

Europäisches Patentamt European Patent Office Office européen des brevets

(11) **EP 1 475 450 A1**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:10.11.2004 Patentblatt 2004/46

(51) Int Cl.⁷: **C22C 38/10**, C22C 19/00

(21) Anmeldenummer: **04010444.0**

(22) Anmeldetag: 03.05.2004

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR Benannte Erstreckungsstaaten: AL HR LT LV MK

(30) Priorität: **07.05.2003 DE 10320350**

(71) Anmelder: Vacuumschmelze GmbH & Co. KG 63450 Hanau (DE)

(72) Erfinder:

- Gerster, Joachim 63755 Alzenau (DE)
- Tenbrink, Johannes 63776 Mömbris (DE)
- (74) Vertreter: Schäfer, Horst, Dr. et al Schweiger & Partner Patent- und Rechtsanwälte Karl-Theodor-Strasse 69 80803 München (DE)

(54) Hochfeste weichmagnetische Eisen-Kobalt-Vanadium-Legierung

(57) Es wird eine hochfeste, weichmagnetische Eisen-Kobalt-Vanadium-Legierungsauswahl vorgestellt, die aus $35,0 \le Co \le 55,0$ Gew.%, $0,75 \le V \le 2,5$ Gew.%, $0 \le Ta + 2 \cdot x$ Nb $\le 0,8$ Gew.%, $0,3 < Zr \le 1,5$ Gew.%, Rest Fe sowie erschmelzungsbedingten und/oder zufälligen Verunreinigungen besteht. Diese zirkonhaltige Le-

gierungsauswahl weist exzellente mechanische Eigenschaften, insbesondere eine sehr hohe Streckgrenze, hohe Induktionswerte und besonders niedrige Koerzitivfeldstärken auf. Sie eignet sich hervorragend als Werkstoff für Magnetlager im Flugzeugbau.

Beschreibung

[0001] Die Erfindung betrifft eine hochfeste weichmagnetische Eisen-Kobalt-Vanadium-Legierung, die insbesondere für elektrische Generatoren, Motoren und magnetische Lager in Flugzeugen eingesetzt werden kann. Elektrische Generatoren, Motoren und magnetische Lager in Flugzeugen müssen neben eine möglichst kleinen Baugröße auch ein möglichst kleines Gewicht haben. Deshalb kommen für diese Anwendungen weichmagnetische Eisen-Kobalt-Vanadium-Legierungen eingesetzt, die eine hohe Sättigungsinduktion aufweisen.

[0002] Die binären Eisen-Kobalt-Legierungen mit einem Kobaltgehalt zwischen 33 und 55 Gew.% sind außerordentlich spröde, was auf die Bildung einer geordneten Überstruktur bei Temperaturen unterhalb 730°C zurückzuführen ist. Der Zusatz von ungefähr 2 Gew.% Vanadium beeinträchtigt den Übergang in diese Überstruktur, so dass eine relativ gute Kaltverformbarkeit nach Abschrecken auf Raumtemperatur von der Temperaturen oberhalb 730°C erreicht werden kann.

[0003] Als ternäre Grundlegierung ist demnach eine Eisen-Kobalt-Vanadium-Legierung bekannt, die 49 Gew.% Eisen, 49 Gew.% Kobalt und 2 Gew.% Vanadium enthält. Diese Legierung ist seit langer Zeit bekannt und wird beispielsweise in "R. M. Bozorth, Ferromagnetism, van Nostrand, New York (1951)" ausführlich beschrieben. Diese vanadiumhaltige Eisen-Kobalt-Legierung zeichnet sich durch ihre sehr hohe Sättigungsinduktion von ca. 2,4 T aus.

[0004] Eine Weiterentwicklung dieser ternären vanadiumhaltigen Kobalt-Eisen-Grundlegierung ist aus der US 3,634,072 bekannt. Dort wird bei der Herstellung von Legierungsbändern ein Abschrecken des warmgewalzten Legierungsbandes von einer Temperatur oberhalb der Phasenübergangstemperatur von 730°C beschrieben. Dieser Prozess ist notwendig, damit die Legierung hinreichend duktil für das anschließende Kaltwalzen ist. Mit dem Abschrecken wird die Ordnungseinstellung unterdrückt. Fertigungstechnisch ist das Abschrecken jedoch sehr kritisch, da es bei den sogenannten Kaltwalzstichen sehr leicht zu Bandbrüchen kommen kann. Deshalb wurden erhebliche Anstrengungen unternommen, um die Duktilität der Legierungsbänder zu steigern und damit die Fertigungssicherheit zu erhöhen.

[0005] Die US 3,634,072 schlägt daher als duktilitätssteigernde Zusätze eine Zugabe von 0,02 bis 0,5 Gew.% Niob und/oder 0,07 bis 0,3 Gew.% Zirkon vor.

[0006] Niob, das im Übrigen auch durch das homologe Tantal ersetzt werden kann, hat im Eisen-Kobalt-Legierungssystem nicht nur die Eigenschaft, den Ordnungsgrad stark zu unterdrücken, was beispielsweise von R. V. Major und C. M. Orrock in "High saturation ternary cobalt-iron based alloys", IEEE Trans. Magn. 24 (1988), 1856-1858, beschrieben worden ist, sondern es hemmt auch das Kornwachstum.

[0007] Die Zugabe von Zirkon in den in der US 3,634,072 vorgeschlagenen Mengen von maximal 0,3 Gew.% hemmt ebenfalls das Kornwachstum. Beide Mechanismen verbessern wesentlich die Duktilität der Legierung nach dem Abschrecken.

[0008] Neben dieser aus der US 3,634,072 bekannten hochfesten niobund zirkonhaltigen Eisen-Kobalt-Vanadium-Legierung sind des Weiteren noch zirkonfreie Legierungen aus der US 5,501,747 bekannt.

[0009] Dort werden Eisen-Kobalt-Vanadium-Legierungen vorgeschlagen, die ihre Anwendung in schnelldrehenden Flugzeuggeneratoren' und Magnetlagern finden. Die US 5,501,747 baut auf der Lehre der US 3,364,072 auf und schränkt den dort gelehrten Niobgehalt auf 0,15 - 0,5 Gew.% ein. Des Weiteren wird dort eine besondere magnetische Schlussglühung empfohlen, bei der die Legierung nicht länger als ungefähr vier Stunden, vorzugsweise nicht länger als zwei Stunden, bei einer Temperatur von nicht über 740°C getempert werden kann, um einen Gegenstand herzustellen, der eine Streckgrenze von mindestens ungefähr 620 MPa aufweist. Dies ist sehr einschränkend und auch sehr ungewöhnlich, da normalerweise die weichmagnetische Eisen-Kobalt-Vanadium-Legierungen bei Temperaturen oberhalb 740°C und unterhalb 900°C geglüht werden.

[0010] Mit der Glühtemperatur lassen sich die magnetischen und mechanischen Eigenschaften einstellen. Beide Eigenschaften sind für den Einsatz der Legierungen entscheidend. Die gleichzeitige Optimierung dieser beiden Eigenschaften ist jedoch sehr schwierig, da die Eigenschaften gegenläufig sind:

- 1. Wird die Legierung bei einer höheren Temperatur geglüht, so erhält man ein gröberes Korn und damit gute weichmagnetische Eigenschaften. Die dabei erzielten mechanischen Eigenschaften sind in der Regel jedoch relativ schlecht.
- 2. Glüht man die Legierung hingegen bei niedrigeren Temperaturen, so erzielt man bessere mechanische Eigenschaften aufgrund eines feineren Korns. Das feinere Korn jedoch bewirkt schlechtere magnetische Eigenschaften.

[0011] Ein großer Nachteil bei der in der US 5,501,747 gelehrten Legierungsauswahl liegt in der Notwendigkeit der oben genannten Kurzzeitglühung, die lediglich ungefähr ein bis zwei Stunden bei einer Temperatur in der Nähe der Phasengrenze ungeordnet/geordnet durchgeführt werden darf, um brauchbare magnetische und mechanische Eigenschaften zu erzielen.

[0012] Für eine große Menge an Glühgut ist aufgrund unterschiedlicher Aufheizzeiten und aufgrund von Tempera-

2

50

45

20

30

35

00

55

turschwankungen innerhalb des Glühgutes eine Fertigungssicherheit damit nur sehr schwer zu realisieren. Es kommt im großtechnischen Maßstab in der Regel zu nicht tolerierbaren Streuungen in Bezug auf die die mechanischen Eigenschaften charakterisierenden Streckgrenzen.

[0013] Aufgabe der vorliegenden Erfindung ist es daher, eine neue hochfeste weichmagnetische Eisen-Kobalt-Vanadium-Legierungsauswahl bereitzustellen, die sich durch sehr gute mechanische Eigenschaften, insbesondere durch sehr hohe Streckgrenzen auszeichnen.

[0014] Die Legierungen sollen ferner auch bei längeren Glühzeiten von mindestens zwei Stunden mit einer hohen Fertigungssicherheit Streckgrenzen von über 600 MPa, vorzugsweise von über 700 MPa, aufweisen.

[0015] Die Legierungen sollen darüberhinaus gleichzeitig hohe Sättigungsinduktionswerte und möglichst niedrige Koerzitivfeldstärken aufweisen, d.h. ein hervorragendes weichmagnetisches Verhalten zeigen.

[0016] Erfindungsgemäß wird diese Aufgabe durch eine weichmagnetische Eisen-Kobalt-Vanadium-Legierungsauswahl gelöst, welche im Wesentlichen aus

```
35,0 \le Co \le 55,0 Gew.%, 0,75 \le V \le 2,5 Gew.%, 0 \le (Ta + 2 \times Nb) \le 0,8 Gew.%, 0 \le (Ta + 2 \times Nb) \le 0,8 Gew.%, 0,3 < Zr \le 1,5 Gew.%, Ni \le 5,0 Gew.%, Rest Fe sowie erschmelzungsbedingten und/oder zufälligen Verunreinigungen besteht.
```

15

30

35

50

55

20 [0017] Unter dem Begriff "besteht im Wesentlichen aus" wird hier und im Folgenden verstanden, dass die erfindungsgemäße Legierungsauswahl neben den angegebenen Hauptbestandteilen an Co, V, Zr, Nb, Ta und Fe lediglich erschmelzungsbedingte und/oder zufällige Verunreinigungen in einer solchen Menge aufweisen kann, die weder die mechanischen noch die magnetischen Eigenschaften signifikant beeinträchtigt.

[0018] Es hat sich völlig überraschend gezeigt, dass Eisen-Kobalt-Vanadium-Legierungen mit Zirkongehalten oberhalb 0,3 Gew.% wesentlich bessere mechanische Eigenschaften unter gleichzeitiger Erzielung hervorragender magnetischer Eigenschaften aufweisen als die eingangs genannten Legierungen aus dem Stand der Technik.

[0019] Dies lässt sich darauf zurückführen, dass es durch die Zugabe von Zirkon in Mengen oberhalb 0,3 Gew.% innerhalb des Gefüges zur Ausbildung einer bisher nicht bekannten hexagonalen Laves-Phase zwischen den einzelnen Körnern kommt, die einen sehr positiven Einfluss auf die mechanischen und magnetischen Eigenschaften nimmt. Diese hexagonale Laves-Phase ist vom Standpunkt der Metallurgie und der Kristallographie nicht mit der in der US 5,501,747 beschriebenen kubischen Laves-Phase zu verwechseln. Es besteht lediglich eine Namensteilidentität. Dieser signifikante Zirkonzusatz bewirkt insbesondere im Zusammenspiel mit Niob und/oder Tantal eine signifikante Verbesserung in der Duktilität.

[0020] In einer bevorzugten Ausführungsform weist die erfindungsgemäße weichmagnetische Eisen-Kobalt-Vanadium-Legierung einen Zirkoniumgehalt von $0.5 \le Zr \le 1.0$ Gew.%, idealerweise einen Zirkoniumgehalt von $0.6 \le Zr \le 0.8$ Gew.% auf

[0021] Typischerweise beträgt der Kobaltgehalt $48.0 \le Co \le 50.0$ Gew.%. Aber auch mit Legierungen, deren Kobaltgehalt zwischen $45.0 \le Co \le 48.0$ Gew.% liegt, sind sehr gute Ergebnisse erzielbar. Der Gehalt an Nickel sollte Ni ≤ 1.0 Gew.%, idealerweise Ni ≤ 0.5 Gew.% betragen.

[0022] In einer typischen Ausgestaltung der vorliegenden Erfindung weist die erfindungsgemäße weichmagnetische Eisen-Kobalt-Vanadium-Legierung einen Vanadiumiumgehalt von $1,0 \le V \le 2,0$ Gew.%, idealerweise einen Vanadiumgehalt von $1,5 \le V \le 2,0$ Gew.% auf.

[0023] Zur Erzielung besonders guter Duktilitäten sind nach der vorliegnden Erfindung Niob- und/oder Tantal-Gehalte von $0.04 \le (\text{Ta} + 2 \times \text{Nb}) \le 0.8$ Gew.%, idealerweise von $0.04 \le (\text{Ta} + 2 \times \text{Nb}) \le 0.3$ Gew.%, vorgesehen.

[0024] Die erfindungsgemäßen weichmagnetischen hochfesten Eisen-Kobalt-Vanadium-Legierungen weisen außerdem dabei einen Gehalt an erschmelzungsbedingten und/oder zufälligen metallischen Verunreinigungen von:

```
Cu \leq 0,2, \ Cr \leq 0,3, \ Mo \leq 0,3, \ Si \leq 0,5, \ Mn \leq 0,3 \ und \ Al \leq 0,3; \ vorzugsweise \ von: \\ Cu \leq 0,1, \ Cr \leq 0,2, \ Mo \leq 0,2, \ Si \leq 0,2, \ Mn \leq 0,2 \ und \ Al \leq 0,2; \ idealerweise \ von: \\ Cu \leq 0,06, \ Cr \leq 0,1, \ Mo \leq 0,1, \ Si \leq 0,1, \ Mn \leq 0,1; \ auf.
```

[0025] Des Weiteren liegen nichtmetallische Verunreinigungen typischerweise im Bereich von:

```
P ≤ 0,01, S ≤ 0,02, N ≤ 0,005, O ≤ 0,05 und C ≤ 0,05; vorzugsweise im Bereich von: P ≤ 0,005, S ≤ 0,01, N ≤ 0,002, O ≤ 0,02 und C ≤ 0,02; idealerweise im Bereich von: S ≤ 0,005, N ≤ 0,001, O ≤ 0,01 und C ≤ 0,01.
```

[0026] Die erfindungsgemäßen Legierungen können mittels verschiedener Verfahren erschmolzen werden. Grund-

sätzlich sind alle gängigen Techniken, wie zum Beispiel das Erschmelzen an der Luft oder Herstellen über Vakuuminduktionsschmelzen (VIM = Vacuum Induction Melting) möglich.

[0027] Zur Herstellung der erfindungsgemäßen weichmagnetischen Eisen-Kobalt-Vanadium-Legierungen wird jedoch das VIM-Verfahren bevorzugt, da die relativ hohen Zirkonium-Gehalte besser einzustellen sind. Beim Schmelzen an der Luft weisen zirkoniumhaltige Legierungen einen hohen Abbrand auf, so dass sich unerwünschte Zirkoniumoxide und andere Verunreinigungen bilden.

[0028] Insgesamt ist bei der Verwendung des VIM-Verfahrens der Zirkoniumgehalt besser einzustellen.

[0029] Die Legierungsschmelze wird dann in Kokillen abgegossen. Nach dem Erstarren wird der Schmelzblock abgedreht und anschließend bei einer Temperatur zwischen 900°C und 1300°C zu einer Bramme gewalzt.

Alternativ kann auch auf das Abdrehen der Oxidhaut auf der Oberfläche der Schmelzblöcke verzichtet werden. Stattdessen muss dann die Bramme entsprechend an ihrer Oberfläche bearbeitet werden.

[0030] Die resultierende Bramme wird danach bei ähnlichen Temperaturen, das heißt also bei Temperaturen oberhalb 900°C, zu einem Band warmgewalzt. Das dann erhaltene warmgewalzte Legierungsband ist für einen weiteren Kaltwalzprozess zu spröde. Demzufolge wird das warmgewalzte Legierungsband von einer Temperatur oberhalb des Phasenübergangs geordnet/ungeordnet, welches bekanntlich bei einer Temperatur von ungefähr 730°C liegt in Wasser, vorzugsweise in Eissalzwasser, abgeschreckt.

[0031] Durch diese Behandlung ist das Legierungsband nun hinreichend duktil. Nach Entfernung der Oxidhaut auf dem Legierungsband, welches beispielsweise durch Beizen oder Strahlen erfolgen kann, wird das Legierungsband beispielsweise auf eine Dicke von ungefähr 0,35 mm kaltgewalzt.

[0032] Anschließend werden aus dem kaltgewalzten Legierungsband die gewünschten Formen gefertigt. Diese Formbearbeitung erfolgt in der Regel durch Stanzen. Weitere Verfahren sind Laserschneiden, Drahterodieren, Wasserstrahlschneiden oder der-gleichen.

20

40

45

50

[0033] Nach dieser Formbearbeitung erfolgt die wichtige magnetische Schlussglühung, wobei durch die Variation der Glühdauer und der Glühtemperatur die magnetischen Eigenschaften und die mechanischen Eigenschaften des Endprodukts präzise eingestellt werden können.

[0034] Die Erfindung wird im Folgenden anhand von Ausführungsbeispielen und Vergleichsbeispielen erläutert. Die Unterschiede der einzelnen Legierungen bezüglich ihrer mechanischen und magnetischen Eigenschaften werden anhand der Figuren 1 bis 8 veranschaulicht, die jeweils die Koerzitivfeldstärke H_c als Funktion der Streckgrenze $R_{p0,2}$ zeigen.

30 [0035] Alle Ausführungsbeispiele und alle Vergleichsbeispiele wurden hergestellt, indem Schmelzen unter Vakuum in Flachkokillen abgegossen wurden. Die auf den Schmelzblöcken vorhandene Oxidhaut wurde anschließend abgefräst.

[0036] Anschließend wurden die Schmelzblöcke bei einer Temperatur von 1150°C zusammen mit einer Dicke von d=3,5 mm warmgewalzt.

[0037] Die resultierenden Brammen wurden danach von einer Temperatur T=930°C in Eiswasser abgeschreckt. Die abgeschreckten, warmgewalzten Brammen wurden schließlich auf eine Dicke d'=0,35 mm kaltgewalzt. Anschließend wurden Zugproben und Ringe gestanzt. An den entstandenen Zugproben und Ringen wurden die jeweiligen magnetischen Schlussglühungen durchgeführt.

[0038] Sämtliche Legierungsparameter, magnetische Messergebnisse und mechanische Messergebnisse sind in den Tabellen 1 bis 26 wiedergegeben.

[0039] Zur Untersuchung der mechanischen Eigenschaften wurden Zugversuche durchgeführt, bei denen das Elastizitätsmodul E, die Streckgrenze $R_{p0,2}$, die Zugfestigkeit R_m , die Bruchdehnung A_L sowie die Härte HV gemessen wurden. Als wesentlicher mechanischer Parameter wurde dabei die Streckgrenze $R_{p0,2}$ erachtet.

[0040] Die magnetischen Eigenschaften wurden an den gestanzten Ringen untersucht. An den gestanzten Ringen wurde dabei die statische B-H-Neukurve sowie die statische Koerzitivfeldstärke H_c bestimmt.

[0041] Im Folgenden werden anhand von den Tabellen 1 bis 33 sowie der Figuren 1 bis 15 Vergleichsbeispiele und Ausführungsbeispiele der vorliegenden Erfindung eingehend erörtert. Dabei zeigen:

- Tabelle 1: Eigenschaften von Sonderschmelzen der Chargen 93/5964 bis 93/6018 nach einstündiger Schlussglühung bei 720°C unter $\rm H_2$
- Tabelle 2: Eigenschaften von Sonderschmelzen der Chargen 93/6278 bis 93/6289 nach einstündiger Schlussglühung bei 720°C unter H₂
- Tabelle 3: Eigenschaften von Sonderschmelzen der Chargen 93/6655 bis 93/6666 nach einstündiger Schlussglühung bei 720°C unter H₂
 - Tabelle 4: Eigenschaften von Sonderschmelzen der Chargen 93/5964 bis 93/6018 nach zweistündiger Schluss-

		glühung bei 720°C unter H ₂
5	Tabelle 5:	Eigenschaften von Sonderschmelzen der Chargen 93/6278 bis 93/6289 nach zweistündiger Schluss glühung bei 720°C unter $\rm H_2$
J	Tabelle 6:	Eigenschaften von Sonderschmelzen der Chargen 93/6655 bis 93/6666 nach zweistündiger Schluss glühung bei 720°C unter $\rm H_2$
10	Tabelle 7:	Eigenschaften von Sonderschmelzen der Chargen 93/6278 bis 93/6289 nach vierstündiger Schlussglühung bei 720°C unter $\rm H_2$
	Tabelle 8:	Eigenschaften von Sonderschmelzen der Chargen 93/6655 bis 93/6666 nach vierstündiger Schlussglühung bei 720°C unter $\rm H_2$
15	Tabelle 9:	Eigenschaften von Sonderschmelzen der Chargen 93/6278 bis 93/6289 nach einstündiger Schlussglühung bei 730°C unter $\rm H_2$
20	Tabelle 10:	Eigenschaften von Sonderschmelzen der Chargen 93/6278 bis 93/6289 nach zweistündiger Schluss glühung bei 730°C unter $\rm H_2$
20	Tabelle 11:	Eigenschaften von Sonderschmelzen der Chargen 93/6278 bis 93/6289 nach einstündiger Schlussglühung bei 740°C unter $\rm H_2$
25	Tabelle 12:	Eigenschaften von Sonderschmelzen der Chargen 93/6655 bis 93/6666 nach einstündiger Schlussglühung bei 740°C unter $\rm H_2$
	Tabelle 13:	Eigenschaften von Sonderschmelzen der Chargen 93/6278 bis 93/6289 nach zweistündiger Schluss glühung bei 740°C unter $\rm H_2$
30	Tabelle 14:	Eigenschaften von Sonderschmelzen der Chargen 93/6655 bis 93/6666 nach zweistündiger Schluss glühung bei 740°C unter $\rm H_2$
0.5	Tabelle 15:	Eigenschaften von Sonderschmelzen der Chargen 93/5964 bis 93/6018 nach vierstündiger Schlussglühung bei 740°C unter $\rm H_2$
35	Tabelle 16:	Eigenschaften von Sonderschmelzen der Chargen 93/6278 bis 93/6306 nach vierstündiger Schlussglühung bei 740°C unter $\rm H_2$
40	Tabelle 17:	Eigenschaften von Sonderschmelzen der Chargen 93/6655 bis 93/6666 nach vierstündiger Schlussglühung bei 740°C unter $\rm H_2$
	Tabelle 18:	Eigenschaften von Sonderschmelzen der Chargen 93/6278 bis 93/6289 nach einstündiger Schlussglühung bei 750°C unter $\rm H_2$
45	Tabelle 19:	Eigenschaften von Sonderschmelzen der Chargen 93/6278 bis 93/6289 nach einstündiger Schlussglühung bei 770°C unter $\rm H_2$
	Tabelle 20:	Eigenschaften von Sonderschmelzen der Chargen 93/6278 bis 93/6289 nach zweistündiger Schluss glühung bei 770°C unter $\rm H_2$
50	Tabelle 21:	Eigenschaften von Sonderschmelzen der Chargen 93/5964 bis 93/6018 nach vierstündiger Schlussglühung bei 770°C unter $\rm H_2$
55	Tabelle 22:	Eigenschaften von Sonderschmelzen der Chargen 93/6278 bis 93/6284 nach vierstündiger Schlussglühung bei 770°C unter $\rm H_2$
	Tabelle 23:	Eigenschaften von Sonderschmelzen der Chargen 93/6655 bis 93/6666 nach vierstündiger Schlussglühung bei 770°C unter H ₂

Tabelle 24: Eigenschaften von Sonderschmelzen der Chargen 93/5964 bis 93/6018 nach vierstündiger Schlussglühung bei 800°C unter H₂ Eigenschaften von Sonderschmelzen der Chargen 93/6278 bis 93/6306 nach vierstündiger Schlussglü-Tabelle 25: 5 hung bei 800°C unter H₂ Eigenschaften von Sonderschmelzen der Chargen 93/6655 bis 93/6666 nach vierstündiger Schlussglü-Tabelle 26: hung bei 800°C unter H₂ 10 Tabelle 27: Gefügezustand der Sonderschmelzen 93/7179 bis 93/7183 nach Abschrecken von verschiedenen Temperaturen Tabelle 28: Eigenschaften der Chargen 93/7180 bis 93/7184 sowie 74/5517 und 99/5278 nach einstündiger Schlussglühung bei 720°C unter H_{2:} Dicke: 0,35 mm 15 Tabelle 29: Ummagnetisierungsverluste von Sonderschmelzen der Chargen 93/7180 bis 93/7184 sowie 74/5517 und 99/5278 für verschiedene Aussteuerungen und Frequenzen nach einstündiger Schlussglühung bei 720°C unter H₂; Dicke: 0,35 mm 20 Tabelle 30: Eigenschaften der Chargen 93/7180 bis 93/7184 sowie 74/5517 und 99/5278 nach zweistündiger Schlussglühung bei 750°C unter H_{2:} Dicke: 0,35 mm Tabelle 31: Ummagnetisierungsverluste von Sonderschmelzen der Chargen 93/7180 bis 93/7184 sowie 74/5517 und 99/5278 für verschiedene Aussteuerungen und Frequenzen nach zweistündiger Schlussglühung 25 bei 750°C unter H₂; Dicke: 0,35 mm Tabelle 32: Eigenschaften der Chargen 93/7180 bis 93/7184 sowie 74/5517 und 99/5278 nach vierstündiger Schlussglühung bei 840°C unter H_{2:} Dicke: 0,35 mm 30 Tabelle 33: Ummagnetisierungsverluste von Sonderschmelzen der Chargen 93/7180 bis 93/7184 sowie 74/5517 und 99/5278 für verschiedene Aussteuerungen und Frequenzen nach vierstündiger Schlussglühung bei 840°C unter H₂; Dicke: 0,35 mm

Vergleichsbeipiele:

35

40

[0042] Es wurden unter den Bezeichnungen Chargen 93/5973 sowie unter den Bezeichnungen Charge 93/5969 und 93/5968 Legierung gemäß dem Stand der Technik hergestellt. Die Charge 93/5973 entspricht einer Legierung, wie sie der eingangs erwähnten US 3,634,072 (Ackermann) entnehmbar ist, d. h. also einer hochfesten, weichmagnetischen Eisen-Kobalt-Vanadium-Legierung mit einem geringen Zirkon-Zusatz unterhalb 0,3 Gew.%.

[0043] Der Zirkonzusatz betrug exakt 0,28 Gew.%.

[0044] Die Chargen 93/5969 sowie 93/5968 waren Legierungen, wie sie der eingangs erwähnten US 5,501,747 (Masteller) entsprechen. Es handelte sich dabei um hochfeste, weichmagnetische Eisen-Kobalt-Vanadium-Legierungen, die zirkonfrei waren.

[0045] Die Eigenschaften dieser Legierungen sind den Tabellen 1, 4, 15, 21 sowie 24 zu entnehmen.

[0046] Diese Tabellen geben die Eigenschaften der erschmolzenen.Legierungen unter verschiedenen Schlussglühungen wieder.

[0047] Dabei wurden die Zeitdauer der Schlussglühungen sowie die Glühtemperaturen variiert. Die Glühtemperaturen wurden von 720°C bis zu 800°C variiert. Die Dauer der Schlussglühungen wurde von einer Stunde bis vier Stunden variiert.

[0048] Eine graphische Zusammenfassung der gefundenen Ergebnisse bei diesen drei Legierungen aus dem Stand der Technik liefern die Figuren 1, 2 und 3. Wie diesen Figuren zu entnehmen ist, ist mit diesen Legierungen eine hohe Streckgrenze, d. h. eine Streckgrenze R_{p0,2} oberhalb 700 MPa nur dann erzielbar, wenn merkliche Einbußen im weichmagnetischen Verhalten hingenommen werden. Alle drei Legierungen zeigen im Bereich von 700 MPa und höher bereits ein halbhart-magnetisches Verhalten, d. h. eine Koerzitivfeldstärke H_c von mehr als 6,0 A/cm.

Ausführungsbeispiele:

[0049] Als Ausführungsbeispiele gemäß der vorliegenden Erfindung wurden fünf verschiedene Legierungschargen

hergestellt, die unter den Chargenbezeichnungen 93/6279, 93/6284, 93/6285, 93/6655 sowie 93/6661 in den Tabellen 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 22, 23, 25 sowie 26 aufgelistet sind.

[0050] Bei den Legierungen wurde zum Einen der Zirkongehalt variiert, zum Anderen wurden der Zirkongehalt zusammen mit den anderen für die Duktilität verantwortlichen Legierungsbestandteilen Niob und Tantal variiert.

[0051] Auch mit diesen Legierungschargen wurden sowohl die Glühtemperaturen bei den magnetischen Schlussglühungen als auch die Schlussglühzeiten variiert. Die Schlussglühzeiten wurden zwischen einer Stunde und vier Stunden variiert. Die Schlussglühtemperaturen wurden zwischen 720°C und 800°C variiert.

[0052] Eine graphische Zusammenfassung der einzelnen Ergebnisse ist den Figuren 4 bis 8 zu entnehmen. In diesen Figuren ist ebenfalls die Koerzitivfeldstärke H_c als Funktion der Streckgrenze $R_{p0,2}$ gezeigt. Im Gegensatz zu den Legierungen aus dem Stand der Technik, die oben unter den Vergleichsbeispielen diskutiert wurden, zeigen die Legierungen gemäß der vorliegenden Erfindung sehr hohe Streckgrenzen unter gleichzeitigem sehr guten weichmagnetischen Verhalten.

[0053] Dies ist insbesondere den Figuren 7 und 8 zu entnehmen. Die dort gezeigten Legierungen weisen im Bereich der Streckgrenze Werte von über 700 MPa auf bei Koerzitivfeldstärken von ungefähr 5,0 A/cm.

[0054] Insbesondere aus der Figur 3 ist zu entnehmen, dass beim Einsatz von Zirkongehalten unter 0,30 Gew.%, wie sie die US 3,634,072 lehrt, in der Tat keine wirklich hochfesten Legierungen herstellbar sind.

[0055] Im Vergleich zu der Zusammensetzung 49,2 Co; 1,9 V; 0,16 Ta; 0,77 Zr; Rest Fe wurde der V-Gehalt von 0-3 % und der Co-Gehalt von 10-49 % in Chargen 93/7179 bis 93/7184 variiert. Diese Ausführungsbeispiele sind in Figuren 9 bis 15 und Tabellen 26 bis 32 zusammengefasst. Die Charge 74/5517 99/5278 ist eine Vergleichslegierung des Stands der Technik.

[0056] Tabelle 26 zeigt die Untersuchung der passenden Abstrecktemperatur für die Sonderschmelzen versuche der Chargen 93/7179 bis 93/7183. Nur die Charge 93/7184 wurde ohne Abschrecken kaltgewalzt. Nach dem Abschrekken bei den jeweils festgelegten Temperaturen, siehe Tabelle 26, ließen sich die Bänder auf Enddicke kaltwalzen.

20

35

40

45

50

55

[0057] Figuren 9 bis 11 zeigen das Verhältnis zwischen Induktion und Feldstärke für die Chargen 93/7179 bis 93/7184 nach einer Schlussglühung unter verschiedenen Glühparametern. Induktionswerte sind luftflusskorrigiert gemäß ASTM A 341/A 341M und IEC 404-4. Diese Ergebnisse sowie die Ergebnisse der Zugversuche sind in Tabellen 27, 29 und 31 aufgelistet.

[0058] Das Verhältnis zwischen Co-Gehalt bzw. V-Gehalt und Streckgrenze $R_{p0,2}$ ist in Figuren 12 und 13 graphisch dargestellt.

[0059] Die Tabellen 28, 30 und 32 zeigen den spezifischen Widerstand sowie die Ummagnetisierungsverluste für die Chargen 93/7179 bis 93/7184. Das Verhältnis zwischen spezifischem elektrischem Widerstand ρ_{e1} und Co- bzw. V-Gehalt für verschiedene Glühparameter ist in Figuren 14 und 15 graphisch dargestellt.

[0060] Die Legierungen nach der vorliegenden Erfindung eignen sich insbesondere hervorragend für Magnetlager, insbesondere für die Rotoren von Magnetlagern, wie sie in der US 5,501,747 beschrieben sind, sowie als Werkstoff für Generatoren und für Motoren.

7

5	

Band 0,35 mm 1h 720°C,H2,OK

							.) (
Ni Zusatz H _c [A/cm] B ₃ ¹⁾ B ₈ ¹⁾ B ₁₆ ¹⁾ B ₂₄ ¹⁾ B ₄₀ ¹⁾ B ₈₀ ¹⁾ B ₈₀ ¹⁾ B ₁₆₀ ¹⁾ R _m R _{p02} A _L A _L [T] [T] [T] [T] [T] [MPa] [MPa] [W] [W] [W] [W] [W] [W] [W] [W] [W] [W		Gewic	hts -				statisc	he mag	netisch	ပ္	۲	hne Luf	Hlusskor	rektur ab		echanis	she		
Ni Zusatz H_c [A/cm] $B_3^{1/1}$ $B_8^{1/1}$ $B_1^{1/2}$ $B_1^{1/2}$ $B_2^{1/2}$ $B_1^{1/2}$ $B_1^{$		%					_	Jessan	gen		1	3 ₄₀			4	fessung	en		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Charge	රි	>	g Z	ï	Zusatz	H_c [A/cm]	B ₃ 1)	$B_8^{1)}$	\mathbf{B}_{16}	B ₂₄ 1)	$B_{40}^{1)}$	B ₈₀ 1)	B ₁₆₀ ¹⁾	R_{m}	Rp0,2	A _L	급	HΛ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$)							[T]	[T]	[T]	[T]	[T]	[T]	[T]	[MPa]	[MPa]	<u></u>	Modul	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,									[[GPa]	
0,04 10,638 0,087 0,394 1,861 1,985 2,080 2,180 2,270 1521 939 19,2- 0,04 12,144 0,077 0,287 1,650 1,918 2,038 2,152 2,246 1498 890 21,3-	93/5973	49,10	1,95		0,03	$Zr \sim 0.28$		0,088	0,368	1,669	1,893	2,018	2,135	2,222	1229	721	11,8-	219-	371-
10,638 0,087 0,394 1,861 1,985 2,080 2,180 2,270 1521 939 19,2- 21,2 12,144 0,077 0,287 1,650 1,918 2,038 2,152 2,246 1498 890 21,3- 21,8	_																16,6	262	377
12,144 0,077 0,287 1,650 1,918 2,038 2,152 2,246 1498 890 21,3- 21,8	93/2969	49,10	1,91	0,37	0,04		10,638	0,087	0,394	1,861	1,985	2,080	2,180	2,270	1521		19,2-		421-
12,144 0,077 0,287 1,650 1,918 2,038 2,152 2,246 1498 890 21,3- 21,8																	21,2		432
21,8	93/5968	49,10	1,91	0,23	0,04		12,144	0,077	0,287	1,650	1,918	2,038	2,152	2,246	1498	068	21,3-	- 336-	414-
																	21,8	271	418

Tabelle 2

Glühung: 1h, 720°C, H2, OK	g: lh, 7	720°C	, H2	OK										
	Gewichts-%	chts-	%		Statisch	e magr	etische	: Messu	ngen	Mecha	nische	Statische magnetische Messungen Mechanische Messungen	gen	
Charge	රි	>	Ξ	Charge Co V Ni Zusatz H _c B ₃ (T) B ₈ (T) B ₁₆ (T) B ₂₄ (T) R _m R _{p0,2} A _L E-Modul HV5 (A/cm) (A/cm) (GPa) (GPa)	H _c (A/cm)	B ₃ (T)	B ₈ (T)	B ₁₆ (T)	B ₂₄ (T)	R _m (MPa)	R _{p0,2} (MPa)	$\begin{bmatrix} R_m & R_{p0,2} & A_L & \\ (MPa) & (MPa) & (\%) & \end{bmatrix}$	E-Modul (GPa)	HV5
93/6279	49,20	1,89	0,06	$93/6279/49,20/1,89/0,06/Z_{r} \sim 0,80/2,815/0,549/1,902/2,054/2,115/970/633/8,5/241$	2,815	0,549	1,902	2,054	2,115	970	633	8,5	- 1	312
93/6284	49,35	1,90	0,43	93/6284 49,35 1,90 0,43 Zr ~ 1,00 3,435 0,319 1,798 1,995 2,066 993 663 7,6-9,5 235 329	3,435	0,319	1,798	1,995	2,066	993	699	7,6-9,5	235	329
93/6285	49.35	1,89	0.44	$Zr \sim 1.40$	3,381	0,334	1,797	1,983	2,061	953	675	6,8-6,9	243	333

_	
^	

15

20

25

30

35

40

45

50

55

5,265 0,204 1,393 1,850 1,965 2,050 2,130 2,170 1101-1251 753-772 9,7-13,9 239-248 326-332 6,397 0,175 1,121 1,824 1,945 2,037 2,118 2,170 1245-1285 831-833 12,3-14,7 223-251 341-349 HV E-Modul (GPa) & P % Mechanische Messungen R_{p0,2} (MPa) R_m (MPa) B₁₆₀ B₈₀ $\left(\begin{array}{c|c} B_{16} \end{array}\right) \left(\begin{array}{c|c} B_{24} \end{array}\right) \left(\begin{array}{c|c} B_{40} \end{array}\right) \left(\begin{array}{c|c} B_{40} \end{array}\right)$ mit Luftflusskorrektur ab B40 Statische magnetische Messungen $\frac{93}{6661}$ $\frac{49,70}{1,91}$ x | # 0,77| # 0,16| 6,397|0,175|1,121|1,824|1,945|2, $\frac{1}{1}$ Induktion B bei einer Feldstärke H in A/cm, z.B. B₂₄ bei H = 24 A/cm B₃ 1) A/cm) (T) H × 93/6655 49,15 1,90 0,10 # 0,86 Z Glühung: 1h/720°C/H2/OK £ Gewichts-% > ပိ Charge

Tabelle 4

ſ					T	_	_				
			H			247-	261	332-	335	323-	962
			占	Modul	[GPa]	246-	263	257-	268	243-	250
	che	en	$A_{\rm L}$	2		9,5-9,6		15,1-	22,5	16,6-	. 23.0
	mechanische	Messungen	Rp0,2	[MPa]		504		761		200	
		2	R_{m}	[MPa]		206		1379		1335	
	ohne Luftflusskorrektur ab		B ₁₆₀ 1)	[T]		2,378		2,316		2,307	
	ftflusskor		B ₈₀ 1)	[T]		2,303		2,239		2,232	
	ohne Luf	\mathbf{B}_{40}	B ₄₀ 1)	[T]		2,236		2,151		2,146	
			B_{24}^{1}	[T]		2,189		2,068		2,066	
	ဥ		B16	[T]		2,141		1,990		1,986	
ЭK	netisc	gen	B ₈ 1)	[T]		2,028		1,384		1,499	
C,H2,(statische magnetische	Messungen	B ₃ ¹⁾	[T]		1,687		0,161		0,183	
2h 720°C,H2,OK	statisc	2	H_c [A/cm] B_3 $^{1)}$ B_8 $^{1)}$ B_{16} $^{1)}$ B_{24} $^{1)}$ B_{40} $^{1)}$ B_{80} $^{1)}$ B_{160} $^{1)}$ R_m $R_{\varphi0,2}$			1,810 1,687 2,028 2,141 2,189 2,236 2,303 2,378 907 504 9,5-9,6 246-		6,442 0,161 1,384 1,990 2,068 2,151 2,239 2,316 1379 761 15,1-		5,791	
Band 0,35 mm			Zusatz			$ 0,03 $ Zr $\sim 0,28$					•
Bane			ź			0,03		0,04		0,04	,
			Ŷ			II .		0,37		0,23	
	hts -		>			1,95		1,91		1,91	
	Gewichts -	%	ပိ			49,10		49,10		49.10	
			Charge Co V Nb Ni)		93/5973 49,10 1,95		93/5969 49,10 1,91 0,37 0,04		93/5968 49,10 1,91 0,23 0,04	

5	
J	

15

20

25

30

35

40

45

50

55

636 5,1-11,3 245-247 291-294 8,0-11,3 246-247 300-304 9,7-11,0 242-243 283-293 HV5 E-Modul (GPa) Statische magnetische Messungen | Mechanische Messungen AL 8 R_m R_{p0,2} (MPa) 612 641 1060 1041 $H_c | B_3 (T) | B_8 (T) | B_{16} (T) | B_{24} (T) |$ 2,092 $93/6284|49,35|1,90|0,43|Zr \sim 1,00|2,950|0,588|1,843|2,010|2,084$ 1,969 2,048 2,024 1,836 0,412 1,847 0,417 (A/cm) 3,172 $93/6285|49,35|1,89|0,44|Zr \sim 1,40|3,287$ $93/6279|49,20|1,89|0,06|Zr \sim 0,80|$ Zusatz Glühung: 2h, 720°C, H2, OK Ä Gewichts-% > ပ္ပ Charge

· Tabelle 6

Glühung	lühung: 2h/720°C/H2/OK	20°C	/H2/(ЭK			mit Lı	sulfft	mit Luftflusskorrektur ab B40	ktur al	b B₄0							
	Gewichts-%	chts-9	<u>چ</u>			Statisch	e mag	netisc	he Me	Ssunge	ue			Mechanische Messungen	ne Messu	ngen		
Charge Co V Nb Zr	ပိ	>	QN.	Zr	Ta	(A/cm) (T)	$\mathbf{B_3}^{1)}$	B ₈ ¹⁾ (T)	B ₁₆ ¹⁾ (T)	$ \begin{bmatrix} B_{24} \\ (T) \end{bmatrix} $	B ₄₀ 1) (T)	B ₈₀ ¹⁾ (T)	B ₁₆₀ ¹⁾ (T)	R _m (MPa)	R _{p0,2} (MPa)		A _L · E-Modul HV (%) (GPa)	НУ
93/6655 49,15 1,90 0,10 # 0,86 ×	49,15	1,90	0,10	# 0,86	×	4,003	0,295	1,630	1,922	2,017	2,092	2,161	2,205	1095-1187	679-695	10,3-12,8	247-253	309-312
93/6661 49,70 1,91 x # 0,77 # 0,16 5	49,70	1,91	×	# 0,77	# 0,16	5,218	0,218	1,429	1,887	1,991	2,068	2,145	2,196	,218 0,218 1,429 1,887 1,991 2,068 2,145 2,196 11100-1267 749-766 9,3-13,9 235-249 323-329	749-766	9,3-13,9	235-249	323-329
1). Induktion R hei einer Feldetärke H in A	tion R	194	iner	Foldetä	rke H i	n A/cm	7 R	P. he	(=H!	74 A/c	1							

Charge Co V Ni Zusatz H _c Physi/f Pre 2 B ₃ B ₈ B ₁ B ₁₆ B ₁₆	Glühung: 4h, 720°C, H ₂ , OK	z: 4h, '.	720°C	, H ₂ ,	OK																
PFe 2) B3 1) B8 1) B16 1) B24 1) B40 1) B80 1) B160 1) [1000Hz] (T)		Gewi	chts-	ا پر		Magnet	ische M	essungen		mit Lu	ıftfluss	skorrek	tur ab	B40			Mechar	iische l	Messur	ngen	
93/6279 49,20 1,89 0,06 Zr ~ 1,949 0,1502 100,746 404,399 1,629 1,958 2,075 2,127 2,163 2,189 2,227 949,35 1,80 0,44 Zr ~ 2,005	Charge	රි	>	Ë	Zusatz	H°	Physt/f	PFe 2)	pre 2)	B ₃ ¹⁾	B ₈ 1)	B16 1) 1	B_{24}	B40 1)	B ₈₀ ¹⁾	B ₁₆₀	Rm	Rp0,2	A_L	-	HV5
93/6279 49,20 1,89 0,06 Zr - 1,600 0,1214 91,302 388,531 1,781 2,016 2,117 2,158 2,187 2,219 2,248 849 510 5,8 - 228-233 282- 93/6284 49,35 1,90 0,43 Zr - 1,949 0,1502 100,746 404,399 1,629 1,958 2,075 2,127 2,163 2,198 2,227 940 558 7,1- 236-254 319- 93/6285 49,35 1,89 0,44 Zr - 2,005 10,40 1,40 1,40 1,40 1,40 1,40 1,40 1,4	'															 _				Modul	
93/6279 49,20 1,89 0,06 Zr ~ 1,600 0,1214 91,302 388,531 1,781 2,016 2,117 2,158 2,187 2,219 2,248 849 510 5,8- 228-233 282- 93/6284 49,35 1,90 0,43 Zr ~ 1,949 0,1502 100,746 404,399 1,629 1,958 2,075 2,127 2,163 2,198 2,227 940 558 7,1- 236-254 319- 93/6285 49,35 1,89 0,44 Zr ~ 2,005 100,746 1,606 1,959 2,070 2,121 2,163 2,127 2,163 2,128 849 510 5,8- 228-233 282- 93/6285 49,35 1,89 0,44 Zr ~ 2,005 1,606 1,959 2,070 2,121 2,163 2,127 2,163 2,128 849 510 6,8- 230-238 336- 93/6285 49,35 1,89 0,44 Zr ~ 2,005 1,606 1,959 2,070 2,121 2,163 2,127 2,163 2,127 2,163 2,127 2,163 2,127 2,163 2,127 2,163 2,127 2,163 2,127 2,127 2,163 2,127 2,163 2,127 2,127 2,163 2,127 2,163 2,127 2,163 2,127 2,127 2,163 2,127 2,163 2,127 2,127 2,163 2,127						(A/cm)		f=400Hz	€1000Hz	Θ	E	E	<u>E</u>	E	Ε	<u>E</u>	(MPa)	(MPa)	8	(GPa)	
93/6279 49,20 1,89 0,06 Zr ~ 1,600 0,1214 91,302 388,531 1,781 2,016 2,117 2,158 2,187 2,219 2,228 849 510 5,94 849 510 5,8- 228-233 282-302 93/6284 49,35 1,90 0,43 Zr ~ 1,949 0,1502 100,746 404,399 1,629 1,958 2,075 2,127 2,163 2,198 2,227 940 558 7,1- 236-254 319-92 302 321 36-254 319-92 93/6285 49,35 1,89 0,44 Zr ~ 2,005 1,40							(J/kg)	(W/kg)	(W/kg)												
93/6284 49,35 1,90 0,43 Zr ~ 1,949 0,1502 100,746 404,399 1,629 1,958 2,075 2,127 2,163 2,198 2,227 940 558 7,1- 236-254 319- 321 93/6285 49,35 1,89 0,44 Zr ~ 1,40 Zr ~ 2,005 1,606 1,959 2,070 2,121	93/6279	49,20	1,89	90,0	Zr~	1,600	0,1214	91,302	388,531	1,781	2,016	2,117	2,158	2,187	2,219	2,248	849	510	-8'5	228-233	282-
93/6284 49,35 1,90 0,43 Zr ~ 1,949 0,1502 100,746 404,399 1,629 1,958 2,075 2,127 2,163 2,198 2,227 940 558 7,1- 236-254 319- 321 93/6285 49,35 1,89 0,44 Zr ~ 2,005 1,940 2,000 1,40 1,606 1,959 2,070 2,121					0,80														9,4		302
93/6285 49,35 1,89 0,44 Zr ~ 1,40 2,005 1,606 1,959 2,070 2,121 913 570 6,8- 230-238 336- 336- 338	93/6284	49,35	1,9	0,43	Zr∼	1,949	0,1502	100,746	404,399	1,629	1,958	2,075	2,127	2,163	2,198	2,227	940	558	7,1-	236-254	319-
1,6061,9592,0702,121		,			1,00														9,2		321
	93/6285	49,35	1,89	0,44	Zr~	2,005				1,606	1,959	2,070	2,121				913	220	-8'9	230-238	336-
					1,40			-											8,2		338

 p_{hyst}/f : statische Hystereseverluste bei B=2T1): Induktion B bei einer Feldstärke H in A/cm, z.B. B_{40} bei H=40 A/cm
2): p_{re} bei B=2T

Tabelle 8

Glühung: 4h/720°C/H2/OK	:: 4h/7	20°C	/H2/(Ж						mit Lı	mit Luftflusskorrektur ab B40	skorrel	ktur ab	B40							
	Gewichts-%	chts-	%			Magnet	ische M	essungen									Mechanische Messungen	ische M	essung	ua:	
Charge	රි	>	QN.	Zr	Ta	He	Physt/f	Charge Co V Nb Zr Ta H _c p _{hyst} /f p _{Fe} ²⁾	pre 2) B3 1) B8 1) B16 1) B24 1) B40 1) B360 B360 Rm Rp0,2 AL E-	$\mathbf{B_3}^{-1}$	B ₈ 1)	B16 1)	B ₂₄ 1)	B40 1)	B ₈₀ 1)	B160	Rm	R _{p0,2}	AL	<u>-</u> Э	НΛ
																<u>-</u>			_	Modul	
						(A/cm)		f=400Hz	F=400Hz F=1000Hz (T) (T) (T) (T) (T) (T) (T) (GPa) (MPa) (MPa) (GPa)	Ð	Ð	Ð	Ð	E	E	E	(MPa)	(MPa)	8	(GPa)	
							(J/kg)	/kg) (W/kg) (W/kg)	(W/kg)												
93/6655	49,15	1,90	0,10	#	×	3,038	0,2482	139,757	93/6655 49,15 1,90 0,10 x 3,038 0,2482 139,757 501,111 0,602 1,738 1,959 2,044 2,110 2,170 2,207 1107- 622- 11,3- 234-	0,602	1,738	1,959	2,044	2,110	2,170	2,207	1107-	622-	11,3-	234-	-772
				98,0													1119	624	11,4	243	292
93/6661	49,70	1,91	×	#	#	3,913	0,3098	164,061	93/6661 49,70 1,91 x # 3,913 0,3098 164,061 560,637 0,320 1,680 1,952 2,035 2,105 2,165 2,206 1167 692 11,7 240 310-	0,320	1,680	1,952	2,035	2,105	2,165	2,206	1167-	-269	11,7-	240-	310-
				0,77	0,77 0,16												1241 700 13,9 250	700	13,9	250	329
٤	-					Tr - 0: 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	١														

 p_{hyst}/f : statische Hystereseverluste bei B=2T 1); Induktion B bei einer Feldstärke H in A/cm, z.B. B_{24} bei H=24 A/cm 2 ; p_{re} bei B=2T

Glühung: 1h, 730°C, H2, OK	g: lh, 7	30,0	, H2,	OK										
	Gewichts-%	hts-9	%		Statisch	e magr	netische	: Messu	Statische magnetische Messungen Mechanische Messungen	Mecha	nische	Messun	gen	
Charge	රි	>	ï	Charge Co V Ni Zusatz H _c B ₃ (T) B ₈ (T) B ₁₆ (T) B ₂₄ (T) R _m R _{p0,2} A _L E-Modul HV5	Hc	B ₃ (T)	B ₈ (T)	B16 (T)	B ₂₄ (T)	Rm	Rp0,2	A_L	E-Modul	HV5
					(A/cm)				_	(MPa)	(MPa)	(MPa) (MPa) (%) (GPa)	(GPa)	
93/6275	49,20	1,89	90,0	$93/6279 49,20 1,89 0,06 Z_{1}\sim0,80 1,966 1,687 1,999 2,104 2,155 938 583 8,4-8,6 243-244 280-281 $	1,966	1,687	1,999	2,104	2,155	938	583	8,4-8,6	243-244	280-281
93/6284	149,35	1,90	0,43	93/6284 49,35 1,90 0,43 Zr ~ 1,00 2,514 0,929 1,921 2,056 2,114 997 611 9,1-9,3 243-249 300	2,514	0,929	1,921	2,056	2,114	266	611	9,1-9,3	243-249	300
93/6285	49,35	1,89	0,44	93/6285 49,35 1,89 0,44 Zr ~ 1,40 2,431 1,125 1,913 2,045 2,103 964 629 6,5-9,4 237-250 301-303	2,431	1,125	1,913	2,045	2,103	964	679	6,5-9,4	237-250	301-303

5	

Glühung: 2h, 73	3: 2h, 7	130°C	, H2	0°C, H2, OK										
	Gewich	chts-%	%		Statisch	e magr	etische	: Messu	ngen	Mecha	nische	Statische magnetische Messungen Mechanische Messungen	gen	
Charge Co	ී	^	ź	Ni Zusatz	H _c	B ₃ (T)	B ₈ (T)	B16 (T)	B ₂₄ (T)	Rm	Rp0,2	AL	$ H_c B_3 (T) B_8 (T) B_{16} (T) B_{24} (T) R_m R_{p0,2} A_L E-Modul HVS$	HV5
					(A/cm)					(MPa)	(MPa)	(MPa) (MPa) (%) (GPa)	(GPa)	
93/6279 49,20	49,20		0,06	,89 0,06 Zr ~ 0,80 1,717 1,758 2,017 2,118 2,169 875 513 7,3-9,0	1,717	1,758	2,017	2,118	2,169	875	513	7,3-9,0	238	270
93/6284 49,35	49,35		0,43	$ 0.43 $ Zr $\sim 1,00 $ 2,115 1,515 1,962 2,083 2,133 884 547 6,0-8,9 236 285	2,115	1,515	1,962	2,083	2,133	884	547	6,8-0,9	236	285
93/6285 49,35	49,35	_	0,44	$\frac{1}{100}$, 1	2,334	1,271	1,921	2,045	2,097	738	561	2,9-7,3	242	297
													۱	

Tabelle 11

Glühung:1h, 740°C, H	g:1h, 7.	40°C	, H2,	12, OK										
	Gewichts-%	:hts-9	%		Statisch	e magn	etische	e Messu	ngen	Mecha	nische	3	u	
Charge	Charge Co	>	ラ	Zusatz	H _c (A/cm)	B ₃ (T)	B ₈ (T)	B ₁₆ (T)	H_c B_3 (T) B_8 (T) B_{16} (T) B_{24} (T) R_m $R_{p0,2}$ (A/cm)	R _m (MPa)	$\begin{array}{c c} R_m & R_{p0,2} & A_L \\ (MPa)(MPa) & (\%) \end{array}$		A _L E-Modul HV5 (%) (GPa)	HV5
					,					,	,	,	,	
93/6279 49,20 1,89 0	49,20	1,89	-	$ 06 Z_1 \sim 0.80 1.977 1.600 1.979 2.096 2.152 1051 561 10.2-12.1 230-241 305-314 $	1,977	1,600	1,979	2,096	2,152	1051	561	10,2-12,1	230-241	305-314
93/6284 49,35	149,35	1,90	0,43	$ 43 Zr \sim 1,00 2,282 1,289 1,931 2,066 2,121 1050 605 10,0-10,2 239-242 276-283 $	2,282	1,289	1,931	2,066	2,121	1050	605	10,0-10,2	239-242	276-283
93/6285 49,35 1,89 0,	149,35	1,89	0,44	$ 44 Z_{\rm r} \sim 1,40 2,588 0,833 1,874 2,013 2,078 966 612 6,8-9,6 234-236 289-297 $	2,588	0,833	1,874	2,013	2,078	996	612	9,6-8,9	234-236	289-297

10

15

20

25

30

35

40

45

50

55

946-1100 |638-650|7,4-11,1 |240-241 |294-297 3,901 0,297 1,699 1,958 2,040 2,105 2,170 2,217 1169-1173 694-703 12,0-12,3 228-243 303-312 HV E-Modul (GPa) & P Mechanische Messungen R_{p0,2} (MPa) R_m (MPa) 3,203 0,443 1,727 1,954 2,037 2,101 2,161 2,201 B₁₆₀ B₈₀ ¹⁾] Statische magnetische Messungen H_c B_3 B_8 B_1 B_{16} B_{16} B_{24} B_{40} B_{40} mit Luftflusskorrektur ab B40 93/6661 49,70 1,91 x # 0,77 # 0,16 3,901 0,297 1,699 1,958 2,040 2. The notation B bei einer Feldstärke H in A/cm, z.B. B_{24} bei H = 24 A/cm × 93/6655 49,15 1,90 0,10 # 0,86 Zr Glühung: 1h/740°C/H2/OK N NP Gewichts-% Co Charge

Tabelle 13

hts-% Ni Zusatz H _c B ₃ (T) B ₈ (T) B ₁₆ (T) B ₂₄ (T) R _m R _{p0,2} A _L E-Modul HV5 (A/cm) (A	lühung: 2h, 74	40°C, H2, OK											
Isatz H _c B ₃ (T) B ₈ (T) B ₁₆ (T) B ₂₄ (T) R _m R _m R _{p0,2} A _L A _L E-Modul HV: (A/cm) (A/cm) (MPa) (MPa) (MPa) (%) (GPa) -0,80 1,646 1,739 1,993 2,095 2,136 922 511 7,2-10,3 237-245 264-2 -1,00 2,073 1,559 1,972 2,088 2,142 886 573 5,6-8,1 234-246 278-2 -1,40 2,100 1,564 1,957 2,076 2,130 967 566 7,9-9,8 234-246 273-2	Gewichts-%			Statisch	e magn	etische	Messa	ngen	Mechar	ische]	Messung	en	
~0,80 (A/cm) (MPa) (MPa) (MPa) (GPa)	V Ni Zusatz	Z	usatz	Щ	B ₃ (T)	B ₈ (T)	$B_{16}(T)$	$B_{24}(T)$	₽ E	R _{p0,2}	A_L	E-Modul	HV5
0,80 1,646 1,739 1,993 2,095 2,136 922 511 7,2-10,3 237-245 264-2 1,00 2,073 1,559 1,972 2,088 2,142 886 573 5,6-8,1 234-246 278-2 1,40 2,100 1,564 1,957 2,076 2,130 967 566 7,9-9,8 234-240 273-2				(A/cm)	_			<u> </u>	(MPa)	(MPa)	%	(GPa)	
1,00 2,073 1,559 1,972 2,088 2,142 886 573 5,6-8,1 234-246 278-2 1,40 2,100 1,564 1,957 2,076 2,130 967 566 7,9-9,8 234-240 273-2	1,89 0,06 Zr ~	5 Zr~	0,80	1,646	1,739	1,993	2,095	2,136	922	511	7,2-10,3	237-245	264-272
1,40 2,100 1,564 1,957 2,076 2,130 967 566 7,9-9,8 234-240 273-2	1,90 0,43 Zr~	$3Zr \sim$	1,00	2,073	1,559	1,972	2,088	2,142	988	573	5,6-8,1	234-246	278-284
	1,890,44 Zr ~	4 Zr ~	1,40	2,100	1,564	1,957	2,076	2,130	<i>L</i> 96	999	7,9-9,8	234-240	273-288

٠.,

5

10

15

20

25

30

35

40

45

50

55

Tabelle 14

2,601 0,776 1,826 2,011 2,082 2,140 2,186 2,217 1037-1043 581-592 10,0-10,1 241-243 280-293 2,773 0,636 1,838 2,012 2,085 2,137 2,189 2,220 1127-1143 627-635 11,6-12,5 223-246 289-295 HV E-Modul (GPa) ₹ % Mechanische Messungen R_{p0,2} (MPa) R_m (MPa) mit Luftflusskorrektur ab B40 Statische magnetische Messungen H_c B_3 $^{1/}$ B_8 $^{1/}$ B_{16} $^{1/}$ B_{24} $^{1/}$ B_4 $^{1/}$ B_4 $^{1/}$ B_4 $^{1/}$ B_4 $^{1/}$ B_4 $^{1/}$ B_4 7. Induktion B bei einer Feldstärke H in A/cm, z.B. B24 bei H = 24 A/cm 93/6655 49,15 1,90 0,10 # 0,86 x 93/6661 49,70 1,91 x # 0,77 # 0,16 Zr Glühung: 2h/740°C/H2/OK N NP Gewichts-% ර Charge

			Banc	Band 0,35 mm	S mm	4h 740°	740°C,H2,OK	×										
	Gew	Gewichts - %	%-			statische magnetische	agnetis	che			mit Luft	flusskorre	sktur ab	mit Luftflusskorrektur ab mechanische Messungen	che Mes	sangen		
					_	Messungen					B40							
Charge	ය	>	βP	ïŻ	Zusatz	H _c [A/cm]	B ₃ ¹⁾	B ₈	B ₁₆ 1)	\mathbf{B}_{24}	B40 1)	B ₈₀ 1)	B ₁₆₀ 1)	R	Rp0,2		<u>ъ</u>	HV
					[T] [T] [T] [T] [T] [MPa] [MPa] [MPa] [WPa] [WPa]		[T]	[T]	[T]	[T]	[T]	[T]	[T]	[MPa]	[MPa]		Modul	
																	[GPa]	
93/5973 49,10 1,95	49.10	1.95		0,03	$ 0,03 Zr \sim 0,28$ 1,149 1,931 2,101 2,185 2,219	1,149	1,931	2,101	2,185	2,219				813-874 407- 8,4-9,7 241-250 231-	407-	8,4-9,7	241-250	231-
	`				•										438			236
93/5969 49,10 1,91 0,37 0,04	49.10	1.91	0.37	0.04		3,719	0,694	1,838	2,051	2,111	2,172	2,231	2,265	930-1261	582-	8,9-17,5	229-252	275-
	•			,										617	617			291
93/5968 49,10 1,91 0,23 0,04	49.10	1.91	0.23	0,04		3,194	0,597	1,900	2,078	2,137	2,178	2,230	2,266	3,194 0,597 1,900 2,078 2,137 2,178 2,230 2,266 1061- 569- 10,9- 245-262 283-	-695	10,9-	245-262	283-
				,								,		1192	588	15.5		295

Tabelle 16

, , , , , , , ,												l	l	l							
<u>.</u>	Gewichts-%	hts-%	o,		Magnet	ische l	Messunge	u	mit L	mit Luftflusskorrektur ab B40	skorre	ktur at	B40			Mecha	Mechanische Messungen	Mess	ungen		
Charge Co V Ni Zusatz Hc physt/f	တ	>	ź	Zusatz	Hc	p_{hyst}/f	pre ²⁾	pre 2 B3 1 B8 1 B16 1 B24 1 B40 1 B80 1 B160 Rm Rp0,2 AL E- HV	\mathbf{B}_{3}	B ₈	B ₁₆ 1)	B ₂₄ 1)	B40 1)	B ₈₀ 1)	B ₁₆₀	ڇ	R _{p0,2}	$A_{\rm L}$	늄	НУ	Pel
					(A/cm)		f=400Hz	f=400Hz f=1000Hz (T) (T) (T) (T) (T) (C) (MPa) (MPa) (6Pa)	E	Е	Ε	Ε	Ε	Ε	· E	(MPa)	(MPa)	<u> </u>	Modul (GPa)		$(\Omega_{\rm mm}^2/m)$
					,	kg)	(J/kg) (W/kg) (W/kg)	(W/kg)	,	, ,	,	,	,	,	,	·	·	,	,		`
3/62794	9,20	1,89	90,0	Zr~	1,456	0,109	85,117	93/6279 + 99,20 + 1,89 + 90,06 + 2r - 1,456 + 90,109 + 85,117 + 369,182 + 1,813 + 2,037 + 2,132 + 2,172 + 2,199 + 2,230 + 2,237 + 764 + 484 + 5,7 + 251 + 242 + 0,451 + 2,172 + 2,199 + 2,230 + 2,237 + 2,23	1,813	2,037	2,132	2,172	2,199	2,230	2,257	764	484	5,7-	251	242	0,451
				0,80														6,5			
93/6284 49,35 1,90 0,43 Zr ~ 1,690	9,35	1,90	0,43	\sim 1Z	1,690				1,727	1,727 2,001 2,104 2,152	2,104	2,152				830	525	6,2-	250	275	830 525 6,2- 250 275 0,449
				1,00														7,1			
93/6285 49,35 1,89 0,44 Zr ~ 1,974	9,35	1,89	0,44	$Zr \sim$	1,974				1,608	1,608 1,963 2,073 2,121	2,073	2,121				804	552	3,1-	253	280	804 552 3,1- 253 280 0,450
				1,40														8.9			

Tabelle 17

Gewichts-% Magnetische Messunger Charge Co V Nb Zr Ta H _c p _{hysl} /f pre	8		Junung: 4n/40-C/HZ/ON/Kolide-Ciell	Oren				חיד זווו	SSNITTI	mit Luttilusskorrektur ab B40	tur ab	\mathbf{B}_{40}							
Charge Co V	?			Magneti	sche M	Magnetische Messungen							!		Mechanische Messungen	sche M	essung	en	
	g Z	Zr	Ta	H¢	physt/f	Pre 2)	$p_{Fe}^{2} = B_3^{1} B_8^{1} B_{16}^{1} B_{24}^{1} B_{40}^{1} B_{80}^{1} B_{160}^{1} B_{$	B ₃ ¹⁾	B ₈ 1)	\mathbf{B}_{16}	B ₂₄ ¹⁾	B40 ¹⁾	B ₈₀ 1)	B ₁₆₀	Rm	R _{p0,2}	A_{L}	E- Modul	HV
				(A/cm)	,-	F=400Hz	f=400Hz f=1000Hz (T) (T) (T) (T) (T) (T) (T) (GPa) (MPa) (MPa) (MPa)	Ε	E	E	E	E	E	Ε	(MPa)	(MPa)	8	(GPa)	
					(J/kg)	kg) (W/kg) (W/kg)	(W/kg)												
93/6655 49,15 1,90 0,10 #	01,00	#	×	2,270	0,1796	113,844	x 2,270 0,1796 113,844 442,061 1,060 1,862 2,031 2,098 2,147 2,190 2,214 1034 538 9,7 255 268-	1,060	1,862	2,031	2,098	2,147	2,190	2,214	1034	538	7,6	255	268-
-		98,0																	271
93/6661 49,70 1,91 x # #	×	#	#	2,351 0,18	0,1856	114,229	856 114,229 435,546 1,031 1,884 2,040 2,101 2,144 2,193 2,223 1058 572 10,6-231-	1,031	1,884	2,040	2,101,2	2,144	2,193	2,223	-8501	572-	-9,01	231-	277-
		0,77 0,16	0,16			_	*								1124	579	12,1	242	281

 $p_{\rm hyst}/f$: statische Hystereseverluste bei B=2T1): Induktion B bei einer Feldstärke H in A/cm, z.B. B_{24} bei H=24 A/cm $^{2)}$: $p_{\rm re}$ bei B=2T

10

15

20

25

30

35

40

45

Tabelle 18

50

55

533 7,4-9,5 218-250 272-285 547 3,9-8,1 198-223 285-288 7,9-8,4 238-256 290-297 HV5 E-Modul (GPa) Mechanische Messungen A_L (%) $H_c | B_3 (T) | B_8 (T) | B_{16} (T) | B_{24} (T) | R_m | R_{p0.2} |$ (MPa) (MPa) 572 919 948 832 2,179 $\frac{93/6284}{93/6285} \frac{49,35}{49,35} \frac{1,90}{1,99} \frac{0,43}{1,70} \frac{1,00}{1,983} \frac{1,667}{1,543} \frac{1,965}{1,921} \frac{2,076}{2,101} \frac{2,123}{2,101}$ Statische magnetische Messungen 93/6279|49,20|1,89|0,06|Zr ~ 0,80| 1,595 | 1,783 | 2,033 | 2,136 (A/cm) Zusatz Glühung: 1h, 750°C, H2, OK Ź Gewichts-% > රි Charge

Glühung: 1h, 770°0	z: 1h, 7	70°C	, H2	C, H2, OK										
	Gewichts -	chts-9	%:		Statisch	e magr	netische	: Messu	Statische magnetische Messungen Mechanische Messungen	Mecha	nische	Messun	gen	
Charge Co	သိ	>	ž	Ni Zusatz	H _c (A/cm)	B ₃ (T)	B ₈ (T)	B ₁₆ (T)	B ₂₄ (T)	R _m (MPa)	R _{p0,2} (MPa)	(%)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	HV5
93/6279 49,20 1,8	49,20		0,06	90.06 Zr ~ 0.80 1,476 1,819 2,028 2,127 2,169 903 486 8,5-9,0 250-252 257-260	1,476	1,819	2,028	2,127	2,169	903	486	8,5-9,0	250-252	257-260
93/6284 49,35 1,90	49,35	1,90	0,43	0.43 Zr $\sim 1,00$ $1,634$ $1,755$ $1,997$ $2,098$ $2,141$ 854 511 $6,3-8,1$ $252-265$ $272-273$	1,634	1,755	1,997	2,098	2,141	854	511	6,3-8,1	252-265	272-273
93/6285 49,35 1,89	49,35	1,89	0,44	$9 0,44 Z_1 \sim 1,40 1,808 1,693 1,961 2,066 2,111 881 528 7,2-8,1 244-264 278-281 $	1,808	1,693	1,961	2,066	2,111	881	528	7,2-8,1	244-264	278-281

40		
45		

4	1	5

1		,
	•	·

	Glühung: 2h, //0°C, H2, OK	g: 2h, /	7,0/	, H2,	, OK										
		Gewic	chts-9	%		Statisch	e magi	netische	e Messu	ngen	Mechan	nische	Messun	igen	
$\frac{93/6279}{49,20} \frac{49,20}{1,89} \frac{1,80}{0,06} \frac{1,207}{1,80} \frac{1,860}{1,807} \frac{2,035}{2,101} \frac{2,121}{2,106} \frac{2,155}{2,141} \frac{851}{882} \frac{8,2-9,5}{451} \frac{2,36-244}{2,39-244} \frac{2,54-262}{2,26-2,68} \frac{1,99}{2,16-2,88} \frac{1,207}{2,141} \frac{1,813}{2,116} \frac{2,106}{2,141} \frac{2,106}{2,141} \frac{2,141}{882} \frac{882}{451} \frac{8,5-9,1}{2,39-2,44} \frac{2,52-268}{2,231-2,49} \frac{1,277}{2,073} \frac{1,977}{2,073} \frac{2,110}{2,110} \frac{861}{861} \frac{486}{6,8-7,9} \frac{6,8-7,9}{2,31-2,49} \frac{2,70-2,77}{2,70-2,77} $	Charge	Co	>	Ë	Zusatz	H _c (A/cm)	B ₃ (T)	B ₈ (T)	B ₁₆ (T)	B ₂₄ (T)	R _m (MPa)	R _{p0,2} (MPa)	A _L (%)	E-Modul (GPa)	HVS
$\frac{93/6284}{93/6285} \frac{49,35}{49,35} \frac{1,90}{1,89} \frac{0,44}{0,44} \frac{Zr}{Zr} - 1,40 \\ \frac{1,571}{1,571} \frac{1,817}{1,761} \frac{2,106}{1,977} \frac{2,107}{2,073} \frac{2,141}{2,110} \frac{882}{861} \frac{455-9,1}{865-9,1} \frac{239-244}{239-249} \frac{262-268}{270-277} \frac{2,073}{2,073} \frac{2,110}{2,110} \frac{861}{861} \frac{6,8-7,9}{6,8-7,9} \frac{231-249}{231-249} \frac{270-277}{270-277} \frac{2,073}{2,073} \frac{2,110}{2,073} \frac{861}{2,073} \frac{2,85-9,1}{2,073} \frac{2,120}{2,073} \frac{2,120}$	93/6279	49,20	1,89	90,0	$Zr \sim 0.80$	1,207	1,860	2,035	2,121	2,155	851	421	8,2-9,5	236-244	254-262
$93/6285 49,35 1,89 0,44 Zr \sim 1,40 1,571 1,761 1,977 2,073 2,110 861 486 6,8-7,9 231-249 270-277 $	93/6284	49,35	1,90	0,43	$Zr \sim 1,00$	1,427	1,813	2,014	2,106	2,141	882	451	8,5-9,1	239-244	262-268
	93/6285	49,35	1,89	0,44	$Zr \sim 1,40$	1,571	1,761	1,977	2,073	2,110	861	486	6,8-7,9	231-249	270-277

Tabelle 21

			Banc	1 0,3	Band 0,35 mm	4h 770%	C,H2,OK	0K										
	ğ	ewich	Gewichts - %	,o		statisc N	statische magnetische Messungen	gnetisc gen	he		mit Lu	Hfluss	mit Luftflusskorrektur ab B ₄₀	Ì	anische	mechanische Messungen		
Charge	ပိ	>	NP	Z	Charge Co V Nb Ni Zusatz	H _c [A/cm	В ₃ ¹⁾ [Т]	B ₈ ¹]	B ₁₆ ¹⁾ [T]	B ₂₄ ¹⁾ [T]	B ₄₀ ¹⁾ [T]	$[B_3^{\ 1}]$ $[B_8^{\ 1}]$ $[B_{16}^{\ 1}]$ $[B_{24}^{\ 1}]$ $[B_{40}^{\ 1}]$ $[B_{80}^{\ 1}]$	B ₁₆₀ ¹⁾ [T]	R _m R _{p0,2} [MPa]	R _{p0,2} [MPa]	A _L [%]		HV
93/5973 49,10 1,95	49,10	1,95	-	0,03	0,03 Zr 0,28 0,885	0,885	1,980	2,218	1,980 2,218 2,200 2,227	2,227				492-	370-	3,6-9,5	232-	206-
93/5969 49,10 1,91 0,37 0,04	49,10	1,91	0,37	0,04	≀ ,	2,038	1,582	2,026	,582 2,026 2,128 2,174 2,211 2,248	2,174	2,211	2,248	2,275	815 1018-	389 493-	11,1-13,9	248-	210
														1129	501			236
93/5968 49,10 1,91 0,23 0,04	49,10	11,91	0,23	0,04		1,700	1,755	2,061	1,755 2,061 2,154 2,192 2,222 2,252	2,192	2,222	2,252	2,275	942-	471-	9,8-13,5	239-	226-
														1087	479			727

\mathbf{z}	
(4)	
₹.	
ڲ	
Ē	
. ,	

Glühun	g: 4h,	770°	C, H	Hühung: 4h, 770°C, H2, OK																	
	Gew	Gewichts-%	%-			Magnetisch	ische M	essungen		mit Luftflusskorrektur ab B40	ffluss	korrel	ctur at	, B40			Mecha	Mechanische Messungen	Messur	gen	Γ
Charge Co V Ni Zusatz	ပိ	Λ	Ź	i Zus	satz	H¢	Physi/f	hyst/f PFe 2)	Pre 2)	B ₃ 1)	B ₈ 1)	B16 1)	\mathbf{B}_{24}	B40 1)	B ₈₀ 1)	B ₁₆₀ 1)	يم	R _{00.2}	Ā	E-Modul	H
					<u> </u>	(A/cm)		[=400Hz]	f=1000Hz	Ε	$\overline{\mathbb{E}}$	Ξ	E	Ξ	E	(E)	(MPa)	(MPa)	8	(GPa)	
		_					(g)	(W/kg)	$(kg) \mid (W/kg) \mid (W/kg)$							•	,	,	,		
$93/6279 49,20 1,89 0,06 Zr \sim 0,80 1,234 0,09 $	49,20	01,8	90,0	6 Zr ~	0,80	1,234	0,0819	77,873	363,928	1,861	2,062	2,149	2,184	2,207	2,235	2,260	99/	444	4,3-7,5	239	250
$ 93/6284 49,35 1,90 0,43 Zr \sim 1,00 1,489 0,1$	149,3.	5 1,9	00,4	$3 \text{ Zr} \sim$	1,00	1,489	0,1241	99,401	241 99,401 442,150 1,608 1,867 1,968 2,010 2,038 2,066 2,090 782 491 4,3-8,0 233 261	1,608	1,867	1,968	2,010	2,038	2,066	2,090	782	491	4,3-8,0	233	261
							ľ								I				,		

Tabelle 23

Glühung: 4h/770°C/H2/OK	3: 4h/7	730.0	阻	Š						mit Lı	mit Luftflusskorrektur ab B40	skorre	ktur al) B40							
	Gewi	chts-	%			Magne	tische N	fessungen									Mecha	Mechanische Messungen	Jessan	ngen	
Charge	රි	>	ĝ	Zr	Ta	Hc	p_{hyst}/f	Charge Co V Nb Zr Ta H _c p _{hyst} /f p _{Fe} ²⁾	Pre 2 B3 1 B8 1 B16 1 B24 1 B40 1 B80 1 B160 Rm Rp0,2 AL E-	$\mathbf{B_3}^{1)}$	B ₈ 1)	B16	\mathbf{B}_{24}^{1}	\mathbf{B}_{40}	B ₈₀ ¹⁾	B ₁₆₀	R	Rp0,2	Ā	E-	H
																<u>-</u>				Modul	
						(A/cm)		f=400Hz	F=400Hz F=1000Hz (T) (T) (T) (T) (T) (GPa) (GPa)	\mathbb{E}	E	E	9	E	E	Œ	(MPa)	(MPa)	8	(GPa)	
							(J/kg)	kg) (W/kg) (W/kg)	(W/kg)		,	,	,	,	,	`	,	` 	· •		
93/6655 49,15 1,90 0,10 #	49,15	1,90	0,10	#(×	1,819	0,1445	99,664	x 1,819 0,1445 99,664 418,788 1,457 1,928 2,067 2,127 2,157 2,194 2,227 856- 481- 7,2- 237-	1,457	1,928	2,067	2,127	2,157	2,194	2,227	856-	481-	7,2-		249-
				98,0													931	484	8,5		264
93/6661 49,70 1,91 x #	49,70	11,91	×		#	1,586 0,1	0,1263	89,614	1263 89,614 381,568 1,623 1,963 2,085 2,139 2,168 2,208 2,227 940- 478- 9,0- 217-	1,623	1,963	2,085	2,139	2,168	2,208	2,227	940-	478-	-0.6		241-
				0,77	0,77 0,16												974 485	485	8,6		258

 p_{hyst}/f : statische Hystereseverluste bei B = 2T f_{hyst}/f : Induktion B bei einer Feldstärke H in A/cm, z.B. B₂₄ bei H = 24 A/cm f_{hyst}/f : f_{re} bei B = 2T

219-228 250-258 230-234

E-Modul [GPa] 233-246 235-253-253-255-255-255-

H

5

10

15

20

25

30

35

40

45

50

55

			Ban	E 0,3	Band 0,35 mm	4h 800°C,H2,OK	H2,0K										
	Gew	Gewichts - %	%-			statische magnetische Messungen	gnetische	e Messi	nugen		mit Luft	Ausskorr	ektur ab	mit Luftflusskorrektur ab mechanische Messungen B ₄₀	sche Me	sungen	1
Charge Co V Nb Ni	ပိ	>	QN NP		Zusatz	Zusatz H _c [A/cm] B ₃ ¹⁾ B ₈ ¹⁾ B ₁₆ ¹⁾ B ₁₆ ¹⁾ B ₂₄ ¹⁾ B ₄₀ ¹⁾ B ₄₀ ¹⁾ B ₁₆₀ ¹⁾ B ₁₆₀ ¹⁾ R _m R _m R _{p0,2} A _L / % [T] [T] [T] [T] [T] [MPa] [MPa]	В ₃ ¹⁾ [Т]	B ₈ ¹⁾ [T]	В ₁₆ ¹⁾ [Т]	B ₂₄ ¹⁾ [T]	B ₄₀ ¹⁾ [T]	B ₈₀ ¹⁾ [T]	B ₁₆₀ ¹⁾ [T]	R _m [MPa]	R _{p0,2} [MPa]	A _L / %	_ ~ _
93/5973 49,10 1,95	49,10	1,95		0,03 Z	Zr 0,28	Zr 0,28 0,750	2,004 2,141 2,208 2,237	2,141	2,208	2,237				534-806 365- 3,7-8,3 384	365- 384	3,7-8,3	1
93/5969 49,10 1,91 0,37 0,04	49,10	1,91	0,37	0,04		1,548	1,842	2,080	2,157	2,200	2,226	1,842 2,080 2,157 2,200 2,226 2,259 2,285	2,285	827- 1060	446-	7,2-	
93/5968 49,10 1,91 0,23 0,04	49,10	1,91	0,23	0,04		1,360	1,902	2,098	2,180	2,216	2,235	2,263	2,284		435-	10,2-	

abelle 25

Glühung: 4h, 800°C, H2, OK	; 4h, 8	300°C	, H2	, OK								-									
	Gewichts-%	chts-9	20		Magnet	ische M	essungen		mit Li	ıffflus	mit Luftflusskorrektur ab B40	ktur ab	B40		ľ	Mechanische Messungen	ische	Messu	ıngen	r	
Charge	ථ	>	ï	Zusatz	Charge Co V Ni Zusatz H _c p _{hyst} /f	Physt/f	itz H _c p _{hyst} /f p _{Fe} ²⁾	pre Z)	B ₃ ¹⁾	B ₈	B16 "	B24 1)	B40 1)	B ₈₀ 1)	B ₁₆₀	B ₃ ¹⁾ B ₈ ¹⁾ B ₁₆ ¹⁾ B ₂₄ ¹⁾ B ₄₀ ¹⁾ B ₁₆₀ R _m R _{p0,2} A _L E- HV	Rp0,2	AL	Ë	H	٥
					(A/cm)	(1/kg)	f=400Hz f=1000H; (W/kg)		£)	E	Ð	Ð	E	E	- E	(MPa)	(MPa)	<u>v)</u> %)	Modul (GPa)		(□mm²/m)
93/6279 49,20 1,89 0,06 Zr ~ 1,062 0,0744	49,20	1,89	90,0	Zr~	1,062	0,0744		74,154 351,926 1,913 2,080 2,158 2,188 2,209 2,237 2,261 798 420 6,7- 233 250 0,447	1,913	2,080	2,158	2,188	2,209	2.237	2.261	798	420	6.7-	233	250	0.447
				0,80														% 1.		}	 : :
93/6284 49,35 1,90 0,43 Zr ~ 1,264 0,0945	49,35	1,90	0,43	Zr~	1,264	0,0945		87,404 404,535 1,835 2,039 2,129 2,164 2,185 2,210 2,234 843 465 6,6- 240 261 0,448	1,835	2,039	2,129	2,164	2,185	2,210	2,234	843	465	-9'9	240	261	0.448
				1,00														7,7			
93/6285 49,35 1,89 0,44 Zr ~ 1,456	49,35	1,89	0,44	~ IZ	1,456				1,813	2,015	1,813 2,015 2,104 2,140	2,140				808	504	4,8-	243	279	808 504 4,8- 243 279 0,454
				1,40						_								7,2		_	

10

15

20

25

30

35

40

45

50

55

HIV 249-260 244-254 E-Modul (GPa) 8,7- 241-9,1 249 240-247 Mechanische Messungen જી Rp0.2 | AL (MPa) (MPa) 441-447 460-462 ڇ 367,657 1,684 1,983 2,099 2,153 2,177 2,208 2,229 910-848-869 98,076 421,081 1,623 1,959 2,084 2,137 2,167 2,204 2,232 B₁₆₀ ϵ Ε B₈ ¹⁾ B₁₆ ¹⁾ B₂₄ ¹⁾ B₄₀ ¹⁾ B₈₀ E mit Luftflusskorrektur ab B40 E E Œ B₃ ¹) \mathbf{E} f=400Hz|f=1000Hz| (W/kg) Pre 2) (W/kg) 83,840 Magnetische Messungen pre , physt/f (J/kg) 1,640 0,1279 1,380 0,1042 (A/cm) Ĥ # # 0,77 0,16 Та × 98,0 Zr Glühung: 4h/800°C/H2/OK 93/6655 49,15 1,90 0,10 # N NP Gewichts-% 49,70 1,91 ပ္ပ Charge 93/6661

 p_{hyst}/f : statische Hystereseverluste bei B=2T1): Induktion B bei einer Feldstärke H in A/cm, z.B. B_{24} bei H = 24 A/cm $^{2)}$: p_{re} bei B = 2T

EP 1 475 450 A1

10

15

20

25

30

35

40

45

Tabelle 27

50

55

Abschreckbehandlung 2h/970°C/Luft 2h/900°C/Luft 2h/970°C/Luft 2h/800°C/Luft 2h/800°C/Luft Wahl der 3h/940°C 3h/950°C wenig α' wenig α' wenig a' am Rand mehr α' $\alpha + \alpha'$ ۲ + α+ გ `z wenig α΄ wenig α' wenig α´ د 4 + ჯ + `ၓ ರ α + wenig α' 3h/880°C | 3h/900°C | 3h/920°C $\alpha + \alpha'$ ರ ಶ ಶ $\alpha + \alpha$ Gefügezustand ರ ರ ರ ರ $\alpha + \alpha'$ ರ ರ ಶ ರ Abschreckversuch 0,16 Ta / 0,77 Zr 49,2 Co / 3 V / 49,2 Co / 0 V / 49,2 Co / 1 V / 35 Co / 2 V / 27 Co / 2 V / Charge 93/7179 93/7182 93/7183 93/7180 93/7181

Tabelle 28

Glühung: 1h/720°C/H2/OK/	1h/72(ည်	H2/OK	77														
	Gewichts-%	chts	%-			Magnetische Messungen; mit Luftflusskorrektur ab B40	sche Me	ssungen	; mit Lu	ıftflussk	orrektui	r ab B40		Mechan	Mechanische Messungen	ssunger	,	
Charge	Co	>	Та	Zr	Dichte	H	$B_3^{1)}$	B ₈ 1)		$\mathbf{B_{24}}^{1)}$	B ₄₀ 1)	B ₈₀ 1)	B ₁₆₀ 1)	Rm	R _{p0,2}	A _I	ப்	'HA
					(g/cm³) (A/cm)	(A/cm)	Ξ	$\overline{\mathbb{E}}$	E	<u>E</u>	Ε	E	E	(MPa)	(MPa)	8	Modul	
																	(GPa)	
93/7180 49,2 3	49,2	3	0,16	0,16 0,77 8,12	8,12	12,761	0,093	2,761 0,093 0,319 1,229	1,229	1,666 1,843	1,843	1,971 2,047	-	1328-	-866	10,1-	255-	394-
														1389	1018	11,9	263	412
93/7181 49,2 1 0,16 0,77 8,12	49,2	_	0,16	0,77	8,12	5,842	0,160	1,435	1,954	2,048	2,126 2,205		2,258	955-	819-	5,1-	240-	364-
				-										1145	897	11,2	261	371
93/7182 35	35		0,16	2 0,16 0,77 8,004	8,004	9,285	0,120	0,643	1,811	1,931 2,033 2,137 2,211	2,033	2,137	$\overline{}$	1301-	994-	11,1-	254-	375-
														1323	1016	12,1	267	390
93/7183 27	27	2	0,16	0,77	2 0,16 0,77 7,990	9,248	0,077	0,077 0,589 1,661 1,785 1,892 2,039 2,171	1,661	1,785	1,892	2,039	2,171	-868	791-	-6'9	234-	281-
														930	826	9,4	247	293
93/7184 10 2 0,16 0,77 7,872	10	7	0,16	0,77	7,872	6,228	0,103	1,105	1,484	1,603	1,708	1,842	1,985	-085	492-	16,4-	-808	-081
														597	200	17,4	221	188
74/5517 49,3 2 0,18 0,75 8,12	49,3	7	0,18	0,75	8,12	5,905	0,184	0,184 1,189 1,812	1,812	1,940 2,033 2,114 2,158 1203-	2,033	2,114	2,158	1203-	-6//	10,5-	247-	333-
99/5278									-					1286	819	14,3	265	356
1). Induly	1 0 "	9	nor Ea	1detärb.	1). Industrion B has a sinar Faldets by in A from 7 B B, has H = 3 A from	m 7 R F	Hied .	10/V E =										

1): Induktion B bei einer Feldstärke H in A/cm, z.B. B3 bei H = 3 A/cm

Tabelle 29

Charge	Del 3)	p _{1T} 50Hz	p _{1.5} r	p ₂ T	P1T	400Hz P1,5T	400H P2T	P1T T000Hz	D1,5T	P2T 1000Hz
)		_	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)
93/7180	0,733		24,51	48,73 2)	82,66	247,8	425,0	279,9	683,4	1166
93/7181	0,365	6,372	14,35	25,76	64,20	141,5	246,5	203,8	468,3	834,5
93/7182	0,477		24,09	37,09 ²⁾	106,7	248,3	343,9	295,4	613,2	1040
	0,457		26,25	42,26 ²⁾	124,3	222,6	383,6	335,2	723,3	1162
93/7184	0,437		21,19 ²⁾	33,87 ²⁾	102,6	205,2	326,3 2	301,3	632,7	984,3 ²⁾
74/5517	•	5,8	14,02	25,2	53,9	118,2	234,2	168,7	401,3	728,8
99/5278										

Formfaktor FF = 1,111 ± 1% nicht erfüllt

3): ρ_{el} berechnet aus den Steigungen m der Geraden im p/f(f)-Diagramm bei B = 2T mit m $\sim 1/\rho_{el}$ und $\rho_{el}(Vacoflux 50) = 0,44 \mu\Omega m$ $\rho_{1T}^{50Hz} = Ummagnetisierungsverluste bei einer Induktion B = 1T und einer Frequenz f = 50Hz$

Glühung: 2h/750°C/H2/OK/	2h/75	0°C/F	12/OK/															
	Gewi	Gewichts-%	%			Magnetische Messungen; mit Luftflusskorrektur ab B40	sche Me	ssungen	; mit Lu	ıftflussk	orrektur	ab B40		Mechan	Mechanische Messungen	essunge	u	
Charge	Co V Ta	>	Ta	Zr	Dichte	He	$B_3^{1)}$	$B_8^{1)}$	B ₁₆ 1)	$\mathbf{B_{24}}^{1)}$			B ₁₆₀ 1)	R	Rp0,2	A	ப்	HV
,					(g/cm ³)	(A/cm)	E	E	E	E	Θ	Ε	E	_	_	8	Modul	
)	,	,	,		,							(GPa)	
93/7180 49,2 3,0 0,16 0,77	49,2	3,0	0,16	0,77	8,12	6,396	0,188	0,823	1,546	1,754	1,911	2,043	2,144	-196	-8/9	-9'9	250-	316-
														1231	728	12,1	260	344
93/7181 49,2 1,0 0,16 0,77 8,12	49,2	0,1	0,16	0,77		2,660	0,701	1,872 2,053	2,053	2,125 2,185	2,185	2,240 2,276	2,276	930-	-209	7,7-	248-	292-
	`													946	611	8,2	259	303
93/7182 35	1	2	0,16	0,16 0,77	8,004	6,459	0,118	1,090	1,833	1,950 2,055		2,159 2,222	2,222	-586	-062	5,4-	258-	323-
						,								1266	802	13,7	263	339
93/7183 27		2	0,16	0,16 0,77 7,990		7,507	0,079	0,803	1,654	0,803 1,654 1,765 1,869	1,869	2,020 2,168	2,168	832-	625-	-6'8	237-	258-
														847	637	11,9	246	264
93/7184 10	10	2	0,16	0,16 0,77 7,872	7,872	4,728	0,162	1,222	1,498	1,599	1,691	1,816 1,964	1,964	515-	315-	20,05	-907	142-
	_													527	327	22,9	213	145
74/5517 49,3 2 0,18 0,75 8,12	49,3	2	0,18	0,75	8,12	2,248	0,970	1,830 2,011	2,011	2,081	2,134	2,179 2,206		-146	-155	8,4-	-912	274-
99/5278	1													1179	563	14,7	239	291

Tabelle 31

Charge	Del 3)	DIT SUHZ	D1.5T		D1T 400Hz	P1.5T	P2T 400Hz	PIT	1000Hz	p ₂ T
		(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)
	ı		13,91		49,35	126,7	208,0	152,3	385,1	628,1
	0,350	2,955	909'9		35,62	77,80 ²⁾	143,9	132,2	305,0	586,3
	0,493	7,965	17,15		73,44	155,72)	248,7	213,8	462,5	804,2
	0,468	ŀ	21,51		99,72	200,1	318,0	288,7	613,8	980,3
	0,428	8,934	17,60		82,67	160,9	261,1 ²⁾	261,2	547,6	865,2 ²⁾
		2,4	5,59		27,1	56,25	109,1	.0,86	230,5	413,0

Formfaktor FF = 1,111 ± 1% nicht erfüllt
3: ρ_{el} berechnet aus den Steigungen m der Geraden im p/f(f)-Diagramm bei B = 2T mit m $\sim 1/\rho_{el}$ und $\rho_{el}(Vacoflux 50) = 0,44 μΩm <math>\rho_{l1}$ ρ_{l1} = Ummagnetisierungsverluste bei einer Induktion B = 1T und einer Frequenz f = 50Hz

Glühung: 4h/840°C/H2/OK/	4h/84(12/ON															
	Gewi	Gewichts-%	%			Magnetische Messungen; mit Luftflusskorrektur ab B40	sche Me	ssungen	ı; mit Lı	ıftflussk	orrektui	r ab B40		Mechar	Mechanische Messungen	essange	u	
Charge		>	Ta	Zr	Dichte	Hc	$\mathbf{B_3}^{1)}$		B ₁₆ 1)	B_{24}^{1}	${\bf B_{40}}^{1}$	$\mathbf{B_{80}}^{1)}$	B ₁₆₀ ¹⁾	R	R _{00,2}	$A_{\rm L}$	山	H
					(g/cm³)	(A/cm)	E	E	E E	E	Θ	E	E	(MPa)	(MPa) (MPa)	જ	Modul	
																	(GPa)	
93/7180 49,2 3,0 0,16 0,77	49,2	3,0	0,16	0,77	8,12	6,398	0,150	0,150 0,512	1,099	1,384	1,652	1,907	2,037	-566	553-	8,3-	250-	287-
														1199	009	12,2	258	302
93/7181 49,2 1,0 0,16 0,77 8,12	49,2	1,0	0,16	0,77	8,12	1,396	1,614	1,958	2,104 2,165	2,165	2,213	2,213 2,254	2,282	-799	379-	5,3-	257-	220-
														736	387	6,5	259	233
93/7182 35		7	0,16	0,77	2 0,16 0,77 8,004	2,355	0,372	1,556 1,818 1,953	1,818	1,953	2,092	2,092 2,199	2,240	811-	478-	5,8-	253-	240-
,														945	490	7,9	261	254
93/7183	27	2	0,16	0,77	0,16 0,77 7,990	3,357	0,154	0,154 1,399	1,620	1,717	1,620 1,717 1,820 1,974	1,974	2,141	701-	379-	10,8-	236-	202-
														730	390	12,7	246	217
93/7184 10		2	0,16	0,77	0,16 0,77 7,872	3,187	0,386	1,249	1,482	1,576	1,663	1,792	1,944	439-	190-	23,8-	-861	116-
														451	195	26,5	211	121
74/5517 49,3 2 0,18 0,75 8,12	49,3	2	0,18	0,75	8,12	1,065	1,618	1,618 1,942 2,074 2,131 2,165 2,196 2,216	2,074	2,131	2,165	2,196	2,216	841-	410-	7,6-	236-	235-
99/5278														1013	427	10,9	271	248

10

15

20

25

30

35

40

45

50

55

pzr roconz (W/kg) 707,4 2) 8,655 510,6 464,9 635,5 352,5 P1,5T (W/kg) 409,4 183,8 385,2 272,9 263,8 486,0 PIT (W/kg) 108,6 182,5 163,3 139,1 82,4 p₂r (W/kg) 179,0 2) $204,3^{2}$ 104,5 118,0 175,4 78,5 400Hz P1,5T (W/kg) 121,7 124,4 61,00 68,84 119,3 46,85 plT (W/kg) 26,64 40,08 56,00 53,17 63,53 21,6 p_{2T} 50Hz (W/kg) 16,59²⁾ 18,82 2) 6,266 8,882 ²⁾ 19,54 2) 5,4 p_{1,5}T⁷³¹¹ (W/kg) 11,32 12,96 ²⁾ 3,348 3,883 6,844 13,67 (W/kg) 3,770 1,829 5,736 5,847 6,314 1,7 (µΩm) $\rho_{\rm el}^{3)}$ 0,649 0,316 0,446 0,408 0,370 Charge 93/7180 93/7182 93/7184 93/7183 74/5517 93/7181

²⁾: Formfaktor FF = 1,111 ± 1% nicht erfüllt

99/5278

³⁾; ρ_{el} berechnet aus den Steigungen m der Geraden im p/f (f)-Diagramm bei B = 2T mit m ~ 1/ ρ_{el} und ρ_{el} (Vacoflux 50) = 0,44 μΩm ρ_{lT} = Ummagnetisierungsverluste bei einer Induktion B = 1T und einer Frequenz f = 50Hz

Patentansprüche

1. Hochfeste, weichmagnetische Eisen-Kobalt-Vanadium-Legierung bestehend aus

5 $35.0 \le Co \le 55.0$ Gew.%, $0.75 \le V \le 2.5 \text{ Gew.}\%$, $0 \le (\text{Ta} + 2 \times \text{Nb}) \le 1,0 \text{ Gew.}\%$ $0.3 < Zr \le 1.5 \text{ Gew.}\%$ $Ni \le 5.0$ Gew.%,

10

Rest Fe sowie erschmelzungsbedingten und/oder zufälligen Verunreinigungen.

2. Hochfeste, weichmagnetische Eisen-Kobalt-Vanadium-Legierung nach Anspruch 1, wobei der Zirkoniumgehalt $0.5 \le Zr \le 1.0$ Gew.% beträgt.

15

3. Hochfeste, weichmagnetische Eisen-Kobalt-Vanadium-Legierung nach Anspruch 2, wobei der Zirkoniumgehalt $0.6 \le Zr \le 0.8$ Gew.% beträgt.

20

- 4. Hochfeste, weichmagnetische Eisen-Kobalt-Vanadium-Legierung nach einem der Ansprüche 1 bis 3, wobei der Kobaltgehalt zwischen 45,0 ≤ Co ≤ 50,0 Gew.% beträgt.
- 5. Hochfeste, weichmagnetische Eisen-Kobalt-Vanadium-Legierung nach Anspruch 4, wobei der Kobaltgehalt zwischen $48,0 \le Co \le 50,0$ Gew.% beträgt.

25

6. Hochfeste, weichmagnetische Eisen-Kobalt-Vanadium-Legierung nach einem der Ansprüche 1 bis 5, wobei der Vanadiumgehalt zwischen $1,0 \le V \le 2,0$ Gew.% beträgt.

7. Hochfeste, weichmagnetische Eisen-Kobalt-Vanadium-Legierung nach einem der Ansprüche 1 bis 6, wobei der Vanadiumgehalt zwischen $1,5 \le V \le 2,0$ Gew.% beträgt.

30

8. Hochfeste, weichmagnetische Eisen-Kobalt-Vanadium-Legierung nach einem der Ansprüche 1 bis 7, wobei der Gehalt an Niob und/oder Tantal zwischen $0.04 \le (Ta + 2 \times Nb) \le 0.8$ Gew.% beträgt.

35

9. Hochfeste, weichmagnetische Eisen-Kobalt-Vanadium-Legierung nach Anspruch 8, wobei der Gehalt an Niob und/ oder Tantal zwischen $0.04 \le (Ta + 2 \times Nb) \le 0.5$ Gew.% beträgt.

10. Hochfeste, weichmagnetische Eisen-Kobalt-Vanadium-Legierung nach Anspruch 9, wobei der Gehalt an Niob und/ oder Tantal zwischen $0.04 \le (Ta + 2 \times Nb) \le 0.3$ Gew.% beträgt.

40

11. Hochfeste, weichmagnetische Eisen-Kobalt-Vanadium-Legierung nach einem der Ansprüche 1 bis 10, wobei der Nickelgehalt Ni ≤ 1,0 Gew.% beträgt.

12. Hochfeste, weichmagnetische Eisen-Kobalt-Vanadium-Legierung nach Anspruch 11, wobei der Nickelgehalt Ni ≤ 0,5 Gew.% beträgt.

45

13. Hochfeste, weichmagnetische Eisen-Kobalt-Vanadium-Legierung nach einem der Ansprüche 1 bis 12, wobei der Gehalt an erschmelzungsbedingten und/oder zufälligen metallischen Verunreinigungen $Cu \le 0.2$, $Cr \le 0.3$, $Mo \le 0.3$, $Si \le 0.5$, $Mn \le 0.3$ und $Al \le 0.3$ beträgt.

50 14. Hochfeste, weichmagnetische Eisen-Kobalt-Vanadium-Legierung nach Anspruch 13, wobei der Gehalt an erschmelzungsbedingten und/oder zufälligen metallischen Verunreinigungen $Cu \le 0,1$, $Cr \le 0,2$, $Mo \le 0,2$, $Si \le 0,2$, $Mn \le 0,2$ und $Al \le 0,3$ beträgt.

55

15. Hochfeste, weichmagnetische Eisen-Kobalt-Vanadium-Legierung nach Anspruch 14, wobei der Gehalt an erschmelzungsbedingten und/oder zufälligen metallischen Verunreinigungen $Cu \le 0.06$, $Cr \le 0.1$, $Mo \le 0.1$, $Si \le 0.1$ und $Mn \le 0.1$ beträgt.

16. Hochfeste, weichmagnetische Eisen-Kobalt-Vanadium-Legierung nach einem der Ansprüche 1 bis 15, wobei der

Gehalt an erschmelzungsbedingten und/oder zufälligen nichtmetallischen Verunreinigungen P ≤ 0,01, S ≤ 0,02, $N \le 0,005$, $O \le 0,05$ und $C \le 0,05$ beträgt.

- 17. Hochfeste, weichmagnetische Eisen-Kobalt-Vanadium-Legierung nach Anspruch 16, wobei der Gehalt an er-5 schmelzungsbedingten und/oder zufälligen nichtmetallischen Verunreinigungen P ≤ 0,005, S ≤ 0,01, N ≤ 0,002, O \leq 0,02 und C \leq 0,02 beträgt.
 - 18. Hochfeste, weichmagnetische Eisen-Kobalt-Vanadium-Legierung nach Anspruch 17, wobei der Gehalt an erschmelzungsbedingten und/oder zufälligen nichtmetallischen Verunreinigungen S ≤ 0,005, N ≤ 0,001, O ≤ 0,01 und $C \le 0.01$ beträgt.

10

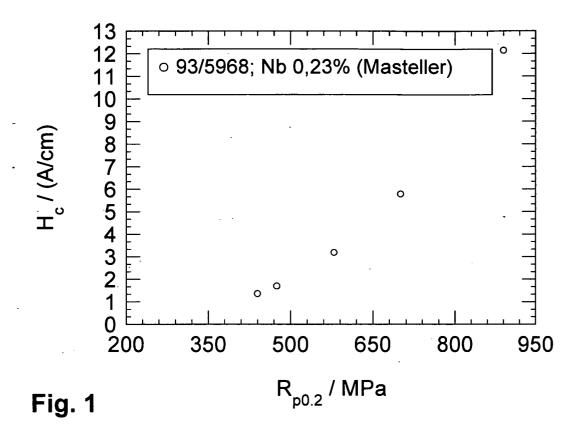
20

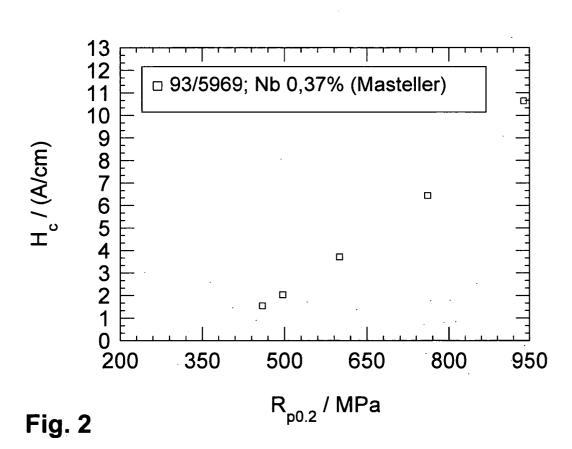
25

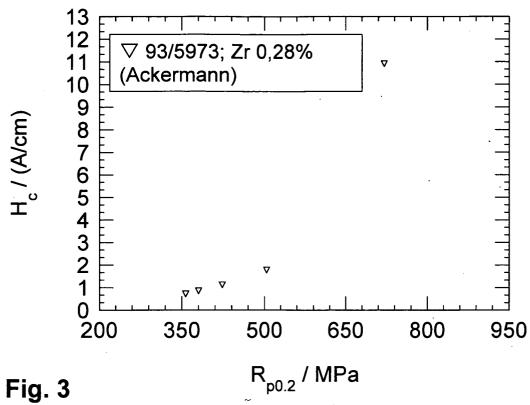
30

35

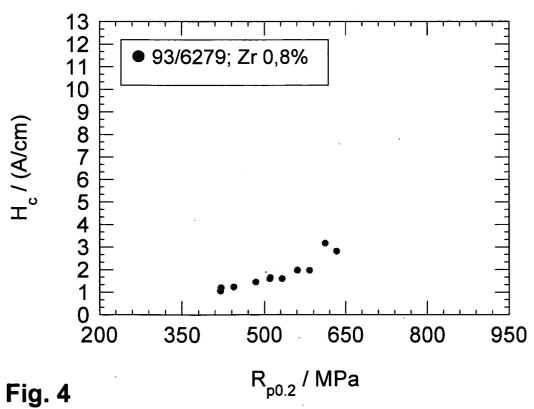
40

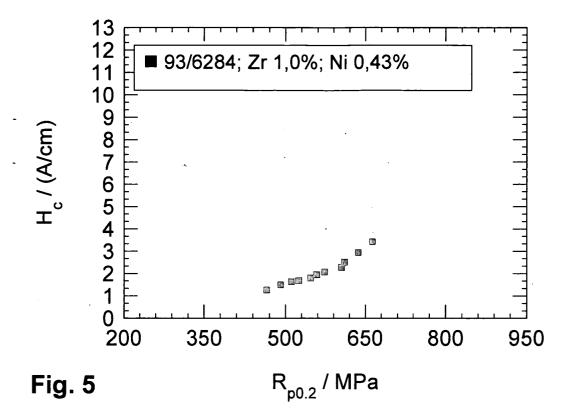

45

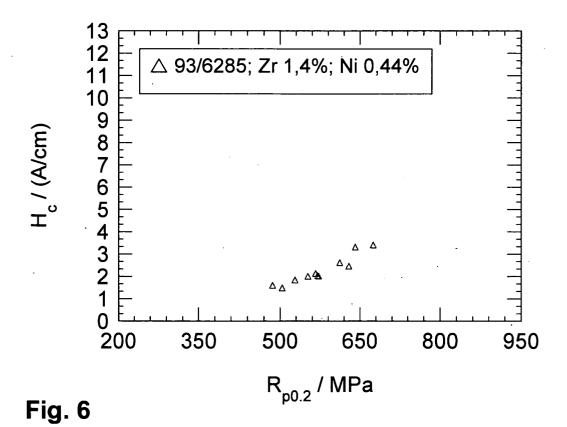

50


55

- 19. Verwendung einer hochfesten, weichmagnetische Eisen-Kobalt-Vanadium-Legierung nach einem der Ansprüche 1 bis 18, als Werkstoff für Magnetlager.
- 15 20. Verwendung einer hochfesten, weichmagnetische Eisen-Kobalt-Vanadium-Legierung nach einem der Ansprüche 1 bis 18, als Werkstoff für Rotoren.


30





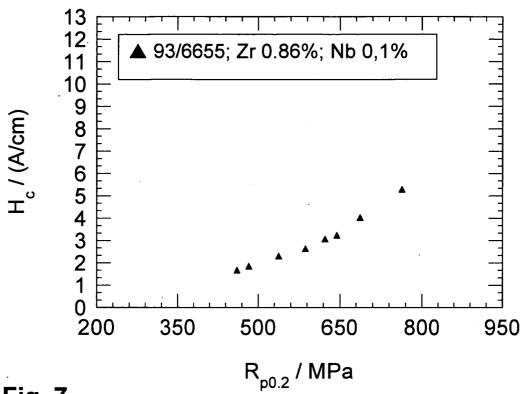


Fig. 7

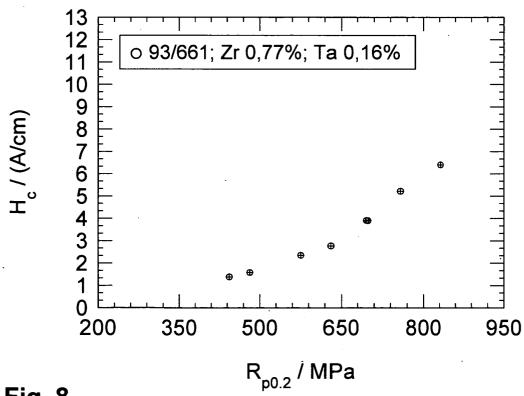
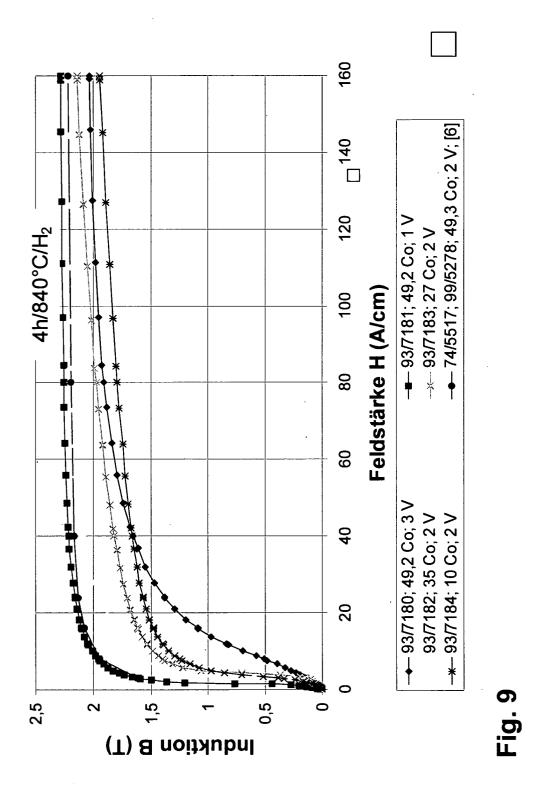



Fig. 8

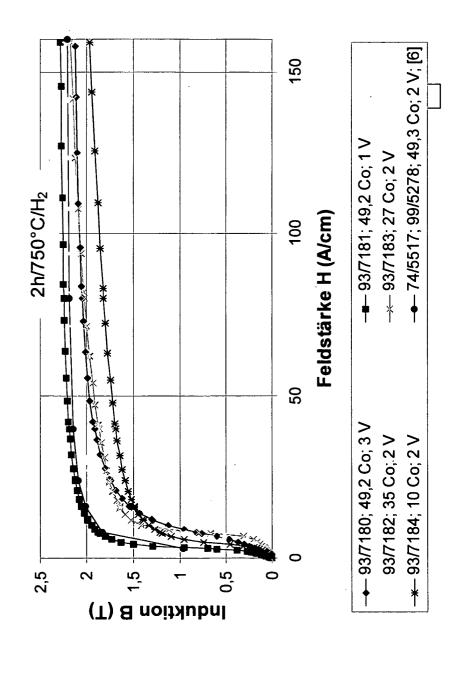


Fig. 10

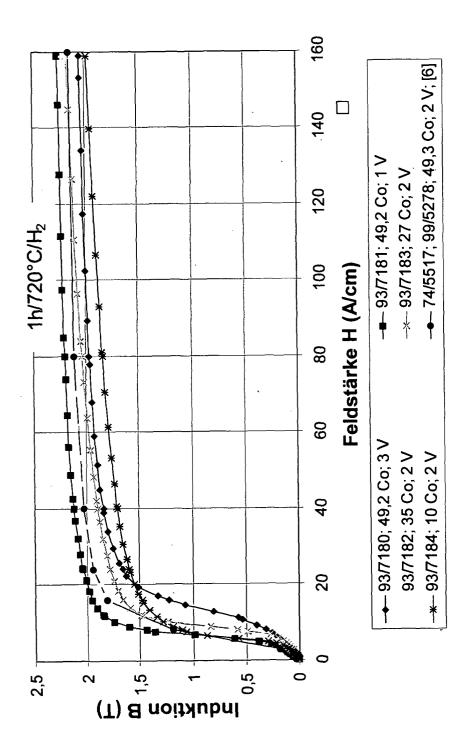


Fig. 7.

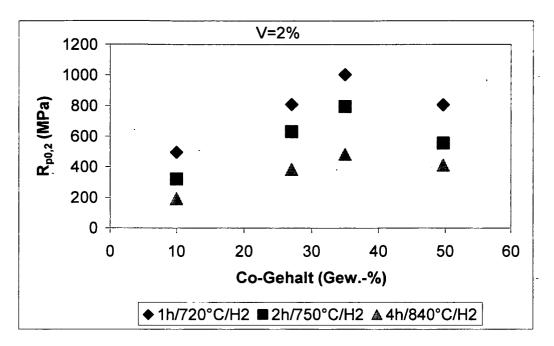


Fig. 12

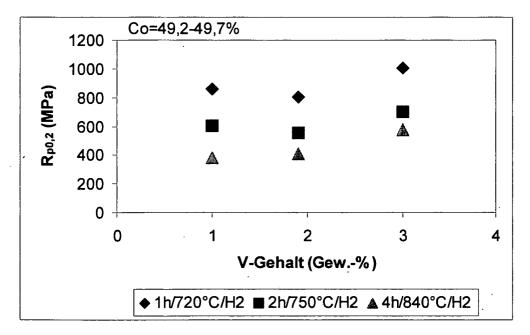


Fig. 13

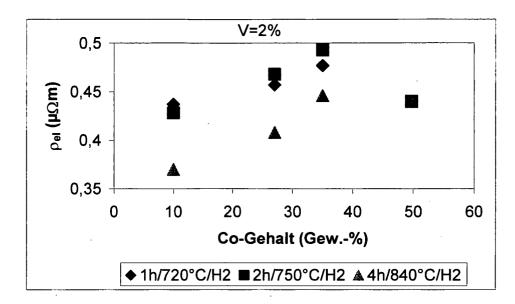


Fig. 14

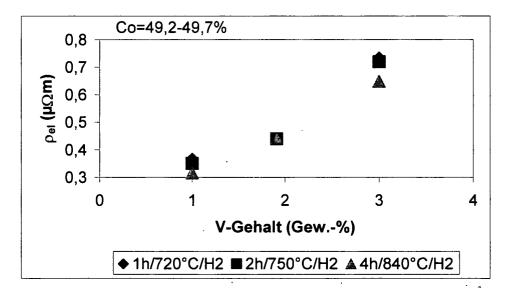


Fig. 15

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 04 01 0444

	EINSCHLÄGIGE	DOKUMENTE			
Kategorie	Kennzeichnung des Dokun der maßgebliche	nents mit Angabe, soweit erforderli n Teile		Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.CI.7)
A,D	US 3 634 072 A (ACK AL) 11. Januar 1972 * Zusammenfassung * * Anspruch 1 *		ET 1		C22C38/10 C22C19/00
A	US 4 116 727 A (MAJ 26. September 1978 * Zusammenfassung * * Spalte 2, Zeile 4 * Anspruch 1 *	(1978-09-26)	1		
A,D	US 5 501 747 A (MAS AL) 26. März 1996 (* Zusammenfassung * * Spalte 3, Zeilen * Spalte 4 - Spalte	66,67 *	1-	20	
Α	US 6 146 474 A (CHA 14. November 2000 (* das ganze Dokumen		1-	20	DEGUE DOLUE DATE
A	JP 09 228007 A (TOS ELECTRON ENG CORP) 2. September 1997 (* Zusammenfassung *	1997-09-02)	1-	20	RECHERCHIERTE SACHGEBIETE (Int.Cl.7)
A	US 2002/127132 A1 (AL) 12. September 2 * das ganze Dokumen		T 1-	20	
Α	US 5 976 274 A (INO 2. November 1999 (1 * das ganze Dokumen	999-11-02)	1-	20	
Α	US 4 933 026 A (RAW 12. Juni 1990 (1990 * das ganze Dokumen		1-	20	
		-/		:	
Der vo	rliegende Recherchenbericht wur	de für alle Patentansprüche erste	lit		
	Recherchenort	Abschlußdatum der Recherch	ie		Prüfer
	München	12. Juli 2004		Bro	wn, A
X : von Y : von ande A : tech O : nich	TEGORIE DER GENANNTEN DOKU besonderer Bedeutung allein betracht besonderer Bedeutung in Verbindung ren Veröffentlichung derselben Kateg nologischer Hintergrund tschriftliche Offenbarung ohenliteratur	E: älteres Pat et nach dem / mit einer D: in der Anw orie L: aus andere	entdokumer Anmeldedatu neldung ange en Gründen a er gleichen P	e liegende T nt, das jedoc ım veröffent eführtes Dok angeführtes	heorien oder Grundsätze heerst am oder licht worden ist ument

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 04 01 0444

	EINSCHLÄGIGE I Kennzeichnung des Dokumer	nts mit Angabe, soweit erforderlich,	Betrifft	KLASSIFIKATION DER
Kategorie	der maßgeblichen T	eile	Anspruch	ANMELDUNG (Int.Cl.7)
A	der maßgeblichen 1 EP 0 824 755 A (CRS 25. Februar 1998 (19 * das ganze Dokument	HOLDINGS INC)	Anspruch 1-20	ANMELDUNG (Int.Cl.7)
				RECHERCHIERTE SACHGEBIETE (Int.Cl.7)
Der vo	rliegende Recherchenbericht wurde	für alle Patentansprüche erstellt	;	
	Recherchenort	Abschlußdatum der Recherche		Prüfer
	München	12. Juli 2004	Bro	wn, A
X : von Y : von ande A : tech O : nich	NTEGORIE DER GENANNTEN DOKUM besonderer Bedeutung allein betrachtet besonderer Bedeutung in Verbindung mi eren Veröffentlichung derselben Kategori nologischer Hintergrund tschriffliche Offenbarung schenliteratur	nach dem Anmel t einer D : in der Anmeldun e L : aus anderen Grü	dedatum veröffentl g angeführtes Dok nden angeführtes	ument

EPO FORM 1503 03.82 (P04C03)

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 04 01 0444

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

12-07-2004

	Recherchenbericht ihrtes Patentdokume	ent	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichun
US	3634072	Α	11-01-1972	CA	934990	A1	09-10-19
US	4116727	Α	26-09-1978	GB	1523881	A	06-09-197
US	5501747	А	26-03-1996	BR CA DE DE EP IL JP WO	69611610 0824755	A1 D1 T2 A1 A T	30-11-199 14-11-199 22-02-200 05-07-200 25-02-199 29-06-200 18-05-199
US	6146474	A	14-11-2000	FR CN DE DE EP ES HK IL JP RU	69903202 69903202 0935008 2185294	A ,B D1 T2 A1 T3 A1 A	06-08-199 01-09-199 07-11-200 18-06-200 11-08-199 16-04-200 02-05-200 31-10-200 28-09-199 10-04-200
JP	9228007	Α	02-09-1997	KEIN	IE		
US	2002127132	A1	12-09-2002	EP TW WO US	1360340 530313 02055749 2004089377	В	12-11-200 01-05-200 18-07-200 13-05-200
US	5976274	A	02-11-1999	JP DE JP US JP	19802349 11131199 6284061	A A1 A B1 A	06-10-199 30-07-199 18-05-199 04-09-200 08-12-199
US	4933026	Α	12-06-1990	GB	2207927	A ,B	15-02-198
EP	0824755	A	25-02-1998	US BR CA DE DE EP JP	5501747 9608519 2220568 69611610 69611610 0824755 11505369	A A1 D1 T2 A1	26-03-199 30-11-199 14-11-199 22-02-200 05-07-200 25-02-199 18-05-199

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

EPO FORM P0461

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 04 01 0444

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.

Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

12-07-2004

	lm R angefüh	echerchenbericht rtes Patentdokume	ent	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
	EP	0824755	Α		IL WO	117490 9636059	A A1	29-06-2000 14-11-1996
EPO FORM P0461								!
EPO FO								

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82