

EP 1 474 425 B9 (11)

CORRECTED EUROPEAN PATENT SPECIFICATION

(15) Correction information:

(12)

(W2 B1) Corrected version no 2

Corrections, see

Description Paragraph(s) 139, 294

(48) Corrigendum issued on:

02.07.2008 Bulletin 2008/27

24.05.2006 Bulletin 2006/21

(45) Date of publication and mention of the grant of the patent:

(21) Application number: 03729359.4

(22) Date of filing: 07.01.2003

(51) Int Cl.:

C07D 471/04 (2006.01) A61P 31/12 (2006.01) A61P 37/00 (2006.01)

A61K 31/437 (2006.01) A61P 35/00 (2006.01)

A61P 29/00 (2006.01)

(86) International application number:

PCT/US2003/000366

(87) International publication number:

WO 2003/057696 (17.07.2003 Gazette 2003/29)

(54) **DEAZAPURINES AND USES THEREOF**

DESAZAPURINE UND DEREN VERWENDUNG DEAZAPURINES ET LEURS UTILISATIONS

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

Designated Extension States:

AL LT LV MK RO

(30) Priority: 07.01.2002 US 346598 P

(43) Date of publication of application: 10.11.2004 Bulletin 2004/46

(60) Divisional application: 06005483.0 / 1 707 566

(73) Proprietor: Eisai Co., Ltd. Tokyo 112-8088 (JP)

(72) Inventors:

DAUN, Jane

Dracut, MA 01826 (US)

· DAVIS, Heather, A. Haverhill, MA 01832 (US)

• GUSOVSKY, Fabian Andover, MA 01810 (US)

· HISHINUMA, leharu Ibaraki 301-0104 (JP)

• JIANG, Yimin

Londonderry, NH 03053 (US)

• KANEKO, Toshihiko Ushiku-shi.

Ibaraki 300-1236 (JP)

· KIKUCHI, Kouichi Ibaraki 300-0013 (JP) KOBAYASHI, Seiichi Belmont, MA 02478 (US)

· LESCARBEAU, Andre Somerville, MA 02144 (US)

· LI, Xiang-Yi

Andover, MA 01810 (US) MURAMOTO, Kenzo

Tsukuba-shi, Ibaraki 305-0051 (JP)

• OHI, Norihito Inashiki-gun, Ibaraki 300-0312 (JP)

• PESANT, Marc Saint-Colomban, QC, J5K 1A5 (CA)

• SELETSKY, Boris, M. Andover, MA 01810 (US)

· SOEJIMA, Motohiro Tsukuba-shi, Ibaraki 305-0033 (JP)

 YAO, Ye North Andover, MA 01845 (US)

• YOKOHAMA, Hiromitsu Moriya-shi,

Ibaraki 302-0128 (JP)

• ZHAO, Yan, J. North Andover, MA 01845 (US)

· ZHENG, Wanjun Londonderry, NH 03053 (US)

• TREMBLAY, Lynda Shannon, QC,G0A 4N0 (CA)

· DeCOSTA, Bruce F. Salem, NH 03079 (US) • SPYVEE, Mark Hampstead, NH 03841 (US)

 (74) Representative: Crooks, Elizabeth Caroline et al Kilburn & Strode
 20 Red Lion Street
 London WC1R 4PJ (GB)

(56) References cited:

EP-A- 1 256 582 WO-A-00/76505 WO-A-01/30778 US-A- 5 486 525

US-A- 5 654 305

Remarks:

The file contains technical information submitted after the application was filed and not included in this specification

Description

10

15

20

30

35

40

45

50

55

BACKGROUND OF THE INVENTION

[0001] Inflammation is a process resulting from the dilation and increased permeability of blood vessels at site of injury or infection. Chemokines and cytokines released at the site increase the expression of cell surface proteins on endothelial cells, allowing circulating leukocytes to stick to the vessel wall and migrate to the site of injury/infection within the tissue. These cell surface proteins, termed "cell adhesion molecules" allow the interaction between the leukocytes and the endothelial cells, and mediate the migration of leukocytes into the tissue. Additionally, cell adhesion molecules are required for many of the cell-to-cell interactions in the inflammatory and immune responses. There are three classes of adhesion molecules: selectins, integrins and immunmoglobulin-related proteins which can be expressed on leukocytes and endothelial cells. Several of the adhesion molecules, including E-selectin and ICAM, are induced by cytokines such as IL-1 and TNF, and their expression is mediated by the transcriptional factor, NF-κB.

[0002] Sustained or inappropriate expression of adhesion molecules can lead to inflammatory or autoimmune disorders. Exaggerated expression of E-selectin and/or ICAM can result in chronic inflammation and has been associated with several inflammatory or autoimmune disorders. Therefore, inhibitors of cell adhesion molecules may be useful for the treatment of these diseases.

[0003] Inflammatory and autoimmune diseases are not well managed by current therapy and developments of better drugs are widely pursued. For example, rheumatoid arthritis is a state of chronic inflammation within the joint characterized by cartilage and bone destruction. Traditional therapies for inflammatory or autoimmune disease, such as rheumatoid arthritis, include nonsteroidal anti-inflammatory drugs and salicylates, gold compounds, hydroxychloroquine, sulfasalazine, corticosteroids, oral penicillamines, and cytotoxic or immunosuppressive drugs. However, many of these therapies are not always sufficiently effective and have resulted in serious side effects. More recently, injectable forms of TNF α neutralizing proteins have been successfully marketed for the treatment of rheumatoid arthritis and Crohn's Disease; however, an orally available inhibitor has not been developed for these inflammatory or autoimmune diseases.

[0004] Clearly, there remains a need to identify new classes of therapeutic agents for the treatment of inflammatory or autoimmune and proliferative diseases, preferably that are orally available, and are free of serious side effects. It would also be desirable to define new classes of therapeutic agents for the treatment of inflammatory or autoimmune and proliferative disorders in general.

SUMMARY OF THE INVENTION

[0005] As discussed above, there remains a need for the development of novel therapeutic agents useful for treating inflammatory or autoimmune and proliferative diseases. The present invention provides novel compounds of general formula (I),

$$(R_3)_n \xrightarrow{\Pi} N \\ H \\ HN \\ R_2$$

and pharmaceutical compositions thereof, as described generally and in classes and subclasses herein, as well as methods of making and using such compounds

DESCRIPTION OF CERTAIN PREFERRED EMBODIMENTS OF THE INVENTION

[0006] In recognition of the need to investigate and define new classes of therapeutic agents for the treatment of rheumatoid arthritis and other disorders (in certain embodiments, inflammatory or autoimmune and proliferative disorders), the present invention provides novel deazapurines and analogues thereof, as described in more detail herein, which are useful generally in the treatment of inflammatory or autoimmune and proliferative disorders. In certain embodiments, the compounds of the present invention can be used for the treatment of diseases and disorders including, but not limited to, rheumatoid arthritis, ulcerative colitis/Crohn's disease, central nervous system diseases (CNS) such

as multiple sclerosis, systemic lupus erythematosus, asthma, allograft rejection/graft versus host disease (GVHD), psoriasis, atopic dermatitis, eczema, uticaria, allergic rhinitis, myasthenia gravis, diabetes, idiopathic thrombocytopenia purpura, glomerulonephritis, cardiovascular disease, and cancer.

[0007] 1) General Description of Compounds of the Invention

[0008] The compounds of the invention include compounds of the general formula (I) (and tautomers thereof) as further defined below:

 $(R_3)_n \xrightarrow{I} N \\ H \\ HN \\ R_2$ (I)

and pharmaceutically acceptable derivatives thereof,

wherein n is an integer from 0-4;

10

15

20

30

35

40

45

50

55

R₁ is hydrogen, -NH₂, -NHMe, -NHAc, -OH F, -OMe, -CN, or -NH(C=O)OEt;

 R_2 is hydrogen, -NR_AR_B, -OR_A, an aliphatic, heteroaliphatic, aryl, or heteroaryl moiety, wherein R_A and R_B are each independently hydrogen or an aliphatic, heteroaliphatic, aryl or heteroaryl moiety;

each occurrence of R_3 is independently hydrogen, halogen, cyano, or an aliphatic, heteroaliphatic, aryl or heteroaryl moiety, or a group -G-R_C, wherein G is absent or is -CH₂-, -NR_D-, -O-, or (C=O), and wherein R_C is hydrogen, -NR_FR_G, -OR_F, -SR_F, or an aliphatic, heteroaliphatic, aryl, or heteroaryl moiety, wherein R_D, R_F and R_G are each independently hydrogen, -NR_xR_y, an aliphatic, cycloaliphatic, heteroaliphatic, cycloheteroaliphatic, aryl, or heteroaryl moiety, -C(O)R_Z wherein R_Z is an aliphatic, heteroaliphatic, aryl or heteroaryl moiety, or wherein R_D and R_C or R_F and R_G taken together are a 3-, 4-, 5-, 6-, 7- or 8-membered substituted or unsubstituted cycloaliphatic or cycloheteroaliphatic moiety; wherein each occurrence of R_x and R_y is independently hydrogen, an aliphatic, cycloaliphatic, heteroaliphatic, cycloheteroaliphatic, aryl, or heteroaryl moiety, -C(O)R_Z wherein R_Z, an aliphatic, heteroaliphatic, aryl or heteroaryl moiety, or wherein R_x and R_y taken together are a 4-, 5- or 6-membered substituted or unsubstituted, saturated or unsaturated cycloaliphatic or cycloheteroaliphatic moiety;

whereby each of the foregoing aliphatic or heteroaliphatic moieties may be independently substituted or unsubstituted, cyclic or acyclic, linear or branched, saturated or unsaturated and wherein each of the foregoing aryl or heteroaryl moieties may be independently substituted or unsubstituted.

[0009] In certain embodiments, the present invention defines certain classes of compounds which are of special interest For example, one class of compounds of special interest includes those compounds substituted with two occurrences of R_3 in which the compound has the structure:

wherein R_{3a} and R_{3b} are each independently hydrogen, halogen, cyano, or an aliphatic, heteroaliphatic, aryl or heteroaryl moiety, or a group -G-R_c, wherein G is absent -CH₂-,

-NR_D-, -0-, or (C=O), and wherein R_C is hydrogen, -NR_FR_G, -OR_F, -SR_F, or an aliphatic, heteroaliphatic, aryl, or heteroaryl moiety, wherein R_D, R_F and R_G are each independently hydrogen, -NR_xR_y, an aliphatic, cycloaliphatic, heteroaliphatic, cycloheteroaliphatic, aryl, or heteroaryl moiety, -((O)R_Z wherein R_Z is an aliphatic, heteroaliphatic, aryl or heteroaryl moiety, or wherein R_D and R_C or R_F and R_G taken together are a 3-, 4-, 5-, 6-, 7- or 8-membered substituted or unsubstituted cycloaliphatic or cycloheteroaliphatic moiety; wherein each occurrence of R_x and R_y is independently hydrogen, an aliphatic, cycloaliphatic, heteroaliphatic, cyclobeteroaliphatic, aryl, or heteroaryl moiety, -C(O)R_Z wherein R_z is an aliphatic, hetemaliphatic, aryl or heteroaryl moiety, or wherein R_x and R_y taken together are a 4-, 5- or 6-membered

substituted or unsubstituted, saturated or unsaturated cycloaliphatic or cycloheteroaliphatic moiety; whereby each of the foregoing aliphatic or heteroaliphatic moieties may be independently substituted or unsubstituted, cyclic or acyclic, linear or branched, saturated or unsaturated; and wherein each of the foregoing aryl or heteroaryl moieties may be independently substituted or unsubstituted.

[0010] Another class of compounds of special interest comprises compounds having the structure:

5

10

15

20

30

35

40

45

50

55

wherein R_{3a} and R_{3b} are each independently hydrogen, halogen, cyano, or an aliphatic, heteroaliphatic, aryl or heteroaryl moiety, or a group -G-R_c, wherein G is absent, -CH₂-,

-NR_D-, -0-, or (C=O), and wherein R_C is hydrogen, NR_FR_G, -OR_F, -SR_F, or an aliphatic, heteroaliphatic, aryl, or heteroaryl moiety, wherein R_D, R_F and R_G are each independently hydrogen, NR_xR_y, an aliphatic, cycloaliphatic, heteroaliphatic, cycloheteroaliphatic, aryl, or heteroaryl moiety, -C(O)R_Z wherein R_Z is an aliphatic, heteroaliphatic, aryl or heteroaryl moiety, or wherein R_D and R_C or R_F and R_G taken together are a 3-, 4-, 5-, 6-, 7- or 8-membered substituted or unsubstituted cycloaliphatic or cycloheteroaliphatic moiety; wherein each occurrence of R_x and R_y is independently hydrogen, an aliphatic, cycloaliphatic, heteroaliphatic, cycloheteroaliphatic, aryl, or heteroaryl moiety, -C(O)R_Z wherein R_Z is an aliphatic, heteroaliphatic, aryl or heteroaryl moiety, or wherein R_x and R_y taken together are a 4-, 5- or 6-membered substituted or unsubstituted, saturated or unsaturated cycloaliphatic or cycloheteroaliphatic moiety; whereby each of the foregoing aliphatic or heteroaliphatic moieties may be independently substituted or unsubstituted,

whereby each of the foregoing aliphatic or heteroaliphatic moieties may be independently substituted or unsubstituted, cyclic or acyclic, linear or branched, saturated or unsaturated; and wherein each of the foregoing aryl or heteroaryl moieties may be independently substituted or unsubstituted.

[0011] Another class of compounds of special interest comprises compounds having the structure of formula (I) in which R_{3a} is -CH₂NR_FR_G and R_{3b} is hydrogen and the compound has the structure:

wherein R_1 , R_2 , R_F and R_G are as defined generally above and in classes and subclasses herein.

[0012] Another class of compounds of special interest comprises compounds having the structure of formula (I) in which R_{3b} is -CH₂NR_FR_G and R_{3a} is hydrogen and the compound has the structure:

wherein R_1 , R_2 , R_F and R_G are as defined generally above and in classes and subclasses herein.

[0013] Another class of compounds of special interest comprises compounds having the structure of formula (I) in

which $\rm R_{3c}$ is -CH $_{\rm 2}\rm NR_{\rm F}R_{\rm G}$ and $\rm R_{3d}$ is hydrogen and the compound has the structure:

5

10

15

20

25

30

35

40

45

50

55

wherein R₁, R₂, R_F and R_G are as defined generally above and in classes and subclasses herein.

[0014] Another class of compounds of special interest comprises compounds having the structure of formula (I) in which R_{3a} is -(CH=CH)_qCH₂(CH₂)_rNR_FR_G and R_{3b} is hydrogen and the compound has the structure:

wherein q and r are each independently 0 or 1; and R_1 , R_2 , R_F and R_G are as defined generally above and in classes and subclasses herein.

[0015] Another class of compounds of special interest comprises compounds having the structure of formula (I) in which R_{3a} is hydrogen and R_{3b} is - $(CH=CH)_0CH_2(CH_2)_rNR_FR_G$ and the compound has the structure:

wherein q and r are each independently 0 or 1; and R_1 , R_2 , R_F and R_G are as defined generally above and in classes and subclasses herein.

[0016] Another class of compounds of special interest includes compounds having the structure of formula (I) in which R_{3a} is -(C=O)NR_FR_G and R_{3b} is hydrogen and the compound has the structure:

wherein R_1 , R_2 , R_F and R_G are as defined generally above and in classes and subclasses herein.

[0017] Another class of compounds of special interest includes compounds having the structure of formula (I) in which R_{3b} is -(C=)NR_FR_G and R_{3a} is hydrogen and the compound has the structure:

wherein R_1 , R_2 , R_F and R_G are as defined generally above and in classes and subclasses herein.

[0018] Another class of compounds of special interest comprises compounds having the structure of formula (I) in which R_{3a} is -CH₂S(=O)_mNR_FR_G and R_{3b} is hydrogen and the compound has the structure:

25

5

10

15

20

wherein R_1 and R_2 are as defined generally above and in classes and subclasses herein; m is 0, 1 or 2; and

R_F is an aliphatic, cycloaliphatic, heteroaliphatic, cycloheteroaliphatic, aryl, or heteroaryl moiety;

whereby each of the foregoing aliphatic or heteroaliphatic moieties may be independently substituted or unsubstituted, cyclic or acyclic, linear or branched, saturated or unsaturated; and wherein each of the foregoing aryl or heteroaryl moieties may be independently substituted or unsubstituted.

[0019] Another class of compounds of special interest comprises compounds having the structure of formula (I) in which R_{3a} is -CH₂OR_F and R_{3b} is hydrogen and the compound has the structure:

35

40

50

30

 45 wherein R_1 and R_2 are as defined generally above and in classes and subclasses herein; and

R_F is hydrogen, a protective group or an aliphatic, cycloaliphatic, heteroaliphatic, cycloheteroaliphatic, aryl, or heteroaryl moiety;

whereby each of the foregoing aliphatic or heteroaliphatic moieties may be independently substituted or unsubstituted, cyclic or acyclic, linear or branched, saturated or unsaturated; and wherein each of the foregoing aryl or heteroaryl moieties may be independently substituted or unsubstituted.

[0020] A number of important subclasses of each of the foregoing classes deserve separate mention; these subclasses include subclasses of the foregoing classes in which:

[0021] i) R₁ is NH₂;

[0022] ii) R₁ is hydrogen;

⁵⁵ **[0023]** iii) R₁ is NHMe;

[0024] iv) R₁ is NHAc;

[0025] v) R_2 is NH_2 , OH, C_1 - C_6 alkyl or C_1 - C_6 alkenyl, said alkyl and alkenyl groups optionally substituted with halogen or hydroxyl;

[0026] vi) R_2 is C_1 - C_2 alkyl;

[0027] vii) R_2 is methyl;

10

20

30

35

40

[0028] viii) R₂ is hydrogen;

[0029] ix) one of R_F or R_G is hydrogen or lower alkyl; and the other is an alkyl, heteroalkyl, aryl, heteroaryl, alkylaryl or alkylheteroaryl, optionally independently substituted for each occurrence with one or more of halogen, alkoxy, thioalkyl, or substituted or unsubstituted alkyl, heteroalkyl, aryl, or heteroaryl, or wherein R_F and R_G taken together are a 6-membered substituted or unsubstituted heterocyclic moiety;

[0030] x) one of R_F or R_G is hydrogen or lower alkyl; and the other is an aryl, heteroaryl, alkylaryl or alkylheteroaryl moiety, optionally independently substituted for each occurrence with one or more of halogen, alkoxy, thioalkyl, or substituted or unsubstituted alkyl, heteroalkyl, aryl, or heteroaryl, or wherein R_F and R_G taken together are a 6-membered substituted or unsubstituted cyclic or heterocyclic moiety;

[0031] xi) one of R_F or R_G is hydrogen or lower alkyl; and the other is phenyl, pyridyl, (alkyl)phenyl, or (alkyl)pyridyl, optionally substituted with one or more occurrences of halogen, trifluromethoxy, methoxy, trifluoromethyl, methylthio, or substituted or unsubstituted lower alkyl, lower heteroalkyl, aryl or heteroaryl; and

[0032] xii) one of R_F or R_G is hydrogen or lower alkyl; and the other is a cyclic or acyclic, linear or branched aliphatic moiety optionally substituted with one or more of substituted or unsubstituted aryl, heteroaryl, amide, alkoxy, hydroxyl, thioalkyl, thiol, acyl or amino;

[0033] xiii) R_F is an alkyl, cycloalkyl, heteroalkyl, cycloheteroalkyl, aryl, heteroaryl, alkylaryl or alkylheteroaryl, optionally independently substituted for each occurrence with one or more of halogen, alkoxy, thioalkyl, or substituted or unsubstituted alkyl, heteroalkyl, aryl, or heteroaryl; and/or

[0034] xiv) R_F is hydrogen, a protecting group, or an alkyl, cycloalkyl, heteaoalkcyl, cycloheteroalkyl, aryl, heteroaryl, alkylaryl or alkylheteroaryl, optionally independently substituted for each occurrence with one or more of halogen, alkoxy, thioalkyl, or substituted or unsubstituted alkyl, heteroalkyl, aryl, or heteroaryl.

[0035] As the reader will appreciate, compounds of particular interest include, among others, those which share the attributes of one or more of the foregoing subclasses. Some of those subclasses are illustrated by the following sorts of compounds:

[0036] I) Compounds of the formula (and pharmaceutically acceptable derivatives thereof):

wherein R_1 and R_2 are as defined generically and in classes and subclasses herein; G is CH_2 or -(C=O) and one of R_G or R_F is hydrogen or lower alkyl and the other is an alkyl, heteroalkyl, aryl, heteroaryl, alkylaryl or alkylheteroaryl moiety, optionally independently substituted for each occurrence with one or more of halogen, alkoxy, thioalkyl, or substituted or unsubstituted alkyl, heteroalkyl, aryl, or heteroaryl, or wherein R_F and R_G taken together are a 3 to 8-membered substituted or unsubstituted cyclic or heterocyclic moiety.

[0037] In certain embodiments, one of R_F or R_G is hydrogen or lower alkyl; and the other is an aryl, heteroaryl, alkylaryl or alkylheteroaryl moiety, optionally independently substituted for each occurrence with one or more of halogen, alkoxy, thioalkyl, or substituted or unsubstituted alkyl, heteroalkyl, aryl, or heteroaryl, or wherein R_F and R_G taken together are a 3 to 8-membered substituted or unsubstituted cyclic or heterocyclic moiety.

[0038] In certain other embodiments, one of R_F or R_G is hydrogen or lower alkyl; and the other is phenyl, pyridyl (alkyl)phenyl, or (alkyl)pyridyl, optionally substituted with one or more occurrences of halogen, trifluromethoxy, methoxy, trifluoromethyl, methylthio, or substituted or unsubstituted lower alkyl, lower heteroalkyl, aryl or heteroaryl.

[0039] In still other embodiments, one of R_F or R_G is hydrogen or lower alkyl; and the other is a cyclic or acyclic, linear or branched aliphatic moiety optionally substituted with one or more of substituted or unsubstituted aryl, heteroaryl, amide, alkoxy, hydroxyl, thioalkyl thiol, acyl or amino.

[0040] II) Compounds of the formula (and pharmaceutically acceptable derivatives thereof):

55

$$X \longrightarrow G \longrightarrow N \longrightarrow N \longrightarrow N$$

10

5

wherein R_1 and R_2 are as defined generically and in classes and subclasses herein; G is CH_2 or CH_2 or CH_2 or CH_3 and X is O, S, C=O, S=O, C= CH_4 , CH_5 , CH_4 , or CH_4 , wherein each occurrence of CH_4 and CH_5 is independently hydrogen, hydroxyl, halogen, cyano an aliphatic, heteroaliphatic, aryl, or heteroaryl moiety, or is CH_4 wherein CH_5 is an aliphatic, heteroaliphatic, aryl or heteroaryl moiety;

whereby each of the foregoing aliphatic or heteroaliphatic moieties may be independently substituted or unsubstituted, cyclic or acyclic, linear or branched, and wherein each of the foregoing aryl or heteroaryl moieties may be independently substituted or unsubstituted.

[0041] III) Compounds of the formula (and pharmaceutically acceptable derivatives thereof):

20

25

wherein R₁ and R₂ are as defined generically and in classes and subclasses herein; G is CH₂ or -(C=O) and one of R_G or R_F is hydrogen or lower alkyl; and the other is an alkyl, heteroalkyl, aryl, heteroaryl, alkylaryl or alkylheteroaryl, optionally independently substituted for each occurrence with one or more of halogen, alkoxy, thioalkyl, or substituted or unsubstituted alkyl, heteroalkyl, aryl, or heteroaryl, or wherein R_F and R_G taken together are a 3 to 8-membered substituted or unsubstituted cyclic or heterocyclic moiety.

³⁵ **[0042]** In certain embodiments, one of R_F or R_G is hydrogen or lower alkyl; and the other is an aryl, heteroaryl, alkylaryl or alkylheteroaryl moiety, optionally independently substituted for each occurrence with one or more of halogen, alkoxy, thioalkyl, or substituted or unsubstituted alkyl, heteroalkyl, aryl, or heteroaryl, or wherein R_F and R_G taken together are a 3 to 8-membered substituted or unsubstituted cyclic or heterocyclic moiety.

[0043] In certain other embodiments, one of R_F or R_G is hydrogen or lower alkyl; and the other is phenyl, pyridyl, (alkyl)phenyl, or (alkyl)pyridyl, optionally substituted with one or more occurrences of halogen, trifluromethoxy, methoxy, trifluromethyl, methylthio, or substituted or unsubstituted lower alkyl, lower heteroalkyl, aryl or heteroaryl.

[0044] In still other embodiments, one of R_F or R_G is hydrogen or lower alkyl; and the other is a cyclic or acyclic, linear or branched aliphatic moiety optionally substituted with one or more of substituted or unsubstituted aryl, heteroaryl, amide, alkoxy, hydroxyl, thioalkyl, thiol, acyl or amino.

45 [0045] IV) Compounds of the formula (and pharmaceutically acceptable derivatives thereof):

50

40

$$\bigcap_{G} \bigcap_{H} \bigcap_{HN} \bigcap_{R_2} \bigcap_{R_2} \bigcap_{H} \bigcap_{HN} \bigcap_{R_2} \bigcap_{R_2} \bigcap_{H} \bigcap_{HN} \bigcap_{HN}$$

55

wherein R_1 and R_2 are as defined generically and in classes and subclasses herein; G is CH_2 or -(C=O) and X is O, S, C=O, S=O, C= CR_4R_5 , NR_4 , or CR_4R_5 ; wherein each occurrence of R_4 and R_5 is independently hydrogen, hydroxyl,

halogen, cyano an aliphatic, heteroaliphatic, aryl, or heteroaryl moiety, or is $C(O)R_Z$ wherein R_Z is an aliphatic, heteroaliphatic, aryl or heteroaryl moiety;

whereby each of the foregoing aliphatic or heteroaliphatic moieties may be independently substituted or unsubstituted, cyclic or acyclic, linear or branched, and wherein each of the foregoing aryl or heteroaryl moieties may be independently substituted or unsubstituted.

[0046] V) Compounds of the formula (and pharmaceutically acceptable derivatives thereof):

10

15

30

35

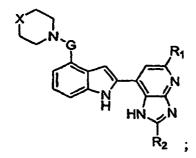
40

45

50

55

RF N G R1


wherein R₁ and R₂ are as defined generically and in classes and subclasses herein; G is CH₂ or -(C=O) and one of R_G or R_F is hydrogen or lower alkyl; and the other is an alkyl, heteroalkyl, aryl, heteroaryl, alkylaryl or alkylheteroaryl, optionally independently substituted for each occurrence with one or more of halogen, alkoxy, thioalkyl, or substituted or unsubstituted alkyl, heteroalkyl, aryl, or heteroaryl, or wherein R_F and R_G taken together are a 3 to 8-membered substituted or unsubstituted cyclic or heterocyclic moiety.

[0047] In certain embodiments, one of R_F or R_G is hydrogen or lower alkyl; and the other is an aryl, heteroaryl, alkylaryl or alkylheteroaryl moiety, optionally independently substituted for each occurrence with one or more of halogen, alkoxy, thioalkyl, or substituted or unsubstituted alkyl, heteroalkyl, aryl, or heteroaryl, or wherein R_F and R_G taken together are a 3 to 8-membered substituted or unsubstituted cyclic or heterocyclic moiety.

[0048] In certain other embodiments, one of R_F or R_G is hydrogen or lower alkyl; and the other is phenyl, pyridyl, (alkyl)phenyl, or (alkyl)pyridyl, optionally substituted with one or more occurrences of halogen, trifluromethoxy, methoxy, trifluromethyl, methylthio, or substituted or unsubstituted lower alkyl, lower heteroalkyl, aryl or heteroaryl.

[0049] In still other embodiments, one of R_F or R_G is hydrogen or lower alkyl; and the other is a cyclic or acyclic, linear or branched aliphatic moiety optionally substituted with one or more of substituted or unsubstituted aryl, heteroaryl, amide, alkoxy, hydroxyl, thioalkyl, thiol, acyl or amino.

[0050] VI) Compounds of the formula (and pharmaceutically acceptable derivatives thereof):

wherein R_1 and R_2 are as defined generically and in classes and subclasses herein; G is CH_2 or -(C=O) and X is O, S, C=O, S=O, C= CR_4R_5 , NR_4 , or CR_4F_5 ; wherein each occurrence of R_4 and R_5 is independently hydrogen, hydroxyl, halogen, cyano an aliphatic, heteroaliphatic, aryl, or heteroaryl moiety, or is $-C(O)R_Z$ wherein R_Z is an aliphatic, heteroaliphatic, aryl or heteroaryl moiety;

whereby each of the foregoing aliphatic or heteroaliphatic moieties may be independently substituted or unsubstituted, cyclic or acyclic, linear or branched, and wherein each of the foregoing aryl or heteroaryl moieties may be independently substituted or unsubstituted.

[0051] VII) Compounds of the formula (and pharmaceutically acceptable derivatives thereof):

wherein R_F , R_1 and R_2 are as defined generically and in classes and subclasses herein; p is an integer from 0-3; s is an integer from 0-4; A, B, D, E and each occurrence of K are independently absent, O, S, C=O, S=O, C=CR₄R₅, NR₄, or CR₄R₅, wherein each occurrence of R₄ and R₅ is independently hydrogen, hydroxyl, halogen, cyano, -OR_x, -SR_x, -NR_xR_y, an aliphatic, heteroaliphatic, aryl, or heteroaryl moiety, or is -((O)R_Z werein R_Z is an aliphatic, heteroaliphatic, aryl or heteroaryl moiety; and wherein A and B, B and D, D and E, E and K and any two adjacent K groups may be linked by a single or double bond as valency permits; wherein each occurrence of R_x and R_y is independently hydrogen, a protecting group, or an aliphatic, heteroaliphatic, aryl, heteroaryl, aliphaticaryl, heteroaliphatic aryl, aliphaticheteroaryl or heteroaliphaticheteroaryl moiety,

whereby each of the foregoing aliphatic or heteroaliphatic moieties may be independently substituted or unsubstituted, cyclic or acyclic, linear or branched, saturated or unsaturated and wherein each of the foregoing aryl, heteroaryl aliphaticaryl, heteroaliphatic aryl, aliphaticheteroaryl or heteroaliphaticheteroaryl moieties may be independently substituted or unsubstituted.

[0052] In certain exemplary embodiments,

represents a substituted or unsubstituted phenyl, pyridyl or furanyl moiety. In certain other embodiments,

represents a substituted or unsubstituted, saturated or unsaturated 3-, 4-, 5-, 6-, 7-, or 8-membered cycloalkyl or cycloheteroalkyl moiety. In certain exemplary embodiments,

represents substituted or unsubstituted cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexyl,

represents a substituted or unsubstituted bicyclic aliphatic moiety.

[0053] In certain exemplary embodiments, R_F is hydrogen or lower alkyl. In cerain embodiments, R_F is hydrogen or methyl.

[0054] It will also be appreciated that for each of the subgroups I-VII described above, a variety of other subclasses are of special interest, including, but not limited to those classes described above i)-xiv) and classes, subclasses and species of compounds described above and in the examples herein.

[0055] Some of the foregoing compounds can comprise one or more asymmetric centers, and thus can exist in various isomeric forms, e.g., stereoisomers and/or diastereomers. Thus, inventive compounds and pharmaceutical compositions thereof may be in the form of an individual enantiomer, diastereomer or geometric isomer, or may be in the form of a mixture of stereoisomers. In certain embodiments, the compounds of the invention are enantiopure compounds. In certain other embodiments, a mixture of stereoisomers or diastereomers are provided.

[0056] Additionally, any and all tautomers of the foregoing compounds are encompassed by the invention. The invention is not limited to the tautomeric structures depicted herein. As but one example, compounds described and depicted generally as:

may also be described and depicted as:

10

15

20

25

30

35

40

45

50

55

[0057] Furthermore, certain compounds, as described herein may have one or more double bonds that can exist as either the Z or E isomer, unless otherwise indicated. The invention additionally encompasses the compounds as individual isomers substantially free of other isomers and alternatively, as mixtures of various isomers, e.g., racemic mixtures of stereoisomers. In addition to the above-mentioned compounds *per se*, this invention also encompasses pharmaceutically acceptable derivatives of these compounds and compositions comprising one or more compounds of the invention and one or more pharmaceutically acceptable excipients or additives.

[0058] Compounds of the invention may be prepared by crystallization of compound of formula (I) under different conditions and may exist as one or a combination of polymorphs of compound of general formula (I) forming part of this invention. For example, different polymorphs may be identified and/or prepared by using different solvents, or different mixtures of solvents for recrystallization; by performing crystallizations at different temperatures; or by using various modes of cooling, ranging from very fast to very slow cooling during crystallizations. Polymorphs may also be obtained by heating or melting the compound followed by gradual or fast cooling. The presence of polymorphs may be determined by solid probe NMR spectroscopy, IR spectroscopy, differential scanning calorimetry, powder X-ray diffractogram and/or other techniques. Thus, the present invention encompasses inventive compounds, their derivatives, their tautomeric forms, their stereoisomers, their polymorphs, their pharmaceutically acceptable salts their pharmaceutically acceptable solvates and pharmaceutically acceptable compositions containing them.

[0059] 2) Compounds and Definitions

[0060] As discussed above, this invention provides novel compounds with a range of biological properties. Compounds of this invention have biological activities relevant for the treatment of inflammatory or autoimmune disorders and/or proliferative disorders. In certain embodiments, the compounds of the invention are useful for the treatment of rheumatoid arthritis, ulcerative colitis/Crohn's disease, central nervous system diseases (CNS) such as multiple sclerosis, systemic

lupus erythematosus, asthma, allograft rejection/graft versus host disease (GVHD), psoriasis, atopic dermatitis, eczema, uticaria, allergic rhinitis, myasthenia gravis, diabetes, idiopathic thrombocytopenia purpura, glomerulonephritis, cardiovascular disease, and cancer.

[0061] Compounds of this invention include those specifically set forth above and described herein, and are illustrated in part by the various classes, subgenera and species disclosed elsewhere herein.

[0062] Additionally, the present invention provides pharmaceutically acceptable derivatives of the inventive compounds, and methods of treating a subject using these compounds, pharmaceutical compositions thereof, or either of these in combination with one or more additional therapeutic agents. The phrase, "pharmaceutically acceptable derivative", as used herein, denotes any pharmaceutically acceptable salt, ester, or salt of such ester, of such compound, or any other adduct or derivative which, upon administration to a patient, is capable of providing (directly or indirectly) a compound as otherwise described herein, or a metabolite or residue thereof. Pharmaceutically acceptable derivatives thus include among others pro-drugs. A prodrug is a derivative of a compound, usually with significantly reduced pharmacological activity, which contains an additional moiety which is susceptible to removal *in vivo* yielding the parent molecule as the pharmacologically active species. An example of a pro-drug is an ester which is cleaved *in vivo* to yield a compound of interest. Pro-drugs of a variety of compounds, and materials and methods for derivatizing the parent compounds to create the pro-drugs, are known and may be adapted to the present invention. Certain exemplary pharmaceutical compositions and pharmaceutically acceptable derivatives will be discussed in more detail herein below.

10

15

20

30

35

40

50

55

[0063] Certain compounds of the present invention, and definitions of specific functional groups are also described in more detail below. For purposes of this invention, the chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, Handbook of Chemistry and Physics, 75th Ed., inside cover, and specific functional groups are generally defined as described therein. Additionally, general principles of organic chemistry, as well as specific functional moieties and reactivity, are described in "Organic Chemistry", Thomas Sorrell, University Science Books, Sausalito: 1999, the entire contents of which are incorporated herein by reference. Furthermore, it will be appreciated by one of ordinary skill in the art that the synthetic methods, as described herein, utilize a variety of protecting groups. By the term "protecting group", has used herein, it is meant that a particular functional moiety, e.g., O, S, or N, is temporarily blocked so that a reaction can be carried out selectively at another reactive site in a multifunctional compound. In preferred embodiments, a protecting group reacts selectively in good yield to give a protected substrate that is stable to the projected reactions; the protecting group must be selectively removed in good yield by readily available, preferably nontoxic reagents that do not attack the other functional groups; the protecting group forms an easily separable derivative (more preferably without the generation of new stereogenic centers); and the protecting group has a minimum of additional functionality to avoid further sites of reaction. As detailed herein, oxygen, sulfur, nitrogen and carbon protecting groups may be utilized. For example, in certain embodiments, as detailed herein, certain exemplary oxygen protecting groups are utilized. These oxygen protecting groups include, but are not limited to methyl ethers, substituted methyl ethers (e.g., MOM (methoxymethyl ether), MTM (methylthiomethyl ether), BOM (benzyloxymethyl ether), PMBM (p-methoxybenzyloxymethyl ether), to name a few), substituted ethyl ethers, substituted benzyl ethers, silyl ethers (e.g., TMS (trimethylsilyl ether), TES (triethylsilylether), TIPS (triisopropylsilyl ether), TBDMS (t-butyldimethylsilyl ether), tribenzyl silyl ether, TBDPS (t-butyldiphenyl silyl ether), to name a few), esters (e.g., formate, acetate, benzoate (Bz), trifluoroacetate, dichloroacetate, to name a few), carbonates, cyclic acetals and ketals. In certain other exemplary embodiments, nitrogen protecting groups are utilized. These nitrogen protecting groups include, but are not limited to, carbamates (including methyl, ethyl and substituted ethyl carbamates (e.g., Troc), to name a few) amides, cyclic imide derivatives, N-Alkyl and N-Aryl amines, imine derivatives, and enamine derivatives, to name a few. Certain other exemplary protecting groups are detailed herein, however, it will be appreciated that the present invention is not intended to be limited to these protecting groups; rather, a variety of additional equivalent protecting groups can be readily identified using the above criteria and utilized in the present invention. Additionally, a variety of protecting groups are described in "Protective Groups in Organic Synthesis" Third Ed. Greene, T.W. and Wuts, P.G., Eds., John Wiley & Sons, New York: 1999, the entire contents of which are hereby incorporated by reference.

[0064] It will be appreciated that the compounds, as described herein, may be substituted with any number of substituents or functional moieties. In general, the term "substituted" whether preceded by the term "optionally" or not, and substituents contained in formulas of this invention, refer to the replacement of hydrogen radicals in a given structure with the radical of a specified substituent When more than one position in any given structure may be substituted with more than one substituent selected from a specified group, the substituent may be either the same or different at every position. As used herein, the term "substituted" is contemplated to include all permissible substituents of organic compounds. In a broad aspect, the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and nonaromatic substituents of organic compounds. For purposes of this invention, heteroatoms such as nitrogen may have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valencies of the heteroatoms. Furthermore, this invention is not intended to be limited in any manner by the permissible substituents of organic compounds. Combinations of substituents and variables envisioned by this invention are preferably those that result in the formation of stable compounds useful in the treatment,

for example of inflammatory or autoimmune and proliferative disorders, including, but not limited to rheumatoid arthritis, psoriasis, asthma and cancer. The term "stable", as used herein, preferably refers to compounds which possess stability sufficient to allow manufacture and which maintain the integrity of the compound for a sufficient period of time to be detected and preferably for a sufficient period of time to be useful for the purposes detailed herein.

[0065] The term "aliphatic", as used herein, includes both saturated and unsaturated, straight chain (*i.e.*, unbranched), branched, cyclic, or polycyclic aliphatic hydrocarbons, which are optionally substituted with one or more functional groups. As will be appreciated by one of ordinary skill in the art, "aliphatic" is intended herein to include, but is not limited to, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, and cycloalkynyl moieties. Thus, as used herein, the term "alkyl" includes straight, branched and cyclic alkyl groups. An analogous convention applies to other generic terms such as "alkenyl", "alkynyl" and the like. Furthermore, as used herein, the terms "alkyl", "alkenyl", "alkynyl" and the like encompass both substituted and unsubstituted groups. In certain embodiments, as used herein, "lower alkyl" is used to indicate those alkyl groups (cyclic, acyclic, substituted, unsubstituted, branched or unbranched) having 1-6 carbon atoms.

[0066] In certain embodiments, the alkyl, alkenyl and alkynyl groups employed in the invention contain 1-20 aliphatic carbon atoms. In certain other embodiments, the alkyl, alkenyl, and alkynyl groups employed in the invention contain 1-10 aliphatic carbon atoms. In yet other embodiments, the alkyl, alkenyl, and alkynyl groups employed in the invention contain 1-8 aliphatic carbon atoms. In still other embodiments, the alkyl, alkenyl, and alkynyl groups employed in the invention contain 1-6 aliphatic carbon atoms. In yet other embodiments, the alkyl, alkenyl, and alkynyl groups employed in the invention contain 1-4 carbon atoms. Illustrative aliphatic groups thus include, but are not limited to, for example, methyl, ethyl, n-propyl, isopropyl, cyclopropyl, -CH₂-cyclopropyl, allyl, n-butyl, sec-butyl, isobutyl, tert-butyl, cyclobutyl, -CH₂-cyclobutyl, n-pentyl, sec-pentyl, isopentyl, tert-pentyl, cyclopentyl, -CH₂-cyclopentyl-n, hexyl, sec-hexyl, cyclohexyl, -CH₂-cyclohexyl moieties and the like, which again, may bear one or more substituents. Alkenyl groups include, but are not limited to, for example, ethenyl, propenyl, butenyl, 1-methyl-2-buten-1-yl, and the like. Representative alkynyl groups include, but are not limited to, ethynyl, 2-propynyl (propargyl), 1-propynyl and the like.

20

30

35

40

50

55

[0067] The term "alkoxy" (or "alkyloxy"), or "thioalkyl" as used herein refers to an alkyl group, as previously defined, attached to the parent molecular moiety through an oxygen atom or through a sulfur atom. In certain embodiments, the alkyl group contains 1-20 aliphatic carbon atoms. In certain other embodiments, the alkyl group contains 1-10 aliphatic carbon atoms. In yet other embodiments, the alkyl, alkenyl, and alkynyl groups employed in the invention contain 1-8 aliphatic carbon atoms. In still other embodiments, the alkyl group contains 1-6 aliphatic carbon atoms. In yet other embodiments, the alkyl group contains 1-4 aliphatic carbon atoms. Examples of alkoxy, include but are not limited to, methoxy, reopoxy, isopropoxy, n-butoxy, tert-butoxy, neopentoxy and n-hexoxy. Examples of thioalkyl include, but are not limited to, methylthio, ethylthio, propylthio, isopropylthio, n-butylthio, and the like.

[0068] The term "alkylamino" refers to a group having the structure - NHR' wherein R' is alkyl, as defined herein. The term "aminoalkyl" refers to a group having the structure NH₂R'-, wherein R' is alkyl, as defined herein. In certain embodiments, the alkyl group contains 1-20 aliphatic carbon atoms. In certain other embodiments, the alkyl group contains 1-10 aliphatic carbon atoms. In yet other embodiments, the alkyl, alkenyl, and alkynyl groups employed in the invention contain 1-8 aliphatic carbon atoms. In still other embodiments, the alkyl group contains 1-6 aliphatic carbon atoms. In yet other embodiments, the alkyl group contains 1-4 aliphatic carbon atoms. Examples of alkylamino include, but are not limited to, methylamino, ethylamino, iso-propylamino and the like.

[0069] Some examples of sutstituents of the above-described aliphatic (and other) moieties of compounds of the invention include, but are not limited to aliphatic; heteroaliphatic; aryl; heteroaryl; alkylaryl; alkylheteroaryl; alkoxy; aryloxy; heteroalkoxy; heteroaryloxy; alkylthio; heteroalkylthio; heteroarylthio; F; C1; Br, 1; -OH; -NO2; -CN; -CF3; -CH2CF3; -CHCl2; -CH2OH; -CH2CH2OH; -CH2NH2; -CH2SO2CH3; -C(O)Rx; -CO2(Rx); -CON(Rx)2; -OC(O)Rx; -OCO2Rx; -OCON(Rx)2; -N(Rx)2; -N(Rx)2; -NRx(CO)Rx wherein each occurrence of Rx independently includes, but is not limited to, aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl, wherein any of the aliphatic, heteroaliphatic, alkylaryl, or alkylheteroaryl substituents described above and herein may be substituted or unsubstituted, branched or unbranched, cyclic or acyclic, and wherein any of the aryl or heteroaryl substituents described above and herein may be substituted or unsubstituted. Additional examples of generally applicable substituents are illustrated by the specific embodiments shown in the Examples that are described herein.

[0070] In general, the terms "aryl" and "heteroaryl", as used herein, refer to stable mono- or polycyclic, heterocyclic, polycyclic, and polyheterocyclic unsaturated moieties having preferably 3-14 carbon atoms, each of which may be substituted or unsubstituted. It will also be appreciated that aryl and heteroaryl moieties, as defined herein may be attached via an aliphatic, heteroaliphatic, alkyl or heteroalkyl moiety and thus also include -(aliphatic)aryl, -(heteroaliphatic)aryl, -(aliphatic)heteroaryl, -(aliphatic)heteroaryl, -(alkyl)aryl, -(heteroalkyl)aryl, and - (heteroalkyl)heteroaryl moieties. Thus, as used herein, the phrases "aryl or heteroaryl" and "aryl, heteroaryl, -(aliphatic)aryl, -(heteroaliphatic)aryl, -(heteroalkyl)aryl, -(heteroalkyl)aryl, -(heteroalkyl)aryl, -(heteroalkyl)aryl, and -(heteroaryl" are interchangeable. Substituents include, but are not limited to, any of the previously mentioned substitutents, *i.e.*, the substituents recited for aliphatic moieties, or for other moieties as disclosed herein, resulting in the formation of a stable compound. In certain embodiments of the present invention, "aryl" refers to a mono-

or bicyclic carbocyclic ring system having one or two aromatic rings including, but not limited to, phenyl, naphthyl, tetrahydronaphthyl, indanyl, indenyl and the like. In certain embodiements of the present invention, the term "heteroaryl", as used herein, refers to a cyclic aromatic radical having from five to ten ring atoms of which one ring atom is selected from S, O and N; zero, one or two ring atoms are additional heteroatoms independently selected from S, O and N; and the remaining ring atoms are carbon, the radical being joined to the rest of the molecule via any of the ring atoms, such as, for example, pyridyl, pyrazinyl, pyrimidinyl, pyrrolyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl, isooxazolyl, thiadiazolyl, oxadiazolyl, thiophenyl, furanyl, quinolinyl, isoquinolinyl, and the like.

[0071] It will be appreciated that aryl and heteroaryl groups (including bycyclic aryl groups) can be unsubstituted or substituted, wherein substitution includes replacement of one, two or three of the hydrogen atoms thereon independently with any one or more of the following moieties including, but not limited to: aliphatic; heteroaliphatic; aryl; heteroaryl; alkylaryl; alkylheteroaryl; alkoxy; aryloxy; heteroalkoxy; heteroaryloxy; alkylthio; arylthio; heteroalkylthio; heteroarylthio; $F;Cl;Br,l;-OH;-NO_2;-CN;-CF_3;-CH_2CF_3;-CHCl_2;-CH_2OH;-CH_2CH_2OH;-CH_2NH_2;-CH_2SO_2CH_3;-C(O)R_x;-CO_2(R_x);-CON(R_x)_2;-OC(O)R_x;-OCO_2R_x;-OCON(R_x)_2;-N(R_x)_2;-S(O)_2R_x;-NR_x(CO)R_x$ wherein each occurrence of R_x independently includes, but is not limited to, aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl, wherein any of the aliphatic, heteroaliphatic, alkylaryl, or alkylheteroaryl substituents described above and herein may be substituted or unsubstituted, branched or unbranched, cyclic or acyclic, and wherein any of the aryl or heteroaryl substituents described above and herein may be substituted or unsubstituted. Additional examples of generally applicable substituents are illustrated by the specific embodiments shown in the Examples that are described herein.

[0072] The term "cycloalkyl", as used herein, refers specifically to groups having three to seven, preferably three to ten carbon atoms. Suitable cycloalkyls include, but are not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and the like, which, as in the case of other aliphatic, heteroaliphatic or hetercyclic moieties, may optionally be substituted with substituents including, but not limited to aliphatic; heteroaliphatic; aryl; heteroaryl; alkylaryl; alkylaryl; alkylheteroaryl; alkoxy; aryloxy; heteroalkoxy; heteroaryloxy; alkylthio; arylthio; heteroalkylthio; heteroarylthio; F; Cl; Br; I; -OH; -NO2; -CN; -CF3; -CH2CF3; -CH2CH2; -CH2OH; -CH2CH2OH; -CH2NH2; -CH2SO2CH3; -C(O)Rx; -CO2(Rx); -CON(Rx)2; -OC(P)Rx; -OCO2Rx; -OCON(Rx)2; N(Rx)2; -S(O)2Rx; -NRx(CO)Rx wherein each occurrence of Rx independently includes, but is not limited to, aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl, wherein any of the aliphatic, heteroaliphatic, alkylaryl, or alkylheteroaryl substituents described above and herein may be substituted or unsubstituted, branched or unbranched, cyclic or acyclic, and wherein any of the aryl or heteroaryl substituents described above and herein may be substituents are illustrated by the specific embodiments shown in the Examples that are described herein.

20

30

35

50

[0073] The term "heteroaliphatic", as used herein, refers to aliphatic moieties which contain one or more oxygen sulfur, nitrogen, phosphorus or silicon atoms, e.g., in place of carbon atoms. Heteroaliphatic moieties may be branched, unbranched, cyclic or acyclic and include saturated and unsaturated heterocycles such as morpholino, pyrrolidinyl, etc. In certain embodiments, heteroaliphatic moieties are substituted by independent replacement of one or more of the hydrogen atoms thereon with one or more moieties including, but not limited to aliphatic; heteroaliphatic; aryl; heteroaryl; alkylaryl; alkylheteroaryl; alkoxy; aryloxy; heteroalkoxy; heteroaryloxy; alkylthio; arylthio; heteroalkylthio; heteroarylthio; F; Cl; Br, I; -OH; -NO2; -CN; - CF3; -CH2CF3; -CHCl2; -CH2OH; -CH2CH2OH; -CH2NH2; -CH2SO2CH3; -C(O)Rx; -CO2(Rx); -CON(Rx)2; -OC(O)Rx; -OCO2(Rx); -OCON(Rx)2; -N(Rx)2; -S(O)2Rx; -NRx(CO)Rx wherein each occurrence of Rx independently includes, but is not limited to, aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl, wherein any of the aliphatic, heteroaliphatic, alkylaryl, or alkylheteroaryl substituents described above and herein may be substituted or unsubstituted. Additional examples of generally applicable substituents are illustrated by the specific embodiments shown in the Examples that are described herein.

[0074] The terms "halo" and "halogen" as used herein refer to an atom selected from fluorine, chlorine, bromine and iodine.

[0075] The term "haloalkyl" denotes an alkyl group, as defined above, having one, two, or three halogen atoms attached thereto and is exemplified by such groups as chloromethyl, bromoethyl, trifluoromethyl, and the like.

[0076] The term "heterocycloalkyl" or "heterocycle", as used herein, refers to a non-aromatic 5-, 6- or 7- membered ring or a polycyclic group, including, but not limited to a bi- or tri-cyclic group comprising fused six-membered rings having between one and three heteroatoms independently selected from oxygen, sulfur and nitrogen, wherein (i) each 5-membered ring has 0 to 1 double bonds and each 6-membered ring has 0 to 2 double bonds, (ii) the nitrogen and sulfur heteroatoms may be optionally be oxidized, (iii) the nitrogen heteroatom may optionally be quatemized, and (iv) any of the above heterocyclic rings may be fused to a benzene ring. Representative heterocycles include, but are not limited to, pyrrolidinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, and tetrahydrofuryl. In certain embodiments, a "substituted heterocycloalkyl or heterocycle" group is utilized and as used herein, refers to a heterocycloalkyl or heterocycle group, as defined above, substituted by the independent replacement of one, two or three of the hydrogen atoms thereon with but are not limited to aliphatic; heteroaliphatic; aryl; heteroaryl; alkylaryl; alkylheteroaryl; alkoxy; aryloxy; heteroalkoxy;

heteroaryloxy; alkylthio; arylthio; heteroalkylthio; heteroarylthio; F; Cl; Br; I; - OH; -NO2; -CN; -CF3; -CH2CF3; -CHCl2; -CH2OH; -CH2CH2OH; -CH2NH2; -CH2SO2CH3; -C(O)Rx; -CO2(Rx); -CON(Rx)2; -OC(O)Rx; -OCO2Rx; -OCO2(Rx); -OCO2Rx; -OCO1(Rx)2; -N(Rx)2; -S(O)2Rx; -NRx(CO)Rx wherein each occurrence of Rx independently includes, but is not limited to, aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl, wherein any of the aliphatic, heteroaliphatic, alkylaryl, or alkylheteroaryl substituted or unsubstituted, branched or unbranched, cyclic or acyclic, and wherein any of the aryl or heteroaryl substitutents described above and herein may be substituted or unsubstituted. Additional examples or generally applicable substituents are illustrated by the specific embodiments shown in the Examples which are described herein.

[0077] 3) Research Uses, Formulation and Administration

[0078] According to the present invention, the inventive compounds may be assayed in any of the available assays known in the art for identifying compounds having a pre-determined biological activity. For example, the assay may be cellular or non-cellular, *in vivo* or *in vitro*, high- or low-throughput format, etc. In certain exemplary embodiments, the inventive compounds are tested in assays to identify those compounds having antiproliferative/anticancer activity, inflammatory cytokine signaling pathway inhibitory activity, adhesion molecule expression inhibitory activity and/or anti-inflammatory effect.

[0079] Thus, in one aspect, compounds of this invention which are of particular interest include those which:

- exhibit activity generally as inhibitors of adhesion molecule expression on the endothelial cell surface upon stimulation with inflammatory cytokines;
- · exhibit activity as inhibitors of inflammatory cytokine signaling pathway;
- exhibit an anti-inflammatory effect on suitable cell lines maintained in vitro, or in animal studies using a scientifically acceptable model;
- exhibit an antiproliferative and/or anticancer effect on suitable cell lines maintained *in vitro*, or in animal studies using a scientifically acceptable model; and
- exhibit a favorable therapeutic profile (e.g., safety, efficacy, and stability).

[0080] As discussed above, certain compounds as described herein exhibit activity generally as inhibitors cell adhesion molecules on endothelial cells (E-selectin and ICAM) and transcriptional activation induced by inflammatory cytokine signaling. More specifically, compounds of the invention demonstrate immunomodulatory activity and thus the invention further provides a method for treating an inflammatory or autoimmune disorder or a proliferative disorder. The method involves the administration of a therapeutically effective amount of the compound or a pharmaceutically acceptable derivative thereof to a subject (including, but not limited to a human or animal) in need of it. In certain embodiments, the inventive compounds as useful for the treatment of rheumatoid arthritis, ulcerative colitis/Crohn's disease, central nervous system diseases (CNS) such as multiple sclerosis, systemic lupus erythematosus, asthma, allograft rejection/graft versus host disease (GVHD), psoriasis, atopic dermatitis, eczema, uticaria, allergic rhinitis, myasthenia gravis, diabetes, idiopathic thrombocytopenia purpura, glomerulonephritis, cardiovascular disease, and cancer.

[0081] In certain embodiments, the method involves administration of a therapeutically effective amount of the compound or a pharmaceutically acceptable derivative thereof to a subject (including, but not limited to a human or animal) in need of it. In certain embodiments, a pharmaceutical composition comprising an inventive compound (or pharmaceutically acceptable derivative thereof), a carrier or diluent and optionally an additional therapeutic agent is provided.

[0082] Pharmaceutical Compositions

20

25

30

35

50

[0083] As discussed above this invention provides novel compounds that have biological properties useful for the treatment of inflammatory and proliferative disorders, including, but not limited to rheumatoid arthritis, ulcerative colitis/Crohn's disease, central nervous system diseases (CNS) such as multiple sclerosis, systemic lupus erythematosus, asthma, allograft rejection/graft versus host disease (GVHD), psoriasis, atopic dermatitis, eczema, uticaria, allergic rhinitis, myasthenia gravis, diabetes, idiopathic thrombocytopenia purpura, glomerulonephritis, cardiovascular disease, and cancer

[0084] Accordingly, in another aspect of the present invention, pharmaceutical compositions are provided, which comprise any one of the compounds described herein (or a prodrug, pharmaceutically acceptable salt or other pharmaceutically acceptable derivative thereof), and optionally comprise a pharmaceutically acceptable carrier. In certain embodiments, these compositions optionally further comprise one or more additional therapeutic agents. Alternatively, a compound of this invention may be administered to a patient in need thereof in combination with the administration of one or more other therapeutic agents. For example, additional therapeutic agents for conjoint administration or inclusion in a pharmaceutical composition with a compound of this invention may be an anti-inflammatory agent (e.g., an agent for the treatment of rheumatoid arthritis or psoriasis) or cytotoxic agent or anticancer agent approved for the treatment of cancer, as discussed in more detail herein, or it may be any one of a number of agents undergoing approval in the Food and Drug Administration that ultimately obtain approval for the treatment of an immune disorder or cancer. It will also be appreciated that certain of the compounds of present invention can exist in free form for treatment, or where

appropriate, as a pharmaceutically acceptable derivative thereof. According to the present invention, a pharmaceutically acceptable derivative includes, but is not limited to, pharmaceutically acceptable salts, esters, salts of such esters, or a prodrug or other adduct or derivative of a compound of this invention which upon administration to a patient in need is capable of providing, directly or indirectly, a compound as otherwise described herein, or a metabolite or residue thereof. [0085] As used herein, the term "pharmaceutically acceptable salt" refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts of amines, carboxylic acids, and other types of compounds, are well known in the art. For example, S.M. Berge, et al. describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 66: 1-19 (1977), incorporated herein by reference. The salts can be prepared in situ during the final isolation and purification of the compounds of the invention, or separately by reacting a free base or free acid function with a suitable reagent, as described generally below. For example, a free base function can be reacted with a suitable acid. Furthermore, where the compounds of the invention carry an acidic moiety, suitable pharmaceutically acceptable salts thereof may, include metal salts such as alkali metal salts, e.g. sodium or potassium salts; and alkaline earth metal salts, e.g. calcium or magnesium salts. Examples of pharmaceutically acceptable, nontoxic acid addition salts are salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange. Other pharmaceutically acceptable salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, - formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hernisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, p-toluenesulfonate, undecanoate, valerate salts, and the like. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like. Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, loweralkyl sulfonate and aryl sulfonate.

20

30

35

50

[0086] Additionally, as used herein, the term "pharmaceutically acceptable ester" refers to esters that hydrolyze *in vivo* and include those that break down readily in the human body to leave the parent compound or a salt thereof. Suitable ester groups include, for example, those derived from pharmaceutically acceptable aliphatic carboxylic acids, particularly alkanoic, alkenoic, cycloalkanoic and alkanedioic acids, in which each alkyl or alkenyl moiety advantageously has not more than 6 carbon atoms. Examples of particular esters include formates, acetates, propionates, butyrates, acrylates and ethylsuccinates.

[0087] Furthermore, the term "pharmaceutically acceptable prodrugs" as used herein refers to those prodrugs of the compounds of the present invention which are, within the scope of sound medical judgment, suitable for use in contact with the issues of humans and lower animals with undue toxicity, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use, as well as the zwitterionic forms, where possible, of the compounds of the invention. The term "prodrug" refers to compounds that are rapidly transformed *in vivo* to yield the parent compound of the above formula, for example by hydrolysis in blood. A thorough discussion is provided in T. Higuchi and V. Stella, Pro-drugs as Novel Delivery Systems, Vol. 14 of the A.C.S. Symposium Series, and in Edward B. Roche, ed., Bioreversible Carriers in Drug Design, American Pharmaceutical Association and Pergamon Press, 1987, both of which are incorporated herein by reference.

[0088] As described above, the pharmaceutical compositions of the present invention additionally comprise a pharmaceutically acceptable carrier, which, as used herein, includes any and all solvents, diluents, or other liquid vehicle, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, solid binders, lubricants and the like, as suited to the particular dosage form desired. Remington's Pharmaceutical Sciences, Sixteenth Edition, E. W. Martin (Mack Publishing Co., Easton, Pa., 1980) discloses various carriers used in formulating pharmaceutical compositions and known techniques for the preparation thereof. Except insofar as any conventional carrier medium is incompatible with the compounds of the invention, such as by producing any undesirable biological effect or otherwise interacting in a deleterious manner with any other component(s) of the pharmaceutical composition, its use is contemplated to be within the scope of this invention. Some examples of materials which can serve as pharmaceutically acceptable carriers include, but are not limited to, sugars such as lactose, glucose and sucrose; starches such as corn starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatine; talc; excipients such as cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil; safflower oil, sesame oil; olive oil; corn oil and soybean oil; glycols; such as propylene glycol; esters such as ethyl oleate and ethyl laurate; agar, buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogenfree water, isotonic saline; Ringer's solution;

ethyl alcohol, and phosphate buffer solutions, as well as other non-toxic compatible lubricants such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, releasing agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the composition, according to the judgment of the formulator.

[0089] Uses and Formulations of Compounds of the Invention

20

30

35

40

50

[0090] As described in more detail herein, in general, the present invention provides compounds useful for the treatment of inflammatory or autoimmune disorders and the treatment of proliferative disorders. Without wishing to be bound by any particular theory, more generally, the compounds of the invention have been shown to inhibit adhesion molecule expression such as E-selectin and ICAM-1 on the endothelial cell surface induced by stimulation with inflammatory cytokines. Such cell surface molecules play a critical role for inflammatory cell infiltration and cell-cell interactions within inflammatory and immune responses. The compounds also reduce activation of the transcriptional factor NF-κB and inhibit the transcriptional activation in inflammatory cytokine signaling pathways, which regulates many genes such as IL-1 α and TNF α involved in the pathology of several inflammatory diseases. More generally, the identification of NF-κB as a key player in the pathogenesis of inflammation suggest that NF-κB targeted therapeutics may be effective in inflammatory and immune disorders (see, generally, NF-κB in Defense and Disease, J. Clin. Investig. 2001, 107, 7).

[0091] As detailed in the exemplification herein in assays to determine the ability of compounds to inhibit cytokine-induced adhesion molecule expression by endothelial cells, certain inventive compounds, (generally where one occurrence of R_3 is hydrogen, and the other occurrence of R_3 is a moiety as described generally herein) exhibited IC_{50} values (E-Selectin and ICAM-1) less than 1 μ M. In other embodiments, exemplary compounds exhibited IC_{50} values less than 10 μ M.

[0092] As discussed above, compounds of the invention exhibit immunomodulatory activity and exhibit activity for the inhibition of tumor cell growth. As such, compounds of the invention are particularly useful for the treatment of diseases and disorders including, but not limited to, rheumatoid arthritis, ulcerative colitis/Crohn's disease, central nervous system diseases (CNS) such as multiple sclerosis, systemic lupus erythematosus, asthma, allograft rejection/graft versus host disease (GVHD), psoriasis, atopic dermatitis, eczema, uticaria, allergic rhinitis, myasthenia gravis, diabetes, idiopathic thrombocytopenia purpura, glomerulonephritis, cardiovascular disease, and cancer.

[0093] Thus, as described above, in another aspect of the invention, methods for the treatment of inflammatory or autoimmune and proliferative disorders are provided comprising administering a therapeutically effective amount of a compound of formula (I), as described herein, to a subject in need thereof. In certain embodiments, the inventive compounds are useful for the treatment of rheumatoid arthritis, ulcerative colitis/Crohn's disease, central nervous system diseases (CNS) such as multiple sclerosis, systemic lupus erythematosus, asthma, allograft rejection/graft versus host disease (GVHD), psoriasis, atopic dermatitis, eczema, uticaria, allergic rhinitis, myasthenia gravis, diabetes, idiopathic thrombocytopenia purpura, glomerulonephritis, cardiovascular disease, and cancer.

[0094] It will be appreciated that the compounds and compositions, according to the method of the present invention, may be administered using any amount and any route of administration effective for the treatment of inflammatory or autoimmune and proliferative disorders. Thus, the expression "effective amount" as used herein, refers to a sufficient amount of agent to kill or inhibit the growth of tumor cells, or refers to a sufficient amount to reduce the effects of an inflammatory or autoimmune response or disorder. The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the infection, the particular therapeutic agent, its mode of administration, and the like. The compounds of the invention are preferably formulated in dosage unit form for ease of administration and uniformity of dosage. The expression "dosage unit form" as used herein refers to a physically discrete unit of therapeutic agent appropriate for the patient to be treated. It will be understood, however, that the total daily usage of the compounds and compositions of the present invention will be decided by the attending physician within the scope of sound medical judgment. The specific therapeutically effective dose level for any particular patient or organism will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts (see, for example, Goodman and Gilman's, "The Pharmacological Basis of Therapeutics", Tenth Edition, A. Gilman, J.Hardman and L. Limbird, eds., McGraw-Hill Press, 155-173, 2001, which is incorporated herein by reference in its entirety).

[0095] Furthermore, after formulation with an appropriate pharmaceutically acceptable carrier in a desired dosage, the pharmaceutical compositions of this invention can be administered to humans and other animals orally, rectally, parenterally, intracisternally, intravaginally, intraperitoneally, topically (as by powders, ointments, or drops), bucally, as an oral or nasal spray, or the like, depending on the severity of the infection being treated. In certain embodiments, the compounds of the invention may be administered at dosage levels of about 0.001 mg/kg to about 50 mg/kg, from about 0.01 mg/kg to about 25 mg/kg, or from about 0.1 mg/kg to about 10 mg/kg of subject body weight per day, one or more times a day, to obtain the desired therapeutic effect. It will also be appreciated that dosages smaller than 0.001 mg/kg

or greater than 50 mg/kg (for example 50-100 mg/kg) can be administered to a subject. In certain embodiments, compounds are administered orally or parenterally.

[0096] Liquid dosage forms for oral administration include, but are not limited to, pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active compounds, the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.

[0097] Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution, suspension or emulsion in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S.P. and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid are used in the preparation of injectables.

[0098] The injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.

20

30

35

50

[0099] In order to prolong the effect of a drug, it is often desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension or crystalline or amorphous material with poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution that, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle. Injectable depot forms are made by forming microencapsule matrices of the drug in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include (poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissues.

[0100] Compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.

[0101] Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents such as agar--agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol and glycerol monostearate, h) absorbents such as kaolin and bentonite clay, and i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof. In the case of capsules, tablets and pills, the dosage form may also comprise buffering agents.

[0102] Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in' the pharmaceutical formulating art. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polethylene glycols and the like.

[0103] The active compounds can also be in micro-encapsulated form with one or more excipients as noted above. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings, release controlling coatings and other coatings well known in the pharmaceutical formulating art. In such solid dosage forms the active compound may be admixed with at least one inert diluent such as sucrose, lactose

and starch. Such dosage forms may also comprise, as in normal practice, additional substances other than inert diluents, e.g., tableting lubricants and other tableting aids such as magnesium stearate and microcrystalline cellulose. In the case of capsules, tablets and pills, the dosage forms may also comprise buffering agents. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes.

[0104] Dosage forms for topical or transdermal administration of a compound of this invention include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants or patches. The active component is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required. Ophthalmic formulation, ear drops, and eye drops are also contemplated as being within the scope of this invention. Additionally, the present invention contemplates the use of transdermal patches, which have the added advantage of providing controlled delivery of a compound to the body. Such dosage forms are made by dissolving or dispensing the compound in the proper medium. Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate can be controlled by either providing a rate controlling membrane or by dispersing the compound in a polymer matrix or gel.

[0105] It will also be appreciated that the compounds and pharmaceutical compositions of the present invention can be formulated and employed in combination therapies, that is, the compounds and pharmaceutical compositions can be formulated with or administered concurrently with, prior to, or subsequent to, one or more other desired therapeutics or medical procedures. The particular combination of therapies (therapeutics or procedures) to employ in a combination regimen will take into account compatibility of the desired therapeutics and/or procedures and the desired therapeutic effect to be achieved. It will also be appreciated that the therapies employed may achieve a desired effect for the same disorder (for example, an inventive compound may be administered concurrently with another anti-inflammatory agent or anticancer agent), or they may achieve different effects (e.g., control of any adverse effects).

[0106] For example, other therapies or anticancer agents that may be used in combination with the inventive compounds of the present invention include surgery, radiotherapy (in but a few examples, γ-radiation, neutron beam radiotherapy, electron beam radiotherapy, proton therapy, brachytherapy, and systemic radioactive isotopes, to name a few), endocrine therapy, biologic response modifiers (interferons, interleukins, and tumor necrosis factor (TNF) to name a few), hyperthermia and cryotherapy, agents to attenuate any adverse effects (e.g., antiemetics), and other approved chemotherapeutic drugs, including, but not limited to, alkylating drugs (mechlorethamine, chlorambucil, Cyclophosphamide, Melphalan, Ifosfamide), antimetabolites (Methotrexate), purine antagonists and pyrimidine antagonists (6-Mercaptopurine, 5-Fluorouracil, Cytarabile, Gemcitabine), spindle poisons (Vinblastine, Vincristine, Vincrelbine, Paclitaxel), podophyllotoxins (Etoposide, Irinotecan, Topotecan), antibiotics (Doxorubicin, Bleomycin, Mitomycin), nitrosoureas (Carmustine, Lomustine), inorganic ions (Cisplatin, Carboplatin), enzymes (Asparaginase), and hormones (Tamoxifen, Leuprolide, Flutamide, and Megestrol), to name a few. For a more comprehensive discussion of updated cancer therapies see, http://www.nci.nih.gov/, a list of the FDA approved oncology drugs at http://www.fda.gov/cder/cancer/druglist-frame.htm, and The Merck Manual, Seventeenth Ed. 1999, the entire contents of which are hereby incorporated by reference.

[0107] In certain embodiments, the pharmaceutical compositions of the present invention further comprise one or more additional therapeutically active ingredients (*e.g.*, chemotherapeutic and/or palliative). For purposes of the invention, the term "Palliative" refers to treatment that is focused on the relief of symptoms of a disease and/or side effects of a therapeutic regimen, but is not curative. For example, palliative treatment encompasses painkillers, antinausea medications and anti-sickness drugs. In addition, chemotherapy, radiotherapy and surgery can all be used palliatively (that is, to reduce symptoms without going for cure; *e.g.*, for shrinking tumors and reducing pressure, bleeding, pain and other symptoms of cancer).

TREATMENT KITS

20

30

35

40

45

50

55

[0108] In other embodiments, the present invention relates to a kit for conveniently and effectively carrying out the methods in accordance with the present invention. In general, the pharmaceutical pack or kit comprises one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Such kits are especially suited for the delivery of solid oral forms such as tablets or capsules. Such a kit preferably includes a number of unit dosages, and may also include a card having the dosages oriented in the order of their intended use. If desired, a memory aid can be provided, for example in the form of numbers, letters, or other markings or with a calendar insert, designating the days in the treatment schedule in which the dosages can be administered. Alternatively, placebo dosages, or calcium dietary supplements, either in a form similar to or distinct from the dosages of the pharmaceutical compositions, can be included to provide a kit in which a dosage is taken every day. Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceutical products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

EQUIVALENTS

[0109] The representative examples that follow are intended to help illustrate the invention, and are not intended to, nor should they be construed to, limit the scope of the invention. Indeed, various modifications of the invention and many further embodiments thereof, in addition to those shown and described herein, will become apparent to those skilled in the art from the full contents of this document, including the examples which follow and the references to the scientific and patent literature cited herein. It should further be appreciated that the contents of those cited references are incorporated herein by reference to help illustrate the state of the art.

[0110] The following examples contain important additional information, exemplification and guidance that can be adapted to the practice of this invention in its various embodiments and the equivalents thereof.

EXEMPLIFICATION

15

20

30

35

40

45

50

[0111] The compounds of this invention and their preparation can be understood further by the examples that illustrate some of the processes by which these compounds are prepared or used. It will be appreciated, however, that these examples do not limit the invention. Variations of the invention, now known or further developed, are considered to fall within the scope of the present invention as described herein and as hereinafter claimed.

[0112] According to the present invention, any available techniques can be used to make or prepare the inventive compounds or compositions including them. For example, a variety of solution phase synthetic methods such as those discussed in detail below may be used. Alternatively or additionally, the inventive compounds may be prepared using any of a variety combinatorial techniques, parallel synthesis and/or solid phase synthetic methods known in the art.

[0113] It will be appreciated as described below, that a variety of inventive compounds can be synthesized according to the methods described herein. The starting materials and reagents used in preparing these compounds are either available from commercial suppliers such as Aldrich Chemical Company (Milwaukee, WI), Bachem (Torrance, CA), Sigma (St. Louis, MO), or are prepared by methods well known to a person of ordinary skill in the art following procedures described in such references as Fieser and Fieser 1991, "Reagents for Organic Synthesis", vols 1-17, John Wiley and Sons, New York, NY, 1991; Rodd 1989 "Chemistry of Carbon Compounds", vols. 1-5 and supps, Elsevier Science Publishers, 1989; "Organic Reactions", vols 1-40, John Wiley and Sons, New York, NY, 1991; March 2001, "Advanced Organic Chemistry", 5th ed. John Wiley and Sons, New York, NY; and Larock 1989, "Comprehensive Organic Transformations", VCH Publishers. These schemes are merely illustrative of some methods by which the compounds of this invention can be synthesized, and various modifications to these schemes can be made and will be suggested to a person of ordinary skill in the art having regard to this disclosure.

[0114] The starting materials, intermediates, and compounds of this invention may be isolated and purified using conventional techniques, including filtration, distillation, crystallization, chromatography, and the like. They may be characterized using conventional methods, including physical constants and spectral data.

[0115] 1) Exemplary Compounds

[0116] Certain exemplary compounds of the invention are listed below and are referred to by compound number as indicated.

	ER-#	Structure
1	805600 (IC375)	HN NH2
2	805894 (IC 400)	NH ₂

(continued)

		ER-#	Structure
5	3	806006	NH ₂
10			HN N CF₃
15	4	805985 (IC403)	NH ₂
20	5	805984	NH ₂
30	6	806002	NH ₂
35			N HN N
40	7	805969	NH ₂
45			
50	8	805971	NH ₂
55			

(continued)

	ER-#	Structure
9	805996	e e e e e e e e e e e e e e e e e e e
10	805639 (IC 397)	NH ₂
11	805895 (IC 405)	NH ₂
12	806007	NH ₂ NH ₂ NH ₂ CF ₃
13	805976	NH ₂
14	805975	NH ₂

(continued)

		ER-#	Structure
5	15	805999	NH ₂
10			H HN N
15	16	806011	NH ₂
20	17	805970	NH ₂
25			J
30	18	805972	NH ₂
35			
40	19	805997	NH ₂
45			SMe
50		<u> </u>	<u> </u>

55

(continued)

			(
		ER-#	Structure
5	20	806010	NH ₂
10			
15		2224	OMe
20	21	806014	NC NH ₂
25 30	22	806094	TBSO NH2
	23	806095	NH ₂
35			HO HIN
40	24	806097	TBSO N-Boc
45	0.5	000407	T
50	25	806107	HO N-Boc
55			1

(continued)

(continued)

(continued)

		ER-#	Structure
5	40	806317	NH ₂ NH ₂ NH NNH
10	41	806320	CI THE NAME OF THE STATE OF THE
20	42	806329	S CONH ₂ NIH ₂ NIH NH
25 30	43	806333	CO ₂ Me NH ₂
35	45	806336	NH ₂
40	46	806355	o NH₂ NH₂ NH₂
45	47	806358	NH ₂
50			H N NH

55

(continued)

		ER-#	Structure
5	48	806359	NH ₂
10	49	806363	H N NH
15			H ² N J H C J H N N N N N N N N N N N N N N N N N N
20	50	806362	CONH ₂ NH ₂ NH ₂ NH ₁
25	51	806361	TH NAME OF THE PROPERTY OF THE
30 35	52	806368	NH ₂
			Ĭ
40	53	806372	Mea NH2
45	54	806373	C C C C C C C C C C C C C C C C C C C
50	55	806374	NHZ NHZ
55			1

(continued)

	ER-#	Structure
56	806375	NH ₂
57	806383	N N N N N N N N N N N N N N N N N N N
58	806393	C N N N N N N N N N N N N N N N N N N N
59	806401	OFS NH2
60	806402	LI NANH NHP
61	806404	NH ₂
62	806417	NH ₂

(continued)

NH₂

NH₂

(continued)

			(continued)
		ER-#	Structure
10	70	806609	THE NH
15	71	806610	OMe NH2
20	72	806644	NH ₂
30	73	806645	NH ₂
35 40	74	806646	NH ₂
45	75	806647	NH ₂
50 55	76	806653	NH ₂
			!

(continued)

			(continued)
		ER-#	Structure
10	77	806671	NH ₂
15	78	806781	MeO NH ₂
20	79	806790	NH H N NH
30 35	80	806796	H NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₆ NH ₇
40	81	806820	H N NH
50	82	806839	CI NH2 NH2 NH2
55	83	806840	CI NH2 N NH

(continued)

(continued)

		ER-#	Structure
10	91	806878	NH ₂
15	92	806899	F N N N N N N N N N N N N N N N N N N N
20	93	806900	NH₂ NH NNH
25	94	806901	FUND NH2
30 35	95	806902	NH ₂ NH ₂ NH N NH
40	96	806903	CI NH ₂
45	97	806904	CI N N N N N N N N N N N N N N N N N N N
55	98	806905	CI N N N NH
			

(continued)

			(continued)
		ER-#	Structure
5	99	806987	MeO NH2
15	100	807014	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₆ NH ₆ NH ₇
20 25	101	807015	NH ₂
30	102	807139	OMe NH ₂
35	103	807140	MeO NH2
40	104	807183	MeO NH ₂
45 50	105	807240	MeU NH ₂ NH ₂ NH _N NH
55	106	807313	NH ₂ NH ₂ NH ₂ NH _N NH

(continued)

			(continuou)
		ER-#	Structure
5	115	807450	OCF ₃ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅
15	116	807451	F ₃ CO N NH ₂
20	117	807452	CI CI CI N N N N N N N N N N N N N N N N
25	118	807453	F NH2
30 35	119	807454	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇
40	120	807457	F NH ₂ NH ₂ NH _N NH
45	121	807458	CF ₃ NH ₂ NH ₂ NH
50	122	807459	CI N N NH
55			I

(continued)

			(oonanada)
		ER-#	Structure
5	130	807469	NH ₂
10	131	807496	N N N N NH
20	132	807497	NH ₂
25	133	807498	NH ₂
30 35	134	807505	NH ₂
40	135	807506	NH ₂
45	136	807528	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH
50	137	807531	NH ₂
55			

(continued)

			(continued)
		ER-#	Structure
10	145	807562	NH ₂
15	146	807571	NC N N N N N N N N N N N N N N N N N N
20	147	807573	NH ₂
30	148	807584	N N N N N N N N N N N N N N N N N N N
35	149	807585	ON H N NH
40 45	150	807586	NH ₂
50	151 152	807587	F N N N N N N N N N N N N N N N N N N N
55		807636	NH2 NH2 NH2 NH2

(continued)

			,
		ER-#	Structure
5	153	807649	NH ₂
10			H N NH
15	154	807660	NH ₂
20	155	807662	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH
30	156	807663	NH ₂
35	157	807703	N NH2
40			H N NH
45	158	807704	NH ₂ NH ₂ NH ₂ NH NNH
50	159	807748	NH ₂ NH ₂ NH N NH

			(continued)
		ER-#	Structure
5	160	807749	ON NH2 NH2 NH
15	161	807750	N N N N N N N N N N N N N N N N N N N
20	162	807751	NH2 N NH2 N NH
25 30	163	807754	NH ₂
35	164	807758	NH2 N N N NH
40	165	807759	O NH2 NH2 NH2
45	166	807762	NH2 NH2
55	167	807779	NH2 HCI
			HCI H N NH

(continued)

(continued)

NH₂

NH₂

NH₂

NH₂

NH₂

NH2

			(dentinada)
		ER-#	Structure
5	182	807931	NH ₂
10			OH H N NH
15	183	807952	NH ₂ NH ₂ NH NNH
20	184	807956	NH ₂ NH ₂ NH NNH
30	185	807962	NH ₂ NH ₂ NH _N NH
35 40	186	807976	F NH ₂
45	187	807977	NH ₂ NH ₂ NH NNH
50	188	807978 NH	NH ₂
55			

(continued)

(continued)

(continued)

	ER-#	Structure
203	808084	NH ₂
204	808085	N N N NH
205	808086	F NH2
206	808101	NH ₂ NH ₂ NH ₂ NH NNH
207	808102	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH
208	808103	NH ₂ NH ₂ NH NNH
209	808107	NH ₂

(continued)

			,
		ER-#	Structure
10	210	808128	NH ₂ NH ₂ NH _N NH
15	211	808151	NH2 N N N N N N N N N
20	212	808152	F NH ₂
30	213	808153	NH ₂
35	214	808160	N N NH
40 45	215	808164	NH ₂
	216	808247	MeO.,, NH ₂
50			N N N N N N N N N N N N N N N N N N N

(continued)

NH₂

			(oonanada)
		ER-#	Structure
5	217	808254	ON THE
15	218	808255	
20	219	808256	H A
25	220	808257	Й
30			N N N
35	221	808259	MeO.,
40 45	222	808260	, I Th
50	223	808261	
55	224	808262	
55			H N N N

		H N NH
218	808255	NH ₂ NH ₂ NH ₂ NH _N NH
219	808256	N N N N N N N N N N N N N N N N N N N
220	808257	N N N N N N N N N N N N N N N N N N N
221	808259	MeQ.,
222	808260	N N N N N N N N N N N N N N N N N N N
223	808261	
224	808262	

(continued)

(continued)

Structure

		H N NH
234	808288	(s) H N NH
235	808289	(R) H N NH
236	808290	NH ₂ NH ₂ NH _N NH
237	808291	
238	808310	N N NH
239	808311	N H N NH

(continued)

	ER-#	Structure
240	808312	NH ₂
241	808313	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N
242	808319	NA H NANH
243	808322	O H N N N N N N N N N N N N N N N N N N
244	808346	NH ₂
245	808347	NH₂ NH2 NH
246	808355	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N

(continued)

(continued)

 NH_2

(continued)

			(continued)
		ER-#	Structure
5	270	808514	CF ₃ CO ₂ H NH ₂ N N N N NH
15	271	808541	O N H N NH CF3CO2H CF3CO2H
20	272	808542	CF ₃ CO ₂ H CF ₃ CO ₂ H
25	273	808543	CF ₃ CO ₂ H CF ₃ CO ₂ H
30 35	274	808544	NH2 NH2 NH2 NH2 NH CF ₃ CO ₂ H CF ₃ CO ₂ H
40	275	808548	NH ₂
45	276	808571	NH N NH
50 55	277	808576	NH ₂
			MeO

(continued)

			(
		ER-#	Structure
5	285	808629	CN CL N N NH
15	286	808631	H N NH
20	287	808635	N N N NH
25	288	808636	N H N NH
30	289	808637	HCI H N NH
35 40	290	808658	NHAC N NHAC
45	291	808660	, DN NH
50	292	808661	NH₂ NH₂
55			H N NH

(continued)

	ER-#	Structure
293	808663	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₆
294	808665	NH ₂ .
295	808672	CN H N NH
296	808673	Si O N N N N N N N N N N N N N N N N N N
297	808675	HI H N NH
298	808691	ZN TH N NH
299	808692	A H N NH

(continued)

			(COITIII II
		ER-#	
5	300	808702	Ó
10	301	808703	<u></u>
20	302	808704	
25	303	808705	a
30	304	808711	. 1
35			X
40	305	808712	7
45	306	808713	
50	307	808714	`

	ER-#	Structure
300	808702	NH ₂
301	808703	CE3CO ⁵ H
302	808704	CF ₃ CO ₂ H
303	808705	CF ₃ CO ₂ H
304	808711	The state of the s
305	808712	YN TH NH
306	808713	N H N NH
307	808714	T T T T T T T T T T T T T T T T T T T

			(continued)
		ER-#	Structure
5	308	808717	H Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
10 15	309	808719	chiral H N NH
20	310	808720	
25	311	808833	MeO NH2
30	312	808834	MeO H N NH
35	313	808835	MeO N N N NH
40	314	808836	MeO NH ₂
4550	315	808849	
55	316	808983	HO N N N N N N N N N N N N N N N N N N N
			H N NH

(continued)

(continued)

2 CF₃CO₂H

(continued)

	ER-#	Structure
332	809203	3 CF ₃ CO ₂ H N N
333	809204	HO N N N N N N N N N
334	809205	2 CF ₃ CO ₂ H N NH
335	809206	2 CF ₃ CO ₂ H N N
336	809207	3 CF ₃ CO ₂ H N N
337	809208	3 CF ₃ CO ₂ H N N
338	809209	2 CF ₃ CO ₂ H N N
339	809210	2 CF ₃ CO ₂ H

			(continued)
		ER-#	Structure
5	340	809211	2 CF ₃ CO ₂ H
10	341	809212	3 CF ₃ CO ₂ H
20	342	809213	2 CF ₃ CO ₂ H N NH
25	343	809214	2 CF3CO2H N NH
30	344	809215	2 CF ₃ CO ₂ H
35	345	809216	2 CF ₃ CO ₂ H N NH
40	346	809217	2 CF ₃ CO ₂ H
50	347	809218	2 CF ₃ CO ₂ H N NH
55	348	809219	2 CF ₃ CO ₂ H

(continued)

			(oonandod)
		ER-#	Structure
10	357	809228	O CF ₃ CO ₂ H
15	358	809229	2 CF ₃ CO ₂ H
20	359	809230	HO H N NH NH CF ₃ CO ₂ H
25	360	809231	CF ₃ CO ₂ H
30	361	809232	CF3CO2H
35	362	809233	2 CF ₃ CO ₂ H
40	363	809234	2 CF ₃ CO ₂ H
<i>45 50</i>	364	809235	CF ₃ CO ₂ H
55	365	809236	CF ₃ CO ₂ H

(continued)

			(continued)
		ER-#	Structure
10	373	IC395	HN O NH
15	374	IC396	NH ₂ NH ₂ NH NNH
20 25	375	IC400	NH ₂
30	376	IC401	F N HCI
35	377	IC402	NH ₂ N HCI H N NH
40	378	IC403	NH ₂
45	070	10404	H NNH
50	379	IC404	F NH ₂ N H N NH
55			

(continued)

	ER-#	Structure	
380	IC415	N NH ₂ N NH N NH	
381	IC416	NH ₂ N H N NH NH ₂	

[0117] 2) Experimental Procedures:

[0118] As described above, the present invention provides novel deazapurines having formula (I) as described above and in certain classes and subclasses herein. The synthesis of several exemplary compounds is described in detail below. It will be appreciated that the methods as described herein can be applied to each of the compounds as disclosed herein and equivalents thereof. Additionally, certain reagents and starting materials are well known to those skilled in the art. Although the following examples describe certain exemplary compounds, it will be appreciated that the use of alternate starting materials will readily yield other analogues encompassed by the invention.

[0119] General Reaction Procedures:

[0120] Unless mentioned specifically, reaction mixtures were stirred using a magnetically driven stirrer bar. An inert atmosphere refers to either dry argon or dry nitrogen. Reactions were monitored either by thin layer chromatography, or by proton nuclear magnetic resonance, of a suitably worked up sample of the reaction mixture.

[0121] General Work Up Procedures:

[0122] Unless mentioned specifically, reaction mixtures were cooled to room temperature or below then quenched, when necessary, with either water or a saturated aqueous solution of ammonium chloride or sodium bicarbonate. Desired products were extracted by partitioning between water and a suitable water-immiscible solvent (e.g. ethyl acetate, dichloromethane, diethyl ether). The desired product containing extracts were washed appropriately with water followed by a saturated solution of brine. On occasions where the product containing extract was deemed to contain residual oxidants, the extract was washed with a 10% solution of sodium sulphite in saturated aqueous sodium bicarbonate solution, prior to the aforementioned washing procedure. On occasions where the product containing extract was deemed to contain residual acids, the extract was washed with saturated aqueous sodium bicarbonate solution, prior to the aforementioned washing procedure (except in those cases where the desired product itself had acidic character). On occasions where the product containing extract was deemed to contain residual bases, the extract was washed with 10% aqueous citric acid solution, prior to the aforementioned washing procedure (except in those cases where the desired product itself had basic character). Post washing, the desired product containing extracts were dried over anhydrous sodium or magnesium sulphate, then filtered. The crude products were then isolated by removal of solvent(s) by rotary evaporation under reduced pressure, at an appropriate temperature (generally less than 45°C).

[0123] General Purification Procedures:

[0124] Unless mentioned specifically, chromatographic purification refers to flash column chromatography on silica gel, using a single solvent or mixed solvent as eluent. Suitably purified desired product containing elutes were combined and concentrated under reduced pressure at an appropriate temperature (generally less than 45°C) to constant mass.

[0125] Experimentals for Certain Exemplary Compounds:

5

10

15

20

25

35

40

45

[0126] In certain embodiments, compounds **1** and **2** were prepared according to the procedure of Temple, C.; Smithy, B. H.; Montgomery, J. A.; J Org Chem. 1973, 38, 613-5.

[0127] Dry HCl (gas) was bubbled through a 2 M solution of nitrile (R_2 -CN) in ethyl ether containing 1 mole equivalent of ethanol at -10 °C for 1-2 hours. After stirring from additional an hour to overnight at room temperature, nitrogen was bubbled through to purge excess HCl gas and ether. The remaining slurry or suspension was filtered, washed with ether three times and then dried under vacuum to give the corresponding ethyl imidate hydrogen chloride.

[0128] A mixture of 1 (1 mmol) and the ethyl imidate hydrogen chloride (1.1 mmol) in 5 mL of ethanol was heated at 65-70 °C until reaction was completed (1.5 h to overnight). The mixture was cooled to room temperature, diluted with 20 mL of water, stirred for 30 min., filtered and washed with water. The cake was collected and dried under vacuum to give the desired product 3.

[0129] A solution of 3 (1 mmol) in 2.8 mL of 57% HI (aq., 20 mmol) was heated at reflux until reaction was completed (12 -20 h). The mixture was cooled to 0 °C, slowly diluted with 5 N NaOH solution (19 mmol) and then with 1 mL, of sat. NaHCO₃ to pH-9. The resulting mixture was extracted with either ethyl acetate or ethyl acetate/THF mixture until extraction was completed. The combined extracts was dried over Na₂SO₄, filtered and concentrated to give the desired product 4 as free form. Washing the product with ethyl acetate resulted in a better purity if necessary in certain cases. The HI mono-salt form of 4 was obtained after cooling the reaction mixture to room temperature, filtration, washing with water and drying the collected yellow solid in high vacuumn.

[0130] A mixture of **1** (300 mg, 1.3 mmol) and tetraethyl orthocarbonate (2.6 mmol) in 10 mL of acetic acid was stirred at room temperature overnight and reaction was completed. The reaction mixture was concentrated under reduced vacuum and the residue was diluted with sat NaHCO₃, extracted with EtOAc, dried over Na₂SO₄, filtered, concentrated to give a brownish solid. This solid was dissolved in 24 mL of H₂O-MeOH (1:1) solution containing 1.2 g of KOH and heated at reflux for 2.5 h. After cooling to room temperature, the mixture was extracted with EtOAc. The extracts was washed with water, dried over Na₂SO₄, filtered, concentrated and the product was purified by chromatography (10% MeOH-EtOAc) to give 5 (45 mg, 16%).

[0131] A solution of 1 (203 mg, 0.88 mmol) in trifluoroacetic acid (2 mL) was heated at 70 °C for 12 h, cooled to room temperature, concentrated and the residue was diluted with sat NaHCO₃ (10 ml) and EtOAc (10 mL). The separated aqueous phase was extracted with 4x10 mL of EtOAc and the combined organic layer was dried over Na₂SO₄, filtered and concentrated to give a yellow solid. This yellow solid was mixed with 3 mL of polyphosphoric acid, heated at 200 °C for 3 h and cooled to room temperature. The reaction mixture was carefully quenched with sat. NaHCO₃ (80 ml) and extracted with 4x20 mL of EtOAc. The combined organic layer was dried over Na₂SO₄, filtered and concentrated to give a brownish yellow solid. This solid was dissolved in 5 mL of 57% HI solution and heated at 110 °C for 12 h. After cooling to room temperature, the reaction mixture was carefully poured into sat. NaHCO₃ (60 ml) containing 3 mL of 1 N NaOH and extracted with 4x20 mL of EtOAc. The combined organic layer was dried over Na₂SO₄, filtered and concentrated and the product was purified by chromatography (50 to 100% EtOAc-hexanes) to give the desired product 6 (132 mg, 46% for 3 steps).

[0132] A mixture of methyl indole-5-carboxylate (27 g, 155 mmol) (or the corresponding 4-, 6- and 7-carboxylate), di-t-butyl dicarbonate (40 g, 1.2 eq.), Et₃N (26 mL, 1.2 eq.) and DMAP (0.1 g, 0.005 eq.) in THF (165 mL) was stirred at room temperature overnight. The reaction mixture was quenched by addition of sat. NaHCO₃ (350 mL). The separated aqueous layer was extracted once with EtOAc. The combined organic phase was concentrated and the product was purified by chromatography (5% and 10% EtOAc-hexanes) to provide 7 (42 g, 100%).

[0133] To a solution of 7 (42 g, 152 mmol) in dichloromethane (400 mL) at - 78 °C was added a 1 M solution of DIBAL-H in toluene (460 mL, 3.0 eq.) during 30 min of period. The cooling bath was replaced with -40 °C, the reaction mixture was stirred and warmed to -30 °C and TLC showed reaction was completed. The reaction was quenched with careful addition of MeOH (57 mL, 9.0 eq.) and water (19 mL, 9.0 eq.), diluted with EtOAc (150 mL) and then warmed to rt. The resulting suspension mixture was filtered through celite washing with EtOAc until the product was no longer detected. The filtrate was concentrated and the product was purified by chromatography (15% and 30% EtOAc-hexanes) to provide 8 (29 g, 75%).

[0134] Methanesulfonyl chloride (10.1 mL, 1.2 eq.) was added to a solution of 8 (27.0 g, 109 mmol, 1.0 eq.) and diisopropylethylamine (57 mL, 3.0 eq.) in dichloromethane (250 mL) at 0 $^{\circ}$ C during 5 min. After stirring additional 15 min, morpholine (14.3 mL, 1.5 eq.or cyclic or acyclic R'R"NH) was added to the reaction mixture and stirred at room temperature overnight The mixture was poured into sat. NaHCO $_3$ (100 mL) and water (20 mL), the separated aqueous phase was extracted with 4x50 mL of EtOAc. The combined organic phase was dried over Na $_2$ SO $_4$, filtered, concentrated and the product was purified by chromatography (15% to 40% EtOAc-hexanes) to provide 9 (34.0 g, 99%).

[0135] Method A: To a solution of diisopropylamine (17.0 mL, 1.2 eq.) in THF (350 mL) at -78°C was added nBuLi (2.5 M in hexanes, 48.6 mL, 1.2 eq.) over a 15 min period and the reaction mixture was stirred and warmed to room temperature after removing the cooling bath. The reaction mixture was cooled back to -78°C and a solution of 9 (32 g, 101 mmol) in THF (120 mL) was introduced by cannulation during 15 min. The resulting mixture was stirred and warmed to -20°C during 15 min and then Bu₃SnCl (31.5 mL, 1.15 eq.) was introduced. The mixture was stirred and warmed to room temperature and poured into a sat. NH₄Cl (300 mL). The separated aqueous phase was extracted with 3x100 mL of EtOAc. The combined organic phase was dried over Na₂SO₄, filtered, concentrated and the product was purified by vacuum chromatography (5% to 50% EtOAc-hexanes) to provide 10 (55 g, 89%).

[0136] Method B: This reaction was also carried out by following the same protocol as that used for the preparation of 15 from 14.

[0137] Compound 11 was prepared from indole-1-carboxylic acid tert-butyl ester in 86% following the same procedure for the preparation of 10 from 9.

[0138] Compound 12 was prepared from mono- or di-substituted indole following similar procedures for the preparation of 7 and 10.

$$\begin{array}{c} R_{3a} \\ R_{3b} \\ \end{array}$$

[0139] A mixture of 4 (0.4 mmol, 1.0 eq., or 2 or 5 or 6), 10 (1.6 eq., or 11 or 12) and [(C₆H₅)₃P]₄Pd (0.1 eq.) in degassed DMF (1 mL) under nitrogen with or without K₂CO₃ (1.0 eq.) was heated at 110°°C for 18-28 h, cooled to room temperature and concentrated under high vacuum. The residue was diluted with sat. NaHCO₃ (10 mL) and EtOAc. The separated aqueous phase was extracted with EtOAc multiple times until there was no product detected. The combined organic phase was dried over Na₂SO₄, filtered and concentrated. The product was purified by chromatography (5% or 10% MeOH-EtOAc) to give the desired product 13.

Compound # (ER# or IC#)	Structure of 13	MS (ES) or/and ¹ H NMR
IC 400	NH ₂ NH ₂ NH ₂ NH NNH	¹ H NMR

	Compound # (ER# or IC#)	Structure of 13	MS (ES) or/and ¹ H NMR
10	806014	NH ₂ NH ₂ N NH	287.3 (M-H) ⁻
15	806006	NH ₂ NH ₂ NH ₂ CF ₃	316.3 (M-H) ⁻
20	805985	NH ₂	278.3 (M+H)+
30 35	805984	NH ₂	292.3 (M+H) ⁺
40 45	806002	NH ₂	306.3 (M+H) ⁺
50	805969	NH ₂	326.3 (M+H)+
55			

	Compound # (ER# or IC#)	Structure of 13	MS (ES) or/and ¹ H NMR
5	805971	NH ₂	354.3 (M+H)+
10		HINN	
15	805996	NH ₂	¹ H NMR
20			
25	805639	SMe - NH ₂	¹ H NMR
30	(IC 379)	Ch HNCh	
35	805895 (IC 405)	NH ₂	¹ H NMR
40		· HN	
45	806007	NH ₂ NH ₂ NH ₂ CF ₃	425.2 (M-H)⁻
50	805976	NH ₂	¹ H NMR
55		HN H	

(continued)

	Compound # (ER# or IC#)	Structure of 13
5	805975	
10		H
45	805999	
15		
20		· '' HN
	806011	
25		
		, Hi
30	805970	
	803970	
35		of the
40	805972	
45		
		HI HI

50

Compound # (ER# or IC#)	Structure of 13	MS (ES) or/and ¹ H NMR
805975	NH ₂	¹ H NMR
805999	NH ₂	¹ H NMR
806011	NH ₂	393.3 (M+H) ⁺
805970	NH ₂	¹ H NMR
805972	NH ₂	453.3 (M+H) ⁺

	Compound # (ER# or IC#)	Structure of 13	MS (ES) or/and ¹ H NMR
5	805997	NH ₂	469.2 (M-H) ⁻
10		HI HI	
15		SMe	
20	806010	NH ₂	455.3 (M+H)+
25		OMe	
30	809189	NH ₂ NH NNH	¹ H NMR
35	809190	NH NH	¹ H NMR
40	809191	MeO NH	¹ H NMR
45 50	809192	MeO N N NH	¹ H NMR
55	849193	MeO NH2	¹ H NMR

[0140] To a mixture of **8** (5-hydroxymethyl-indole-1-carboxylic acid *tert*-butylester as an example, 24.4 g, 98.8 mmol), Et₃N (41 mL, 3 eq.) and DMAP (1.2 g, 0.1 eq.) in dichloromethane (185 mL) was added TBSCI (23.1 g, 1.5 eq.) at room temperature and the resulting mixture was stirred overnight The reaction was quenched with the addition of sat NaHCO₃ (200 mL) and the separated aqueous layer was extracted with 3x50 mL dichloromethane. The combined organic phase was dried over Na₂SO₄, filtered, concentrated and the product was purified by vacuum chromatography (3% EtOAc-hexanes) to provide **14** (5-*tert*-butyl-dimethyl-silanyloxymethyl)-indole-1-carboxylic acid *tert*-butyl ester) as a colorless oil (33.9 g, 95%).

[0141] To a solution of **14** (5-*tert*-butyl-dimethyl-silanyloxymethyl-indole-1-carboxylic acid *tert*-butyl ester as an example, 33.5 g, 92.7 mmol) in THF (650 mL) below -72 °C was added tBuLi (63 mL, 1.7 M in pentane, 1.2 eq.) dropwise over a period of 45 min and stirring was continued for an additional 40 min. The resulting brown solution was briefly warmed to -60 °C and then cooled back to below -72 °C. Bu₃SnCl (31.6 mL, 1.3 eq.) was then introduced to the reaction mixture and stirred at -40 °C for 15 min. The reaction was quenched at -35 °C with sat NaHCO₃ (250 mL) and the separated aqueous layer was extracted with 3x150 mL EtOAc. The combined organic phase was dried over Na₂SO₄, filtered, concentrated and the product was purified by vacuum chromatography (hexanes) to provide **15** (5-(*tert*-butyl-dimethyl-silanyloxymethyl)-2-tributylstannyl-indole-1-carboxylic acid *tert*-butyl ester) as a colorless oil (60.6 g, 100%).

[0142] A solution of 15 (5-(tert-butyl-dimethyl-silanyloxymethyl)-2-tributylstannyl-indole-1-carboxylic acid tert-butyl ester as an example, 60.6 g, 3.0 eq.) in DMF (100 mL) was added in four portions during 24 h period to a solution of 4 (R₂=Me, 8.51 g, 31.0 mmol), Pd(Ph₃P)₄ (3.2 g, 0.09 eq.) and Et₃N (26 mL, 3.0 eq.) in DMF (100 mL) with or without K₂CO₃ (1.0 eq.) at 110 °C under nitrogen atmosphere. The resulting mixture was stirred for 20 h, cooled to room temperature and concentrated. The residue was diluted with sat. NaHCO₃ (300 mL) and EtOAc (300 mL), filtered and washed with EtOAc to get rid of dark gray sludge. The separated aqueous phase from the filtrate was extracted with 6x200 mL EtOAc until no desired product detected by TLC. The combined organic phase was dried over Na₂SO₄, filtered and concentrated. The residue was diluted with EtOAc and the resulting suspension was filtered, washed with EtOAc and 2xMeOH to give 16 (4.27 g). The filtrate was concentrated and the residual product was purified by chromatography (0 to 5% MeOH-EtOAc) to give additional 16 (2.59 g). The products were combined to give 16 (7-[5-(tert-butyl-dimethyl-silanyloxymethyl)-1H-indol-2-yl]-2-methyl-3H-imidazo[4,5-b]pyridin-5-ylamine) as a greenish gray solid (6.86 g, 54%).

[0143] A solution of tBuOK in THF (1.66 M, 96.3 mL, 9.5 eq.) was added to a mixture of **16** (7-[5-(tert-butyl-dimethyl-si-lanyloxymethyl)-1H-indol-2-yl]-2-methyl-3H-imidazo[4,5-b]pyridin-5-ylamine as an example, 6.86 g, 16.8 mmol) and di-tert-butyl dicarbonate (39 mL, 10 eq.) in THF (1.1 L) at below -28 °C during 40 min period. After stirring for 10 min, the reaction was quenched by addition of sat. NaHCO $_3$ (300 mL) and warmed to room temperature. The separated aqueous layer was extracted by 3x150 mL of EtOAc. The combined organic phase was dried over Na $_2$ SO $_4$, filtered, concentrated and the product was purified by vacuum chromatography (10 to 20% EtOAc/hexanes) to provide a di-Boc-protected intermediate.

[0144] The di-Boc-protected intermediate was then dissolved in 55 mL THF containing $\rm Et_3N$ (55 mL), DIBOC (22.5 g, 6.0 eq.) and DMAP (021 g, 0.1 eq.) and heated at 65 °C for 5 h. After cooling to room temperature, the mixture was concentrated and the product was purified by vacuum chromatography (10% EtOAc-hexanes) to provide tetra-Boc-protected intermediate.

[0145] The tetra-Boc-protected intermediate was then dissolved in a solution of HF/pyridine in THF (0.89 M, 5.3 eq., HF/pyridine solution was prepared by mixing of 10 g of 70% HF/pyridine, 52.5 mL of pyridine and 330 mL of THF) and stirred at room temperature for 40 h. The reaction mixture was then carefully quenched with sat. NaHCO $_3$ (250 mL) and the separated aqueous layer was extracted by 3x50 mL of EtOAc. The combined organic phase was washed with brine (50 mL), dried over Na $_2$ SO $_4$, filtered, concentrated and the product was purified by vacuum chromatography (10 to 50% EtOAc-hexanes)

(5-di-(*tert*-butoxycarbonyl)amino-7-(1-*tert*-butoxycarbonyl-5-hydroxylmethyl-1H-indol-2-yl)-2-methyl-imidazo[4,5-b]pyri dine-3-carboxylic acid *tert*-butyl ester, 5.64 g, 48% for three steps) as a light yellow solid.

[0146] Methylsulfonylchloride (0.14 mL, 1.5 eq.) was added to a mixture of **17** (5-di-(*tert*-butoxycarbonyl)amino-7-(1-*tert*-butoxycarbonyl-5-hydroxylmethyl-1*H* indol-2-yl)-2-methyl-imidazo[4,5-b]pyridine-3-carboxylic acid *tert*-butyl ester as an example, 830 mg, 1.2 mmol) and diisopropylethylamine (2.08 mL, 10 eq.) in dichloromethane (10 mL) at 0 °C and the resulting mixture was stirred and warmed to room temperature. After stirring for 7 h at room temperature, the mixture was kept at 0 °C for two days, warmed to room temperature and concentrated to half of its volume. The product was then purified by chromatography (20% to 30% EtOAc/hexanes) to give **18** (5-di-(*tert*-butoxycarbonyl)amino-7-(1-*tert*-butoxycarbonyl-5-chloromethyl-1*H*-indol-2-yl)-2-methyl-imidazo[4,5-b]pyridi ne-3-carboxylic acid *tert*-butyl ester, 770 mg, 90%).

[0147] A mixture of 17 (5-di-(tert-butoxycarbonyl)amino-7-(1-tert butoxycarbonyl-5-hydroxylmethyl-1*H*-indol-2-yl)-2-methyl-imidazo[4,5-b]pyridine-3-carboxylic acid *tert*-butyl ester as an example, 122 mg, 0.18 mmol) and Dess-Martin periodinane (223 mg, 3.0 eq.) in dichloromethane (4 mL) was stirred at room temperature for 1 h. The resulting mixture was diluted with diethyl ether (60 mL), stirred for 20 min and filtered through celite washing with diethyl ether. The filtrate was washed with sat NaHCO₃ (20 mL) containing Na₂S₂O₃ (500 mg) and the aqueous phase was back extracted with 2x25 mL diethyl ether. The combined organic layer was dried over Na₂SO₄, filtered, concentrated and the product was purified by chromatography (10 to 30% EtOAc-hexanes) to provide 19 (5-di-(*tert*-butoxycarbonyl)amino-7-(1-*tert*-butoxycatbonyl-5-formyl-1*H*-indol-2-yl)-2-methyl-imidazo[4,5-b]pyridine-3-carboxylic acid *tert*-butyl ester, 117 mg, 96%).

[0148] A solution of KMnO₄ (436 mg, 2 eq.) and KH₂PO₄ (563 mg, 3 eq.) in water (15 mL) was added to a solution of 19 (S-di-(*tert*-butoxycarbonyl)amino-7-(1-*tert*-butoxycarbonyl-5-formyl-1*H*-indol-2-yl)-2-methyl-imidazo[4,5-b]pyridine-3-carboxylic acid *tert*-butyl ester as an example, 958 mg, 1.38 mmol) in tBuOH (10 mL) at room temperature during 3 min and the resulting mixture was stirred for 30 min. The mixture was then diluted with EtOAc (20 mL), filtered through celite washing with EtOAc. The filtrate was diluted with brine (60 mL), water (40 mL) and EtOAc (200 mL). The separated aqueous phase was extracted with 3x30 mL of EtAOc. The combined organic layer was dried over Na₂SO₄, filtered, concentrated and the product was purified by chromatography (30 to 100% EtOAc/hexanes) to provide **20** (2-(3-*tert*-butylcarbonyl-5-di-(tert butylcarbonyl)amino-2-methyl-3*H* imadazo[4,5 b]pyridin-7-yl)-indole-1,5-carboxylic acid 1-tert-butyl ester, 678 mg, 69%).

[0149] A mixture of (mono- or di-) substituted benzyl chloride (or bromide) or bromomethylnaphthalene or chloromethyl pyridine hydrochloride (20 mmol) and methylamine (22 mL, 40% in water, 10 eq.) in MeOH (18 mL) was stirred at room temperature for 1-5 days until reaction was completed. After concentration, the reaction mixture was diluted with sat. NaHCO₃ (50 mL), extracted with EtAOc until there was no product detected. The combine extracts were dried over Na₂SO₄, filtered, concentrated to give the product 21.

20

25

30

35

45

50

[0150] Amines 22-26 were prepared following a modified procedure disclosed in published PCT application number WO 01/00610 A1.

[0151] Methanesulfonyl chloride (0.80 mL, 1.2 eq.) was added to a solution of 2-(ethyl-phenyl-amino)-ethanol (1.43 g, 8.65 mmol) and diisopropylethylamine (3.0 mL, 2.0 eq.) in dichloromethane (10 mL) at 0 °C and the resulting mixture was stirred for 15 min. A solution of ammonia (20 mL, 2 M in MeOH) was then introduced and the resulting mixture was stirred at room temperature for five days and concentrated. The residue was diluted with a solution of HCl (7 mL, 1 N) and washed with 3xEtOAc. The aqueous phase was treated with a solution of NaOH (15 mL, 1 N) and extracted once with EtOAc. The extract was dried over Na₂SO₄, filtered, concentrated to give the product 27.

[0152] To a solution of 2-benzyloxy-propane-1,3-diol (5.0 g, 27.4 mmol) in 5:1 THF-DMF (200 mL) at 0 °C was added NaH (1.5 g, 2.3 eq.) followed by methyl iodide (5.1 mL, 3.0 eq.). The resulting white slurry mixture was stirred at room temperature over weekend. The reaction mixture was quenched with sat. NH₄Cl, extracted with EtOAc, dried over Na₂SO₄, filtered, concentrated and the product was purified by chromatography (50% EtOAc/hexanes) to give (2-methoxy-1-methoxymethyl-2-ethoxymethyl)-benzene (5.6 g, 97%).

[0153] A mixture of (2-methoxy-1-methoxymethyl-2-ethoxymethyl)-benzene (5.5g) and Pd(OH)₂ (0.4 g) in MeOH (150 mL) was stirred at room temperature under hydrogen gas until reaction was completed. The reaction mixture was filtered and concentrated to give 1,3-dimethoxy-propan-2-ol (3.0 g, 96%).

[0154] Methanesulfonyl chloride (0.61 mL, 2.0 eq.) was added to a solution of 1,3-dimethoxy-propan-2-ol (0.50 g, 4.14 mmol) and triethylamine (2.3 mL, 4.0 eq.) in dichloromethane (2 mL) at 0 $^{\circ}$ C and the resulting mixture was stirred for 15 min. The reaction was quenched by sat. NaHCO₃ and the mixture was extracted with EtOAc. The combined extracts were dried over Na₂SO₄, filtered and concentrated. The residue and NaN₃ (0.80 g, 3.0 eq.) was dissolved in DMSO (10 mL) and heated at 90 $^{\circ}$ C over weekend. After cooling to room temperature, the mixture was diluted with sat. NaHCO₃ and extracted with diethyl ether. The combined extracts were dried over Na₂SO₄, filtered and concentrated to give azide intermediate (320 mg, 48%).

⁵⁵ **[0155]** A mixture of the azide intermediate (320 mg) and Pd(OH)₂ in MeOH (15 mL) was stirred at room temperature under hydrogen gas for 1 h. The reaction mixture was filtered and concentrated to give 28 (150 mg, 63%).

[0156] A mixture of ethyl-phenyl-amine (4.15 mL, 33 mmol), allyl bromide (4.3 mL, 1.5 eq.) and K_2CO_3 (9.1 g, 2.0 eq.) in acetone (50 mL) was heated at reflux for overnight. After cooling to room temperature, the reaction mixture was diluted with water (50 mL) and EtOAc (100 m). The separated organic phase was dried over Na_2SO_4 , filtered and concentrated and the product was purified by chromatography (10% EtOAc/hexanes) to give allyl-ethyl-phenyl-amine (5.32 g, 100%). [0157] A solution of OsO_4 (7.8 mL, 0.1 M in water, 0.03 eq.) was added to a mixture of allyl-ethyl-phenyl-amine (4. 10 g, 25.3 mmol) and NMO (5.92 g, 2.0 eq.) in 9:1 acetone-water (40 mL) at room temperature and the resulting mixture was stirred overnight. The mixture was diluted with sat. $NaHCO_3$ (80 mL), sat. $Na_2S_2O_3$ (20 mL) and 1:1 Et $_2O$ -hexanes (100 mL). The separated aqueous phase was extracted with 2x30 mL of EtOAc and the combined organic phase was dried over Na_2SO_4 , filtered and concentrated and the product was purified by chromatography (30% EtOAc-hexanes) to give 3-(ethyl-phenyl-amino)-propane-1,2-diol (4.25 g, 86%).

[0158] Methanesulfonyl chloride (2.5 mL, 1.5 eq.) was added to a solution 3-(ethyl-phenyl-amino)-propane-1,2-diol (4.22 g, 21.6 mmol) and triethylamine (9.03 mL, 3.0 eq.) in dichloromethane (20 mL) at -30 to -35 °C and the resulting mixture was stirred and warmed to 0 °C. The reaction was quenched by sat. NaHCO $_3$ (30 mL) and the separated aqueous phase was extracted with 2x20 mL CH $_2$ Cl $_2$ and 20 mL EtOAc. The combined extracts were dried over Na $_2$ SO $_4$, filtered and concentrated. The residue was dissolved in MeOH (30 mL) and treated with NaOMe (2.3 g, 2.0 eq.) at 65-70 °C for 3 h. After cooling to room temperature, the mixture was diluted with sat. NaHCO $_3$ (50 mL) and extracted with 3x30 mL of EtOAc. The combined extracts were dried over Na $_2$ SO $_4$, filtered and concentrated and the product was purified by chromatography (10% EtOAc/hexanes) to give ethyl-oxiranylmethyl-phenyl-amine (1.72 g, 45%).

[0159] A solution of ethyl-oxiranylmethyl-phenyl-amine (1.72 g, 9.65 mmol) and NaOMe (1.04 g, 2.0 eq.) in MeOH (8 mL) was heated at reflux for over weekend. After cooling to room temperature, the mixture was diluted with sat NaHCO $_3$ (20 mL) and extracted with 3x20 mL of EtOAc. The combined extracts were dried over Na $_2$ SO $_4$, filtered and concentrated and the product was purified by chromatography (30% EtOAc-hexanes) to give 1-(ethyl-phenyl-amino)-3-methoxy-propan-2-ol (1.95 g, 97%).

[0160] A solution of 1-(ethyl-phenyl-amino)-3-methoxy-propan-2-ol (1.95 g, 9.32 mmol) and NMO (2.18 g, 2.0 eq.) in dichloromethane (15 mL) was treated with TPAP (150 mg, 0.05 eq.) at room temperature until reaction was completed. The reaction mixture was diluted with sat. NaHCO $_3$ (50 mL) and extracted with 3x30 mL. EtOAc. The combined extracts were dried over Na $_2$ SO $_4$, filtered and concentrated and the product was purified by chromatography (10 to 15% EtOAc-hexanes) to give 1-(ethyl-phenyl-amino)-3-methoxy-propan-2-one (0.98 mg, 51%).

[0161] A mixture of 1-(ethyl-phenyl-amino)-3-methoxy-propan-2-one (17 mg, 0.08 mmol), hydroxylamine hydrochloride (30 mg) and pyridine (0.3 mL) in MeOH (0.4 mL) was stirred at room temperature for 1.5 h. The reaction mixture was diluted with sat. NaHCO $_3$ and extracted with 3xEtOAc. The combined extracts were dried over Na $_2$ SO $_4$, filtered and concentrated. The residue was dissolved in THF (0.8 mL) and treated with lithium aluminum hydride (0.3 mL, 1 M in THF) at room temperature for overnight. Work-up and purification by chromatography (5:95 ratio of 2 M NH $_3$ in MeOH:CH $_2$ Cl $_2$) gave **29** as light yellow oil.

[0162] Compound 30 was prepared from 3-phenoxy-propane-1,2-diol in 21% overall yield following the same procedures for the preparation of 29 from 3-(ethyl-phenyl-amino)-propane-1,2-diol.

[0163] A mixture of 3-(bromo-propyl)-benzene or bromomethyl-cyclohexane (1 M, 1.0 eq.) in MeOH and 40% MeNH₂ in water (60 eq.) was stirred at room temperature or at 45 °C until reaction was completed. After cooling to room temperature, the mixture was concentrated and the residue was diluted with saturated NaHCO₃ and extracted with 3xCH₂Cl₂ (or/and 3xEtOAc). The combined extracts were dried over Na₂SO₄, filtered and concentrated to give 31 or 32.

[0164] Methanesulfonylchloride (0.8 mL, 1.0 eq.) was added to a mixture of cyclopentyl-methanol (1.1 mL, 1.0 eq.) and ethyldiiospropylamine (3.9 mL, 10 eq.) in CH₂Cl₂ (5 mL) at 0 °C and the resulting mixture was stirred and warmed to room temperature. After addition of saturated NaHCO₃, the separated aqueous phase was extracted with CH₂Cl₂ and the combined organic layer was concentrated to give crude mesylate intermediate. This mesylate was then treated with MeNH₂ following the same procedure for the preparation of 31/32 to give 33.

[0165] A solution of TiCl $_4$ in CH $_2$ Cl $_2$ (1 M, 1.56 mmol) was added to a mixture of 1,2-diphenyl-ethanone (307 mg, 1.56 mmol), Et $_3$ N (655 $_\mu$ L) and methylamine (1.02 mL) in THF (5 mL) at 0 °C. After stirring 1.5 h, a solution of NaBH $_4$ (280 mg, 37.8 mmol) in MeOH (8 mL) was added and the resulting mixture was stirred for 2 h. A saturated Na $_2$ CO $_3$ was then added and the reaction mixture was stored in freezer overnight After thawing, the organic layer was removed and the aqueous phase was extracted with 3xCH $_2$ Cl $_2$. The combined organic phases were dried over Na $_2$ SO $_4$, filtered and concentrated. Purification by preparative thin layer chromatography (80% EtOAc/hexanes) afforded 34 (195 mg, 59%). [0166] Compounds 35 and 36 were prepared in a similar manner from 2-methoxy-1-phenyl-ethanone and cycloheptanone, respectively.

[0167] To a solution of Boc-nortropinone (0.5 g, 2.2 mmol, 1.0 equiv) in CH_2Cl_2 (10 mL) was added TFA (10 mL). The reaction mixture was stirred for 2 hours and then was concentrated. After addition of EtOAc and saturated NaHCO₃, the reaction mixture was extracted with 3xEtOAc. The combined organic layers were dried over Na_2SO_4 , filtered and concentrated to give 37 (0.25 g).

[0168] To a solution of 2,5-dihydro-pyrole-1-carboxylic acid phenyl ester (2 g, 10 mmol, 1.0 eq.) in Acetone/water (9:1, 20 mL) was added OsO_4 (4% in water, 1 mL) and NMO (2.3 g, 20 mmol, 2 eq.). The mixture was stirred at room temperature overnight, concentrated to remove most of the Acetone, poured into saturated $NaHCO_3$ and extracted with 3xEtOAc. The combined organic layers were dried over Na_2SO_4 , filtered and concentrated. The crude mixture was purified by silica chromatography (70% to 90% EtOAc-Hexanes) to give 3,4-dydroxy-pyrrolidine-1-carboxylic acid phenyl ester (2.04g, 88%).

[0169] To a solution of 3,4-dihydroxy-pyrrolidine-1-carboxylic acid phenyl ester (1.93 g, 8.1 mmol, 1.0 eq.) in MeOH (20 mL) was added Palladium hydroxide and placed under H_2 for 4 h. The catalyst was filtered off through celite and rinsed with MeOH. The filtrate was concentrated (25 °C) to give 38 as reddish oil (840 mg, 100%).

[0170] To a suspension of NaH (8.99 g, 0.225 mol, 4.6 eq.) in DME (70 mL) at 0 $^{\circ}$ C was slowly added a solution of 1,4-dioxa-spiro[4.5]decan-8-one (7.56 g, 0.048 mol, 1.0 eq.) in DME (24 mL). After stirring for 30 minutes, a solution of MeI (14 mL, 0.225 mol, 4.6 eq.) in DME (70 ml) was slowly introduced over 7 h and the resulting mixture was lowly warmed to room temperature and stirred overnight. The reaction was quenched by slow addition of water until no more bubbling observed. The reaction mixture was poured over iced water and extracted with 3xhexanes. The organic layers were combined, dried over MgSO₄, filtered and concentrated. The crude mixture was purified by chromatography (100% hexanes to remove oil, then 5:1 Hexanes-EtOAc) to give 7,7,9,9-tetramethyl-1,4-dioxa-spiro[4.5]decan-8-one (4.16 g, 40%).

[0171] To a solution of 7,7,9,9-tetramethyl-1,4-dioxa-spiro[4.5]decan-8-one (4.15 g, 0.019 mol, 1,0 eq.) in THF (60 mL) was added 1 N HCl (30 mL) and the resulting mixture was stirred at room temperature overnight, concentrated to remove most of the THF, extracted with 3xEtOAc. The organic layers were combined, dried over MgSO₄, filtered and concentrated to give 2,2,6,6-tetramethyl-cyclohexane-1,4-dione as awhite solid (3.43 g, >100%).

[0172] To a solution of 2,2,6,6-tetramethyl-cyclohexane-1,4-dione (0.40 g, 2.4 mmol, 1.0 eq.) in THF (8 mL) was added molecular sieves (4Å, 80 mg), 2 M solution of MeNH $_2$ in THF (1.3 mL, 2.6 mmol, 1.1 eq.), and AcOH (0.17 mL, 3.0 mmol, 1,2 eq.). After 5 minutes of stirring, NaBH(OAc) $_3$ (0.71 g, 3.33 mmol, 1.4 eq.) was added and the resulting mixture was stirred at room temperature overnight. The reaction was quenched with the addition of saturated NaHCO $_3$. The mixture was then concentrated and the aqueous layer was extracted with 3xEtOAc. The combined organic layers were washed once with saturated NaHCO $_3$, dried over MgSO $_4$, filtered and concentrated to give a crude pale yellow oil that was crystallized to give 39 as a white crystals (0.40 g, >100%).

[0173] To solution of methyltriphenylphosphonium bromide (17 g, 1.5 eq.) in THF (100 mL) at 0 °C was added dropwise n-butyllithium (2.5 M in hexanes, 18 mL, 1.4 eq.) and the resulting mixture was stirred for 1 h. A solution of 1,4-dioxaspiro[4.5]decan-8-one (5.0 g, 32 mmol, 1.0 eq.) in THF (10 mL) was then introduced dropwise and the resulting mixture was warmed to room temperature and stirred overnight The reaction was quenched by addition of sat NaHCO₃ and the

separated aqueous layer was extracted with 4xEtOAc. The combined organic phase was dried over Na_2SO_4 , filtered and concentrated. The residue was purified by chromatography (5% to 10% EtOAc/hexanes) to give 8-methyene-1,4-di-oxa-spiro[4.5]decane (3.92 g, 79%).

[0174] To a solution of 8-methyene-1,4-dioxa-spiro[4.5]decane (2.0 g, 13 mmol, 1.0 eq.) in THF (10 mL) at 0 $^{\circ}$ C was added dropwise 9-BBN (0.5 M in THF, 104 mL, 4.0 eq.) and the resulting mixture was stirred for 15 min and then warmed to room temperature and stirred overnight. Then NaBO₄- 4H₂O (32 g, 16 eq.) was introduced at 0 $^{\circ}$ C portionwise and the resulting mixture was warmed to room temperature and stirred overnight, diluted with hexanes (30 mL) and the separated aqueous phase was extracted with EtOAc. The combined organic phase was dried over over Na₂SO₄, filtered and concentrated. The residue was purified by silica gel chromatography (50% to 100% EtOAc-hexanes) to give (1,4-dioxa-spiro[4.5]dec-8-yl)-methanol (1.5 g, 67%).

[0175] To a solution of (1,4-dioxa-spiro[4.5]deo- δ -yl)-methanol (1.0 g, 5.8 mmol, 1.0 eq.) and ethyldiisopropylamine (17 mL, 3.0 eq.) in methylene chloride (4 mL) at 0 °C was added dropwise MsCl (0.46 mL, 1.0 eq.) and the resulting mixture was warmed to room temperature and stirred for 2 h. The reaction was quenched by addition of sat. NaHCO₃ and the separated aqueous phase was extracted with 3x methylene chloride and 4x EtOAc. The combined organic phase was dried over over Na₂SO₄, filtered and concentrated to give a crude methanesulfonic acid 1,4-dioxa-spiro[4.5]dec-8-ylmethyl ester.

[0176] A mixture of the crude methanesulfonic acid 1,4-dioxa-spiro[4.5]dec-8-ylmethyl ester (400 mg) in MeOH (2 mL) and aqueous MeNH $_2$ (40% w/w, 5 mL) was heated at reflux (60 $^{\circ}$ C oil both) for overnight. The reaction was quenched by addition of sat NaHCO $_3$ and the separated aqueous phase was extracted with 4x methylene chloride and 4x EtOAc. The combined organic phase was dried over over Na $_2$ SO $_4$, filtered and concentrated to give crude **40** as brown oil.

[0177] To a solution of 4-oxo-piperidine-1-carboxylic acid benzyl ester (0.50 g, 2.14 mmol, 1.0 eq.) in THF (20 mL) was added dibromodifluoromethane (0.90 mL, 4.5 eq.) at -30 $^{\circ}$ C followed by HMPA (1.75 mL, 4.5 eq.). The cooling bath was removed and the reaction mixture was swirled periodically. After 30 min, zinc dust (0.63 g, 4.5 eq.) and HMPA (80 μ L 0.4 eq.) was added and the mixture was heated at reflux for 18 h. Upon cooling to room temperature, the residue was washed with diethyl ether several times. The combined ether washings were washed successively with saturated aqueous copper (II) sulphate, brine, dried over Na₂SO₄ and concentrated. The residue was purification by chromatography (20% EtOAc-hexanes) to afford 4-difluoromethylene-piperidine-1-carboxylic acid benzyl ester (0.32 g, 56%) as a colorless oil.

[0178] A mixture of 4-difluoromethylene-piperidine-1-carboxylic acid benzyl ester (269 mg) and Pearlman's catalyst in methanol (2.5 mL) was stirred under hydrogen atmosphere (using hydrogen filled balloon) for 4 h at room temperature. The reaction mixture was filtered through celite and the filtrate was concentrated to give 41 (138 mg) as pale yellow oil.

[0179] Following the same procedure to prepare **41**, 4-difluoromethylene-piperidine-1-carboxylic acid 2,2-dimethyl-propyl ester (368 mg) was prepared using 4-oxo-piperidine-1-carboxylic acid 2,2-dimethyl-propyl ester (500 mg). The 4-difluoromethylene-piperidine-1-carboxylic acid 2,2-dimethyl-propyl ester (368 mg) in methylene chloride (1.0 mL) at room temperature was treated with trifluoroacetic acid (TFA, 0.5 mL) for 1.5 h. After concentration of the reaction mixture, the crude 42 was used directly without further purification.

10

20

25

30

35

40

45

[0180] To a solution of 2-amino-cyclohexanol (3.50 g, 23.0 mmol, 1.0 eq.) in CH_2CI_2 (100 mL) was added ethylchloroformate (2.65 mL, 1.2 eq.) followed by an aqueous solution of K_2CO_3 (16.0 g in 200 mL of H_2O). The mixture was stirred vigorously for 1h. The separated aqueous layer was extracted twice with CH_2CI_2 . The combined organic layers were dried over $MgSO_4$, filtered and concentrated to give (2-hydroxy-cyclohexyl)-carbamic acid ethyl ester (4.36 g, >100 %).

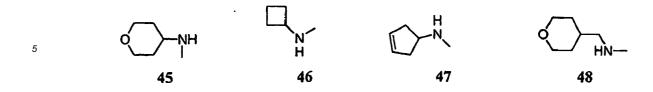
[0181] To a solution of (2-hydroxy-cyclohexyl)-carbamic acid ethyl ester (2.06 g, 11.0 mmol, 1.0 eq.) in THF (80 mL) was added LiA1H₄ (1.09 g, 28.7 mmol, 2.6 eq.) and the resulting mixture was heated at 65 °C for 2 h. The reaction mixture was cooled to 0 °C, quenched with water, and the separated aqueous phase was extracted with 3xEtOAc. The combined organic phase was dried over MgSO₄, filtered and concentrated to give 2-methylamino-cyclohexanol (1.19 g, 84%).

[0182] To a solution of 2-methylamino-cyclohexanol (0.204 g, 1.58 mmol, 1.0 eq.) and di-*tert*-butyl dicarbonate (0.422 g, 1.2 eq.) in CH_2CI_2 (7.0 mL) was added was added a solution of K_2CO_3 in water (1.09 g in 14.0 mL of H_2O) and the resulting mixture was stirred vigorously for 1 h. The separated aqueous layer was extracted twice with CH_2CI_2 . The combined organic phase was dried over $MgSO_4$, filtered and concentrated to give (2-hydroxy-cyclohexyl)-methyl-carbamic acid *tert*-butyl ester (0.332 g, 92%).

[0183] To a solution of (2-hydroxy-cyclohexyl)-methyl-carbamic acid tert-butyl ester (0.237 g, 1.03 mmol, 1.0 eq.) in CH_2CI_2 (7.0 mL) at 0 °C was added molecular sieves (4A, 3 mL). The reaction was stirred for 5 minutes and then NMO (0.422 g, 3.5 eq.) and TPAP (0.025 g, 0.07 eq.) were introduced. The reaction mixture was stirred at 0 °C for 5 minutes, and then 40 minutes at room temperature. After diluted with hexanes, the reaction mixture was passed through a silica gel pad, using hexanes at the beginning to remove CH_2CI_2 , and then using a 1:1 mixture of hexanes-EtOAc to get the desired product. After concentration of the hexanes-EtOAc filtrate, methyl-(2-oxo-cyclohexyl)-carbamic acid tert-butyl ester was obtained as a white solid (0.235 g, 100%).

[0184] To a solution of methyl-(2-oxo-cyclohexyl)-carbamic acid *tert*-butyl ester (0.202 g, 0.89 mmol, 1.0 eq.) in CH_2Cl_2 (3.0 mL) was added TFA (1.0 mL) and the reaction mixture was stirred at room temperature for 3 h. The reaction mixture was then concentrated to give 43 (0.285 g, >100%).

[0185] To a solution of cyclopentylamine (5.8 mL, 59 mmol, 1.0 eq.) in CH_2CI_2 (250 mL) at room temperature was added ethylchloroformate (7.3 mL, 1.3 eq.) followed by an aqueous solution of $KaCO_3$ (37 g in 500 mL of H_2O). The mixture, was stirred vigorously for 1 h. The separated aqueous layer was extracted twice with CH_2CI_2 . The combined organic layers were dried over $MgSO_4$, filtered and concentrated to give cyclopentyl-carbamic acid ethyl ester (9.6g, 88%). **[0186]** To a solution of the cyclopentyl-carbamic acid ethyl ester (6.00g, 32.4 mmol, 1.0 eq.) in THF (250 mL) was added LiAlH₄ (3.08g, 2.5 eq.) and the resulting mixture was heated at 65 °C for 2 h. The reaction was then cooled to 0 °C and quenched by addition of water. The separated aqueous layer was extracted with 3xEtOAc. The combined organic phase was dried over $MgSO_4$, filtered and concentrated to give 44 (2.01 g, 62%).


50

5

10

30

35

[0187] Compounds 45-58 were prepared following the same procedures for the preparation of 44 from the corresponding primary amines.

[0188] To a solution of cyclopentanone (25.0 mL, 0.28 mol, 1.0 eq.) in toluene (100 mL), was added pyrrolidine (27.5 mL, 1.2 eq.). The reaction was equipped with a Dean-Stark and heated at reflux overnight The reaction mixture was cooled to room temperature and concentrated to give the crude 1-cyclopent 1-enyl-pyrrolidine (45.8 g, >100%).

[0189] To a solution of $Pd(OAc)_2$ (0.06 g, 0.06 eq.), PPh_3 (0.32 g, 0.24 eq.) and carbonic acid 2-ethoxycarbonyloxymethyl-allyl ester ethyl ester (1.23 g, 5.30 mmol, 1.0 eq., prepared following Tetrahedron 1998, 54(49), 14885-14904) in CH_3CN (30 ml) was added 1-cyclopent-1-enyl-pyrrolidine (1.01 g, 1.4 eq.) and the resulting mixture was heated at 45 °C for 35 minutes. Then water (15 mL) was introduced and the reaction mixture was heated at 50 °C for 1 h, cooled to room temperature and diluted with EtOAc (30 mL). The separated aqueous phase was extracted twice with EtOAc. The combined organic phase was dried over $MgSO_4$, filtered and concentrated. The residue was purified by silica gel chromatography (10% to 15% EtOAc-hexanes) to give 3-methylene-bicyclo[3,2,1]octan-8-one (0.14 g, 70%) as a pale yellow liquid.

[0190] To a solution of 3-methylene bicyclo[3,2,1]octan-8-one (0.14 g, 1.04 mmol, 1.0 eq.) in benzene (10 mL) was added ethylene glycol (0.65 g, 16 eq.) and PTSA (0.01 g, 0.06 eq.). The reaction was equipped with a Dean-Stark and heated at reflux overnight After cooling to room temperature, Et_3N (0.15 mL) was introduced and the resulting mixture was passed through a cake of SiO_2 and $MgSO_4$. The cake was washed with CH_2CI_2 and the combined filtrates were concentrated to give 3-methylene bicyclo[3,2,1]octan-8-one ethylene ketal (0.21 g, >100%).

[0191] To a solution of 3-methylenyl bicyclo[3,2,1]octan-8-one ethylene ketal (0.21 g, 1.15 mmol, 1.0 eq.) in CH_2Cl_2 (2 mL) at -78 °C was bubbled O_3 until the reaction stayed blue (about 3 min). The O_3 bubbling was stopped and the reaction mixture was stirred for 5 min at -78 °C. The reaction was quenched by addition of triphenylphosphine (0.43 g, 1.4 eq.) and stirring at -78 °C for 10 minutes. The reaction mixture was allowed to warm at room temperature, stirred for 40 minutes and concentrated. The residue was ppurified by silica gel chromatography (10% to 15% EtOAc-hexanes) to give bicyclo[3,2,1]octane-3,8-dione 8-ethylene ketal as a colorless oil (0.08 g, 40%).

[0192] To a solution of bicyclo[3,2,1]octane-3,8-dione8-ethylene ketal (53.1 mg, 0.27 mmol, 1.0 eq.) in THF (1.0 mL) at 0 °C was added Et₃N (0.11 mL, 2.9 eq.) followed by MeNH₂ (2.0 M in THF, 0.21 mL, 1.5 eq.). After stirring at room temperature for 5 minutes, $TiCl_4$ (0.30 mL, 10.0 eq.) was introduced dropwise and the resulting mixture was stirred at 0 °C for 45 minutes. A solution of NaBH₄ (53.1 mg, 5.1 eq.) in MeOH (2.0 mL) was then introduced and the resulting mixture was stirred at 0 °C for 1 h. The reaction was quenched with saturated NaHCO₃ and the separated aqueous layer was extracted with 3xEtOAc. The combined organic phase was dried over MgSO₄, filtered and concentrated to give the crude product, 3-methylamino-bicyclo[3,2, 1]octan-8-one ethylene ketal (24.1 mg).

[0193] To a solution of 3-methylamino-bicyclo[3,2,1]octan-8-one ethylene ketal (94.5, 0.48 mmol, 1.0 eq.) in acetone (2.0 mL) was added 1N HCl (1.5 mL) and the reaction was stirred overnight at room temperature. The reaction mixture was neutralized with saturated NaHCO₃ until pH was higher than 7, extracted with 3xEtOAc. The combined organic phase was dried over MgSO₄, filtered and concentrated to give 49 (40.0 mg, 54%).

55

50

10

20

30

35

40

[0194] To a solution of (3,3-dimethyl-1,5-dioxa-spiro[5,5]undec-9-yl)-methyl-amine hydrochloride (1.0 g, 4 mmol, 1.0 eq.) in THF (12 mL) was added di-*tert*-butyl dicarbonate (1.1 mL, 1.2 eq.), triethylamine (2 mL) and DMAP (catalytical amount). The resulting mixture was heated at 90 °C for 6, cooled to room temperature, poured in saturated NaHCO₃, and the separated aqueous layer was extracted with 3xEtOAc. The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by silica gel chromatography (10% EtOAc/hexanes) to give (3,3-dimethyl-1,5-dioxa-spiro[5,5]undec-9-yl)-methyl-carbamic acid tert-butyl ester (1.4 g, 91%) as a white solid.

[0195] To a solution of (3,3-dimethyl-1,5-dioxa-spiro[5,5]undec-9-yl)-methyl-carbamic acid tert-butyl ester (1.27 g, 3.63 mmol, 1.0 eq.) in acetone (40 mL) and water (20 mL) was added PPTS (228 mg, 0.25 eq.) and the resulting reaction was heated to reflux overnight, cooled to room temperature, concentrated to 20 mL, poured in saturated NaHCO₃ and extracted with 3xEtOAc. The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The residue was purified by silica gel chromatography (hexanes to 20% EtOAc/hexanes) to give methyl-(4-oxo-cyclohexyl)-carbamic acid *tert*-butyl ester (735 mg, 88%) as a white solid.

[0196] To a solution of methyl-(4-oxo-cyclohexyl)-carbamic acid tert-butyl ester (0.69 g, 3.04 mmol, 1.0 eq.) in THF (25 mL) at -30 °C was added CBr_2F_2 (1.25 mL, 4.5 eq.) followed slow addition of by $P(N(CH_3)_2)_3$. The resulting mixture was warmed to room temperature over 0.5 h and Zn was introduced. The resulting mixture was stirred at reflux for 16 h, cooled to room temperature and diluted with Et_2O . The organic phase was decanted and the aqueous phase extracted with $2xEt_2O$. The combined organic phase was washed with saturated $CuSO_4$ solution until it stayed blue, dried over Na_2SO_4 , filtered and concentrated. The residue was purified by chromatography (20% EtOAc-Hexanes) to give (4-difluoromethylene-cyclohexyl)-methyl-carbamic acid tert-butyl ester (475 mg, 60%) as a white solid.

[0197] To a solution of (4-diffuoromethylene-cyclohexyl)-methyl-carbamic acid *tert*-butyl ester (150 mg, 0.57 mmol, 1.0 eq.) in CH_2Cl_2 (1.5 mL) was added TFA (1.5 mL). The reaction mixture was stirred for 4 h and then was concentrated to give 50 (85 mg). The crude compound was taken to the next step without further purification.

[0198] To a solution of cyclopropylamine (5.0 g, 87.5 mmol) and triethylamine (30 mL) in dichloromethane (100 mL) at 0 $^{\circ}$ C was added dropwise benzyl chloroformate (15.0 mL, 10.5 mmol) and the resulting mixture was stirred for 2 h. Additional benzyl chloroformate (1 mL) was added and the resulting reaction mixture was stirred overnight The reaction was then quenched by addition of a saturated NaHCO₃ and the separated aqueous phase was extracted several times with dichloromethane. The combined dichloromethane extracts were dried over Na₂SO₄, filtered and concentrated. The residue was purified by chromatography (15% EtOAc to 5% MeOH/EtOAc) to give cyclopropyl-carbamic acid benzyl ester (11.8 g, 71%).

[0199] To a solution of cyclopropyl-carbamic acid benzyl ester (11.8 g) and methyl iodide (excess) in THF (80 mL) and DMF (20 mL) at 0 °C was added NaH (2.20 g, 91.6 mmol) and the resulting mixture was warmed to room temperature and stirred overnight. The reaction was then quenched at 0 °C by sat NaHCO₃. The separated aqueous phase was extracted several times with EtOAc. The combined extracts were dried over Na₂SO₄, filtered and concentrated. The residue was purified by chromatography (5% to 20% EtOAc/hexanes) to give cyclopropyl-methyl-carbamic acid benzyl ester (11.32 g, 91%).

[0200] A mixture of cyclopropyl-methyl-carbamic acid benzyl ester (10.7 g) and $Pd(OH)_2$ in MeOH (100 mL) was stirred at room temperature under H_2 balloon for 17 h, diluted with concentrated HCl (4.8 mL), filtered through celite and concentrated. The residue was azeotroped with toluene several times to give cyclopropyl-methyl-amine hydrochloride (51, 5.75 g). The crude material was used without further purification.

5

10

15

20

30

35

40

45

[0201] To a solution of (tetrahydro-furan-3-yl)-methanol (1.00 g, 9.79 mmol, 1.0 eq.), PPh₃ (3.85 g, 1.5 eq.) and imidazole (1.33 g, 2.0 eq.) in CH_2Cl_2 (15 mL) at 0 °C was added I_2 (3.73 g, 1.5 eq.) and the resulting mixture was stirred at 0 °C for 30 min and then at room temperature for 30 min. The reaction mixture was diluted with sat. $Na_2S_2O_3$ solution and the separated aqueous layer was extracted by 3xEtOAc and 4x CH_2Cl_2 . The combined extracts were dried over Na_2SO_4 , filtered and concentrated. The residue was purified by chromatography (15% EtOAc/hexanes) to give 3-io-domethyl-tetrahydro-furan as yellow oil (1.59 g, 76%).

[0202] A mixture of 3-iodomethyl-tetrahydro-furan (500 mg, 2.36 mmol, 1.0 eq.) and MeNH₂ (40% in H₂O, 1.62 mL, 8.0 eq.) in MeOH (1 mL) was heated at 60 °C for 3 h. After cooling to room temperature, the reaction mixture was diluted with excess Et₃N and concentrated. This process was repeated until no MeNH₂ was detected by ¹HNMR. The residual yellow oil (52) was used directly without further purification.

[0203] To a solution of 1-methoxymethyl-propylamine (2.50 g, 24.3 mmol, 1.0 eq.) in dioxane (15 mL) was added an aqueous solution of K_2CO_3 (15 g in 15 mL of H_2O) and the mixture was cooled to 0°C. CBZ-CI (4.16 mL, 1.2 eq.) was then introduced and the resulting mixture was warmed to room temperature and stirred for 3 h, extracted with EtOAc. The combined organicphase was dried over Na_2SO_4 , filtered and concentrated. The residue was purified by chromatography (hexanes to 40% EtOAc/hexanes) to give (1-methoxymethyl-propyl)-carbamic acid benzyl ester (4.4 g, 76%) as a white solid.

[0204] To a solution of (1-methoxymethyl-propyl)-carbamic acid benzyl ester (4.4 g, 18.5 mmol, 1.0 eq.) and Mel (6.9 mL, 111 mmol, 6 eq.) in THF/DMF (4:1, 50 mL) at 0 $^{\circ}$ C was slowly added NaH (1.35 g, 55.5 mmol, 3 eq.). The resulting mixture was warmed to room temperature and stirred over night. The reaction was quenched carefully by slow addition of water until no bubbling (H₂) was observed. The reaction mixture was poured over ice water and extracted with 3xEtOAc. The combined organic phase was dried over Na₂SO₄, filtered and concentrated. The residue was purified by silica gel chromatography (30% to 50% EtOAc-hexanes) to give (1-methoxymethyl-propyl)-methyl-carbamic acid benzyl ester (4.4 g, 94%).

[0205] To a solution of (1-methoxymethyl-propyl)-methyl-carbamic acid benzyl ester (4.4 g, 17.5 mmol, 1.0 eq.) in MeOH (30 mL) was added Palladium hydroxide and the resulting mixture was stirred at room temperature under $\rm H_2$ for 1.5 h. The mixture was then filtered through celite and washed with MeOH. The filtrate was treated with concentrated HCI (1.6 mL, 1 eq.) and concentrated to give 53 (2.67 g, 100%). ¹H NMR confirmed the compound. The crude compound was used to the next step without further purification.

[0206] Compound 54 was prepared from (1-benzyl-2-hydroxy-ethyl)-carbamic acid benzyl ester following the same procedures of step 2 and 3 for the parparation of 53.

10

15

20

30

35

50

[0207] (1-cyclohexyhnethyl-2-hydroxy-ethyl)-methyl-carbamic acid benzyl ester was prepared from (1-cyclohexylmethyl-2-hydroxy-ethyl)-carbamic acid benzyl ester following the same procedure of step 2 for the preparation of 53. (1-Cyclohexylmethyl-2-hydroxy-ethyl)-methyl-carbamic acid benzyl ester was then treated with TFA-CH₂Cl₂ (1:1) at room temperature for 4 h. The mixture was then concentrated to give 55.

[0208] To a solution of (R)-(-)-leucinol (2.0 g, 17 mmol, 1.0 eq.), Et $_3$ N (3.6 mL, 1.5 eq.) and DMAP (10 mg) in THF (2 mL) was added Boc $_2$ O (4.5 g, 1.2 eq.) at room temperature. After stirring for 5h, the reaction was quenched by water and the separated aqueous phase was extracted with 4xether. The combined organic phase was dried over Na $_2$ SO $_4$, filtered and concentrated. The residue was purified by chromatography (20% to 30% EtOAc/hexanes) to give (1-hydroxymethyl-3-methylbutyl)-carbamic acid *tert*-butyl ester (1.9 g, 53%). 1 H NMR confirmed the compound.

[0209] Compound **56** was prepared from (1-hydroxymethyl-3-methyl-butyl)-carbamic acid *tert*-butyl ester following the same procedures for the preparation of 55.

40 [0210] Methyllithium (1M in THF) (120 mL, 3.5 eq.) was added to a solution of 4-hydroxy-cyclohexanecarboxylic acid (cis/trans mixture) (5.00 g, 1 eq.) in THF (350 mL) at -78 °C. After stirring at -78 °C for 45 min, the cooling bath was removed and the resulting mixture was warmed to room temperature and stirred overnight. After total 24 h, the resulting reaction mixture was poured into ice/water (800 mL). This mixture was vigorously stirred. The separated aqueous phase was extracted with MeOH/EtOAc (~1/20). The combined organic layer was dried over Na₂SO₄, filtered and concentrated.
45 The crude product was purified by chromatography (50% to 100% EtOAc/hexanes) to give 1-(4-hydroxy-cyclohexyl)-ethanone (2.08 g, 42%).

[0211] A mixture of 1-(4-hydroxy-cyclohexyl)-ethanone (2.24g, 1 eq.), toluene (160 mL), neopentylglycol (1.96 g, 1.2 eq.) and pTsOH (150 mg, 0.05 eq.) in a flask equipped with Dean-Stark apparatus was heated to reflux overnight The mixture was cooled down to room temperature and contentrated. The crude product was purified by silic gel column chromatography (25% to 50% EtOAc/hexanes) to give 4-(2,5,5-trimethyl-[1,3]dioxan-2-yl)-cyclohexanol (2.23 g, 62%). [0212] TPAP (161 mg, 0.05 eq.) was added to a solution of 4-(2,5,5-trimethyl-[1,3]dioxan-2-yl)-cyclohexanol (2.22 g, 1 eq.) and NMO (2.28 g, 2 eq.) in MeCN (65 mL). The reaction mixture was stirred at room temperature overnight. Saturated aqueous solution of $Na_2S_2O_3$ was added to the mixture and the resulting mixture was stirred vigorously for 15 minutes. The separated aqueous phase was extracted with CH_2CI_2 . The combined organic layer was dried over Na_2SO_4 , filtered through Celite and concentrated. The crude product was purified by silica gel column chromatography (25% to 50% EtOAc/hexanes) to give 4-(2,5,5-trimethyl-[1,3]dioxan-2-yl)-cyclohexanone (1.87 g, 85%)

[0213] Compound 57 was prepared from 4-(2,5,5-trimethyl-[1,3]dioxan-2-yl)-cyclohexanone following the procedure for the preparation of 34 from 1,2-diphenyl-ethanone.

FOR
$$CF_3CO_2H$$
 OF F CF_3CO_2H CF_3CO_2H CF_3CO_2H

[0214] To a suspension of (3,3-dimethyl-1,5-dioxa-spiro[5,5]undec-9-yl)-methyl-amine hydrochloride (6.9 g, 27.6 mmol, 1.0 eq.), Et3N (15 mL, 4.0 eq.) and DMAP (catalytic amount) in THF-1W7F (1:1, 100 mL) was added di-t-butyl dicarbonate (7.6 mL, 1.2 eq.) and the resulting mixture was heated at 90°C for 6 h. After cooling to room temperature, he reaction mixture was diluted with sat NaHCO₃ and the separated aqueous layer was extracted with 2xEtOAc. The combined organic layer was dried over Na₂SO₄, filtered and concentrated. The crude product was purified by chromatography (10% to 20% EtOAc/hexanes) to give (3,3-dimethyl-1,5-dioxa-spiro[5,5]undec-9-yl)-methyl-carbamic acid tert-butyl ester as a white solid (9.53 g, 99%).

[0215] A solution of (3,3-dimethyl-1,5-dioxa-spiro[5,5]undec-9-yl)-methyl-carbamic acid *tert*-butyl ester (9.53 g, 27.2 mmol, 1.0 eq.) and PPTS (2.1 g, 0.3 eq.) in acetone-water (2:1, 500 mL) was heated at 80 $^{\circ}$ C for 18 h, cooled to room temperature and concentrated to remove acetone. The residual aqueous solution was diluted with NaHCO₃ and extracted with 2xEtOAc. The combined organic layer was dried over Na₂SO₄, filtered and concentrated. The crude product was purified by chromatography (20% to 50% EtOAc/hexanes) to give methyl-(4-oxo-cyclohexyl)-carbamic acid *tert*-butyl ester as a white solid (5.38 g, 87%).

[0216] To a solution of methyl-(4-oxo-cyclohexyl)-carbamic acid tert-butyl ester (134 mg, 0.59 mmol, 1.0 eq.) in CH $_2$ Cl $_2$ (0.5 mL) at room temperature was added (MeOCH $_2$ CH $_2$) $_2$ NSF $_3$ (217 $_1$ L, 2.0 eq.) followed by ethanol (10 $_1$ L, 0.3 eq.). After stirring for 1 h, the reaction was quenched carefully by addition of sat NaHCO $_3$ and stirred until gas evolution ceased. The separated aqueous phase was extracted with CH $_2$ Cl $_2$. The combined organic extracts were dried over Na $_2$ SO $_4$, filtered and concentrated. The crude mixture was purified by chromatography (5% to 10% EtOAc/hexanes) to give mixture of (4,4-difluoro-cyclohexyl)-methyl-carbamic acid tert-butyl ester and (4-difluoro-cyclohex-3-enyl)-methyl-carbamic acid tert-butyl ester. To a solution of the mixture products in CH $_2$ Cl $_2$ (1.5 mL) at room temperature was added trifluoroacetic acid (1.5 mL) at room temperature and the resulting mixture was stirred for 2.5 h and concentrated to give a mixture of 58 and 59 (2:1 ratio by H 1 -NMR).

40

50

5

10

15

20

30

35

[0217] To a solution of 3-chloro-2-chloromethy-1-propene (20.0 g, 160 mmol, 1.0 eq.) in THF (40 mL) at 0 $^{\circ}$ C was added NaOMe (100 mL of 25% solution in methanol, 2.8 eq.). After cooling bath was removed, the reaction mixture was stirred at room temperature for 20 h and at 35 $^{\circ}$ C for 20 h. The reaction was quenched with sat NH₄Cl (10 mL) and the mixture was diluted with ether (200 mL) and filtered washing with ether. The filtrate was concentrated by distillation of ether, THF and EtOH at atmospheric pressure to give light yellow liquid residue. Fractional distillation of the residue gave 3-methoxy-2-methoxymethy-1 propene (8.9 g, 43%). b.p. =120-130 $^{\circ}$ C.

[0218] To a solution of the 3-methoxy-2-methoxymethy-1-propene (3.5 g, 30 mmol, 1.0 eq.) in THF (10 mL) at 0 $^{\circ}$ C was added BH₃•THF (1M in THF, 18 mL, 0.6 eq.) and the resulting mixture was stirred for 40 min. The reaction was quenched with water followed by sodium perborate (10.6 g, 2.3 eq.), warmed to room temperature, stirred overnight, diluted with CH₂Cl₂ and filtered through celite. The filtrate was diluted with brine and the separated aqueous layer was extracted with CH₂Cl₂. The combined extracts were dried over Na₂SO₄ and filtered. The filtrate was didstilled at atmospheric pressure to give light yellow liquid residue. Fractional distillation of the residue at 40 milliTorr gave 3-methoxy-2-methoxymethypropan-1-ol (1.93 g, 48%). b.p. = 90-110 $^{\circ}$ C.

[0219] To a solution of alcohol 3-methoxy-2-methoxymethypropan-1-ol (0.90 g, 6.7 mmol, 1.0 eq.) in CH_2Cl_2 (10 mL) at 0 °C was added Et_3N (1.9 mL, 2.0 eq.) followed by MsCl (0.63 mL, 1.2 eq.). After stirring for 40 min, the reaction was quenched with methylamine (40% in water). After concentration of the reaction mixture at room temperature, the residue was diluted with methanol (2 mL) and methylamine (3 mL, 40% in water), heated at 50 °C for 18 h cooled to room temperature, saturated with Na_2CO_3 and extracted with ether. The combined extracts were dried over Na_2SO_4 and

filtered. The filtrate was didstilled at atmospheric pressure to give crude product 60 (0.78 g, 80%) as a light yellow liquid.

5

40

50

55

[0220] To a solution of trans-4-amino-cyclohexanol hydrochloride (5.0 g, 32.9 mmol, 1.0 eq.) in water (80 mL) and THF (60 mL) at room temperature was added NaHCO₃ (6.4 g, 2.3 eq.) and (Boc)₂O (14.8 mL, 2.0 eq.). After stirring for 48 h, most of THF from reaction mixture was removed by concentration and the aqueous residue was extracted with EtOAc. The combined organic extracts were dried over Na₂SO₄, filtered and concentrated. The crude product was crystallized from EtOAc-hexanes (9:1) to give (4-trans-hydroxy-cyclohexyl)-carbamic acid *tert*-butyl ester (5.2 g, 75%).
 [0221] To a solution of (4-trans-hydroxy-cyclohexyl)-carbamic acid *tert*-butyl ester (3.0 g, 13.9 mmol, 1.0 eq.) and methyl iodide (4.3 mL, 5.0 eq.) in N-methyl-2-pyrrolidinone (NMP) (50 mL) at 0 °C was added 60% NaH in mineral oil (1.67 g, 3.0 eq.) in a controlled portion wise manner and the resulting mixture was stirred for 3 h at room temperature. The reaction mixture was quenched with methanol (3.0 mL), stirred for 30 min, diluted with sat. NH₄Cl and the mixture was extracted three times with EtOAc. The combined organic extracts were dried over Na₂SO₄, filtered and concentrated.
 The crude mixture was purified by silica gel chromatography (20% EtOAc/hexanes) to give (4-trans-methoxy-cyclohexyl)-methyl-carbamic acid *tert*-butyl ester (3.25 g, 96%).

[0222] To a solution of trans-(4-methoxy-cyclohexyl)-methyl-carbamic acid *tert-butyl* ester (445 mg, 1.83 mmol, 1.0 eq.) in CH_2Cl_2 (2 mL) at room temperature was added trifluoroacetic acid (2 mL). After stirring for 2 h, the reaction mixture was concentrated to give 61 (685 mg, 145%, contains residual TFA). ¹H NMR confirmed the structure and the product was used without further purification.

[0223] Alternatively, compound 61 may be prepared according to the following scheme:

[0224] Thus, oxidation of 4-methoxy cyclohexanol under suitable conditions (*e.g.*, TPAP, NMO) in a suitable solvent (*e.g.*, methylene chloride) gives the corresponding ketone. Reductive amination of 4-methoxy cyclohexanone under suitable conditions (*e.g.*, dimethylamine, NaBH(OAc)₃, AcOH in THF) gives access to the corresponding amine 61 with good stereoselectivity (*i.e.*, trans).

[0225] To a suspension of methyl-(4-oxo-cyclohexyl)-carbamic acid *tert*-butyl ester (an intermediate for the preparation of 58 and 59, 580 mg, 2.56 mmol, 1.0 eq.) in THF (8 mL) at -78 °C was added LS-selectride (1 M solution in THF, 5.7 mL, 2.2 eq.). After stirring for 2.5 h, the reaction mixture was warmed to 0 °C and stirred for 30 min. The reaction was quenched with sat NH₄Cl and the separated aqueous layer was extracted with EtOAc-hexanes (1:1). The combined organic extracts were dried over Na₂SO₄, filtered and concentrated. The crude mixture was purified by silica gel chromatography (33% to 50% EtOAc/hexanes) to give (4-cis-hydroxy-cyclohexyl)-methyl-carbamic acid *tert*-butyl ester (391 mg, 67%).

[0226] Compound 62 was prepared from (4-cis-hydroxy-cyclohexyl)-methyl-carbamic acid tert-butyl ester following the same procedure for the preparation of 61 from (4-trans-hydroxy-cyclohexyl)-carbamic acid *tert*-butyl ester.

[0227] To a solution of (4-cis-hydroxy-cyclohexyl)-methyl-carbamic acid tert-butyl ester (1.95 g, 8.52 mmol, 1.0 eq.) in DMF (20 mL) at 0 °C was added NaH (559 mg, 2.5 eq.). After stirring for 10 min, methyl iodide (3.9 mL, 7.6 eq.) was introduced and the cooling bath was removed. After stirring for 5 h atr room temperature, the reaction was quenched with methanol (1.5 mL), stirred for 15 min and diluted with sat NH₄Cl. The mixture was extracted with EtOAc-hexanes (1:1). The combined organic extracts were dried over Na₂SO₄, filtered and concentrated. The crude mixture was purified by silica gel chromatography (10% to 25% EtOAc/hexanes) to give (4-cis-methoxy-cyclohexyl)-methyl-carbamic acid tert-butyl ester (1.73 g, 84%).

[0228] To a solution of (4-cis-methoxy-cyclohexyl}-methyl-carbamic acid *tert*-butyl ester (1.73 g, 7.12 mmol, 1.0 eq.) in CH_2Cl_2 (4 mL) at room temperature was added trifluoroacetic acid (4 mL). After stirring for 3.5 h, the reaction mixture was concentrated to give a crude product. This product was dissolved in CH_2Cl_2 (50 mL) and washed with sat Na_2CO_3 (40 mL). The aqueos layer was back extracted with $5xCH_2Cl_2$. The combined organic extracts were dried over Na_2SO_4 , filtered and concentrated to give free amine 63 (1.12 g, 109%, contains residual CH_2Cl_2).

[0229] A mixture of 18 (0.01-0.1 M, 1.0 eq.), diisopropylethylamine (5.0 eq.) and any one of amine from 21-63 or other commercially available primary or secondary alkylamine (3-10 eq.) in dichloromethane was stirred at room temperature or at 40° C for several hours to five days until reaction was completed. The reaction mixture was concentrated and the intermediate product, either with or without purification by chromatography (EtOAc/hexanes), was dissolved in 1:1 mixture of dichloromethane and trifluoroacetic acid (0.05 M) and stirred at room temperature with or without anisole (5-10 eq.) for 3-4 h until reaction was completed. The reaction was then carefully quenched with sat. NaHCO₃, extracted with EtOAc until there was no product detected. The combined extracts were dried over Na₂SO₄, filtered, concentrated and the product 64 was purified by reverse phase HPLC (MeOH-water).

[0230] The following procedure has been used for aromatic amines (R_F and/or R_G =Ar). To a solution of N-ethylaniline (47 μ L, 6 eq.) in THF (1 mL) at -78 °C was added nBuLi (148 μ L, 2.5 M in hexanes, 6 eq.) followed by HMPA (200 μ L) and stirred for 10 min. A solution of 18 (44 mg, 0.062 mmol) in THF (0.7 mL) was introduced by rinsing with THF (0.3 mL). After 10 min stirring, the reaction mixture was quenched with sat NaHCO₃ (15 mL), extracted with 3xEtOAc. The combine extracts were dried over Na₂SO₄, filtered, concentrated and the product was purified by chromatography (EtOAc) to give an intermediate. This intermediate and anisole (100 μ L) was dissolved in 1:1 mixture of dichloromethane and trifluoroacetic acid (2 mL) and stirred at room temperature 3 h. The reaction was then carefully quenched with sat. NaHCO₃, extracted with 4xEtOAc. The combine extracts were dried over Na₂SO₄, filtered, concentrated and the product 64 was purified by reverse phase HPLC (MeOH-water).

[0231] Diisopropylethylamine (1.6 eq.) was added to a solution of 20 (0.03-0.05 M, 1.0 eq.) and TOTU (1.5 eq.) in DMF at room temperature and stirred for 15 min. To the resulting mixture was added any one amine from 21-63 or other commercially available primary or secondary amine (1.5 eq.). The reaction mixture was stirred for several hours to overnight until reaction completed. The reaction mixture was concentrated and the intermediate product, either with or without purification by chromatography (EtOAc/hexanes), was dissolved in 1:1 mixture of dichloromethane and trifluor-oacetic acid (0.01-0.05M) and stirred at room temperature with or without anisole (5-10 eq.) for 3-4 h until reaction was completed. The reaction was then carefully quenched with sat. NaHCO $_3$, extracted with EtOAc until there was no product detected. The combine extracts were dried over Na $_2$ SO $_4$, filtered, concentrated and the product 65 was purified by reverse phase HPLC (MeOH-water).

[0232] Compounds in the following table were prepared either following the preparation of 13 or 64 or 65.

Compound # (ER # or IC#)	Structure of 64 or 65	MS (ES) Or/And ¹ HNMR
806094	TBSO NH ₂	¹ H NMR
806095	HO NH ₂	¹ HNMR
806123	NH ₂	361.4 (M+H) ⁺
806136	AN NAME OF STREET OF STREE	404.3 (M+H)+
806181	S NH2	¹ H NMR
806221	MeO H N NH	413.3 (M+H)+

(continued)

	Compound # (ER # or IC#)	Structure of 64 or 65	MS (ES) Or/And ¹ HNMR
5	806220	O NH NH	465.3 (M+H)+
10	806224	NH ₂	409.3 (M+M) ⁺
20	806228	HZ HZ Z HZ Z Z Z Z Z Z Z Z Z Z Z Z Z Z	412.3 (M+H)+
30	806276	MeO MeO NH2	471.3 (M+H)+
35	806275	MeO NH2 MeO NH2	487.3 (M+H)+
40 45	806274	NH2 NH2 NH	397.3 (M+H)+
50	806273	H N N H	411.3 (M+H) ⁺

99

(continued)

Compound # (ER # or IC#)	Structure of 64 or 65	MS (ES) Or/And ¹ HNMR
806317	NH ₂	398.2 (M+H) ⁺
806320	CT THE NH2	417.2 (M+H)+
806329	SCONH2 NH2	424.3 (M+H)+
806333	CO ₂ Me NH ₂	497.3 (M+H) ⁺ 520.2 (M + Na) ⁺
806336	NH ₂	411.3 (M+H) ⁺
806358	NH ₂	397.2 (M+H)+
806359	NH ₂	383.3 (M+H)+

	Compound # (ER # or IC#)	Structure of 64 or 65	MS (ES) Or/And ¹ HNMR
5	806363	H ₂ N-NH NH ₂	462.2 (M+H) ⁺
10	806362	CONH ₂ NH ₂	440.3 (M+H)+
	806361	CONH2 NH2	479.2 (M+H)+
20		CH WH	
25	806368	NH ₂	369.2 (M+H)+
30		H N NH	
35	806372	MeO N NH2	495.2 (M+H)+
40	806373	C N N N N N N N N N N N N N N N N N N N	499.2 (M+H) ⁺
45 50	806374	F NH2	483.2 (M+H)+
55	806375	CN H CTH NAM	384.3(M+H) ⁺

	Compound # (ER # or IC#)	Structure of 64 or 65	MS (ES) Or/And ¹ HNMR
5	806383	NH ₂	363.3 (M+H)+
	806393	NH ₂	512.2 (M+H) ⁺
15		ON HINNH	
20	806402	NH ₂	411.2 (M+H) ⁺ 433.2 (M+Na) ⁺
30	806417	NH ₂	397.1 (M+H) ⁺
35 40	806419	NH ₂	469.2 (M+H)+
45	806421	H ₂ N C NH ₂	511.2 (M+H)+
55	806435	NH ₂	411.3 (M+H) ⁺

	Compound # (ER # or IC#)	Structure of 64 or 65	MS (ES) Or/And ¹ HNMR
5	806437	NH ₂	411.3 (M+H)+
70		'	
15	806569	NH2 NH2 NH1	452.3 (M+H)+
20	806609	NH ₂	495.3 (M-H)⁻
	806610	NH₂	425.4(M-H) ⁻
30		OW6 N NH	
35	806647	NH ₂	496.3 (M+H) ⁺
40		N N NOH	
45	806653	NH NH	454.3 (M+H) ⁺
50 55	806671	NH ₂	409.3 (M+H)+
		1	

(continued)

	Compound # (ER # or IC#)	Structure of 64 or 65	MS (ES) Or/And ¹ HNMR
5	806781	MeO ZH ZH	¹ H NMR
15	806790	ZHZZHZZHZZHZZHZZHZZHZZHZZHZZHZZHZZHZZHZ	509.3 (M-H) ⁻
25	806796	HZ HZ Z	¹ H NMR
30 35	806820	HZ HZ Z HZ	496.3 (M+H) ⁺
40 45	806839	CI NH2 NH2 NH2 NH2	467.2 (M+Na) ⁺
50	806840	CI NH2	467.2 (M+Na) ⁺

(continued)

Compound # (ER # or IC#)	Structure of 64 or 65	MS (ES) Or/And ¹ HNMR
806841	CI NH2	445.3 (M+H) ⁺
806842	NH ₂	397.3 (M+H) ⁺
806843	P NH NH	483.3 (M+H)+ 505.3 (M+Na)+
806844	ON NH2	363.3 (M+H) ⁺ 385.3 (M+Na) ⁺
806860	H N N NH	496.3 (M+H)+
806874	THE SHEET SH	¹ H NMR
806875		¹ H NMR

(continued)

	Compound # (ER # or IC#)	Structure of 64 or 65	MS (ES) Or/And ¹ HNMR
5	806878	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH	¹ HNMR
15	806899	P N N N N N N N N N N N N N N N N N N N	¹ H NMR
20	806900	NH ₂	¹ H NMR
30	806901	FUNDA NAME OF THE PROPERTY OF	497.1 (M+H)+
35	806902	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₆ NH ₇	377.3 (M+H) ⁺
40	806903	CI NH2	431.1 (M+H)+
50	806904	CI NH2	431.2 (M+H) ⁺

(continued)

Structure of 64 or 65	MS (ES) Or/And ¹ HNN
CI N NH2	431.2 (M+H) ⁺ 431.3 (M+
MeO NH2	441.3 (M+H)+ 463.2 (M+N
NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₆ NH ₆ NH ₇	343.3 (M+Na) ⁺
OMe NH2	¹ HNMR
MEO N N N N N N N N N N N N N N N N N N N	427.3 (M+H)+
MeO O NH ₂	463.3 (M+Na) ⁺ 441.3 (M+
MeO NH ₂	427.2 (M+H)+
	NH ₂ NH NH ₂ NH

807377 NH ₂		Compound # (ER # or IC#)	Structure of 64 or 65	MS (ES) Or/And ¹ HNMR
807400 807400 807400 807401 H NH2 1HNMR 1HNMR 1HNMR 30 807399 H Trans racemic 1HNMR 1HNMR	5	807377	F ₃ C N C N	¹ H NMR
807400 807401 H N NH2 1HNMR 1HNMR 1HNMR 1HNMR 1HNMR 30 807399 H NH2 1HNMR		807392	F ₃ C N N N N N N N N N N N N N N N N N N N	¹ H NMR
807401 H NNH NH2 1HNMR 30 807399 H NH2 NH2 1HNMR 35 807447 NH2 NH2 NH2 NH2 NH2 NH2 NH2 NH	15	807400	<u> </u>	¹ HNMR
30 807399 H Trans racemic 807447 807447 NH2 NH2 NMR NMR 40 807448 NH2 NH2 NH2 NH2 NH2 NH2 NH4 NNH NNH NNH NNH NNH NNH NNH NNH NNH	20		N N N N N N N N N N N N N N N N N N N	
807447 807447 Cis racemic NMR NH2 NMR NMR NMR 145 807448 NH2 NH2 NH2 NH2 NH2 NH2 NH2 NH	25	807401	H N N NH	¹ HNMR
40 45 807448 NH2 1H NMR 50 807449 NH2 1H NMR		807399	H N N NH	¹ HNMR
807449 1H NMR	40	807447	N N N N N N N N N N N N N N N N N N N	NMR
807449 NH ₂ 1H NMR		807448		¹ H NMR
		807449		¹ H NMR

	Compound # (ER # or IC#)	Structure of 64 or 65	MS (ES) Or/And ¹ HNMR
5	807450	OCF ₃ NH ₂ NH ₂ NH ₂ NH NH NH	481.1 (M+H) ⁺
15	807451	F ₃ CO N N N NH	481.1 (M+H) ⁺
20	807452	CI N N N N N N N N N N N N N N N N N N N	465.1 (M+H)+
25	807453	F NH2	¹ HNMR
30 35	807454	F NH ₂	¹ H NMR
40	807457	F NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₆ NH ₆ NH ₇	¹ HNMR
45	807458	CF ₃ N N N N N N N N N N N N N N N N N N N	¹ HNMR
50 55	807459	CI NH2	¹ H NMR

(continued)

	Compound # (ER # or IC#)	Structure of 64 or 65	MS (ES) Or/And ¹ HNMR
5	807460	F ₃ CO NH ₂ NH ₂ NH	481.1 (M+H) ⁺
10	807460	NH ₂	¹ H NMR
15	807463	H N NH	¹ H NMR
20		TH NAME OF THE PROPERTY OF THE	
25 30	807464	RNH2 NH2 NH2 NH2 NH2	¹ H NMR
35	807465	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH	¹ HNMR
40	807466	NH ₂ NH ₂ NH NNH	¹ H NMR
50	807467	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₆	¹ H NMR

	Compound # (ER # or IC#)	Structure of 64 or 65	MS (ES) Or/And ¹ HNMR
5	807469	NH ₂	¹ H NMR
10 15	807497	NH ₂	¹ H NMR
	807498	NH ₂	¹ H NMR
20	807505	NH ₂	¹ H NMR
25		H N NH	
30	807506	# # Z = Z = Z = Z = Z = Z = Z = Z = Z =	¹ H NMR
35	807528	NH ₂	¹ H NMR
40	807531	NH ²	¹ HNMR
45			
50 55	807532	N H N N H	¹ H NMR
50			

(continued)

		(Serial aca)	
	Compound # (ER # or IC#)	Structure of 64 or 65	MS (ES) Or/And ¹ HNMR
5	807543	NH ₂	¹ HNMR
10	807544	NH2 N N NH	¹ H NMR.
20	807548	NH ₂ NH ₂ NH N ₃ NH	¹ HNMR
25 30	807549	NH ₂	¹ HNMR
35	807550	NH ₂	¹ H NMR
45	807562	NH ₂	¹ H NMR
50	807571	NC NH2	¹ H NMR

112

	Compound # (ER # or IC#)	Structure of 64 or 65	MS (ES) Or/And ¹ HNMR
5	807573	H Z NH	387.3 (M+H)+
15	807586	O NH ₂ NH ₂ N NH N NH	¹ H NMR
20	807636	NH2 NH NH	¹ HNMR
30	807649	NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄	¹ H NMR
35	807660	NH ₂	¹ H NMR
45	807662	NH ₂	¹ H NMR
50 55	807663	NH ₂ NH ₂ NH N NH	¹ H NMR
55			

(continued)

	Compound # (ER # or IC#)	Structure of 64 or 65	MS (ES) Or/And ¹ HNMR
5	807703	N NH2 N NH2 N NH	¹ H NMR
15	807704	N NH2 N NH2 N NH	¹ H NMR
20	807748	NH ₂ NH ₂ NH _N NH	¹ H NMR
30	807749	ON NH2	¹ H NMR
35	807751	NH2 NH2 NH NNH	¹ H NMR
40	807754	NH₂ N N N N N N N N N N N N N N N N N N N	¹ HNMR
50	807758	NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NNH	¹ H NMR

114

	Compound # (ER # or IC#)	Structure of 64 or 65	MS (ES) Or/And ¹ HNMR
5	807762	1 2 2 2 2 2 2 2 2 2 2 3 2 3 2 3 2 3 2 3	¹ H NMR
15	807779	HCI NH2	¹ H NMR
20	807794	HO HCI H N NH	¹ HNMR
30	807836	O NH ₂	¹ H NMR.
35	807862	NH ₂ NH ₂ NH NNH	¹ H NMR
45	807876	O HCI H N NH	¹ H NMR
50 55	807892	F ₂ HC N NH ₂ NH ₂	¹ H NMR

	Compound # (ER # or IC#)	Structure of 64 or 65	MS (ES) Or/And ¹ HNMR
5	807920	NH ₂	¹ H NMR
15	807930	HO N H N NH	¹ H NMR
20	807931	OH H N NH	¹ H NMR
30	807952	NH ₂ NH ₂ NH ₂ NH ₃ NH	¹ HNMR
35	807956	NH ₂	¹ H NMR
45	807962	NH ₂ NH ₂ NH _N NH	¹ H NMR
55	807977	NH ₂ NH ₂ NH _N NH	¹ H NMR

(continued)

	Compound # (ER # or IC#)	Structure of 64 or 65	MS (ES) Or/And ¹ HNMR
5	807978	O NH NH	¹ H NMR
10	807980	NH ₂ NH ₃	¹ H NMR
20	808028	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH	¹ H NMR
30	808039	H Z Z H Z Z H Z Z Z Z Z Z Z Z Z Z Z Z Z	¹ HNMR
35	808069	NH ₂ NH NH NH NH	¹ H NMR
40	808078	F NH NH	¹ H NMR
45	808079	NH ₂ NH ₂ NH _N NH	¹ H NMR

117

(continued)

	Compound # (ER # or IC#)	Structure of 64 or 65	MS (ES) Or/And ¹ HNMR
5	808084	NH ₂ NH ₂ NH ₂ NH NNH	¹ H NMR
70	808086	F NH ₂	¹ H NMR
15		i H N NH	
20	808101	NH ₂	¹ H NMR
25 30	808102	NH₂ H NH₂	¹ H NMR
	808107	H N NH2	¹ H NMR
35		H N N NH	
40 45	808151	NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₇	¹ H NMR
45	808153	NH ₂	¹ H NMR
50		OT N N N NH	

	Compound # (ER # or IC#)	Structure of 64 or 65	MS (ES) Or/And ¹ HNMR
5	808164	NH ₂ NH ₂ N NH N NH	¹ HNMR
15	808247	MeO., NH ₂	¹ H NMR
20	808254	NH ₂	¹ H NMR
25 30	808255	NH ₂	¹ H NMR
35	808283	HO	¹ H NMR
45	808290	NH ₂	¹ H NMR
50	808312	NH ₂	¹ H NMR

	Compound # (ER # or IC#)	Structure of 64 or 65	MS (ES) Or/And ¹ HNMR
5	808313	√N NH₂	¹ H NMR
10		TN N NH	
15	808346	T Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	¹ H NMR
20	808347	NH ₂ NH NH NH	¹ H NMR
30	808355	NH ₂	¹ H NMR
35	808356	NH2 NH2 NH2	¹ H NMR
40	808364	NH ₂	¹ H NMR
50	808365	NH ₂	¹ H NMR
55	<u>l</u>		

	Compound # (ER # or IC#)	Structure of 64 or 65	MS (ES) Or/And ¹ HNMR
5	808371	H A A A A A A A A A A A A A A A A A A A	¹ H NMR
10 15	808387	CF ₃ CO ₂ H NH ₂	¹ H NMR
20	808548	NH ₂	¹ H NMR
25	808661	NH ₂	¹ H NMR
30	808663	H N NH	¹ H NTMR
35	000003	NH ₂ NH ₂ NH NNH	THINIWIX
40	808665	NH ₂	¹ H NMR
45	808675	H N NH	¹ H NMR
50	000073	HI H N NH	11 INIVITY
55		·	

(continued)

Compound # (ER # or IC#)	Structure of 64 or 65	MS (ES) Or/And ¹ HNMR
808702	NH ₂	¹ H NMR
808833	MeO H N NH	¹ H NMR
808836	MeO NH ₂	¹ HNMR
808984	NH2 NH2 NH2	¹ H NMR

ER-806286

[0233] Diethyl azodicarboxylate (9.1 μ L, 2.0 eq.) was added to a solution of 17 (20 mg, 0.03 mmol, 1.0 eq.), triphenylphosphine (15 mg, 2.0 eq.) and phthalimide (8.5 mg, 2.0 eq.) in toluene (2 mL) at room temperature and the resulting mixture was stirred for 19 h. The reaction mixture was concentrated and the intermediate was purified by chromatography (30% EtOAc-hexanes) to give 19.3 mg (81 %). This intermediate was dissolved in 1:1 mixture of dichloromethane and trifluoroacetic acid (2 mL) and stirred at room temperature for 2 h until reaction was completed. The reaction was then carefully quenched with sat NaHCO₃ (15 mL), extracted with 7x10 mL of EtOAc. The combine extracts were dried over Na₂SO₄, filtered, concentrated and the product was purified by reverse phase HPLC (MeOH-water) to give ER-806286 (2.4 mg, 24%). MS (ES) 423.2 (M+H)⁺

ER-806287

[0234] Compound **ER-806287** was prepared from 4-trifluoromethylphenol following the same procedure for the preparation of **ER-806286**. MS (ES) 438.2 (M+H)⁺.

ER-806311

[0235] A mixture of 18 (12.5 mg, 0.018 mmol), diisopropylethylamine (0.2 mL, 65 eq.) and thiophenol (10 μ L, 5.5 eq.) in DMF (0.5 mL) at room temperature was stirred for two days. The reaction mixture was concentrated and purified by chromatography (30% EtOAc-hexanes) to give an intermediate12.7 mg (92%). This intermediate and anisole (100 μ L) were dissolved in 1:1 mixture of dichloromethane and trifluoroacetic acid (2 mL) and stirred at room temperature for 40 min. The reaction was then carefully quenched with sat. NaHCO₃ (15 mL), extracted with 7xEtOAc. The combine extracts were dried over Na₂SO₄, filtered, concentrated and the product was purified by chromatography (5% MeOH-EtOAc) to give ER-806311 (4.5 mg, 65%). MS (ES) 386.2 (M+H)+.

35

40

5

10

15

20

25

30

ER-806355

45 [0236] Methylsulfonyl chloride (9 µL, 2 eq.) was added to a solution of 17 (40.5 mg, 0.058 mmol) and diisopropylethylamine (100 μL, 10 eq.) in dichloromethane (1 mL) at 0 °C and stirred for 30 min. 4-hydroxypiperidine (30 mg, 5.0 eq.) and DMF (0.5 mL) were introduced and the reaction mixture was warmed to room temperature and stirred for 2.5 days. The reaction was quenched with sat. NaHCO3 (10 mL) and the separated aqueous phase was extracted with 4xEtOAc. The combine organic extracts were dried over Na₂SO₄, filtered and concentrated and the product was purified 50 by reverse HPLC (MeOH-water) to give an intermediate (25 mg, 65%). This intermediate was dissolved in dichloromethane (0.5 mL) and treated with TPAP (5 mg) and NMO (20 mg) at room temperature for 10 min. The reaction was quenched by addition of water and Na₂S₂O₃ extracted with 4xEtOAc.. The combine organic extracts were dried over Na₂SO₄, filtered and concentrated and the product was purified by chromatography (15% EtOAc-hexanes) to give an intermediate (13.7 mg). This intermediate and anisole (100 µL) were dissolved in dichloromethane (1 mL) and treated with trifluoro-55 acetic acid (1 mL) at room temperature for 4 h. The reaction was then carefully quenched with sat NaHCO₃ (15 mL), extracted with 4xEtOAc. The combine extracts were dried over Na₂SO₄, filtered, concentrated and the product was purified by reverse phase HPLC (MeOH-water) to give ER-806355 (3.4 mg, 16% for three steps). ¹H NMR (DMSO-d₆) δ 2.35 (t, J=6 Hz, 4H), 2.49 (s, 3H), 2.70 (t, J=6 Hz, 4H), 3.67 (s, 2H), 5.74 (s, 2H), 6.73 (s, 1H), 7.16 (dd, J=8.2 and 1.2 Hz, 1H), 7.28 (d, J=1.2 Hz, 1H), 7.53 (d, J=8.2, 1H), 7.55 (s, 1H).

5

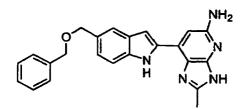
10

15

20

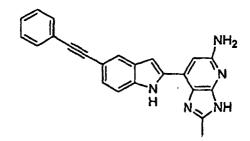
25

40


45

50

55


ER-806401

[0237] Hydrogen peroxide (4 mL, 30% in water, 3.6 eq.) was added to a solution of thiomorpholine (1.0 g, 9.7 mmol) in acetic acid (12 mL) at room temperature. The resulting mixture was stirred at 100 °C overnight, cooled to room temperature and concentrated. Thiomorpholine sulfoxide from the residue was crystallized from ethanol as a deep colored solid. Following the general procedure for the preparation of 64, compound ER-806401 was prepared from 18 and Thiomorpholine sulfoxide. MS (ES) 417.2 (M+Na)+.

ER-806404

[0238] A mixture of 18 (5 mg) and benzyl alcohol (100 μL) was treated with tBuOK (1 mL, 1.66 M in THF) at room temperature overnight. The reaction mixture was quenched with sat. NaHCO₃ and extracted with 3xEtOAc. The combine extracts were dried over Na₂SO₄, filtered, concentrated and the crude intermediate and anisole (50 μL) were dissolved in dichloromethane (0.5 mL) and treated with trifluoroacetic acid (0.5 mL) at room temperature for 3 h. The reaction was then carefully quenched with sat. NaHCO₃, extracted with 4xEtOAc. The combine extracts were dried over Na₂SO₄, filtered, concentrated and the product was purified by thin layer chromatograph (10% MeOHIEtOAc) to give ER-806404 (1.0 mg, 37%). MS (ES) 384.2 (M+H)⁺.

ER-806644

[0239] To a solution of 5-iodoindole (5.0 g, 20.6 mmol), phenylacetylene (3.4 mL, 1.5 eq.) and diethylamine (10 mL) in DMF (2 mL) was added $Pd(Ph_3P)_4$ (120 mg, 0.005 eq.) and CuI (39 mg, 0.01 eq.) under nitrogen atmosphere at cooling water both temperature and the resulting mixture was stirred for 3h at room temperature. The reaction was diluted with sat NaHCO₃ (50 mL), extracted with 4x30 mL of EtOAc. The combined extracts were dried over Na₂SO₄, filtered, concentrated and the product was purified by chromatograph (15 to 20% EtOAc/hexanes) to give 5-phenylethynyl-1*H*-lindole (4.41 g, 98%).

[0240] Compound 5-phenylethynyl-lindole-1-carboxylic acid *tert*-butyl ester was prepared from 5-phenylethynyl-1*H*-lindole following the procedure for the preparation of 7 (indole-1,5-dicarboxylic acid 1-*tert*-butyl ester 5-methyl ester as an

example) from methyl indole-5-carboxylate.

5

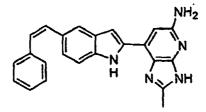
10

15

20

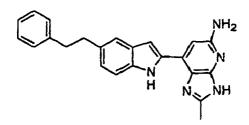
25

30

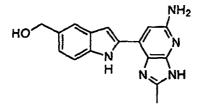

35

40

45


[0241] Compound 5-phenylethynyl-2-tributylstannanyl-indole-1-carboxylic acid *tert*-butyl ester was prepared from 5-phenylethynyl-lindole-1-carboxylic acid *tert*-butyl ester following the procedure for the preparation of **10** from **9**.

[0242] Compound **ER-806644** was prepared from 5-phenylethynyl-2-tributylstannanyl-indole-1-carboxylic acid *tert*-butyl ester and 4 (R_1 =Me) following the procedure for the preparation of 13. MS (ES) 364.2 (M+H)⁺.


ER-806645

[0243] A solution of ER-806644 (6.5 mg) and Lindlar catalyst (50 mg) in THF (2 mL) was stirred at room temperature under hydrogen gas for 1 h. The resulting mixture was filtered through celite and the filtrate was concentrated. The residual solid was washed several times with EtOAc to give ER-806645 as a light yellow solid (2.0 mg, 31%). MS (ES) 366.3 (M+H)⁺.

ER-806646

[0244] A solution of **ER-806644** (5 mg) and Pd(OH)₂ (10 mg) in THF (2 mL) was stirred at room temperature under hydrogen gas for overnight The resulting mixture was filtered through celite and the filtrate was concentrated and the product was purified by reverse phase HPLC (MeOH-water) to give **ER-806646** (1.3 mg, 26%). MS (ES) 368.3 (M+H)⁺.

ER-806095

[0245] A solution of 16 (20 mg) in 1:1 THF-MeOH (3 mL) at room temperature was treated with a solution of 1 N HCl (0.5 mL) for 30 min. The reaction mixture was diluted with sat. NaHCO₃ and extracted with EtOAc. The combined extracts were dried over Na₂SO₄, filtered, concentrated and the product was purified by reverse phase HPLC (MeOH-water) to give ER-806095 (2.6 mg, 18%). ¹H NMR.

ER-806420

5

10

15

20

25

30

35

40

45

50

55

[0246] A solution of **ER-806393** (1.3 mg) in MeOH (0.5 mL) was treated at room temperature with a solution of 1 N LiOH (0.1 mL) for overnight The reaction mixture was then neutralized with a solution of 1 N HCl (0.1 mL) to pH=5 and concentrated. The residue was taken up in 1:1 MeOH-EtOAc and filtered. The filtrate was concentrated and purified by reverse phase HPLC (MeOH-water) to give **ER-806420** (0.5 mg, 40%). MS (ES) 496.3 (M-H)⁻.

ER-806432

[0247] A mixture of 18 (15.5 mg, 0.02 mmol) and methylamine (0.11 mL, 2.0 M in THF, 1.0 eq.) in dichloromethane (0.5 mL) was stirred at room temperature overnight, diluted with sat.NaHCO $_3$ and extracted with 3xEtOAc. The combined extracts were dried over Na $_2$ SO $_4$, filtered and concentrated. The residue was dissolved in DMF (0.5 mL) as a solution A. [0248] Diisopropylethylamine (5.3 μ L,, 1.4 eq.) was added to a solution of benzoic acid (3.4 mg, 1.3 eq.) and TOTU (10 mg, 1.4 eq.) in DMF (0.3 mL) at room temperature and stirred for 15 min. Solution A was then introduced by rinsing with 3x0.5 mL of DMF and the resulting mixture was stirred overnight, concentrated, diluted with sat.NaHCO $_3$ and extracted with 3xEtOAc. The combined extracts were dried over Na $_2$ SO $_4$, filtered and concentrated. The residue and anisole (50 μ L) was dissolved in dichloromethane (0.5 mL) and treated with trifluoroacetic acid (0.5 mL) at room temperature for 3 h. The reaction mixture was carefully quenched with sat.NaHCO $_3$ and EtOAc and the separated aqueous phase was extracted with 3xEtAOc. The combined extracts were dried over Na $_2$ SO $_4$, filtered, concentrated and the product was purified by reverse phase HPLC (MeOH-water) to give ER-806432 (1.4 mg, 16% for three steps). MS (ES) 411.2 (M+H)+.

ER-807313

[0249] 5-nitro-indole-1-carboxylic acid *tert*-butyl ester was prepared from 5-nitroindole following the same procedure for the preparation of 7 from methyl indole-5-carboxylate.

[0250] A solution of 5-nitro-indole-1-carboxylic acid *tert*-butyl ester (0.50 g) and catalytic amount of Pd(OH)₂ in a mixture of MeOH-EtOAc was stirred at room temperature under hydrogen for 1 h. The reaction mixture was filtered through celite and the filtrate was concentrated to provide 5-amino-2,3-dihydro-indole-1- carboxylic acid tert-butyl ester

(0.44 g, 98%).

10

20

25

30

35

40

45

50

55

[0251] Benzoyl chloride (305 μ L, 1.5 eq.) was added to a solution of 5-amino-2,3-dihydro-indole-1- carboxylic acid *tert*-butyl ester (407 mg, 1.74 mmol) and triethylamine (1.2 mL, 5.0 eq.) in dichloromethane (5 mL) at 0°C and the resulting mixture was stirred for 15 min. The reaction was then quenched by addition of sat. NaHCO₃ and the mixture was extracted with 3xEtOAc. The combined extracts were dried over Na₂SO₄, filtered, concentrated and the product was purified by chromatography (20 to 100% EtOAc-hexanes) to give 5-benzoylamino-2,3-dihydro-indole-1- carboxylic acid *tert*-butyl ester (588 mg, 100%).

[0252] Sodium hydride (60 mg, 1.5 eq.) was added to a mixture of 5-benzoylamino-2,3-dihydro-indole-1- carboxylic acid tert-butyl ester (570 mg, 1.68 mmol) and methyl iodide (0.42 mL, 4.0 eq.) in DMF (10 mL) at 0 °C and the resulting mixture was stirred for 20 min. After concentration, the residue from reaction mixture was diluted with sat. NaHCO $_3$ and extracted with 3xEtOAc. The combined extracts were dried over Na $_2$ SO $_4$, filtered, concentrated and the product was purified by chromatography (30% EtOAc-hexanes) to give 5-(benzoyl-methyl-amino)-2,3-dihydro-indole-1- carboxylic acid tert-butyl ester (547 mg, 93%).

[0253] A mixture of 5-(benzoyl-methyl-amino)-2,3-dihydro-indole-1-carboxylic acid tert-butyl ester (500 mg) and MnO_2 (5 g) in toluene (20 mL) was heated at 80 °C for 1h. Additional MnO_2 (5 g) was introduced and the resulting mixture was stirred at 80 °C for 1h. After cooling to room temperature, the mixture was filtered through celite and the filtrate was concentrated. The product was purified by chromatography (30% EtOAc-hexanes) to give 5-(benzoyl-methyl-amino)-indole-1-carboxylic acid tert-butyl ester (372 mg, 75%).

[0254] 5-(benzoyl-methyl-amino)-2-tributylstrannanyl-indole-1-carboxylic acid *tert*-butyl ester was prepared from 5-(benzoyl-methyl-amino)-indole-1-carboxylic acid *tert-butyl* ester following the procedure for the preparation of **10** from **9**

[0255] Compound **ER-807313** was prepared from 5-(benzoyl-methyl-amino)-2-tributylstrannanyl-indole-l-carboxylic acid *tert*-butyl ester and **4** (R_1 =Me) following the procedure for the preparation of **13**. MS (ES) 397.2 (M+H)⁺ and 419.1 (M+Na)⁺.

NH₂
NH₂
NH₂
NH₂
NH₃
NH₄
NH₄
NH₄
NH₄
NH₄
NH₄
NH₄
NH₅
NH₆
NH₆
NH₇

ER-807015

[0256] Compound **ER-807015** was prepared as a by-product during preparation of 65 from sterically hindered amines and yielded a satisfactory ¹H NMR spectrum.

NH₂
NH₂
NH₂
NH₂
NH₂
NH₃
NH₄
NH₄
NH₄
NH₄
NH₅
NH₄
NH₅
NH₄
NH₅
NH₅
NH₅
NH₅
NH₅
NH₆
NH₆
NH₆
NH₇

ER-807586

[0257] A mixture of **18** (51 mg, 1.0 eq.), (3,3-dimethyl-1,5-dioxaspiro[5,5]undec-9-yl)-methyl-amine, hydrochloride (71 mg, 4.0 eq.), ethyldiisopropylamine (0.25 mL, 20 eq.) and DMF (0.3 mL) in CH_2Cl_2 (2.5 mL) was stirred at room temperature for 23 h. After concentration, the residue was dissolved in 1 N HCl (0.6 mL) and acetone (0.6 mL) and heated at reflux for 16 h. After cooling to room temperature, the reaction was then carefully quenched with sat. NaHCO₃, extracted with EtOAc until there was no product detected. The combine extracts were dried over Na₂SO₄, filtered, concentrated and the product was purified by reverse phase HPLC (MeOH-water) to give **ER-807586** (6.4 mg, 22%). ¹HNMR and MS (ES) 403.5 (M + H)⁺.

ER-807759

[0258] ER-807759 was prepared following the same procedure for 13 (ER-805639 as an example) in Stille coupling reaction and for ER-807586 in ketal hydrolysis reaction. ¹HNMR and MS (ES) 389 (M + H)⁺.

MeO-N NH

ER-807789

[0259] To a suspension of **ER-807586** (5 mg, 0.0124 mmol, 1.0 eq.) in water (0.5 mL) was added NH₂OMeHCI (5.2 mg, 0.623 mmol, 50 eq.). The solid became soluble and saturated NaHCO₃ (0.3 mL) was slowly added and the resulting mixture was stirred overnight. The reaction mixture was diluted with EtOAc and saturated NaHCO₃, and extracted with 4xEtOAc. The organic layers were combined, dried over MgSO₄, filtered and concentrated. The crude mixture was purified by silica gel chromatography (10% MeOH-EtOAc) to give **ER-807789** as a white solid (5.3 mg, 100%). ¹HNMR and MS (ES) 432 (M + H)⁺.

HO., NH2

ER-807790

[0260] To a solution of **ER-807586** (15 mg) in MeOH-THF (1:1, 1 mL) was added NaBH $_4$ (20 mg) and the mixture was stirred for 30 min, diluted with saturated NaHCO $_3$ and extracted with 4xEtOAc. The organic layers were combined, dried over MgSO $_4$, filtered and concentrated. The crude mixture was purified by reverse HPLC (MeOH-H $_2$ O) to give **ER-807790**. ¹HNMR and MS (ES) 405.5 (M + H) $^+$.

55

5

10

15

20

25

30

35

40

45

5

10

15

20

25

30

35

40

45

50

ER-807835

[0261] To a solution of n-BuLi (1.6 M in hexanes, 0.35 mL, 0.56 mmol, 31.3 eq.) in THF (2.0 mL) at 0 $^{\circ}$ C was added methyl triphenylphosphonium bromide (0.20 g, 0.56 mmol, 31 eq.). The reaction was wormed to room temperature and stirred for 40 minutes. A portion of the solution (0.6 mL) was transferred to another flask and ER-807586 (7.2 mg, 0.0179 mmol, 1.0 eq.) was added. The resulting mixture was stirred at room temperature for 18 hours and water was added and the mixture was extracted with 3xEtOAc. The organic layers were combined, dried over MgSO₄, filtered and concentrated. The crude mixture was purified by reverse HPLC (MeOH-H₂O) to give **ER-807835** (0.8 mg, 12 %). 1 H NMR and MS (ES) 401.5 (M + 1 H).

HO NH2 N NH2 N NH

ER-807837

[0262] To a solution of **ER-807586** (11.5 mg, 0.0286 mmol, 1.0 eq.) in THF (2.0 mL) at 0 $^{\circ}$ C was added MeMgCl (3.0 M in THF, 0.25 mL, 0.75 mmol, 26.3 eq.). The reaction was warmed and stirred at room temperature for 18 hours. The reaction was quenched with saturated NaHCO₃, and then was extracted with 3xEtOAc. The organic layers were combined, dried over MgSO₄, filtered and concentrated. The resulting mixture was purified by silica gel chromatography (100% EtOAc, then 10% to 30% MeOH-EtOAc) to give **ER-807837** (0.8 mg, 7%). ¹H NMR and MS (ES) 419.4 (M + ¹H).

S NH2 N NH

ER-808036

[0263] 5-chloromethyl-indole-1-carboxylic acid *tert*-butyl ester was prepared from 8 following the procedure for the preparation of 9 but without the addition of morpholine.

[0264] A mixture of 5-chloromethyl-indole-1-carboxylic acid *tert*-butyl ester (0.82 g, 3.10 mmol, 1.0 eq.), cyclohexyl mercaptan (0.53 mL, 1.4 eq.) and $\rm K_2CO_3$ (0.90 g, 2.0 eq.) in DMF (6 mL) was heated at 40 °C until reaction completed. The reaction mixture was cooled to room temperature, diluted with sat NH₄Cl and extracted with diethyl ether. The organic extracts were dried over MgSO₄, filtered and concentrated. The resulting mixture was purified by chromatography (5% EtOAc/hexanes) to give 5-cyclohexylsulfanylmethyl-indole-1-carboxylic acid *tert*-butyl ester (0.79 g, 74%).

[0265] ER-808036 was prepared from 5-cyclohexylsulfanylmethyl-indole-1-carboxylic acid tert-butyl ester following

the procedures for the preparation of 16 from 14.

15

25

30

35

40

45

50

55

5
$$NH_2$$
 NH_2
 NH_2

[0266] To a solution of ER-808036 (60 mg, 0.15 mmol, 1.0 eq.) in THF (2.5 mL) and MeOH (1.5 mL) at -78 °C was added a solution of mCPBA (60 mg, -70%, 1.6 eq.) in THF. After stirring for 2 h, the reaction was quenched by addition of sat. Na₂S₂O₃ and sat NaHCO₃. The separated aqueous layer was extracted with 5xEtOAc, and the combined organic phase was dried over Na2SO4, filtered and concentrated. The crude mixture was purified by chromatography (5% to 10% MeOH/EtOAc) to give semipure products (18 mg and 32 mg each). After further purification by reverse phase HPLC 20 (MeOH-water), ER-808082 (3.2 mg) and ER-808083 (3.2 mg) were obtained. ¹NMR confirmed both of the products.

ER-808103

[0267] A mixture of 5-chloromethyl-indole-1-carboxylic acid tert-butyl ester (0.41 g, 1.55 mmol, 1.0 eq.), cyclohexanol (0.82 mL, 5.0 eq.) and Ag₂O (1.80 g, 5.0 eq.) in diethyl ether (5 mL) was stirred at 35°C over weekend. After cooling to room temperature, the reaction mixture was filtered through celite washing with ether. The filtrate was concentrated and the residue was purified by chromatography (3% EtOAc/hexanes) to give N-Boc-5-cyclohexyloxymethylindole (160 mg, 28%) as colorless oil. ¹HNMR comfirmed the compound.

[0268] ER-808103 was prepared from 5-cyclohexyloxylmethyl-indole-1-carboxylic acid tert-butyl ester following the procedures for the preparation of 16 from 14. Both MS (ES) and ¹HNMR comfirmed the compound.

ER-808040

[0269] To a suspension of compound 3 (R=Me, 300 mg, 1.03 μmol, 1.0 eq.) in THF (5 mL) at room temperature was added dropwise LiAH₄ (1.0 M in THF, 2.56 mL, 2.5 eq.) and the resulting mixture was then heated at 65 °C for 30 min. Afetr cooling to 0 °C, the reaction was quenched by addition of MeOH (1.2 mL, 30 eq.) and water (30 eq.), stirred and warmed to room temperature and filtered through celite washing with EtOAc. The filtrate was concentrated and the residue was purified by silica gel chromatography (EtOAc then 10% MeOH-EtOAc) to give 7-chloro-2-methyl-5-methylamino-3H imidazo[4,5-b]pyridine as a white solid (190 mg, 94%).

5

10

15

20

25

30

35

40

45

50

[0270] ER-808040 was prepared from 7-chloro-2-methyl-5-methylamino-3*H* imidazo[4,5-b]pyridine and 5-[(cyclohexyl-methyl-amino)-methyl]-2-tributylstannanyl-indole-1-carboxylic acid *tert*-butyl ester (prepared from 8 and cyclohexyl-methyl-amine following the procedures for the preparation of 10) following the procedure for the preparation of 13. ¹HNMR confirmed the compound.

ER-808128

[0271] To a solution of ER-807790 (17 mg, 0.042 mmol, 1.0 eq.) in CH_2CI_2 (1 mL) at 0 °C was added (MeOCH₂CH₂)₂NSF₃ (14 μ L, 1.8 eq.) and the resulting mixture was stirred for 1 h at 0 °C and 1 h at room temperature. The reaction was quenched with sat NaHCO₃ and the separated aqueous layer was extractred with CH_2CI_2 followed by EtOAc-THF (1:1). The combined organic extracts were dried over Na₂SO₄, filtered and concentrated. The residue was purified by reverse HPLC (MeOH-water) to give ER-808128 (2 mg, 13%). ¹H NMR and MS confirmed the structure.

5-formyl-indole-1-carboxylic acid tert-butyl ester or 6-formyl-indole-1-carboxylic acid tert butyl ester

[0272] To a solution of the 8 (8.0 g, 32.4 mmol, 1 eq.) in CH_2CI_2 (24 mL) was added portionwise Dess-Martin reagent (17.9 g, 1.3 eq.) at 0 °C and the resulting mixture was warmed slowly to room temperature and stirred for 30 min. The reaction mixture was diluted with Et_2O (100 mL), filtered through celite rinsing with Et_2O (50 m). The filtrate was washed with sat. $NaHCO_3$, dried over Na_2SO_4 , filtered and concentrated. The crude product was azeotroped with tolune to give 5-formyl-indole-1-carboxylic acid *tert*-butyl ester (7.3 g, 95%) or similarly 6-formyl-indole-1-carboxylic acid *tert*-butyl ester

ER-808281

[0273] Mg (turnings) was activated by washing with 1N HCl and $\rm Et_2O$, and dried on high vacuum overnight. Bromomethylcyclohexane (0.8 mL, 1 eq.) in $\rm Et_2O$ (4 mL) was added to the activated Mg (418 mg, 3 eq.) in $\rm Et_2O$ (10 mL) slowly to keep the internal temperature at 30-33 °C. The resulting reaction mixture was heated at 34 °C for 1 h and cooled to 0 °C. A solution of 5-formyl-indole-1-carboxylic acid *tert*-butyl ester (900 mg) in $\rm Et_2O$ (15 mL) was then introduced and the resulting mixture was warmed to room temperature, heated at 30-32 °C for 4 h, cooled to room temperature and then quenched with the addition of sat. NH₄Cl. The separated aqueous phase was extracted with EtOAc, the combined organic layer was dried over MgSO₄, filtered and concentrated. The crude product was purified by chromatography (10% to 25% EtOAc/hexanes) to give the corresponding alcohol (949 mg, 85%).

[0274] To a mixture of the alcohol (513 mg, 1 eq.) and Et₃N (625 μ L, 3 eq.) in CH₂Cl₂ (15 mL) at 0 °C was added

methanesulfonic anhydride (390 mg, 1.5 eq.). The cooling bath was removed and the resulting mixture was stirred for 2.5 h and diluted with sat. NaHCO₃. The separated aqueous layer was extracted with CH₂Cl₂. The combined organic layer was dried over Na₂SO₄, filtered and concentrated. The crude product was purified by chromatography (hexanes to 10% EtOAc/hexanes) to give 5-(2-cyclohexyl-vinyl)-indole-1-carboxylic acid *tert*-butyl ester (380 mg, 78%).

[0275] ER-808281 was prepared from 5-(2-cyclohexyl-vinyl)-indole-1-carboxylic acid *tert*-butyl ester following the procedures for the preparation of 16 from 14. MS (ES) and ¹HNMR confirmed the compound.

5

10

15

25

30

35

40

45

50

55

ER-808469

[0276] A solution of ER-808281 (~10 mg, 1 eq.) in MeOH (5 mL) with 10% Pd/C (catalytic) was kept under positive H₂ atmosphere overnight at room temperature. The mixture was then loaded onto silica gel eluting with EtOAc to 20% MeOH(EtOAc to give ER-808469 (7.5 mg). MS (ES) and ¹HMMR confirmed the compound.

5-vinyl-indole-1-carboxylic acid tert-butyl ester or 6-vinyl-indole-1-carbozylic acid tert-butyl ester

[0277] Ta suspension of methyltriphenylphosphonium bromide (8.1 g, 22.7 mmol) in THF (140 mL) at 0°C was added nBuLi (1.6 M in hexanes, 14.2 mL, 22.7 mmol) dropwise over 10 min. After 20 min of stirring, a solution of the 5-formyl-indole-1-carboxylic acid *tert*-butyl ester (4.63 g, 14.8 mmol) in THF (20 mL) was introduced slowly over 20 min. The reaction was warmed slowly to room temperature, stirred 30 min. The reaction mixture was poured into saturated ammonium chloride and the separated aqueous phase was extracted with ethylacetate (3x100 mL). The combined organic phase was dried over sodium sulfate, filtered and concentrated. The residue was purified by chromatography (methylene chloride to 1% acetone-methylene chloride) to give 5-vinyl-indole-1-carboxylic acid *tert*-butyl ester (4.7 g, 100%) or similarly 6-vinyl-indole-1-carboxylic acid *tert*-butyl ester.

5-(2-hydroxy-ethyl)-indole-1-carboxylic acid *tert*-butyl ester or 6-(2-hydroxyethyl)-indole-1-carboxylic acid *tert*-butyl ester

[0278] To a solution of 5-vinyl-indole-1-carboxylic acid *tert*-butyl ester (4.5 g, 18.5 mmol, 1.0 eq.) in THF (46 mL) at 0 °C was added 9-BBN (0.5 M in THF, 87 mL, 2.4 eq.) over 10 min. The resulting reaction mixture was stirred for 2.5 h and diluted with THF (150 mL) and water (150 mL) while keeping the temperature at 0 °C. Then NaBO₃ 4H₂O (44g) was introduced and resulting reaction mixture was stirred and warmed to room temperature and stirred. The reaction mixture was diluted with methylene chloride (100 mL) and the separated aqueous layer was extracted 3x100 mL methylene chloride. The combined organic layers were dried over sodium sulfate, filtered and concentrated. The residue was purified by chromatography (methylene chloride to 5% acetone/methylene chloride) to give 5-(2-hydroxy-ethyl)-indole-1-carboxylic acid *tert*-butyl ester (3.82 g, 76%) or similarly 6-(2-hydroxyethyl)-indole-1-carboxylic acid *tert*-butyl

ester.

5

10

5-(2-morpholin-4-yl-ethyl)-indole-1-carboxylic acid *tert*-butyl ester or 5-[2-(cyclohexyl-methyl-amino)-ethyl]-indole-1-carboxylic acid *tert*-butyl ester or 6-(2-morpholin-4-yl-ethyl)-indole-1-carboxylic acid *tert*-butyl ester or 6-[2-(cyclohexyl-methyl-amino)-ethyl]-indole-1-carboxylic acid *tert*-butyl ester

20

[0279] To a solution of 5-(2-hydroxy-ethyl)-indole-1-carboxylic acid *tert*-butyl ester (260 mg, 1mmol, 1.0 eq.), triphenyl phosphine (391 mg, 1.5 eq.) and Imidazole (136 mg, 2 eq.) in methylene chloride (5 mL) was added iodine (328 mg, 1.3eq.) in small portions over 20 min at room temperature. The reaction mixture was poured into water and extracted with 4x100 mL of methylene chloride. The combined organic phase was dried over sodium sulfate, filtered and concentrated. The residue was purified by silica gel chromatography (20% EtOAc/hexanes) to give a semipure iodide (600 mg). This iodide was then dissolved in MeOH (10 mL) and treated with morphoiline (1.73 mL, 20 eq.) at 60°C for overnight. The reaction mixture was cooled to room temperature, poured into water and extracted with methylene chloride. The combined organic layers were dried over sodium sulfate, filtered and concentrated. The residue was purified by silica gel column chromatography (methylene chloride to 15% acetone/methylene chloride) to give 5-(2-morpholin-4-yl-ethyl)-indale-1-carbaxylic acid *tert*-butyl ester or 6-(2-morpholin-4-yl-ethyl)-indole-1-carboxylic acid *tert*-butyl ester or 6-[2-(cyclohexyl-methyl-amino)-ethyl)-indole-1-carboxylic acid *tert*-butyl ester or 6-[2-(cyclohexyl-methyl-amino)-ethyl)-indole-1-carboxylic acid *tert*-butyl ester.

30

35

5-(2-metboxycarbonyl-vinyl)-indole-1-carboxylic acid *tert*-butyl ester or 6-(2-methoxycarbonyl-vinyl)-indole-1-carboxylic acid *tert*-butyl ester

40

[0280] To a solution of the 5-formyl-indole-1-carboxylic acid tert-butyl ester (3.4 g, 13.8 mmol, 1.0 eq.) in toluene (35 mL) was added $Ph_3P=CHCO_2Me$ (5.5 g, 1.2 eq.) at room temperature and the resulting mixture was stirred overnight. After concentration, the crude product purified by silica gel column chromatography (methylene chloride to 1% acetone-methylene chloride) to give 5-(2-methoxycarbonyl-vinyl)-indole-1-carboxylic acid tert-butyl ester (5.03 g, 90%) or similarly 6-(2-memoxycarbonyl-vinyl)-indole-1-carboxylic acid tert-butyl ester.

45

50

5-(3-hydroxy-propenyl)-indole-1-carbosylic acid *tert*-butyl ester or 6-(3-hydroxy-propenyl)-indole-1-carboxylic acid *tert*-butyl ester

1.0 55 the slov

[0281] To a solution of methyl 5-(2-methoxycarbonyl-vinyl)-indole-1-carboxylic acid *tert-butyl* ester (4.64g, 15.3 mmol, 1.0 eq.) in THF (87 mL) at -30 °C was added LiA1H₄ (I N in THF, 18.6 mL, 1.2 eq.) by syringe pump over 20 min and the resulting mixture was stirred and warmed to -5 °C. After cooling back to -30 °C, the reaction was then quenched by slow addition of acetone (10 mL) keeping temperature below -15 °C, poured into Rochelle salt at 0 °C, stirred for 1 h and the separated aqueous layer was extracted with EtOAc. The combunede organic phase was dried over sodium sulfate, filtered and concentrated. The residue was purification by column chromatography (methylene chloride to 2%

acetone/methylene chloride) to give 5-(3-hydroxy-propenyl)-indole-l-carboxylic acid *tert*-butyl ester (2.89 g, 70%) or or similarly 6-(3-hydroxy-propenyl)-indole-1-carboxylic acid *tert*-butyl ester.

N Bo

5-(3-morpholin-4-yl-propenyl)-indole-1-carboxylic acid *tert*-butyl ester or 6-(3-morpholin-4-yl-propenyl)-mdole-l-carboxylic acid *tert*-butyl ester

[0282] To a solution 5-(3-hydroxy-propenyl)-indole-1-carboxylic acid tert-butyl ester (0.95 mg, 3.48 mmol, 1.0 eq.) and Et₃N (1.8 mL, 3.0 eq.) in methylene chloride (10 mL) at 0 °C was added MsCl (0.40 mL, 1.5 eq.). The resulting mixture was stirred for 30 min and wormed to room temperature and stirred for additional 1 h. Then cyclohexyl-methyl-amine (8.3 mL, 18 eq.) was introduced and the resulting mixture was stirred over weekend, diluted with sat. NaHCO₃ and the separated aqueous phase was extracted with 3xEtOAc. The combined organic phase was dried over Na₂SO₄, filtered and concentrated. The residue was purified by silica gel chromatography (50% EtOAc/hexanes) to give 5-(3-morpholin-4-yl-propenyl)-indole-1-carboxylic acid tert-butyl ester or similarly 6-(3-morpholin-4-yl-propenyl)-indole-1-carboxylic acid tert-butyl ester.

25

30

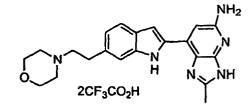
40

45

50

5

10


15

20

2CF₃CO₂H

³⁵ ER-808501

ER-808514

ER-8085042

ER-808544

[0283] Analogs ER-808501, ER 808514, ER-8085042 and ER-808544 are prepared from 5-(2-morpholin-4-yl-ethyl)-in-dole-1-carboxylic acid *tert*-butyl ester, 5-(3-morpholin-4-yl-propenyl)-indole-1-carboxylic acid *tert*-butyl ester, 6-(3-morpholin-4-yl-propenyl)-indole-1-carboxylic acid *tert*-butyl ester and 6-(2-morpholin-4-yl-ethyl)-indole-1-carboxylic acid *tert*-butyl ester following the same procedures for the preparation of 16 from 14.

ER-809047

[0284] A solution of **20** (51 mg) in methylene chloride (1 mL) was treated at room temperature with trifluoroacetic acid (1 mL) for 3 h and concentrated. The solid residue was washed with Et₂O and MeOH to give crude product (18.2 mg). The crude product was then purified by reverse phase HPLC (MeOH-water) to give **ER-809047** (9.6 mg, 44%). MS (ES), ¹⁹F and ¹HNMR. confirmed the structure.

IC-261

25

5

10

15

20

[0285] A mixture of 7-chloro-3H-imidazo[4,-b]pyridine (J. Heterocyclic. Chem. 1982, 19, 513) (250 mg, contain 25% of 5-chloro-3H-imidazo[4,5-b)pyridine), 2-tributylstannanyl-indole-1-carboxylic acid *tert*-butyl ester (11, 822 mg) and tetrakis(triphenyphosphine) palladium(0) (188 mg) in DMF (10 mL) was heated at 120°C for 6 h. The reaction mixture was extracted with AcOEt, and washed with water and brine. Organic layer was dried over MgSO₄ and evaporated. The residue was purified by chromatography (AcOEt/hexane) to give 7-(1H-indol-2-yl)-3H-imidazo[4,5-b]pyridine IC-261 (28 mg) as a pale brown solid. ¹H NMR confirmed the structure.

35

30

40

[0286] A mixture of **2** (1.66 g, 6 mmol), 2-tributylstannanyl-indole-1-carboxylic acid *tert*-butyl ester (11, 3.6 g, 7 mmol), triethylamine (0.83 ml, 6 mmol), and tetrakis(triphenylphosphine)palladium(0) (600 mg,10 mol%) in DMF (10 mL) was heated at 130° C for 6 h. During the reaction, **11** was added in two portions (1.01g X 2). The reaction mixture was extracted with ethyl acetate and washed with water, and dried over anhydrous magnesium sulfate. After filtration, silica gel (400 mesh) was added to the residue and concentrated. The residue was purified by chromatography (AcOEt/MeOH) to give **IC-395** (240 mg) and **IC-375** (80 mg). ¹H NMR confirmed the structure.

50

45

55

(7-chloro-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-5-yl}-carbamic acid ethyl ester

[0287] To a solution of diethyl 4-chloro-S-nitro-2,6 pyridinedicarbamate (intermediate for the preparation of 1) (500

mg) in EtOH (50 mL) was added Raney Ni (1 g) and stirred for 12 h under hydrogen atmosphere at room temperature. Reaction mixture was filtered on celite and filtrate was concentrated under reduced pressure. Residue was dissolved in 2-propanol (10 mL) and stirred for 60 h under reflux. The reaction mixture was cooled to room temperature and precipitate was filtered. The filtrate was concentrated to give 250 mg of (7-chloro-2-oxo-2,3-dihydro-1H imidazo[4,S-b]pyridin-5-yl)-carbamic acid ethyl ester as a gray solid. ¹H NMR confirmed the structure.

IC-380

[0288] A mixture of (7-chloro-2-oxo-2,3-dihydro-1*H*-dihydro[4,5-b]pyridin-5-yl)-carbamic acid ethyl ester (240 mg), 2-tributylstannanyl-indole-1-carboxylic acid *tert*-butyl ester (11, 472 mg) and tetrakis(triphenylphosphine)palladium(0) (54 mg) in DMF (10 mL) was heated at 120 °C for 4 h. Additional 2-tributylstannanyl-indole-1-carboxylic acid *tert*-butyl ester (11, 472 mg) and tetrakis(triphenylphosphine) palladium(0) (54 mg) was introduced and the resulting mixture was heated at 120 °C for an additional 12 h. The reaction mixture was concentrated under reduced pressure and purified by chromatography (AcOEt/MeOH) to give IC-380 (20 mg) as a pale gray solid. ¹H NMR confirmed the structure.

25

30

35

40

5

10

15

20

(2-amino-7-chloro-3H-imidazo[4,5-b]pyridin:-5-yl)-carbamic acid ethyl ester

[0289] Cyanogen bromide (0.55 g, 5.2 mmol) was added to a stirred solution of ethyl 5,6-diamino-4-chloro-2-pyridinecarbamate (intermediate for the preparation of 1, 1.00 g, 4.3 mmol) in 20 mL of ethanol at room temperature. The solution was stirred for 3 h and then at 60 $^{\circ}$ C for 3 h. The precipitate was filtered and washed with diethyl ether to give (2-amino-7-chloro-3*H*-imidazo[4,5-b]pyridin-5-yl)-carbamic acid ethyl ester (0.55 g, 38 %) as a yellow powder. 1 H NMR confirmed the structure.

45

50

55

[0290] IC-416 was obtained from (2-amino-7-chloro-3*H* imidazo[4,5-b]pyridin-5-yl)-carbamic acid ethyl ester and **11** by using the typical procedure described for IC-380. ¹H NMR confirmed the structure.

IC-416

$$R_2 = H$$
, Me, Et

7-iodo-2-alkyl-3H-imidazo[4,5-b]pyridine

5

10

15

20

30

35

40

45

50

55

[0291] Compound 7-iodo-2-alkyl-3*H*-imidazo[4,5-b]pyridine (7-iodo-3H-imidazo[4,5-b]pyridine, 7-iodo-2-methyl-3*H*-inidazo[4,5-b]pyridine, 7-iodo-2-ethyl-3H-imidazo[4,5-b]pyridine) and /or its HI salt was prepared from 4-chloro-pyridine-2,3-diamine (Recueil, 1969, 88, 1263-1274) following the same procedure for the preparation of **2** and **4** from **1**.

F N N N H

5-fluoro-7-iodo-2-methyl 3H-imidazo[4,5-b]pyridine

[0292] To a solution of **4** (R_2 =Me, HI mono-salt, 300 mg, 0.75 mmol, 1.0 eq.) in HBF₄ (48-51% in water, 3 mL) at 0 °C was added NaNO2 (1.0 g, 19 eq.) portionwise over 1 h period keeing the reaction temperature under 4°C. The resulting mixture was stirred at 0 °C for 40 min and at room temperature for 30 min. The reaction was then quenched with sat. NaHCO₃ and the resulting mixture was extracted with 5xEt₂O. The combined organic phase was dried over Na₂SO₄, filtered and concentrated to give 5-fluoro-7-iodo-2-methyl-3*H*-imidazo[4,5-b] pyridine as a light brown solid (170 mg, 86%). ¹⁹FNMR, ¹HNMR and MS confirmed the structure.

[0293] Compound **66** was prepared from 7-iodo-2-alkyl-3H imidazo[4,S-b]pyridine (or its HI mono-salt) or 5-fluoro-7-iodo-2-methyl-3H-imidazo[4,5-b]pyridine and 15 following the same procedure for the preparation of 13 or 64.

[0294] Compound 67 was prepared from 7-iodo-2-methyl-3H imidazo[4,5-b]pyridine and 15 following the same procedure for the preparation of 65.

	ER-#	1. Structure of 66 or 67	¹ H NMR and/or MS
5	807496	N H N NH	¹ HNMR
10	807584		¹ HNMR
15		H N NH	
20	807585	N N N N N N N N N N N N N N N N N N N	¹ HNMR
25	807587	F N N N N N N N N N N N N N N N N N N N	¹ HNMR
30	807750	N N N NH	¹ HNMR
35	807787		¹ HNMR
40		H N H	
45	807788	O H N N NH	¹ H NMR
50	807865	N H N NH	¹ H NMR
55		l	

	ER-#	1. Structure of 66 or 67	¹ H NMR and/or MS
5	808009	N N N NH	¹ H NMR
10	808081		¹ H NMR
15	808081	N H N NH	THININE
20	808085	The Hall with	¹ HNMR
25 30	808160	N N N NH	¹ HNMR
35	808256	N N N NH	¹ HNMR
40 45	808257	D N N N N N N N N N N N N N N N N N N N	¹ H NMR
50	808259	Mac.,, N N N N N N N N N N N N N N N N N N	¹ H NMR
55	808260	N N N N N N N N N N N N N N N N N N N	¹ H NMR

	ER-#	1. Structure of 66 or 67	¹ H NMR and/or MS
5	808261	CN N N NH	¹ HNMR
10	808262	H N N NH	¹ HNMR
15 20	808266	CF3CO2H H N NH	¹ H NMR
	808268		¹ H NMR
25	808269	H N NH	¹ HNMR
30		THE PART OF THE PA	
35	808284		¹ H NMR
40	808285	N N NH	¹ HNMR
45	808286	ON H N NH	¹ HNMR
50	808287		¹ H NMR
55		N	

	ER-#	1. Structure of 66 or 67	¹ H NMR and/or MS
5	808288	(a) H N NH	¹ H NMR
10	808289	(R) H N NH	¹ H NMR
15	808291		¹ H NMR
20	808310	H N NH	¹ H NMR
25			
30	808311	H N NH	¹ H NMR
35		N N NH	
40	808319		¹ H NMR
45		H N NH	
50	808322	N H N NH	¹ HNMR
55		· · · · · · · · · · · · · · · · · · ·	

(continued)

	ER-#	1. Structure of 66 or 67	¹ H NMR and/or MS
5	808361	HO H N NH	¹ H NMR
10	808362		¹ H NMR
15		HNYNH	
20	808363	N N N NH	¹ H NMR
25 30	808370	CN TH N NH	¹ HNMR
35	808372	N H N NH	¹ H NMR
40	808385	N H N NH	¹ H NMR
45	808386	H N NH	¹ H NMR
50	808388	N N N NH	¹ H NMR

	ER-#	1. Structure of 66 or 67	¹ H NMR and/or MS
5	808469	N N N N N N N N N N N N N N N N N N N	¹ H NMR
10	808470		¹ H NMR
15		MeO N N NH	
20	808473	A H A N H A	¹ H NMR
25	808496	ON H N N NH	¹ H NMR
30	808497	N H N NH	¹ H NMR
35	808498	N N N N N N N N N N N N N N N N N N N	¹ H NMR
40	808499	N N N NH	¹ H NMR
45	808500	CF ₃ CO ₂ H CF ₃ CO ₂ H N N N N N N N N N N N N N N N N N N	¹ H NMR
50	808513	CF ₃ CO ₂ H	¹ H NMR
55		CF ₃ CO ₂ H H N NH	

	ER-#	1. Structure of 66 or 67	¹ H NMR and/or MS
5	808541	° N N N N N N N N N N N N N N N N N N N	¹ H NMR
10	808543	CF ₃ CO ₂ H CF ₃ CO ₂ H	¹ H NMR
20	808571	N N N N N N N N N N N N N N N N N N N	¹ H NMR
25	808600	N TH N NH	¹ H NMR
30	808617	CN CN N N N N N N N N N N N N N N N N N	¹ H NMR
35	808620		¹ H NMR
45	808622		¹ H NMR
50	808623	HCI H N NH	¹ HNMR
55	808624	∇N H N NH	¹ HNMR

(continued)

¹HNMR

¹H NMR

55

(continued)

¹H NMR and/or MS ER-# 1. Structure of 66 or 67 808673 ¹H NMR 5 10 808691 ¹H NMR 15 808692 ¹H NMR 20 808703 ¹HNMR 25 CF₃CO₂H 808704 ¹H NMR 30 CF₃CO₂H 808705 ¹H NMR 35 CF₃CO₂H 40 808711 ¹H NMR 45 ¹H NMR 808712 50 ¹H NMR 808713 55

(continued)

¹H NMR and/or MS ER-# 1. Structure of 66 or 67 808714 ¹H NMR 5 ¹H NMR 808717 10 15 808719 ¹H NMR chiral 20 ¹H NMR 808720 25 ¹H NMR 808834 30 808835 ¹H NMR 35 808849 ¹H NMR 40 809187 ¹H NMR 45 ·HI

55

(continued)

¹H NMR and/or MS ER-# 1. Structure of 66 or 67 809196 MS 5 2 CF₃CO₂H 10 809197 MS 15 2 CF₃CO₂H 809198 MS 20 2 CF₃CO₂H 25 809199 MS 30 3 CF₃CO₂H 809200 MS HO 35 2 CF₃CO₂H 40 809201 MS 45 2 CF₃CO₂H MS 809202 50 2 CF₃CO₂H

148

(continued)

	ER-#	1. Structure of 66 or 67	¹ H NMR and/or MS
5	809203	Cu~H~Cu	MS
10	000004	3 CF ₃ CO ₂ H	MC
15	809204	HO	MS
20	809205	2 CF ₃ CO ₂ H	MS
25		2 CF ₃ CO ₂ H N NH	
30	809206	2 CF ₃ CO ₂ H N NH	MS
35	809207	N N N CN	MS
40	809208	3 CF ₃ CO ₂ H H N N	MS
45	000200	3 CF ₃ CO ₂ H	WIG
50	809209	A CE CO II	MS
55		2 CF ₃ CO ₂ H	

(continued)

	ER-#	1. Structure of 66 or 67	¹ H NMR and/or MS
5	809210	2 CF ₃ CO ₂ H	MS
15	809211	2 CF ₃ CO ₂ H N N	MS
20	809212	3 CF ₃ CO ₂ H	MS
25 30	809213	2 CF ₃ CO ₂ H	MS
35	809214	2 CF ₃ CO ₂ H N NH	MS
40	809215	2 CF ₃ CO ₂ H N N	MS
45	809216	2 CF ₃ CO ₂ H N N N	MS
50	809217	H N. N	MS
55		2 CF ₃ CO ₂ H	

(continued)

	ER-#	1. Structure of 66 or 67	¹ H NMR and/or MS
5	809218	2 CF ₃ CO ₂ H	MS
15	809219	2 CF ₃ CO ₂ H	MS
20	809220	2 CF ₃ CO ₂ H N N	MS
30	809221	2 CF ₃ CO ₂ H N N	MS
35	809222	3 CF ₃ CO ₂ H N N	MS
40	809223		MS
45	809224	2 CF ₃ CO ₂ H	MS
50		O CF ₃ CO ₂ H	5

151

(continued)

	ER-#	1. Structure of 66 or 67	¹ H NMR and/or MS
5	809225		MS
10		CF ₃ CO ₂ H	
15	809226	2 CF ₃ CO ₂ H	MS
	809227		MS
20		CF ₃ CO ₂ H	
25	809228	CF ₃ CO ₂ H	MS
30	809229	N N N N N N N N 2 CF ₃ CO ₂ H	MS
40	809230	HO H N NH CF3CO2H	MS
45	809231	CF ₃ CO ₂ H	MS
50	809232	O H N N NH CF3CO ₂ H	MS

(continued)

ER-#	1. Structure of 66 or 67	¹ H NMR and/or MS
809233	2 CF ₃ CO ₂ H	MS
809234	N N N N N N N N N N N N N N N N N N N	MS
809235	CF ₃ CO ₂ H	MS
809236	CF ₃ CO ₂ H	MS
809237	CF ₃ CO ₂ H	MS
809238	HO CF ₃ CO ₂ H	MS

7-iodo-2-methyl-1,4-dihydro-imidazo[4,5-b]pyridin-5-one

[0295] To a solution of compound 4 (R=Me, 160 mg, 0.59 mmol) in 10 mL of 20% aqueous H_2SO_4 at 0 $^{\circ}C$ was added sodium nitrite (1.54 mmol) in small portions and the resulting mixture was stirred at room temperature overnight. The reaction mixture was neutralized with sat. aqueous NH_3 to pH 7-8, and the resulting precipitate was collected to give a yellow solid. This solid was then crystallized in water to give 140 mg of product 7-iodo-2-methyl-1,4-dihydro-imidazo[4,5-b]pyridin-5-one (87%) with satisfactory MS and 1H NMR.

ER-807546

[0296] ER-807546 was prepared from 7-iodo-2-methyl-1,4-dihydro-imidazo[4,5-b]pyridin-5-one and 10 (R'=PhCH₂, R"=Me) following the same procedure for the preparation of 13. Satisfactory MS and 1 H NMR were obtained for ER-807546.

ER-809251 ER-809252

[0297] Analogs **ER-809251** and **ER-809252** are prepared from 7-iodo-2-xnethyl-3H imidazo[4,5-b)pyridine and 6-[2-(cyclohexyl-methyl-amino)-ethyl]-indole-1-carboxylic acid *tert*-butyl ester and 5-[2-(cyclohexyl-methyl-amino)-ethyl]-indole-1-carboxylic acid *tert*-butyl ester respectively following the same procedures for the preparation of 16 from 14.

[0298] 3) Biological Assays

[0299] HUVEC Assay Protocol:

[0300] Pooled human umbilical vein endothelial cells (HUVEC, Clonetics, Inc) were seeded in 96 well plates at 5 x 10^4 cell/ml and incubated at 37° C. The following day, $20~\mu$ l of the each compound dilution was added to the cells and incubated for 30 minutes followed by stimulation with TNF α (1 ng/ml) for four hours at 37° C. After TNF stimulation, the plates were washed with PBS containing 0.5% BSA, fixed with 0.025% glutaraldehyde, and stained with primary and secondary antibodies for detection of E-selectin and ICAM expression. The plates were incubated with 100 μ l of the primary murine anti-human E-selectin and anti-human ICAM antibody (R&D Systems, Minneapolis, MN) diluted 1:500 in PBS containing 0.5% BSA and 5% FBS for one hour after which the plates were washed and incubated with 100 μ l of a secondary peroxidase conjugated goat anti-mouse IgG antibody (Pierce, Rockford, IL) diluted 1:10,000 in PBS/0.5%BSA/5%FBS for 30 minutes. The plates were then washed and 100 μ l of TMB substrate was added and the color reaction was allowed to develop for 15-20 minutes. The reaction was stopped by the addition of 50 μ l of 1 N H₂SO₄ and the optical density (OD) was read on microplate spectrophotometer at 450 nm. IC₅₀ values were determined based on percent inhibition as calculated by the following formula:

% Inhibition =
$$\left(1 - \left(\frac{\text{(avg. compound OD - avg. blank OD)}}{\text{(avg. TNF OD - avg. blank OD)}}\right) * 100$$

Claims

1. A compound having the structure (I):

55

50

5

10

15

20

25

30

35

40

$$(R_3)_n$$
 N
 H
 HN
 N
 R_2

10 (1)

5

15

20

25

30

35

40

45

50

55

and pharmaceutically acceptable derivatives thereof; wherein n is an integer from 0-4;

R₁ is hydrogen, -NH₂, -NHMe, -NHAc, -OH, F, -OMe, -CN, or - NH(C=O)OEt;

 R_2 is hydrogen, -NR_AR_B, -OR_A, an aliphatic, heteroaliphatic, C_{3-14} aryl, or C_{3-14} heteroaryl moiety, wherein R_A and R_B are each independently hydrogen or an aliphatic, heteroaliphatic, aryl or heteroaryl moiety;

each occurrence of R_3 is independently hydrogen, halogen, cyano, or an aliphatic, heteroaliphatic, C_{3-14} aryl or C_{3-14} heteroaryl moiety, or a group -G-R_C, wherein G is absent or is -CH₂-, -NR_D-, -O-, or (C=O), and wherein R_C is hydrogen, -NR_FR_G, -OR_F, -SR_F, or an aliphatic, heteroaliphatic, C_{3-14} aryl, or C_{3-14} heteroaryl moiety, wherein R_D, R_F and R_G are each independently hydrogen, -NR_xR_y, an aliphatic, cycloaliphatic, heteroaliphatic, cycloheteroaliphatic, C_{3-14} aryl, or C_{3-14} heteroaryl moiety, -C(O)R_z wherein R_z is an aliphatic, heteroaliphatic, C_{3-14} aryl or C_{3-14} heteroaryl moiety, or wherein R_D and R_C or R_F and R_G taken together are a 3-, 4-, 5-, 6-, 7- or 8-membered substituted or unsubstituted cycloaliphatic or cycloheteroaliphatic moiety; wherein each occurrence of R_x and R_y is independently hydrogen, an aliphatic, cycloaliphatic, heteroaliphatic, cycloheteroaliphatic, C_{3-14} aryl, or C_{3-14} heteroaryl moiety, -C(O)R_z wherein R_z is an aliphatic, heteroaliphatic, aryl or heteroaryl moiety;

or wherein R_x and R_y taken together are a 4-, 5- or 6-membered substituted or unsubstituted, saturated cycloaliphatic or cycloheteroaliphatic moiety;

wherein aliphatic includes alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl and cycloalkynyl, having 1 to 20 carbon atoms and wherein the form heteroaliphatic refers to aliphatic moieties when contain one or more oxygen, sulphur, nitrogen, phosphorous or silicon atoms,

whereby each of the foregoing aliphatic or heteroaliphatic moieties may be independently substituted or unsubstituted, cyclic or acyclic, linear or branched, saturated or unsaturated and wherein each of the foregoing aryl or heteroaryl moieties may be independently substituted or unsubstituted.

2. The compound of claim 1, wherein the compound has the structure:

wherein R_{3a} and R_{3b} are each independently hydrogen, halogen, cyano, or an aliphatic, heteroaliphatic, C_{3-14} aryl or C_{3-14} heteroaryl moiety, or a group -G-R_C, wherein G is absent, -CH₂-,

-NR_D-, -O-, or (C=O), and wherein R_C is hydrogen, -NR_FR_G, -OR_F, -SR_F, or an aliphatic, heteroaliphatic, C_{3-14} aryl, or C_{3-14} heteroaryl moiety, wherein R_D, R_F and R_G are each independently hydrogen, -NR_xR_y, an aliphatic, cycloaliphatic, heteroaliphatic, cycloheteroaliphatic, C_{3-14} aryl, or C_{3-14} heteroaryl moiety, -C(O)R_z wherein R_z is an aliphatic, heteroaliphatic, C_{3-14} aryl, or C_{3-14} heteroaryl moiety, or wherein R_D and R_C or R_F and R_G taken together are a 3-, 4-, 5-, 6-, 7- or 8-membered substituted or unsubstituted cycloaliphatic or cycloheteroaliphatic moiety; wherein each occurrence of R_x and R_y is independently hydrogen, an aliphatic, cycloaliphatic, heteroaliphatic, cycloheteroaliphatic, C_{3-14} aryl, or C_{3-14} heteroaryl moiety, or wherein R_x and R_y taken together are a 4-, 5- or 6-membered substituted or unsubstituted, saturated or unsaturated cycloaliphatic or cycloheteroaliphatic moiety;

whereby each of the foregoing aliphatic or heteroaliphatic moieties may be independently substituted or unsubstituted, cyclic or acyclic, linear or branched, saturated or unsaturated; and wherein each of the foregoing aryl or heteroaryl moieties may be independently substituted or unsubstituted.

3. The compound of claim 1, wherein the compound has the structure:

5

10

15

20

25

30

35

40

45

50

55

wherein R_{3a} and R_{3b} are each independently hydrogen, halogen, cyano, or an aliphatic, heteroaliphatic, C_{3-14} aryl, or C_{3-14} heteroaryl moiety, or a group -G- R_C , wherein G is absent, -CH $_2$ -,

-NR_D-, -O-, or (C=O), and wherein R_C is hydrogen, -NR_FR_G, -OR_F, -SR_F, or an aliphatic, heteroaliphatic, C_{3-14} aryl, or C_{3-14} heteroaryl moiety, wherein R_D, R_F and R_G are each independently hydrogen, -NR_xR_y, an aliphatic, cycloaliphatic, heteroaliphatic, cycloheteroaliphatic, C_{3-14} aryl, or C_{3-14} heteroaryl moiety, -C(O)R₂ wherein R_Z is an aliphatic, heteroaliphatic, C_{3-14} aryl, or C_{3-14} heteroaryl moiety, or wherein R_D and R_C or R_F and R_G taken together are a 3-, 4-, 5-, 6-, 7- or 8-membered substituted or unsubstituted cycloaliphatic or cycloheteroaliphatic moiety; wherein each occurrence of R_x and R_y is independently hydrogen, an aliphatic, cycloaliphatic, heteroaliphatic, cycloheteroaliphatic, C_{3-14} aryl, or C_{3-14} heteroaryl moiety, or wherein R_x and R_y taken together are a 4-, 5- or 6-membered substituted or unsubstituted, saturated or unsaturated cycloaliphatic or cycloheteroaliphatic moiety;

whereby each of the foregoing aliphatic or heteroaliphatic moieties may be independently substituted or unsubstituted, cyclic or acyclic, linear or branched, saturated or unsaturated; and wherein each of the foregoing aryl or heteroaryl moieties may be independently substituted or unsubstituted.

4. The compound of claim 1, wherein the compound has the structure:

wherein R_1 , R_2 , R_F and R_G are as defined in claim 1.

5. The compound of claim 1, wherein the compound has the structure:

wherein R_1 , R_2 , R_F and R_G are as defined in claim 1.

6. The compound of claim 1, wherein the compound has the structure:

wherein $\rm R_1,\, R_2,\, R_F$ and $\rm R_G$ are as defined in claim 1.

15

35

40

45

50

55

7. The compound of claim 1, wherein the compound has the structure:

wherein q and r are each independently 0 or 1; and R_1 , R_2 , R_F and R_G are as defined in claim 1.

30 **8.** The compound of claim 1, wherein the compound has the structure:

wherein q and r are each independently 0 or 1; and R_1 , R_2 , R_F and R_G are as defined in claim 1.

9. The compound of claim 1, wherein the compound has the structure:

wherein $R_{1},\,R_{2},\,R_{F}$ and R_{G} are as defined in claim 1.

10. The compound of claim 1, wherein the compound has the structure:

R_GR_FN N N N R₂

wherein R_1 , R_2 , R_F and R_G are as defined in claim 1.

11. The compound of claim 1, wherein the compound has the structure:

wherein R_1 and R_2 are as defined in claim 1;

m is 0, 1 or 2; and

 $R_{\rm F}$ is an aliphatic, cycloaliphatic, heteroaliphatic, cycloheteroaliphatic, C_{3-14} aryl, or C_{3-14} heteroaryl moiety; whereby each of the foregoing aliphatic or heteroaliphatic moieties may be independently substituted or unsubstituted, cyclic or acyclic, linear or branched, saturated or unsaturated; and wherein each of the foregoing aryl or heteroaryl moieties may be independently substituted or unsubstituted.

12. The compound of claim 1, wherein the compound has the structure:

wherein R₁ and R₂ are as defined in claim 1; and

 R_F is hydrogen, a protective group or an aliphatic, cycloaliphatic, heteroaliphatic, cycloheteroaliphatic, C_{3-14} aryl, or C_{3-14} heteroaryl moiety;

whereby each of the foregoing aliphatic or heteroaliphatic moieties may be independently substituted or unsubstituted, cyclic or acyclic, linear or branched, saturated or unsaturated; and wherein each of the foregoing aryl or heteroaryl moieties may be independently substituted or unsubstituted.

13. The compound of claim 1, wherein the compound has the structure:

55

5

10

15

30

35

40

45

10

15

20

5

wherein R_1 and R_2 are as defined in claim 1;

G is CH₂ or -(C=O); and

X is O, S, C=O, S=O, C=CR $_4$ R $_5$, NR $_4$, or CR $_4$ R $_5$; wherein each occurrence of R $_4$ and R $_5$ is independently hydrogen, hydroxyl, halogen, cyano an aliphatic, heteroaliphatic, C $_{3-14}$ aryl, or C $_{3-4}$ heteroaryl moiety, or is -C(O)R $_z$ wherein R $_z$ is an aliphatic, heteroaliphatic, C $_{3-14}$ aryl or C $_{3-14}$ heteroaryl moiety;

whereby each of the foregoing aliphatic or heteroaliphatic moieties may be independently substituted or unsubstituted, cyclic or acyclic, linear or branched, and

wherein each of the foregoing aryl or heteroaryl moieties may be independently substituted or unsubstituted.

14. The compound of claim 1, wherein the compound has the structure:

$$X \longrightarrow G \longrightarrow H \longrightarrow H_2$$

30

35

40

25

wherein R_1 and R_2 are as defined in claim 1;

G is CH2 or -(C=O); and

X is O, \overline{S} , C=O, S=4, C=CR₄R₅, NR₄, or CR₄R₅; wherein each occurrence of R₄ and R₅ is independently hydrogen, hydroxyl, halogen, cyano an aliphatic, heteroaliphatic, C₃₋₁₄aryl, or C₃₋₁₄heteroaryl moiety, or is -C(O)R₂ wherein R₂ is an aliphatic, heteroaliphatic, C₃₋₁₄aryl or C₃₋₁₄heteroaryl moiety;

whereby each of the foregoing aliphatic or heteroaliphatic moieties may be independently substituted or unsubstituted, cyclic or acyclic, linear or branched, and

wherein each of the foregoing aryl or heteroaryl moieties may be independently substituted or unsubstituted.

15. The compound of claim 1, wherein the compound has the structure:

45

50

55

wherein R₁ and R₂ are as defined in claim 1;

G is CH_2 or -(C=O); and

hydroxyl, halogen, cyano an aliphatic, heteroaliphatic, C_{3-14} aryl, or C_{3-14} heteroaryl moiety, or is -C(O) R_z wherein R_z is an aliphatic, heteroaliphatic, C_{3-14} aryl, or C_{3-14} heteroaryl moiety;

whereby each of the foregoing aliphatic or heteroaliphatic moieties may be independently substituted or unsubstituted, cyclic or acyclic, linear or branched, and

- wherein each of the foregoing aryl or heteroaryl moieties may be independently substituted or unsubstituted.
- 16. The compound of claim 1, wherein the compound has the structure:

wherein R_1 and R_2 are as defined in claim 1;

p is an integer from 0-3;

5

25

30

45

50

s is an integer from 0-4;

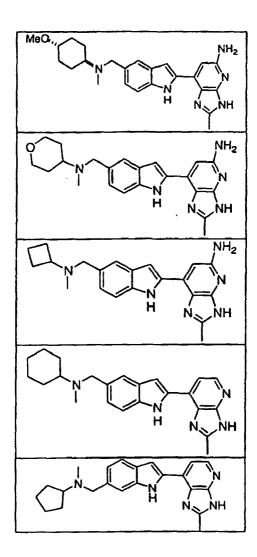
A, B, D, E and each occurrence of K are independently absent, O, S, -C=O, - S=O, -C=CR $_4$ R $_5$, -NR $_4$, or -CR $_4$ R $_5$, wherein each occurrence of R $_4$ and R $_5$ is independently hydrogen, hydroxyl, halogen, cyano, -OR $_x$, -SR $_x$, -NR $_x$ R $_y$, an aliphatic, heteroaliphatic, C $_{3-14}$ aryl, or C $_{3-14}$ heteroaryl moiety, or is -C(O)R $_z$ wherein R $_z$ is an aliphatic, heteroaliphatic, C $_{3-14}$ aryl], or C $_{3-14}$ heteroaryl moiety; and wherein A and B, B and D, D and E, E and K and any two adjacent K groups may be linked by a single or double bond as valency permits; wherein each occurrence of R $_x$ and R $_y$ is independently hydrogen, a protecting group, or an aliphatic, heteroaliphatic, C $_{3-14}$ aryl, C $_{3-14}$ heteroaryl, aliphaticC $_{3-14}$ aryl, heteroaliphatic C $_{3-14}$ aryl, aliphaticC $_{3-14}$ heteroaryl or heteroaliphaticC $_{3-14}$ heteroaryl moiety; whereby each of the foregoing aliphatic or heteroaliphatic moieties may be independently substituted or unsubstituted, cyclic or acyclic, linear or branched, saturated or unsaturated and wherein each of the foregoing C $_{3-14}$ aryl, C $_{3-14}$ heteroaryl aliphaticC $_{3-14}$ aryl, heteroaliphatic C $_{3-14}$ aryl, aliphaticC $_{3-14}$ heteroaryl or heteroaliphatic C $_{3-14}$ heteroaryl moieties may be independently substituted.

- 17. The compound of any one of claims 1-16, wherein R_1 is NH_2 .
 - **18.** The compound of any one of claims 1-16, wherein R_1 is hydrogen.
- **19.** The compound of any one of claims 1-16, wherein R₂ is NH₂, OH, C₁-C₆ alkyl or C₁-C₆ alkenyl, said alkyl and alkenyl groups optionally substituted with halogen or hydroxyl.
 - **20.** The compound of any one of claims 1-16, wherein R_2 is C_1 - C_2 alkyl.
 - **21.** The compound of any one of claims 1-16, wherein R_2 is methyl.
 - **22.** The compound of any one of claims 1-16, wherein R_2 is hydrogen.
 - 23. The compound of any one of claims 4-10, wherein one of R_F or R_G is hydrogen or lower alkyl; and the other is an alkyl, heteroalkyl, C₃₋₁₄aryl, C₃₋₁₄heteroaryl, alkylaryl or alkylheteroaryl, optionally independently substituted for each occurrence with one or more of halogen, alkoxy, thioalkyl, or substituted or unsubstituted C₃₋₁₄alkyl, C₃₋₁₄heteroalkyl, aryl, or heteroaryl, or wherein R_F and R_G taken together are a 3-, 4-, 5-, 6-, 7- or 8-membered substituted or unsubstituted, saturated or unsaturated cyclic or heterocyclic moiety.
- 24. The compound of any one of claims 4-10, wherein one of R_F or R_G is hydrogen or lower alkyl; and the other is an C₃₋₁₄aryl, C₃₋₁₄heteroaryl, alkylC₃₋₁₄aryl or alkylC₃₋₁₄heteroaryl moiety, optionally independently substituted for each occurrence with one or more of halogen, alkoxy, thioalkyl, or substituted or unsubstituted C₃₋₁₄alkyl, C₃₋₁₄heteroalkyl, aryl, or heteroaryl, or wherein Rp and R_G taken together are a 3-, 4-, 5-, 6-, 7- or 8-membered substituted or unsubstituted, saturated or unsaturated cyclic or heterocyclic moiety.

- 25. The compound of claim 24, wherein one of R_F or R_G is hydrogen or lower alkyl; and the other is phenyl, pyridyl, (alkyl)phenyl, or (alkyl)pyridyl, optionally substituted with one or more occurrences of halogen, trifluromethoxy, methoxy, trifluromethyl, methylthio, or substituted or unsubstituted lower alkyl, lower heteroalkyl, C_{3-14} aryl or C_{3-14} heteroaryl.
- 26. The compound of any one of claims 4-10, wherein one of R_F or R_G is hydrogen or lower alkyl; and the other is a cyclic or acyclic, linear or branched, saturated or unsaturated aliphatic moiety optionally substituted with one or more of substituted or unsubstituted C_{3-14} aryl, C_{3-14} heteroaryl, amide, alkoxy, hydroxyl, thioalkyl, thiol, acyl or amino.
- 27. The compound of claim 11, wherein R_F is an alkyl, cycloalkyl, heteroalkyl, cycloheteroalkyl, C₃₋₁₄aryl, C₃₋₁₄heteroaryl, alkylC₃₋₁₄aryl or alkylC₃₋₁₄heteroaryl, optionally independently substituted for each occurrence with one or more of halogen, alkoxy, thioalkyl, or substituted or unsubstituted alkyl, heteroalkyl, C₃₋₁₄aryl, or C₃₋₁₄heteroaryl.
 - **28.** The compound of claim 12, wherein R_F is hydrogen, a protecting group, or an alkyl, cycloalkyl, heteroalkyl, cycloheteroalkyl, C₃₋₁₄aryl, C₃₋₁₄heteroaryl, alkylC₃₋₁₄aryl or alkylC₃₋₁₄heteroaryl, optionally independently substituted for each occurrence with one or more of halogen, alkoxy, thioalkyl, or substituted or unsubstituted alkyl, heteroalkyl, C₃₋₁₄aryl, or C₃₋₁₄heteroaryl.
 - 29. The compound of claim 1, wherein said compound is selected from:

NH₂

5


10

15

20

25

35

- **30.** A pharmaceutical composition comprising a compound having the structure (I) as claimed in claim 1 and a pharmaceutically acceptable carrier or diluent; and optionally further comprising an additional therapeutic agent.
- **31.** The pharmaceutical composition of claim 30, wherein the compound is present in an amount effective to inhibit inflammatory cytokine pathway, cell proliferation, or an anti-inflammatory effect.
 - **32.** The pharmaceutical composition of claim 30, wherein the compound has the structure as claimed in any one of claims 2 to 29.
- **33.** A compound having the structure as claimed in any one of claims 1 to 29; and a pharmaceutically acceptable carrier or diluent; and optionally further comprising an additional therapeutic agent for the treatment of an inflammatory or autoimmune disorder or proliferative disorder.
- 34. The compound of claim 33, wherein the inflammatory or autoimmune disorder or proliferative disorder is rheumatoid arthritis, ulcerative colitis/Crohn's disease, central nervous system diseases (CNS) such as multiple sclerosis, systemic lupus erythematosus, asthma, allograft rejection/graft versus host disease (GVHD), psoriasis, atopic dermatitis, eczema, uticaria, allergic rhinitis, myasthenia gravis, diabetes, idiopathic thrombocytopenia purpura, glomerulone-phritis, cardiovascular disease, or cancer.
- 55 **35.** The compound of claim 33, wherein the inflammatory disorder is rheumatoid arthritis.
 - 36. The compound of claim 33, wherein the inflammatory disorder is ulcerative colitis/Crohn's disease.

- 37. The compound of claim 33, wherein the inflammatory disorder is multiple sclerosis.
- **38.** The compound of claim 33, wherein the inflammatory disorder is asthma.
- 5 **39.** The compound of claim 33, wherein the inflammatory disorder is psoriasis.
 - 40. The compound of claim 33, wherein the inflammatory disorder is allograft rejection/GVHD.
 - 41. The compound of claim 33, wherein the inflammatory disorder is idiopathic thrombocytopenia purpura.
 - 42. The compound of claim 33, wherein the inflammatory disorder is allergic rhinitis.
 - **43.** The compound of claim 33, wherein the inflammatory disorder is atopic dermatitis.
- 15 **44.** The compound of claim 33, wherein the inflammatory disorder is systemic lupus erythematosus.
 - **45.** The compound of claim 33, wherein the inflammatory disorder is glomerulonephritis.
 - **46.** The compound of claim 33, wherein the inflammatory disorder is diabetes.
 - **47.** The use of a compound as claimed in any one of claims 1 to 29 in the manufacture of a medicament for the treatment of an inflammatory or autoimmune disorder or proliferative disorder.

Patentansprüche

10

20

25

30

35

40

45

50

55

1. Verbindung mit der Struktur (I):

(I)

und pharmazeutisch vertretbare Derivate davon; worin n eine ganze Zahl von 0 bis 4 ist;

R₁ Wasserstoff -NH₂, -NHMe, -NHAc, -OH, F, -OMe, -CN oder NH(C=O)OEt ist;

 R_2 Wasserstoff, -NR_AR_B, -OR_A, ein aliphatischer, heteroaliphatischer, C₃₋₁₄-Aryl- oder C₃₋₁₄-Heteroaryl-Rest ist, worin R_A und R_B jeweils unabhängig Wasserstoff oder ein aliphatischer, heteroaliphatischer, Aryl- oder Heteroaryl-Rest sind;

jedes Auftreten von R_3 jeweils unabhängig Wasserstoff, Halogen, Cyano oder ein aliphatischer, heteroaliphatischer, C_{3-14} -Aryl- oder C_{3-14} -Heteroaryl-Rest oder eine Gruppe -G-R_C ist, wobei G abwesend ist oder -CH₂-, -NR_D-, -O- oder (C=O) ist und worin R_C Wasserstoff, -NR_FR_G, -OR_F, -SR_F oder ein aliphatischer, heteroaliphatischer, C_{3-14} -Aryl- oder C_{3-14} -Heteroaryl-Rest ist, worin R_D , R_F und R_G jeweils unabhängig Wasserstoff, NR_xR_y, ein aliphatischer, cycloaliphatischer, heteroaliphatischer, cycloheteroaliphatischer, C_{3-14} -Aryl- oder C_{3-14} -Heteroaryl-Rest, -C(O)R₂ ist, wobei R_2 ein aliphatischer, heteroaliphatischer, C_{3-14} -Aryl- oder C_{3-14} -Heteroaryl-Rest ist oder worin R_D und R_C oder R_F und R_G zusammengenommen einen 3-, 4-, 5-, 6-, 7- oder 8-gliedrigen substituierten oder nicht substituierten cycloaliphatischen oder cycloheteroaliphatischen Rest bilden; wobei jedes Auftreten von R_x und R_y unabhängig Wasserstoff, ein aliphatischer, cycloaliphatischer, heteroaliphatischer, cycloheteroaliphatischer, C_{3-14} -Aryl- oder C_{3-14} -Heteroatyl-Rest, -C(O)R_z ist, worin R_z ein aliphatischer, heteroaliphatischer, Aryl- oder Heteroaryl-Rest ist; oder worin R_x und R_y zusammengenommen einen 4-, 5- oder 6-gliedrigen substituierten oder unsubstituierten,

gesättigten oder ungesättigten cycloaliphatischen oder cycloheteroaliphatischen Rest bilden; worin "aliphatisch" Alkyl, Alkenyl, Alkynyl, Cycloalkyl, Cycloalkenyl und Cycloalkynyl mit 1 bis 20 Kohlenstoffatomen einschließt und wobei der Begriff heteroaliphatisch auf aliphatische Reste verweist, die ein oder mehrere Sauerstoff-, Schwefel-, Stickstoff-, Phosphor- oder Siliciumatome enthalten;

wobei jeder der vorhergehenden aliphatischen oder heteroatiphatischen Reste unabhängig substituiert oder unsubstituiert, cyclisch oder acyclisch, linear oder verzweigt, gesättigt oder ungesättigt sein kann und wobei jeder der vorhergehenden Aryl- oder Heteroaryl-Reste unabhängig substituiert oder unsubstituiert sein kann.

2. Verbindung nach Anspruch 1, wobei die Verbindung die folgende Struktur aufweist:

worin R_{3a} und R_{3b} jeweils unabhängig Wasserstoff, Halogen, Cyano oder ein aliphatischer, heteroaliphatischer, C_{3-14} -Aryl- oder C_{3-14} -Heteroaryl-Rest oder eine Gruppe -G-R_c ist, wobei G abwesend, -CH₂-, NR_D-, -O- oder (C=O) ist und worin R_c Wasserstoff, -NR_FR_G, -OR_F, -SRp oder ein aliphatischer, heteroaliphatischer, C_{3-14} -Aryl- oder C_{3-14} -Heteroaryl-Rest ist, worin R_D , R_F und R_G jeweils unabhängig Wasserstoff, -NR_xR_y ein aliphatischer, cycloaliphatischer, heteroaliphatischer, cycloheteroaliphatischer, C_{3-14} -Aryl- oder C_{3-14} -Heteroaryl-Rest, -C(O)R_z ist, worin R_z ein aliphatischer, heteroaliphatischer, C_{3-14} -Aryl- oder C_{3-14} -Heteroaryl-Rest ist oder worin R_D und R_C oder R_F und R_G zusammengenommen einen 3-, 4-, 5-, 6-, 7- oder 8-gliedrigen substituierten oder unsubstituierten cycloaliphatischen oder cycloheteroaliphatischer, heteroaliphatischer, cycloheteroaliphatischer, C_{3-14} -Aryl- oder C_{3-14} -Heteroaryl-Rest, -C(O)R₂ ist, worin R_Z ein aliphatischer, heteroaliphatischer, C_{3-14} -Aryl- oder C_{3-14} -Heteroaryl-Rest, -C(O)R₂ ist, worin R_Z ein aliphatischer, heteroaliphatischer, C_{3-14} -Aryl- oder C_{3-14} -Heteroaryl-Rest ist, oder worin R_X und R_Y zusammengenommen einen 4-, 5- oder 6-gliedrigen substituierten oder unsubstituierten, gesättigten oder ungesättigten cycloaliphatischen, oder cycloheteroaliphatischen Rest bilden; wobei jeder der vorhergehenden aliphatischen oder heteroalipharischen Reste unabhängig substituiert oder unsubstituiert, cyclisch oder acyclisch, linear oder verzweigt, gesättigt oder ungesättigt sein kann; und wobei jeder der vorhergehenden Aryl- oder Heteroaryl-Reste unabhängig substituiert oder unsubstituiert sein kann.

3. Verbindung nach Anspruch 1, wobei die Verbindung die folgende Struktur aufweist:

worin R_{3a} und R_{3b} jeweils unabhängig Wasserstoff, Halogen Cyano oder ein aliphatischer, heteroaliphatischer, C_{3-14} -Aryl- oder C_{3-14} -Heteroaryl-Rest oder eine Gruppe -G-R_C ist, worin G abwesend oder -CH₂-, -NR_D-, -O- oder (C=O) ist und worin R_C Wasserstoff -NR_FR_G, -OR_F, -SR_F oder ein aliphatischer, heteroatiphatischer, C_{3-14} -Aryloder C_{3-14} -Heteroatyl-Rest ist, worin R_D, R_F und R_G jeweils unabhängig Wasserstoff, -NR_xR_y, ein aliphatischer, cycloaliphatischer, heteroaliphatischer, cycloheteroaliphatischer, C_{3-14} -Aryl- oder C_{3-14} -Heteroaryl-Rest, -C(O)R_Z ist, worin R_x ein aliphatischer, heteroatiphatischer, C_{3-14} -Aryl- oder C_{3-14} -Heteroaryl-Rest ist oder worin R_D und R_C oder R_F und R_G zusammengenommen einen 3-, 4-, 5-, 6-, 7- oder 8-gliedrigen substituierten oder unsubstituierten cycloaliphatischen oder cycloheteroaliphatischen Rest bilden; worin jedes Auftreten von R_x und R_y unabhängig Wasserstoff, ein aliphatischer, cycloaliphatischer, heteroaliphatischer, cycloheteroaliphatischer, C_{3-14} -Aryl- oder C_{3-14} -Heteroaryl-Rest, -C(O)R_Z ist, worin R_z ein aliphatischer, heteroaliphatischer, C_{3-14} -Aryl- oder C_{3-14} -Heteroaryl-Rest, -C(O)R_Z ist, worin R_z ein aliphatischer, heteroaliphatischer, C_{3-14} -Aryl- oder C_{3-14} -Heteroaryl-Rest, -C(O)R_Z ist, worin R_z ein aliphatischer, heteroaliphatischer, heteroaliphatischer, C_{3-14} -Aryl- oder C_{3-14} -Heteroaryl-Rest, -C(O)R_Z ist, worin R_z ein aliphatischer, heteroaliphatischer, heteroaliphatischer, C_{3-14} -Aryl- oder C_{3-14} -Heteroaryl-Rest, -C(O)R_Z ist, worin R_z ein aliphatischer, heteroaliphatischer, h

roaryl-Rest ist, oder wobei R_x und R_y zusammengenommen einen 4-, 5- oder 6-gliedrigen substituierten oder unsubstituierten, gesättigten oder ungesättigten cycloaliphatischen oder cycloheteroaliphatischen Rest bilden; wobei jeder der vorhergehenden aliphatischen oder heteroaliphatischen Reste unabhängig substituiert oder unsubstituiert, cyclisch oder acyclisch, linear oder verzweigt, gesättigt oder ungesättigt sein kann; und wobei jeder der vorhergehenden Aryl- oder Heteroaryl-Reste unabhängig substituiert oder unsubstituiert sein kann.

4. Verbindung nach Anspruch 1, wobei die Verbindung die folgende Struktur aufweist:

worin $R_{1},\,R_{2},\,R_{F}$ und R_{G} wie im Anspruch 1 definiert sind.

5. Verbindung nach Anspruch 1, wobei die Verbindung die folgende Struktur aufweist:

worin $\rm R_1, \, R_2, \, R_F$ und $\rm R_G$ wie im Anspruch 1 definiert sind.

6. Verbindung nach Anspruch 1, wobei die Verbindung die folgende Struktur ausweist:

40
$$R_{\mathbf{G}}R_{\mathbf{F}}N$$
 $R_{\mathbf{1}}$ $R_{\mathbf{1}}$

worin R_1 , R_2 , R_F und R_G wie im Anspruch 1 definiert sind.

7. Verbindung nach Anspruch 1, wobei die Verbindung die folgende Struktur aufweist:

55

50

5

20

worin q und r jeweils unabhängig 0 oder 1 sind und R_1 , R_2 , R_F und R_G wie im Anspruch 1 definiert sind.

8. Verbindung nach Anspruch 1, wobei die Verbindung die folgende Struktur aufweist:

5

10

15

20

25

40

55

worin q und r jeweils unabhängig 0 oder 1 sind und R_1 , R_2 , R_F und R_G wie im Anspruch 1 definiert sind

9. Verbindung nach Anspruch 1, wobei die Verbindung die folgende Struktur aufweist:

worin $R_1 R_2$, R_F und R_G wie im Anspruch 1 definiert sind.

10. Verbindung nach Anspruch 1, wobei die Verbindung die folgende Struktur aufweist:

worin ${\rm R_1,\,R_2,\,R_F}$ und ${\rm R_G}$ wie im Anspruch 1 definiert sind.

11. Verbindung nach Anspruch 1, wobei die Verbindung die folgende Struktur aufweist:

10

15

5

worin R₁ und R₂ wie im Anspruch 1 definiert sind;

m 0, 1 oder 2 ist; und

R_F ein aliphatischer, cycloaliphatischer, heteroaliphatischer, cycloheteroaliphatischer, C₃₋₁₄-Aryl- oder C₃₋₁₄-Heteroaryl-Rest ist:

worin jeder der vorhergehenden aliphatischen oder heteroaliphatischen Reste unabhängig substituiert oder unsubstituiert, cyclisch oder acyclisch, linear oder verzweigt, gesättigt oder ungesättigt sein kann; und worin jeder der vorhergehenden Aryl- oder Heteroaryl-Reste unabhängig substituiert oder unsubstituiert sein kann.

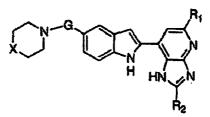
12. Verbindung nach Anspruch 1, wobei die Verbindung die folgende Struktur aufweist:

25

20

30

worin R₁ und R₂ wie im Anspruch 1 definiert sind;


R_F Wasserstoff, eine Schutzgruppe oder ein aliphatischer, cycloaliphatischer, heteroaliphatischer, cycloheteroaliphatischer, C₃₋₁₄-Aryl- oder C₃₋₁₄Heteroaryl-Rest ist;

wobei jeder der vorhergehenden aliphatischen oder heteroaliphatischen Reste unabhängig substituiert oder unsubstituiert, cyclisch oder acyclisch, linear oder verzweigt, gesättigt oder ungesättigt sein kann; und wobei jeder der vorhergehenden Aryl- oder Heteroaryl-Reste unabhängig substituiert oder unsubstituiert sein kann.

35

13. Verbindung nach Anspruch 1, wobei die Verbindung die folgende Struktur aufweist:

40

55

45

50 worin R₁ und R₂ wie im Anspruch 1 definiert sind;

G CH₂ oder -(C=O) ist; und

 $X \ O, \ \bar{S}, \ C=O, \ S=O, \ C=CR_4R_5, \ NR_4 \ oder \ CR_4R_5 \ ist; \ worin \ jedes \ Auftreten \ von \ R_4 \ und \ R_5 \ unabhängig \ Wasserstoff,$ Hydroxyl, Halogen, Cyano, ein aliphatischer, heteroaliphatischer, C₃₋₁₄-Aryl- oder C₃₋₁-Heteroaryl-Rest ist oder - $C(O)R_2$ ist, worin R_z ein aliphatischer, heteroaliphatischer, C_{3-14} -Aryl- oder C_{3-14} -Heteroaryl-Rest ist;

wobei jeder der vorhergehenden aliphatischen oder heteroaliphatischen Reste unabhängig substituiert oder nicht substituiert, cyclisch oder acyclisch, linear oder verzweigt, gesättigt oder ungesättigt sein kann; und wobei jeder der vorhergehenden Aryl- oder Heteroaryl-Reste unabhängig substituiert oder nicht substituiert sein kann.

14. Verbindung nach Anspruch 1, wobei die Verbindung die folgende Struktur aufweist:

5 N G N HN N

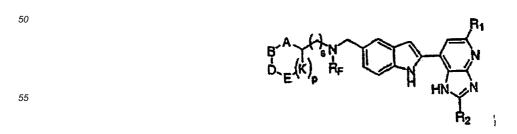
worin R_1 und R_2 wie im Anspruch 1 definiert sind; $G\ CH_2$ oder -(C=O) ist; und

15

20

40

45


X O, S, C=O, S=O, O=CR $_4$ R $_5$, NR $_4$ oder CR $_4$ R $_5$ ist; wobei jedes Auftreten von R $_4$ und R $_5$ unabhängig Wasserstoff. Hydroxyl. Halogen, Cyano, ein aliphatischer, heteroaliphatischer, C $_{3-14}$ -Aryl- oder C $_{3-14}$ -Heteroaryl-Rest ist ader - C(O)R $_Z$ ist, worin R $_2$ ein aliphatischer, heteroaliphatischer; C $_{3-14}$ -Aryl- oder C $_{3-14}$ -Heteroaryl-Rest ist; wobei jeder der vorhergehenden aliphatischen oder heteroaliphatischen Reste unabhängig substituiert oder unsubstituiert, cyclisch oder acyclisch, linear oder verzweigt sein kann; und wobei jeder der vorhergehenden Aryl- oder Heteroaryl-Reste unabhängig substituiert oder unsubstituiert sein kann.

15. Verbindung nach Anspruch 1, wobei die Verbindung die folgende Struktur aufweist:

worin R_1 und R_2 wie im Anspruch 1 definiert sind; G CH_2 oder -(C=O) ist; und

X O, S, C=O, S=O, C=CR $_4$ R $_5$, NR $_4$ oder CR $_4$ R $_5$ ist; worin jedes Auftreten von R $_4$ und R $_5$ unabhängig Wasserstoff Hydroxyl, Halogen, Cyano, ein aliphatischer, beteroaliphatischer, C $_{3-14}$ -Aryl- oder C $_{3-14}$ -Heteroaryl-Rest ist oder -C(O)R $_2$ ist, worin R $_2$ ein aliphatischer, heteroaliphatischer, C $_{3-14}$ -Aryl- oder C $_{3-14}$ -Heteroaryl-Rest ist; wobei jeder der vorhergehenden aliphatischen oder heteroaliphatischen Reste unabhängig substituiert oder unsubstituiert, cyclisch oder acyclisch, linear oder verzweigt sein kann; und wobei jeder der vorhergehenden Aryl- oder Heteroaryl-Reste unabhängig substituiert oder unsubstituiert sein kann.

16. Verbindung nach Anspruch 1, wobei die Verbindung die folgende Struktur aufweist:

worin R_1 und R_2 wie im Anspruch 1 definiert sind; p eine ganze Zahl von 0 bis 3 ist; s eine ganze Zahl von 0 bis 4 ist;

10

15

30

35

- A, B, D, E und jedes Auftreten von K unabhängig abwesend, O, S, -C=O, -S=O, -C=CR $_4$ R $_5$, -NR $_4$ oder -CR $_4$ R $_5$ ist; worin jedes Auftreten von R $_4$ und R $_5$ unabhängig Wasserstoff, Hydroxyl, Halogen, Cyano, -OR $_x$, -SR $_x$, -NR $_x$ R $_y$, ein aliphatisher, heteroaliphatischer, C $_{3-14}$ -Aryl- oder C $_{3-14}$ -Heteroaryl-Rest ist oder C(O)R $_2$ ist, worin R $_z$ ein aliphatischer, heteroaliphatischer, C $_{3-14}$ -Aryl- oder C $_{3-14}$ -Heteroaryl-Rest ist; und worin A und B, B und D, D und E, E und K und jeweils zwei benachbarte Gruppen K mittels einer Einfach- oder Doppelbindung, wie es die Wertigkeit zulässt, verbunden sein können; worin jedes Auftreten von R $_x$ und R $_y$ unabhängig Wasserstoff, eine Schutzgruppe oder ein aliphatischer, heteroaliphatischer, C $_{3-14}$ -Reteroaryl-, aliphatischer C $_{3-14}$ -Aryl-, heteroaliphatischer C $_{3-14}$ -Heteroaryl- oder heteroaliphatischer C $_{3-14}$ -Heteroaryl-Rest ist; wobei jeder der vorhergehenden aliphatischen oder heteroaliphatischen Reste unabhängig substituiert oder unsubstituien, cyclisch oder acyclisch, linear oder verzweigt, gesättigt oder ungesättigt sein kann und wobei jeder der vorhergehenden C $_{3-14}$ -Aryl-, C $_{3-14}$ -Heteroaryl-, aliphatischen C $_{3-14}$ -Aryl-, hetemaliphatischen C $_{3-14}$ -Aryl-, aliphatischen C $_{3-14}$ -Aryl-, der heteroaliphatischen C $_{3-14}$ -Aryl-, hetemaliphatischen C $_{3-14}$ -Aryl-, aliphatischen C $_{3-14}$ -Heteroaryl- oder heteroaliphatischen C $_{3-14}$ -Aryl-, hetemaliphatischen C $_{3-14}$ -Aryl-, aliphatischen C $_{3-14}$ -Heteroaryl- oder heteroaliphatischen C $_{3-14}$ -Aryl-, hetemaliphatischen C $_{3-14}$ -Aryl-, aliphatischen C $_{3-14}$ -Heteroaryl- oder heteroaliphatischen C $_{3-14}$ -Heteroaryl- oder heteroaliphatischen C $_{3-14}$ -Aryl-, hetemaliphatischen C $_{3-14}$ -Aryl-, oder heteroaliphatischen C $_{3-14}$ -Heteroaryl- oder hetero
- 17. Verbindung nach einem der Anspruche 1 bis 16, wobei R₁ NH₂ ist.
- 18. Verbindung nach einem der Ansprüche 1 bis 16, wobei R₁ Wasserstoff ist.
 - **19.** Verbindung nach einem der Anspruche 1 bis 16, wobei R₂ NH₂, OH, C₁-C₆-Alkyl oder C₁-C₆-Alkenyl ist, wobei die Alkyl- und Alkenylgruppen gegebenenfalls durch Halogen oder Hydroxyl substituiert sind.
- 25 20. Verbindung nach einem der Ansprüche 1 bis 16, wobei R₂ C₁-C₂-Alkyl ist.
 - 21. Verbindung nach einem der Ansprüche 1 bis 16, wobei R2 Methyl ist.
 - 22. Verbindung nach einem der Ansprüche 1 bis 16, wobei R₂ Wasserstoff ist.
 - 23. Verbindung nach einem der Ansprüche 4 bis 10, worin entweder R_F oder R_G Wasserstoff oder Niedeiel ist und der andere Rest ein Alkyl, Heteroalkyl, C₃₋₁₄Aryl, C₃₋₁₄-Heteroaryl, Alkylaryl oder Alkylheteroaryl, gegebenenfalls bei jedem Auftreten unabhängig durch eine oder mehrere Halogen-, Alkoxy-, Thioalkyl-Gruppen substituiert, oder substituiertes oder unsubstituiertes C₃₋₁₄-Alkyl, C₃₋₁₄-Heteroalkyl, Aryl oder Heteroaryl ist, oder worin R_F und R_G zusammengenommen einen 3-, 4-, 5-, 6-, 7- oder 8-gliedrigen substituierten oder unsubstituierten, gesättigten oder ungesättigten cyclischen oder heterocyclischen Rest bilden.
 - 24. Verbindung nach einem der Ansprüche 4 bis 10, worin entweder R_F oder R_G Wasserstoff oder Niederalkyl ist und der andere Rest ein C₃₋₁₄-Aryl, C₃₋₁₄-Heteroaryl, alkylC₃₋₁₄-Aryl oder alkylC₃₋₁₄Heteroaryl-Rest, gegebenenfalls bei jedem Auftreten unabhängig durch eine oder mehrere Halogen-, Alkoxy-, Thioalkyl-Gruppen substituiert, oder substituiertes oder unsubstituiertes C₃₋₁₄-Alkyl, C₃₋₁₄-Heteroalkyl, Aryl oder Heteroaryl ist, oder worin R_F und R_G zusammengenommen einen 3-, 4-, 5-, 6-, 7- oder 8-gliedrigen substituierten oder unsubstituierten, gesättigten oder ungesättigten cyclischen oder heterocyclischen Rest bilden.
- 25. Verbindung nach Anspruch 24, worin entweder R_F oder R_G Wasserstoff oder Niederalkyl ist und der andere Rest Phenyl, Pyridyl, (alkyl)Phenyl oder (alkyl)Pyridyl, gegebenenfalls durch ein oder mehrfaches Auftreten von Halogen, Trifluormethoxy, Methoxy, Trifluormethyl, Methylthio substituiert, oder substituiertes oder unsubstituiertes Niederalkyl, Niederheteroalkyl, C₃₋₁₄Aryl oder C₃₋₁₄Heteroaryl ist.
- 26. Verbindung nach einem der Ansprüche 4 bis 10, worin entweder R_F oder R_G Wasserstoff oder-Niederalkyl ist und der andere Rest ein cyclischer oder acyclischer, linearer oder verzweigter, gesättigter oder ungesättigter aliphatischer Rest, gegebenenfalls durch eine oder mehrere substituierte oder unsubstituierte C₃₋₁₄Aryl-, C₃₋₁₄-Heteroaryl-, Amid-, Alkoxy-, Hydroxyl-, Thioalkyl-, Thiol-, Acyl- oder Aminogruppen substituiert, ist.
- 27. Verbindung nach Anspruch 11, worin R_F ein Alkyl, Cycloalkyl, Heteroalkyl, Cycloheteroalkyl, C₃₋₁₄-Aryl, C₃₋₁₄-Heteroaryl, alkylC₃₋₁₄-Aryl oder alkylC₃₋₁₄-Heteroaryl, gegebenenfalls bei jedem Auftreten unabhängig durch eine oder mehrere Halogen-, Alkoxy-, Thioalkyl-Gruppen substituiert, oder substituiertes oder unsubstituiertes Alkyl, Heteroalkyl, C₃₋₁₄-Aryl oder C₃₋₁₄-Heteroaryl ist.

- $\textbf{28.} \ \, \text{Verbindung nach Anspruch 12, worin } \ \, \text{R}_{\text{F}} \ \, \text{Wasserstoff, eine Schutzgruppe oder ein Alkyl, Cycloalkyl, Heteroalkyl, Cycloheteroalkyl, } \ \, \text{Cycloheteroalkyl, } \ \, \text{C}_{3\text{-}14}\text{-}\text{Heteroaryl, alkyl} \ \, \text{C}_{3\text{-}14}\text{-}\text{Aryl oder alkyl} \ \, \text{C}_{3\text{-}14}\text{-}\text{Heteroaryl, gegebenenfalls bei jedem } \ \, \text{Auftreten unabhängig durch eine oder mehrere Halogen-, Alkoxy-, Thioalkyl-Gruppen substituiert, oder substituiertes oder unsubstituiertes Alkyl, Hetemalkyl, $C_{3\text{-}14}\text{-}\text{Nyl oder } C_{3\text{-}14}\text{-}\text{Heteroaryl ist.} \ \, \text{C}_{3\text{-}14}\text{-}\text{Nyl oder } C_{3\text{-}14}\text{-}\text{Heteroaryl ist.} \ \, \text{C}_{3\text{-}14}\text{-}\text{Nyl oder } C_{3\text{-}14}\text{-}\text{Nyl o$
- 29. Verbindung nach Anspruch 1, wobei die Verbindung ausgewählt ist aus:

35

45

50

- **30.** Pharmazeutische Zusammensetzung, die eine Verbindung mit der Struktur (I) nach Anspruch 1 und ein pharmazeutisch vertretbares Träger- oder Verdünnungsmittel aufweist und gegebenenfalls weiters einen zusätzlichen therapeutischen Wirkstoff aufweist.
- **31.** Pharmazeutische Zusammensetzung nach Anspruch 30, worin die Verbindung in einer Menge vorhanden ist, die erfolgreich eine entzündliche Cytokin-Weiterleitung eine Zellwucherung inhibiert oder eutzündungshemmend wirkt.
- **32.** Pharmazeutische Zusammensetzung nach Anspruch 30, worin die Verbindung die Struktur nach einem der Ansprüche 2 bis 29 hat
 - 33. Verbindung mit der Struktur nach einem der Ansprüche 1 bis 29, die ein pharmazeutisch vertretbares Träger- oder Verdünnungsmittel und gegebenenfalls weiters einen zusätzlichen therapeutischen Wukstoff für die Behandlung einer entzündlichen Erkrankung oder einer Autoimmunkrankheit oder einer wuchernden Erkrankung enthält.
 - 34. Verbindung nach Anspruch 33, worin die entzündliche Erkrankung oder die Autoimmunkrankheit oder die wuchernde Erkrankung rheumatoide Arthritis, Colitis ulcerosa/ Crohnsche Krankheit, Erkrankungen des Zentralnervensystems (ZNS) wie etwa multiple Sklerose, systemischer Lupus erythematosus, Asthma, eine Allotransplantatabstoßung/ Transplantat-gegen-Wirt-Reaktion, Psoriasis, atopische Dermatitis, ein Ekzem, Uticaria, allergische Rhinitis, Myastenia gravis, Diabetes, idiopathische thrombozytopenische Purpura, Glomerulonephritis, eine Herz-Kreislauf-Erkrankung oder Krebs ist.
 - 35. Verbindung nach Anspruch 33, wobei die entzündliche Erkrankung rheumatoide Arthritis ist.
 - 36. Verbindung nach Anspruch 33, wobei die entzündliche Erkrankung Colitis ulcerosa/ Crohnsche Krankheit ist.
 - 37. Verbindung nach Anspruch 33, wobei die entzündliche Erkrankung multiple Sklerose ist

- 38. Verbindung nach Anspruch 33, wobei die entzündliche Erkrankung Asthma ist.
- 39. Verbindung nach Anspruch 33, wobei die entzündliche Erkrankung Psoriasis ist.
- 40. Verbindung nach Anspruch 33, wobei die entzündliche Erkrankung eine Allotransplanbtabstoßung/ Transplantat-gegen-Wirt-Reaktion ist.
 - 41. Verbindung nach Anspruch 33, wobei die entzündliche Erkrankung idiopathische thrombozytopenische Purpura ist.
- 42. Verbindung nach Anspruch 33, wobei die entzündliche Erkrankung allergische Rhinitis ist.
 - 43. Verbindung nach Anspruch 33, wobei die entzündliche Erkrankung atopische Dermatitis ist.
 - 44. Verbindung nach Anspruch 33, wobei die entzündliche Erkrankung systemischer Lupus erythematosus ist
 - 45. Verbindung nach Anspruch 33, wobei die entzündliche Erkrankung Glomerulonephritis ist
 - 46. Verbindung nach Anspruch 33, wobei die entzündliche Erkrankung .Diabetes ist.
- 47. Verwendung einer Verbindung nach einem der Ansprüche 1 bis 29 bei der Herstellung eines Medikaments für die Behandlung einer entzündlichen Erkrankung oder einer Autoimmunkrankheit oder einer wuchernden Erkrankung.

Revendications

15

25

30

35

45

50

55

1. Composé présentant la structure (I)

et dérivés pharmaceutiquement acceptables de celui-ci;

où n est un nombre entier de 0 à 4;

R₁ est un hydrogène, -NH₂, -NHMe, -NHAc, -OH, F, -OMe, -CN ou -NH(C=O)OEt;

 R_2 est un hydrogène, -NR_AR_B, -OR_A, un groupement aliphatique, hétéroaliphatique, aryle en C_{3-14} ou hétéroaryle en C_{3-14} , R_A et R_B étant chacun indépendamment un hydrogène ou un groupement aliphatique, hétéroaliphatique, aryle ou hétéroaryle;

chaque occurrence de R_3 est indépendamment un hydrogène, un halogène, un cyano ou un groupement aliphatique, hétéroaliphatique, aryle en C_{3-14} ou hétéroaryle en C_{3-14} , ou un groupement -G-R_c, dans lequel G est absent ou est -CH₂-, -NR_D-, -O- ou (C=O) , et R_c étant hydrogène, -NR_FR_G, -OR_F, -SR_F ou un groupement aliphatique, hétéroaliphatique, aryle en C_{3-14} ou hétéroaryle en C_{3-14} , R_D , R_F et R_G étant chacun indépendamment un hydrogène, -NR_xR_y, un groupement aliphatique, cycloaliphatique, hétéroaliphatique, cyclohétéroaliphatique, aryle en C_{3-14} ou hétéroaryle en C_{3-14} , -C(O)R_z où R_z est un groupement aliphatique, hétéroaliphatique ou cyclohétéroaliphatique, substitué ou non substitué à 3, 4, 5, 6, 7 ou 8 chaînons; chaque occurrence de R_x et R_y étant indépendamment un hydrogène, un groupement aliphatique, cycloaliphatique, hétéroaliphatique, cyclohétéroaliphatique, aryle en C_{3-14} ou hétéroaryle en C_{3-14} , -C(O)R_z où R_z est un groupement aliphatique, hétéroaliphatique, cyclohétéroaliphatique, aryle ou hétéroaryle; ou R_x et R_y pris ensemble sont un groupement cycloaliphatique ou cyclohétéroaliphatique, saturé ou non saturé, substitué ou non substitué à 4, 5 ou 6 chaînons;

le groupement aliphatique comprenant alkyle, alcényle, alcynyle, cycloalkyle, cycloalcényle et cycloalcynyle ayant 1 à 20 atomes de carbone, et le terme hétéroaliphatique se référant à des groupements aliphatiques qui contiennent

un ou plusieurs atomes d'oxygène, de soufre, d'azote, de phosphore ou de silicium, chacun des groupements aliphatiques ou hétéroaliphatiques susmentionnés pouvant être indépendamment substitué ou non substitué, cyclique ou acyclique, linéaire ou ramifié, saturé ou non saturé, et chacun des groupements aryle ou hétéroaryle susmentionnés pouvant être indépendamment substitué ou non substitué.

2. Composé selon la revendication 1, caractérisé en ce le composé présente la structure :

où R_{3a} et R_{3b} sont chacun indépendamment un hydrogène, un halogène, un cyano ou un groupement aliphatique, hétéroaliphatique, aryle en C_{3-14} ou hétéroaryle en C_{3-14} ou un groupement -G-R_c, dans lequel G est absent ou est -CH₂-, -NR_D-, -O- ou (C=O), et R_c étant un hydrogène, -NR_FR_G, -OR_F, -SR_F ou un groupement aliphatique, hétéroaliphatique, aryle en C_{3-14} ou hétéroaryle en C_{3-14} , R_D, R_F et R_G étant chacun indépendamment un hydrogène, -NR_xR_y, un groupement aliphatique, cycloaliphatique, hétéroaliphatique, cyclohétéroaliphatique, aryle en C_{3-14} , ou hétéroaryle en C_{3-14} , ou R_D et R_C où R_F et R_G pris ensemble étant un groupement cycloaliphatique ou cyclohétéroaliphatique, substitué ou non substitué à 3, 4, 5, 6, 7 ou 8 chaînons; chaque occurrence de R_x et R_y étant indépendamment un hydrogène, un groupement aliphatique, cycloaliphatique, hétéroaliphatique, cyclohétéroaliphatique, aryle en C_{3-14} ou hétéroaryle en C_{3-14} , -C(O)R₂ où R₂ est un groupement aliphatique, hétéroaliphatique, cyclohétéroaliphatique, aryle en C_{3-14} ou hétéroaryle en C_{3-14} , -C(O)R₂ où R₂ est un groupement aliphatique, hétéroaliphatique, aryle en C_{3-14} ou hétéroaryle en C_{3-14} , ou R_x et R_y pris ensemble étant un groupement cycloaliphatique ou cyclohétéroaliphatique, saturé ou non saturé, substitué ou non substitué à 4, 5 ou 6 chaînons; chacun des groupements aliphatiques ou hétéroaliphatiques susmentionnés pouvant être indépendamment substitué ou non substitué, cyclique ou acyclique, linéaire ou ramifié, saturé ou non saturé, et chacun des groupements

3. Composé selon la revendication 1, caractérisé en ce le composé présente la structure :

aryle ou hétéroaryle susmentionnés pouvant être indépendamment substitué ou non substitué.

où R_{3a} et R_{3b} sont chacun indépendamment un hydrogène, un halogène, un cyano ou un groupement aliphatique, hétéroaliphatique, aryle en C_{3-14} ou hétéroaryle en C_{3-14} ou un groupe -G-R_C, dans lequel G est absent ou est -CH₂-, -NR_D-, -O- ou (C=O), et R_C étant un hydrogène, -NR_FR_G, -OR_F, -SR_F ou un groupement aliphatique, hétéroaliphatique, aryle en C_{3-14} ou hétéroaryle en C_{3-14} , R_D , R_F et R_G étant chacun indépendamment un hydrogène, -NR_xR_y, un groupement aliphatique, cycloaliphatique, hétéroaliphatique, cyclohétéroaliphatique, aryle en C_{3-14} ou hétéroaryle en C_{3-14} , -C(O)R_z où R_z est un groupement aliphatique, hétéroaliphatique ou cyclohétéroaliphatique, substitué ou non substitué à 3, 4, 5, 6, 7 ou 8 chaînons; chaque occurrence de R_x et R_y étant indépendamment un hydrogène, un groupement aliphatique, cycloaliphatique, hétéroaliphatique, cyclohétéroaliphatique, aryle en C_{3-14} ou hétéroaryle en C_{3-14} , -C(O)R_z où R_z est un groupement aliphatique, hétéroaliphatique, aryle en C_{3-14} ou hétéroaryle en C_{3-14} , ou R_x et R_y pris ensemble étant un groupement cycloaliphatique, aryle en C_{3-14} ou hétéroaryle en C_{3-14} , ou R_x et R_y pris ensemble étant un groupement cycloaliphatique ou cyclohétéroaliphatique, saturé ou non saturé, substitué ou non substitué à 4, 5 ou 6 chaînons;

chacun des groupements aliphatiques ou hétéroaliphatiques susmentionnés pouvant être indépendamment substitué ou non substitué, cyclique ou acyclique, linéaire ou ramifié, saturé ou non saturé, et chacun des groupements aryle ou hétéroaryle susmentionnés pouvant être indépendamment substitué ou non substitué.

4. Composé selon la revendication 1, caractérisé en ce que le composé présente la structure :

où $R_1,\,R_2,\,R_F$ et R_G sont tels que définis à la revendication 1.

5

10

15

20

25

30

35

40

45

50

55

5. Composé selon la revendication 1, caractérisé en ce que le composé présente la structure :

où R_1 , R_2 , R_F et R_G sont tels que définis à la revendication 1.

6. Composé selon la revendication 1, caractérisé en ce que le composé présente la structure :

où R_1 , R_2 , R_F et R_G sont tels que définis à la revendication 1.

7. Composé selon la revendication 1, caractérisé en ce que le composé présente la structure :

où q et r sont chacun indépendamment 0 ou 1; et R_1 , R_2 , R_F et R_G sont tels que définis à la revendication 1.

8. Composé selon la revendication 1, caractérisé en ce que le composé présente la structure:

où q et r sont chacun indépendamment 0 ou 1; et R_1 , R_2 , R_F et R_G sont tels que définis à la revendication 1.

9. Composé selon la revendication 1, caractérisé en ce que le composé présente la structure :

où $R_1,\,R_2,\,R_F$ et R_G sont tels que définis à la revendication 1.

5

10

15

20

25

30

35

40

50

55

10. Composé selon la revendication 1, caractérisé en ce que le composé présente la structure :

où R_1 , R_2 , R_F et R_G sont tels que définis à la revendication 1.

11. Composé selon la revendication 1, caractérisé en ce que le composé présente la structure :

où R_1 et R_2 sont tels que définis à la revendication 1; m est 0, 1 ou 2; et

 R_F est un groupement aliphatique, cycloaliphatique, hétéroaliphatique, cyclohétéroaliphatique, aryle en C_{3-14} ou hétéroaryle en C_{3-14} ;

chacun des groupements aliphatiques ou hétéroaliphatiques susmentionnés pouvant être indépendamment substitué ou non substitué, cyclique ou acyclique, linéaire ou ramifié, saturé ou non saturé, et chacun des groupements aryle ou hétéroaryle susmentionnés pouvant être indépendamment substitué ou non substitué.

12. Composé selon la revendication 1, caractérisé en ce que le composé présente la structure :

où R₁ et R₂ sont tels que définis à la revendication 1; et

 R_F est un hydrogène, un groupement protecteur ou un groupement aliphatique, cycloaliphatique, hétéroaliphatique, cyclohétéroaliphatique, aryle en C_{3-14} ou hétéroaryle en C_{3-14} ;

chacun des groupements aliphatiques ou hétéroaliphatiques susmentionnés pouvant être indépendamment substitué ou non substitué, cyclique ou acyclique, linéaire ou ramifié, saturé ou non saturé, et chacun des groupements aryle ou hétéroaryle susmentionnés pouvant être indépendamment substitué ou non substitué.

13. Composé selon la revendication 1, caractérisé en ce que le composé présente la structure :

 $\begin{array}{c} X \\ X \\ \end{array}$

où R_1 et R_2 sont tels que définis à la revendication 1;

G est CH₂ ou -(C=O); et

X est O, S, C=O, S=O, C=CR $_4$ R $_5$, NR $_4$ ou CR $_4$ R $_5$; chaque occurrence de R $_4$ et R $_5$ étant indépendamment un hydrogène, un hydroxyle, un halogène, un cyano, un groupement aliphatique, hétéroaliphatique, aryle en C $_{3-14}$, ou -C(O)R $_z$ où R $_z$ est un groupement aliphatique, hétéroaliphatique, aryle en C $_{3-14}$, ou hétéroaryle en C $_{3-14}$;

chacun des groupements aliphatiques ou hétéroaliphatiques susmentionnés pouvant être indépendamment substitué ou non substitué, cyclique ou acyclique, linéaire ou ramifié, et chacun des groupements aryle ou hétéroaryle susmentionnés pouvant être indépendamment substitué ou non substitué.

14. Composé selon la revendication 1, caractérisé en ce que le composé présente la structure :

55

5

10

15

20

25

30

35

40

45

10

15

5

où R_1 et R_2 sont tels que définis à la revendication 1; G est CH_2 ou -(C=O); et

X est O, S, C=O, S=O, C=CR $_4$ R $_5$, NR $_4$ ou CR $_4$ R $_5$; chaque occurrence de R $_4$ et R $_5$ étant indépendamment un hydrogène, un hydroxyle, un halogène, un cyano, un groupement aliphatique, hétéroaliphatique, aryle en C $_{3-14}$ ou hétéroaryle en C $_{3-14}$, ou -C (O) R $_z$ où R $_z$ est un groupement aliphatique, hétéroaliphatique, aryle en C $_{3-14}$ ou hétéroaryle en C $_{3-14}$;

chacun des groupements aliphatiques ou hétéroaliphatiques susmentionnés pouvant être indépendamment substitué ou non substitué, cyclique ou acyclique, linéaire ou ramifié, et chacun des groupements aryle ou hétéroaryle susmentionnés pouvant être indépendamment substitué ou non substitué.

20

15. Composé selon la revendication 1, caractérisé en ce que le composé présente la structure :

25

30

35

40

où R₁ et R₂ sont tels que définis à la revendication 1; G est CH₂ ou -(C=O); et

X est O, S, C=O, S=O, C=CR $_4$ R $_5$, NR $_4$ ou CR $_4$ R $_5$; chaque occurrence de R $_4$ et R $_5$ étant indépendamment un hydrogène, un hydroxyle, un halogène, un cyano, un groupement aliphatique, hétéroaliphatique, aryle en C $_{3-14}$ ou hétéroaryle en C $_{3-14}$, ou -C(O)R $_z$ où R $_z$ est un groupement aliphatique, hétéroaliphatique, aryle en C $_{3-14}$ ou hétéroaryle en C $_{3-14}$;

chacun des groupements aliphatiques ou hétéroaliphatiques susmentionnés pouvant être indépendamment substitué ou non substitué, cyclique ou acyclique, linéaire ou ramifié, et chacun des groupements aryle ou hétéroaryle susmentionnés pouvant être indépendamment substitué ou non substitué.

45

16. Composé selon la revendication 1, caractérisé en ce que le composé présente la structure :

50

55

où R_1 et R_2 sont tels que définis à la revendication 1;

p est un nombre entier de 0 à 3; s est un nombre entier de 0 à 4;

A, B, D, E et chaque occurrence de K sont indépendamment absents ou sont O, S, -C=O, -S=O, -C=CR $_4$ R $_5$, -NR $_4$ ou -CR $_4$ R $_5$; chaque occurrence de R $_4$ et R $_5$ étant indépendamment un hydrogène, un hydroxyle, un halogène, un cyano, -OR $_x$, -SR $_x$, -NR $_x$ R $_y$, un groupement aliphatique, hétéroaliphatique, aryle en C $_{3-14}$ ou hétéroaryle en C $_{3-14}$; et A et B, B et D, D et E, E et K et deux groupes K adjacents quelconques peuvent être liés par une liaison simple ou double telle qu'autorisée par la valence; chaque occurrence de R $_x$ et R $_y$ étant indépendamment un hydrogène, un groupement protecteur ou un groupement aliphatique, hétéroaliphatique, aryle en C $_{3-14}$, hétéroaryle en C $_{3-14}$, nétéroaliphatique (aryle en C $_{3-14}$), hétéroaliphatique(aryle en C $_{3-14}$), aliphatique(hétéroaryle en C $_{3-14}$);

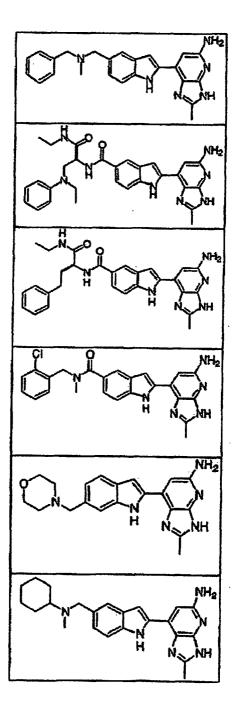
chacun des groupements aliphatiques ou hétéroaliphatiques susmentionnés pouvant être indépendamment substitué ou non substitué, cyclique ou acyclique, linéaire ou ramifié, saturé ou non saturé, et chacun des groupements aryle en C_{3-14} , hétéroaryle en C_{3-14} , aliphatique (aryle en C_{3-14}), hétéroaliphatique (aryle en C_{3-14}), aliphatique (hétéroaryle en C_{3-14}) susmentionnés pouvant être indépendamment substitué ou non substitué.

- 17. Composé selon l'une quelconque des revendications 1 à 16, caractérisé en ce que R₁ est NH₂.
- 18. Composé selon l'une quelconque des revendications 1 à 16, caractérisé en ce que R₁ est un hydrogène.
 - 19. Composé selon l'une quelconque des revendications 1 à 16, caractérisé en ce que R₂ est NH₂, OH, alkyle en C₁₋₆ ou alcényle en C₁₋₆, lesdits groupements alkyle et alcényle étant facultativement substitués par un halogène ou un hydroxyle.
 - 20. Composé selon l'une quelconque des revendications 1 à 16, caractérisé en ce que R_2 est un alkyle en C_{1-2} .
 - 21. Composé selon l'une quelconque des revendications 1 à 16, caractérisé en ce que R_2 est un méthyle.
- 30 **22.** Composé selon l'une quelconque des revendications 1 à 16, **caractérisé en ce que** R₂ est un hydrogène.
 - 23. Composé selon l'une quelconque des revendications 4 à 10, caractérisé en ce que l'un parmi R_F et R_G est un hydrogène ou un alkyle inférieur et l'autre est un groupement alkyle, hétéroalkyle, aryle en C₃₋₁₄, hétéroaryle en C₃₋₁₄, alkylaryle ou alkylhétéroaryle, facultativement indépendamment substitué, pour chaque occurrence, par un ou plusieurs groupes parmi halogène, alcoxy, thioalkyle ou alkyle en C₃₋₁₄, hétéroalkyle en C₃₋₁₄, aryle ou hétéroaryle, substitué ou non substitué, ou en ce que R_F et R_G pris ensemble sont un groupement cyclique ou hétérocyclique substitué ou non substitué, saturé ou non saturé à 3, 4, 5, 6, 7 ou 8 chaînons.
 - 24. Composé selon l'une quelconque des revendications 4 à 10, caractérisé en ce que l'un parmi R_F et R_G est un hydrogène ou un alkyle inférieur et l'autre est un groupement aryle en C₃₋₁₄, hétéroaryle en C₃₋₁₄, alkyl (aryle en C₃₋₁₄) ou alkyl (hétéroaryle en C₃₋₁₄), facultativement indépendamment substitué, pour chaque occurrence, présentant un ou plusieurs groupes parmi halogène, alcoxy, thioalkyle ou alkyle en C₃₋₁₄, hétéroalkyle en C₃₋₁₄, aryle ou hétéroaryle, substitué ou non substitué, ou en ce que R_F et R_G pris ensemble sont un groupement cyclique ou hétérocyclique substitué ou non substitué, saturé ou non saturé à 3, 4, 5, 6, 7 ou 8 chaînons.
 - 25. Composé selon la revendication 24, caractérisé en ce que l'un parmi R_F et R_G est un hydrogène ou un alkyle inférieur et l'autre est un phényle, pyridyle, alkylphényle ou alkylpyridyle, facultativement substitué par une ou plusieurs occurrences parmi halogène, trifluorométhoxy, méthoxy, trifluorométhyle, méthylthio ou alkyle inférieur, un hétéroalkyle inférieur, un aryle en C₃₋₁₄ ou un hétéroaryle en C₃₋₁₄, substitué ou non substitué.
 - **26.** Composé selon l'une quelconque des revendications 4 à 10, **caractérisé en ce que** l'un parmi R_F et R_G est un hydrogène ou un alkyle inférieur et l'autre est un groupement aliphatique cyclique ou acyclique, linéaire ou ramifié, saturé ou non saturé, facultativement substitué par un ou plusieurs groupes parmi aryle en C₃₋₁₄, hétéroaryle en C₃₋₁₄, amide, alcoxy, hydroxyle, thioalkyle, thiol, acyle ou amino, substitué ou non substitué.
 - 27. Composé selon la revendication 11, **caractérisé en ce que** R_F est un groupement alkyle, cycloalkyle, hétéroalkyle, cyclohétéroalkyle, aryle en C_{3-14} , hétéroaryle en C_{3-14} , alkyle (aryle en C_{3-14}) ou alkyle(hétéroaryle en C_{3-14}), facultativement indépendamment substitué, pour chaque occurrence, par un ou plusieurs groupes parmi halogène,

10

15

25

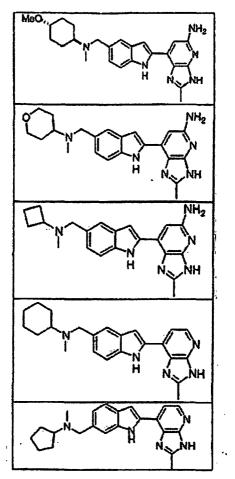

35

40

45

alcoxy, thioalkyle ou alkyle, hétéroalkyle, aryle en C_{3-14} ou hétéroaryle en C_{3-14} , substitué ou non substitué.

- 28. Composé selon la revendication 12, caractérisé en ce que R_F est un hydrogène, un groupement protecteur ou un groupement alkyle, cycloalkyle, hétéroalkyle, cyclohétéroalkyle, aryle en C₃₋₁₄ ou hétéroaryle en C₃₋₁₄, alkyl (aryle en C₃₋₁₄) ou alkyl (hétéroaryle en C₃₋₁₄), facultativement indépendamment substitué, pour chaque occurrence, par un ou plusieurs groupes parmi halogène, alcoxy, thioalkyle ou alkyle, hétéroalkyle, aryle en C₃₋₁₄ ou hétéroaryle en C₃₋₁₄, substitué ou non substitué.
- 29. Composé selon la revendication 1, caractérisé en ce que ledit composé est choisi parmi :



30

35

40

45

- **30.** Composition pharmaceutique comprenant un composé présentant la structure (I) selon la revendication 1 et un excipient ou diluant pharmaceutiquement acceptable, et comprenant facultativement en outre un agent thérapeutique supplémentaire.
- **31.** Composition pharmaceutique selon la revendication 30, **caractérisée en ce que** le composé est présent en une quantité efficace pour inhiber la voie des cytokines inflammatoires, la prolifération cellulaire ou un effet anti-inflammatoire.
- **32.** Composition pharmaceutique selon la revendication 30, **caractérisée en ce que** le composé présente la structure selon l'une quelconque des revendications 2 à 29.
- **33.** Composé présentant la structure selon l'une quelconque des revendications 1 à 29 et un excipient ou diluant pharmaceutiquement acceptable, et comprenant facultativement en outre un agent thérapeutique supplémentaire pour le traitement d'une affection inflammatoire ou auto-immune ou d'une affection proliférative.
 - 34. Composé selon la revendication 33, caractérisé en ce que l'affection inflammatoire ou auto-immune ou l'affection proliférative est la polyarthrite rhumatoïde, la rectolite hémorragique/maladie de Crohn, des maladies du système nerveux central (SNC) comme la sclérose en plaques, le lupus érythémateux aigu disséminé, l'asthme, le rejet d'allogreffe/réaction du greffon contre l'hôte (GVHD), le psoriasis, la dermatite atopique, l'eczéma, l'urticaire, la rhinite allergique, la myasthénie grave, le diabète, le purpura thrombocytopénique essentiel, la glomérulonéphrite, une maladie cardiovasculaire ou le cancer.
- 55 **35.** Composé selon la revendication 33, **caractérisé en ce que** l'affection inflammatoire est la polyarthrite rhumatoïde.
 - **36.** Composé selon la revendication 33, **caractérisé en ce que** l'affection inflammatoire est la rectolite hémorragique/maladie de Crohn.

37. Composé selon la revendication 33, caractérisé en ce que l'affection inflammatoire est la sclérose en plaques.

38. Composé selon la revendication 33, caractérisé en ce que l'affection inflammatoire est l'asthme. 5 39. Composé selon la revendication 33, caractérisé en ce que l'affection inflammatoire est le psoriasis. 40. Composé selon la revendication 33, caractérisé en ce que l'affection inflammatoire est le rejet d'allogreffe/GVHD. 41. Composé selon la revendication 33, caractérisé en ce que l'affection inflammatoire est le purpura thrombocyto-10 pénique essentiel. **42.** Composé selon la revendication 33, **caractérisé en ce que** l'affection inflammatoire est la rhinite allergique. 43. Composé selon la revendication 33, caractérisé en ce que l'affection inflammatoire est la dermatite atopique. 15 44. Composé selon la revendication 33, caractérisé en ce que l'affection inflammatoire est le lupus érythémateux aigu disséminé. 45. Composé selon la revendication 33, caractérisé en ce que l'affection inflammatoire est la glomérulonéphrite. 20 46. Composé selon la revendication 33, caractérisé en ce que l'affection inflammatoire est le diabète. 47. Utilisation d'un composé selon l'une quelconque des revendications 1 à 29 dans la préparation d'un médicament pour le traitement d'une affection inflammatoire ou auto-immune ou d'une affection proliférative. 25 30 35 40 45 50 55

EP 1 474 425 B9 (W2B1)

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• WO 0100610 A1 [0150]

Non-patent literature cited in the description

- **THOMAS SORRELL.** Organic Chemistry. *University Science Books*, 1999 [0063]
- Protective Groups in Organic Synthesis. John Wiley & Sons, 1999 [0063]
- *J. Pharmaceutical Sciences*, 1977, vol. 66, 1-19 [0085]
- T. HIGUCHI; V. STELLA. Pro-drugs as Novel Delivery Systems. A.C.S. Symposium Series, vol. 14 100871
- Bioreversible Carriers in Drug Design. Pergamon Press. 1987 [0087]
- Remington's Pharmaceutical Sciences. Mack Publishing Co, 1980 [0088]
- J. Clin. Investig., 2001, vol. 107, 7 [0090]
- GOODMAN; GILMAN'S. The Pharmacological Basis of Therapeutics. McGraw-Hill Press, 2001, 155-173 [0094]

- The Merck Manual. 1999 [0106]
- FIESER; FIESER. Reagents for Organic Synthesis. John Wiley and Sons, 1991, vol. 1-17 [0113]
- **RODD.** Chemistry of Carbon Compounds. Elsevier Science Publishers, 1989, 1-5 [0113]
- Organic Reactions. John Wiley and Sons, 1991, vol.
 1-40 [0113]
- MARCH 2001. Advanced Organic Chemistry. John Wiley and Sons [0113]
- LAROCK. Comprehensive Organic Transformations. VCH Publishers, 1989 [0113]
- TEMPLE, C.; SMITHY, B. H.; MONTGOMERY, J.
 A. J Org Chem., 1973, vol. 38, 613-5 [0126]
- Tetrahedron, 1998, vol. 54 (49), 14885-14904 [0189]
- (J. Heterocyclic. Chem., 1982, vol. 19, 513 [0285]
- Recueil, 1969, vol. 88, 1263-1274 [0291]