added to the residue and concentrated. The residue was purified
by chromatography (AcOEt/MeOH) to give
IC-395 (240 mg) and
IC-375 (80 mg).
1H NMR confirmed the structure.

(7-chloro-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-5-yl}-carbamic acid ethyl ester
[0287] To a solution of diethyl 4-chloro-S-nitro-2,6 pyridinedicarbamate (intermediate for
the preparation of
1) (500 mg) in EtOH (50 mL) was added Raney Ni (1 g) and stirred for 12 h under hydrogen
atmosphere at room temperature. Reaction mixture was filtered on celite and filtrate
was concentrated under reduced pressure. Residue was dissolved in 2-propanol (10 mL)
and stirred for 60 h under reflux. The reaction mixture was cooled to room temperature
and precipitate was filtered. The filtrate was concentrated to give 250 mg of (7-chloro-2-oxo-2,3-dihydro-1H
imidazo[4,S-b]pyridin-5-yl)-carbamic acid ethyl ester as a gray solid.
1H NMR confirmed the structure.

[0288] A mixture of (7-chloro-2-oxo-2,3-dihydro-1
H-dihydro[4,5-b]pyridin-5-yl)-carbamic acid ethyl ester (240 mg), 2-tributylstannanyl-indole-1-carboxylic
acid
tert-butyl ester (11, 472 mg) and tetrakis(triphenylphosphine)palladium(0) (54 mg) in
DMF (10 mL) was heated at 120 °C for 4 h. Additional 2-tributylstannanyl-indole-1-carboxylic
acid
tert-butyl ester (11, 472 mg) and tetrakis(triphenylphosphine) palladium(0) (54 mg) was
introduced and the resulting mixture was heated at 120 °C for an additional 12 h.
The reaction mixture was concentrated under reduced pressure and purified by chromatography
(AcOEt/MeOH) to give
IC-380 (20 mg) as a pale gray solid.
1H NMR confirmed the structure.

(2-amino-7-chloro-3H-imidazo[4,5-b]pyridin:-5-yl)-carbamic acid ethyl ester
[0289] Cyanogen bromide (0.55 g, 5.2 mmol) was added to a stirred solution of ethyl 5,6-diamino-4-chloro-2-pyridinecarbamate
(intermediate for the preparation of 1, 1.00 g, 4.3 mmol) in 20 mL of ethanol at room
temperature. The solution was stirred for 3 h and then at 60 °C for 3 h. The precipitate
was filtered and washed with diethyl ether to give (2-amino-7-chloro-3
H-imidazo[4,5-b]pyridin-5-yl)-carbamic acid ethyl ester (0.55 g, 38 %) as a yellow
powder.
1H NMR confirmed the structure.

[0290] IC-416 was obtained from (2-amino-7-chloro-3
H imidazo[4,5-b]pyridin-5-yl)-carbamic acid ethyl ester and
11 by using the typical procedure described for IC-380.
1H NMR confirmed the structure.

7-iodo-2-alkyl-3H-imidazo[4,5-b]pyridine
[0291] Compound 7-iodo-2-alkyl-3
H-imidazo[4,5-b]pyridine (7-iodo-3H-imidazo[4,5-b]pyridine, 7-iodo-2-methyl-3
H-iinidazo[4,5-b]pyridine, 7-iodo-2-ethyl-3H-imidazo[4,5-b]pyridine) and /or its HI
salt was prepared from 4-chloro-pyridine-2,3-diamine (
Recueil, 1969, 88, 1263-1274) following the same procedure for the preparation of
2 and
4 from
1.

5-fluoro-7-iodo-2-methyl 3H-imidazo[4,5-b]pyridine
[0292] To a solution of
4 (R
2=Me, HI mono-salt, 300 mg, 0.75 mmol, 1.0 eq.) in HBF
4 (48-51% in water, 3 mL) at 0 °C was added NaNO2 (1.0 g, 19 eq.) portionwise over
1 h period keeing the reaction temperature under 4°C. The resulting mixture was stirred
at 0 °C for 40 min and at room temperature for 30 min. The reaction was then quenched
with sat. NaHCO
3 and the resulting mixture was extracted with 5xEt
2O. The combined organic phase was dried over Na
2SO
4, filtered and concentrated to give 5-fluoro-7-iodo-2-methyl-3
H-imidazo[4,5-b] pyridine as a light brown solid (170 mg, 86%).
19FNMR,
1HNMR and MS confirmed the structure.

[0293] Compound
66 was prepared from 7-iodo-2-alkyl-3H imidazo[4,S-b]pyridine (or its HI mono-salt)
or 5-fluoro-7-iodo-2-methyl-3H-imidazo[4,5-b]pyridine and 15 following the same procedure
for the preparation of 13 or 64.

7-iodo-2-methyl-1,4-dihydro-imidazo[4,5-b]pyridin-5-one
[0295] To a solution of compound 4 (R=Me, 160 mg, 0.59 mmol) in 10 mL of 20% aqueous H
2SO
4 at 0 °C was added sodium nitrite (1.54 mmol) in small portions and the resulting
mixture was stirred at room temperature overnight. The reaction mixture was neutralized
with sat. aqueous NH
3 to pH 7-8, and the resulting precipitate was collected to give a yellow solid. This
solid was then crystallized in water to give 140 mg of product 7-iodo-2-methyl-1,4-dihydro-imidazo[4,5-b]pyridin-5-one
(87%) with satisfactory MS and
1H NMR.

[0296] ER-807546 was prepared from 7-iodo-2-methyl-1,4-dihydro-imidazo[4,5-b]pyridin-5-one and 10
(R'=PhCH
2, R"=Me) following the same procedure for the preparation of 13. Satisfactory MS and
1H NMR were obtained for ER-807546.

[0297] Analogs
ER-809251 and
ER-809252 are prepared from 7-iodo-2-xnethyl-3H imidazo[4,5-b)pyridine and 6-[2-(cyclohexyl-methyl-amino)-ethyl]-indole-1-carboxylic
acid
tert-butyl ester and 5-[2-(cyclohexyl-methyl-amino)-ethyl]-indole-1-carboxylic acid
tert-butyl ester respectively following the same procedures for the preparation of 16
from 14.
[0298] 3) Biological Assays
[0299] HUVEC Assay Protocol:
[0300] Pooled human umbilical vein endothelial cells (HUVEC, Clonetics, Inc) were seeded
in 96 well plates at 5 x 10
4 cell/ml and incubated at 37°C. The following day, 20 µl of the each compound dilution
was added to the cells and incubated for 30 minutes followed by stimulation with TNFα
(1 ng/ml) for four hours at 37°C. After TNF stimulation, the plates were washed with
PBS containing 0.5% BSA, fixed with 0.025% glutaraldehyde, and stained with primary
and secondary antibodies for detection of E-selectin and ICAM expression. The plates
were incubated with 100 µl of the primary murine anti-human E-selectin and anti-human
ICAM antibody (R&D Systems, Minneapolis, MN) diluted 1:500 in PBS containing 0.5%
BSA and 5% FBS for one hour after which the plates were washed and incubated with
100 µl of a secondary peroxidase conjugated goat anti-mouse IgG antibody (Pierce,
Rockford, IL) diluted 1:10,000 in PBS/0.5%BSA/5%FBS for 30 minutes. The plates were
then washed and 100 µl of TMB substrate was added and the color reaction was allowed
to develop for 15-20 minutes. The reaction was stopped by the addition of 50 µl of
1 N H
2SO
4 and the optical density (OD) was read on microplate spectrophotometer at 450 nm.
IC
50 values were determined based on percent inhibition as calculated by the following
formula:
