(19)
(11) EP 1 477 684 A1

(12) DEMANDE DE BREVET EUROPEEN

(43) Date de publication:
17.11.2004  Bulletin  2004/47

(21) Numéro de dépôt: 04291161.0

(22) Date de dépôt:  05.05.2004
(51) Int. Cl.7F04D 19/04, F04D 27/00
(84) Etats contractants désignés:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR
Etats d'extension désignés:
AL HR LT LV MK

(30) Priorité: 13.05.2003 FR 0305724

(71) Demandeur: ALCATEL
75008 Paris (FR)

(72) Inventeur:
  • Desbiolles, Jean-Pierre
    74350 Cruseilles (FR)

(74) Mandataire: Lamoureux, Bernard et al
Compagnie Financière Alcatel, Département de Propriété Industrielle, 5, rue Noel Pons
92734 Nanterre Cedex
92734 Nanterre Cedex (FR)

   


(54) Pompe moléculaire, turbomoléculaire ou hybride à vanne integrée


(57) Une pompe moléculaire, turbomoléculaire ou hybride (5) selon l'invention comprend un étage de sortie ayant une paroi périphérique cylindrique (17) et un orifice radial de sortie (23) traversant la paroi périphérique cylindrique (17). Un obturateur annulaire coaxial (24) vient en appui contre la paroi périphérique cylindrique (17) autour de l'orifice radial de sortie. L'obturateur annulaire coaxial (24) comporte une lumière de passage et éventuellement un volet d'obturation totale (26). L'obturateur annulaire coaxial (24) est entraîné en rotation axiale par un moteur (8) pour placer sa lumière de passage ou son volet d'obturation totale (26) au regard de l'orifice radial de sortie (23), ou partiellement au regard de l'orifice radial de sortie (23), pour régler l'ouverture de la vanne et assurer la régulation du flux gazeux pompé par la pompe (5). On réalise ainsi une pompe ayant une vanne de régulation et/ou d'obturation intégrée.




Description


[0001] La présente invention concerne les systèmes de pompage des gaz permettant d'établir et de réguler un vide approprié dans une chambre de procédés telle qu'une chambre utilisée notamment dans l'industrie des semi-conducteurs.

[0002] Les procédés de fabrication des semi-conducteurs et des systèmes mécaniques microélectroniques (MEMS) comprennent généralement des étapes successives qui se déroulent dans une chambre de procédés sous atmosphère à faible pression. Chaque étape de procédé est caractérisée par une pression gazeuse qu'il faut réguler, par exemple pour l'entretien d'un plasma ou d'un bombardement de particules qui agit sur un substrat en semi-conducteur.

[0003] La plupart des étapes de procédés se réalisent en présence d'un vide approprié, généré et maintenu par une ligne de vide comprenant des pompes à vide raccordées à la chambre de procédés.

[0004] La ligne de vide d'une chambre de procédés comprend généralement une pompe secondaire, de type moléculaire, turbomoléculaire ou hybride, raccordée en sortie de chambre avec interposition d'une vanne d'isolation, et qui refoule dans une canalisation de liaison raccordée à l'entrée d'une pompe primaire dont la sortie refoule à la pression atmosphérique. On prévoit généralement une vanne d'isolation à la sortie de la pompe secondaire.

[0005] Le contrôle de la pression dans la chambre de procédés nécessite de prévoir des moyens pour modifier les conditions de pompage dans la ligne de vide, pour les adapter aux étapes successives des procédés. De façon traditionnelle, on a contrôlé la pression dans les chambres de procédés par la manoeuvre d'une vanne de régulation placée directement en sortie de la chambre de procédés, en amont de la pompe secondaire. Un problème est alors le risque d'encrassement de la vanne de régulation par les gaz pompés, et le risque de pollution rétrograde depuis la vanne de régulation vers la chambre de procédés au cours d'étapes ultérieures des procédés.

[0006] Une solution qui a été envisagée jusqu'à présent est de placer la vanne de régulation dans la canalisation de liaison, c'est-à-dire entre le refoulement de la pompe secondaire et l'aspiration de la pompe primaire. Le document WO 99/04325 décrit notamment cette solution consistant à prévoir une vanne de régulation connectée à l'entrée de la pompe primaire non pilotée en vitesse, tout en prévoyant une injection de gaz neutre en amont de la vanne de régulation.

[0007] On constate alors une dégradation de la régulation, vraisemblablement due à un temps de réponse allongé qui résulte de la présence d'un plus grand volume gazeux à haute pression entre le refoulement de la pompe secondaire et la vanne de régulation.

[0008] Le problème proposé par la présente invention est à la fois de réduire de façon sensible les risques d'encrassement de la vanne de régulation et les risques de pollution rétro diffusée depuis la vanne de régulation vers la chambre de procédés, sans dégrader de façon sensible les conditions de régulation de pression dans la chambre de procédés. Il faut en particulier garantir une réaction rapide des moyens de régulation de pression lors des transitions entre les étapes successives des procédés.

[0009] Simultanément, l'invention permet de réduire l'encombrement résultant de la présence de la vanne de régulation elle-même.

[0010] L'idée qui est à la base de l'invention est d'intégrer la vanne de régulation à la structure même de la pompe secondaire, en prévoyant une structure particulière de vanne dont l'obturateur agit directement sur un orifice radial de sortie dans la paroi périphérique cylindrique de la pompe.

[0011] En pratique, on prévoit une pompe secondaire de type moléculaire, turbomoléculaire ou hybride à étage de sortie, et l'obturateur agit directement sur l'orifice radial de sortie prévu dans la paroi périphérique cylindrique de cet étage de sortie.

[0012] De la sorte, la vanne de régulation est placée au plus près de la pompe secondaire, qui est elle-même au plus près de la chambre de procédés, réduisant ainsi le temps de réaction aux perturbations amont dans l'atmosphère de la chambre de procédés.

[0013] L'invention profite en outre de l'échauffement naturel de la pompe secondaire, qui échauffe la vanne intégrée et réduit ainsi les risques de dépôt et de condensation des gaz pompés sur les parties de la vanne de régulation.

[0014] On peut également chercher à conférer à cette structure de vanne de régulation des qualités d'étanchéité suffisantes pour remplir des fonctions de vanne d'isolation aval. On élimine ainsi le besoin d'une vanne d'isolation aval supplémentaire.

[0015] Pour atteindre ces buts ainsi que d'autres, l'invention prévoit une pompe moléculaire, turbomoléculaire ou hybride, comprenant un étage de sortie ayant une paroi périphérique cylindrique et un orifice radial de sortie traversant la paroi périphérique cylindrique ; la pompe selon l'invention comprend en outre une vanne de régulation et/ou d'isolation intégrée ayant un obturateur annulaire coaxial à lumière de passage qui coopère directement avec l'orifice radial de sortie de l'étage de sortie pour réaliser l'obturation et/ou la régulation.

[0016] Selon un premier mode de réalisation, l'obturateur annulaire coaxial est placé à l'intérieur de la paroi périphérique cylindrique dans un espace annulaire de refoulement, en appui sur la face interne de l'orifice radial de sortie.

[0017] Selon un autre mode de réalisation, l'obturateur annulaire coaxial est en appui sur la face externe de l'orifice radial de sortie, et logé autour de la paroi périphérique cylindrique de l'étage de sortie.

[0018] L'obturateur annulaire coaxial peut avantageusement être sollicité en rotation axiale par un moteur pour positionner de façon réglable la lumière de passage par rapport à l'orifice radial de sortie. La rotation de l'obturateur annulaire coaxial déplace la lumière de passage vis-à-vis de l'orifice radial de sortie, et réalise ainsi le contrôle du flux gazeux traversant la vanne de régulation et/ou d'isolation.

[0019] En pratique, l'obturateur annulaire coaxial peut comporter une crémaillère en prise sur une roue dentée entraînée en rotation par le moteur.

[0020] Le moteur peut avantageusement être logé dans un boîtier rapporté radialement contre la paroi périphérique cylindrique de la pompe, avec interposition de joints d'étanchéité.

[0021] De préférence, la vanne réalise une obturation totale étanche en position fermée.

[0022] A cet effet, l'obturateur annulaire coaxial peut comprendre des moyens d'étanchéité montés pour assurer l'étanchéité d'obturation en position fermée.

[0023] Selon une réalisation pratique, l'obturateur annulaire coaxial peut comprendre un volet d'obturation totale monté mobile radialement sur l'obturateur annulaire coaxial, et sollicité en déplacement radial par des moyens de déplacement qui le plaquent contre le pourtour de l'orifice radial de sortie lorsqu'il est au regard dudit orifice radial de sortie, et qui l'écartent de la paroi périphérique cylindrique dans ses autres positions angulaires.

[0024] Pour réduire encore les risques d'encrassement de la vanne de régulation, on peut avantageusement prévoir une injection d'azote dans un espace annulaire de refoulement de l'étage de sortie.

[0025] De préférence, l'injection d'azote peut être réalisée à l'intérieur du boîtier contenant le moteur d'entraînement de l'obturateur annulaire coaxial de la vanne de régulation, ce qui protège en outre le moteur lui-même contre tout risque de pollution par les gaz pompés.

[0026] On peut avantageusement donner à la lumière de passage de l'obturateur annulaire coaxial une forme adaptée pour obtenir une courbe de conductance appropriée pour une régulation stable et efficace. La forme de la lumière de passage définit la variation de la conductance en fonction de l'angle de rotation de l'obturateur annulaire coaxial.

[0027] Selon un autre aspect de l'invention, on prévoit un système de pompage des gaz d'une chambre de procédés, comprenant au moins une pompe secondaire moléculaire, turbomoléculaire ou hybride à étage de sortie, et comprenant au moins une vanne de régulation et/ou d'isolation commandant le flux des gaz pompés ; selon l'invention, la vanne de régulation et/ou d'isolation est intégrée dans l'étage de sortie comme défini ci-dessus.

[0028] La vanne de régulation et/ou d'isolation peut avantageusement être pilotée par un moteur et des moyens de commande pour réaliser une régulation de pression en amont de la pompe secondaire.

[0029] D'autres objets, caractéristiques et avantages de la présente invention ressortiront de la description suivante de modes de réalisation particuliers, faite en relation avec les figures jointes, parmi lesquelles:
  • la figure 1 est une vue schématique d'un système de pompage des gaz d'une chambre de procédés selon un mode de réalisation de la présente invention ;
  • la figure 2 est une vue en perspective d'un étage Holweck de pompe moléculaire ou hybride selon un mode de réalisation de l'invention ;
  • les figures 3 et 4 sont deux autres vues, à plus petite échelle, de l'étage Holweck de la figure 2, respectivement dans un état d'obturation presque totale et dans un état d'ouverture partielle ;
  • la figure 5 est une vue en perspective d'un obturateur annulaire coaxial de la pompe de la figure 2 ;
  • la figure 6 est une coupe diamétrale de l'étage Holweck de la figure 2, à l'état d'obturation totale ;
  • la figure 7 est une coupe diamétrale de l'étage Holweck de la figure 2, dans l'état d'ouverture totale ;
  • la figure 8 est une coupe diamétrale de l'étage Holweck de la figure 2, à l'état d'ouverture partielle ;
  • la figure 9 est une vue de dessus de l'étage Holweck de la figure 2, dans l'état d'ouverture partielle illustré sur la figure 8 ;
  • la figure 10 est une vue partielle de dessus montrant le détail du volet d'obturation totale en position d'obturation totale ; et
  • la figure 11 est une vue de détail de dessus montrant le volet d'obturation totale en position de recul pour l'ouverture.


[0030] Dans le mode de réalisation illustré sur la figure 1, dans une ligne de vide pour commander le vide d'une chambre de procédés 1, on prévoit une pompe primaire 2 qui refoule à la pression atmosphérique et dont l'aspiration est raccordée, par une canalisation de liaison 3, au refoulement 4 d'une pompe secondaire 5 dont l'aspiration 6 est connectée à la chambre de procédés 1.

[0031] Le refoulement 4 de la pompe secondaire 5 comporte, intégrée dans la pompe secondaire 5 elle-même, une vanne de régulation 7 associée à des moyens 8 pour piloter la vanne de régulation 7.

[0032] Comme on le verra plus loin, la vanne de régulation 7 peut comprendre un obturateur mécaniquement déplaçable par un moteur constituant les moyens 8 pour piloter la vanne de régulation 7. Le moteur 8 peut être commandé par des moyens de commande 9 tels qu'un microprocesseur ou un microcontrôleur. Pour réaliser la régulation de pression dans la chambre de procédés 1, les moyens de commande 9 peuvent recevoir un signal de consigne produit par une consigne 10, et des signaux de mesure produits par exemple par un capteur de pression 11 dans la chambre de procédés 1.

[0033] La pression dans la chambre de procédés 1 peut être pilotée par l'ouverture plus ou moins grande de la vanne de régulation 7, obtenue par actionnement du moteur 8. En outre, on peut prévoir si nécessaire que les moyens de commande 9 commandent une alimentation 12 qui pilote la vitesse de la pompe primaire 2, et/ou une alimentation 13 qui pilote la vitesse de la pompe secondaire 5.

[0034] Une source de gaz neutre 14, par exemple contenant de l'azote, peut avantageusement être raccordée, par une canalisation 15 et une vanne de commande 16, à un boîtier contenant le moteur 8, pour injecter un gaz neutre qui se propage vers l'intérieur de l'étage de sortie de la pompe secondaire 5 à travers la vanne de régulation 7.

[0035] On considérera maintenant les figures 2 à 11, qui illustrent un mode de réalisation avantageux d'une pompe secondaire 5 selon la présente invention.

[0036] L'invention s'applique à des pompes secondaires pouvant être de type moléculaire, de type turbomoléculaire ou de type hybride.

[0037] Dans une pompe moléculaire, en particulier une pompe moléculaire de type Holweck, le stator comprend une paroi périphérique cylindrique autour d'une jupe intérieure de stator de laquelle elle est séparée par un espace annulaire de refoulement. Un orifice radial de sortie traverse la paroi périphérique cylindrique et met ainsi en communication l'atmosphère extérieure avec l'espace annulaire de refoulement. Un rotor à nervures hélicoïdales est engagé coaxialement dans l'espace intérieur défini par la jupe intérieure de stator et est entraîné en rotation selon l'axe de la pompe.

[0038] Dans une pompe secondaire de type turbomoléculaire, le rotor et le stator comportent des étages d'ailettes qui s'imbriquent les uns dans les autres.

[0039] Dans une pompe secondaire de type hybride, on trouve, en partant de l'aspiration de la pompe, des étages de compression de type turbomoléculaire à ailettes suivis d'au moins un étage de sortie de type Holweck.

[0040] Dans le mode de réalisation des figures 2 à 11, on a représenté seulement l'étage de sortie d'une telle pompe secondaire 5 de type moléculaire ou hybride, étage qui peut être associé à d'autres étages tels que des étages turbo.

[0041] L'étage de sortie d'une telle pompe moléculaire ou hybride 5 comprend une paroi périphérique cylindrique 17, une jupe intérieure coaxiale de stator 18 à nervures intérieures hélicoïdales 19, et un rotor Holweck, non représenté sur les figures, qui est engagé coaxialement dans l'espace intérieur 20 défini par la jupe intérieure de stator 18 et qui est entraîné en rotation selon l'axe de la pompe par un moteur principal non représenté.

[0042] On notera que, sur la figure 2, la pompe secondaire 5 est vue depuis sa face aval, de laquelle on a oté la paroi d'obturation aval pour permettre de distinguer les organes intérieurs de la pompe. En fonctionnement, la face aval de la pompe est obturée par une paroi étanche en forme de disque, fixée à la paroi périphérique cylindrique 17 et définissant une chambre aval 21 (voir notamment la figure 6). Les gaz pompés sont refoulés par le rotor Holweck vers la chambre aval 21 qui elle-même communique avec un espace annulaire de refoulement 22 situé entre la paroi périphérique cylindrique 17 et la jupe intérieure de stator 18.

[0043] La paroi périphérique cylindrique 17 comporte un orifice radial de sortie 23 par lequel s'échappent les gaz refoulés de l'espace annulaire de refoulement 22.

[0044] Selon l'invention, on prévoit une structure particulière de vanne de régulation dont l'élément d'obturation est directement adjacent à l'orifice radial de sortie 23 dans la paroi périphérique cylindrique 17 de l'étage Holweck de la pompe secondaire 5.

[0045] A cet effet, la vanne de régulation comprend un obturateur annulaire coaxial 24, de forme cylindrique, en appui étanche contre l'une des faces de l'orifice radial de sortie 23, comportant une lumière de passage 25 (figure 5) sur une portion de sa périphérie, et sollicité en rotation axiale pour positionner de façon réglable ladite lumière de passage 25 selon une orientation angulaire plus ou moins alignée ou décalée par rapport à l'orifice radial de sortie 23 afin de régler la conductance de la vanne de régulation.

[0046] Un tel obturateur annulaire coaxial 24 est illustré de façon isolée en perspective dans un mode de réalisation particulier sur la figure 5. On distingue sur cette figure que l'obturateur annulaire coaxial 24 a une forme cylindrique, constituée d'une paroi cylindrique continue 24a et limitée par un bord circulaire amont 24b et un bord circulaire aval 24c. Une rainure de guidage 24d est prévue sur la paroi externe de la paroi 24a, pour coopérer avec des moyens de guidage qui fixent la position axiale de l'obturateur annulaire cylindrique 24 dans le corps de pompe.

[0047] Le bord circulaire amont 24b comporte une portion 24e dentée pour coopérer avec un pignon d'entraînement sollicité par un moteur pour entraîner en rotation axiale l'obturateur annulaire coaxial 24 dans le corps de pompe.

[0048] Sur la figure 5, on distingue également la lumière de passage 25 qui, lorsque la position angulaire de l'obturateur annulaire coaxial 24 la place face à l'orifice radial de sortie 23 (figure 6) de la pompe, définit la position d'ouverture totale de la vanne, et qui ferme plus ou moins la vanne de régulation lorsqu'elle est décalée à l'écart de l'orifice radial de sortie 23. On donne à la lumière de passage 25 une forme adaptée pour obtenir une courbe de conductance appropriée permettant de réaliser une régulation stable et efficace par commande de position angulaire de l'obturateur annulaire coaxial 24 autour de l'axe de la pompe.

[0049] Sur la figure 5, on distingue également un volet d'obturation totale 26, mobile radialement sur l'obturateur annulaire coaxial 24, pour être sollicité radialement par des moyens de déplacement radial qui seront décrits plus loin. Le volet d'obturation totale 26 comporte un joint frontal 26a pour assurer une étanchéité totale en position fermée.

[0050] Dans la réalisation illustrée sur les figures, l'obturateur annulaire coaxial 24 est placé à l'intérieur de l'espace annulaire de refoulement 22, et est déplaçable par rotation axiale autour de l'axe de la pompe comme illustré par la double flèche 27 sur la figure 2.

[0051] Pour ce mouvement de rotation axiale 27, l'obturateur annulaire coaxial 24 est entraîné par le moteur 8 placé dans un boîtier 28 rapporté radialement sur la paroi périphérique cylindrique 17, comme on le voit mieux sur la figure 6. Le moteur 8 entraîne une roue dentée 29 qui vient en prise sur la partie dentée 24e du bord circulaire amont 24b de l'obturateur annulaire coaxial 24.

[0052] Le boîtier 28 est rapporté radialement sur la paroi périphérique cylindrique 17 du corps de pompe avec interposition d'un joint d'étanchéité annulaire frontal 30. Un second joint d'étanchéité annulaire 31, à action radiale, est également prévu dans la paroi périphérique cylindrique 17 à l'intérieur de l'orifice de passage de l'arbre portant la roue dentée 29.

[0053] Sur la figure 6, on distingue encore l'arrivée de la canalisation 15 d'injection de gaz neutre dans le boîtier 28 contenant le moteur 8. Une telle injection de gaz neutre provoque un flux de gaz neutre à travers le moteur 8 en direction de la pompe secondaire 5, évitant une circulation de gaz pompé depuis la pompe secondaire 5 vers le moteur 8 pour réduire les risques de pollution du moteur 8, et assurant simultanément une dilution des gaz dans l'étage Holweck, ce qui réduit encore les risques de dépôt. Le flux unidirectionnel de gaz neutre est assuré en prévoyant au moins un trou axial calibré traversant dans la roue dentée 29.

[0054] Grâce à sa position à l'intérieur de l'espace annulaire de refoulement 22, l'obturateur annulaire coaxial 24 profite de l'échauffement en sortie de l'étage Holweck, ce qui réduit les risques de dépôts de gaz pompés sur les éléments de la vanne de régulation. Mais surtout, cette position de l'obturateur annulaire coaxial 24 réduit au maximum le volume gazeux à haute pression en amont de la vanne de régulation 7, améliorant ainsi la capacité de réaction de la régulation.

[0055] Sur la figure 6, la vanne de régulation est illustrée dans la position d'obturation totale. Dans ce cas, l'obturateur annulaire coaxial 24 est placé dans une position angulaire telle que le volet d'obturation totale 26 est exactement en regard de l'orifice radial de sortie 23. Le volet d'obturation totale 26 est plaqué contre la face intérieure de paroi périphérique cylindrique 17, selon tout le pourtour de l'orifice radial de sortie 23, et son joint annulaire d'étanchéité 26a est plaqué contre le pourtour de l'orifice radial de sortie 23 pour assurer une étanchéité parfaite.

[0056] Sur la figure 7, on a illustré la pompe secondaire 5 dans un état dans lequel la vanne de régulation est en position d'ouverture totale. On retrouve sur cette figure les éléments de la figure 6, qui sont repérés par les mêmes références numériques.

[0057] Dans cette position d'ouverture totale, l'obturateur annulaire coaxial 24 a été pivoté par actionnement du moteur 8 pour placer la lumière de passage 25 en correspondance de l'orifice radial de sortie 23, afin d'autoriser le passage maximum des gaz refoulés par la pompe. Le volet d'obturation totale 26 est alors escamoté latéralement, et n'est pas représenté sur la figure.

[0058] Sur la figure 8, on a illustré en coupe diamétrale la pompe secondaire 5 de la figure 6 en position d'ouverture partielle, position également illustrée en vue de dessus sur la figure 9. Dans ce cas, l'obturateur annulaire coaxial 24 est pivoté angulairement par le moteur pour placer la lumière de passage 25 partiellement en face de l'orifice radial de sortie 23, lequel orifice radial de sortie 23 est partiellement obturé par le volet d'obturation totale 26. La vanne est illustrée en position de demi-ouverture.

[0059] Pour permettre la rotation libre de l'obturateur annulaire coaxial 24, le volet d'obturation totale 26 est déplaçable radialement, pour être écarté de la paroi périphérique cylindrique 17 dans toutes les positions angulaires de l'obturateur annulaire coaxial 24 sauf dans la position de fermeture totale illustrée sur la figure 6.

[0060] Pour cela, comme on le voit plus en détail sur les figures 10 et 11, le volet d'obturation totale 26 comporte une face intérieure 26b en rampe, avec une portion 26c plus mince et une portion 26d plus épaisse. La face intérieure 26b vient en appui radial sur des rouleaux 32a et 32b, bien visibles sur les figures en coupe diamétrale. En position d'ouverture totale ou partielle, illustrées sur la figure 11, les rouleaux tels que le rouleau 32a sont en appui sur la partie la plus mince 26c du volet d'obturation totale 26, autorisant le recul radial du volet d'obturation totale 26 en direction de l'axe de la pompe, à l'écart de la paroi périphérique cylindrique 17. Par contre, au voisinage de la position d'obturation totale, illustrée sur la figure 10, les rouleaux tels que le rouleau 32a sont en appui sur la partie la plus épaisse 26d du volet d'obturation totale 26, repoussant le volet d'obturation totale 26 vers l'extérieur pour le plaquer contre la paroi périphérique cylindrique 17 selon le pourtour de l'orifice radial de sortie 23, le joint 26a assurant alors l'étanchéité parfaite.

[0061] La figure 3 illustre en perspective la pompe secondaire 5 dans la position de la figure 11 : le volet d'obturation totale 26 est légèrement décentré par rapport à l'orifice radial de sortie 23.

[0062] La figure 4 illustre la pompe secondaire 5 en position de demi-ouverture illustrée sur la figure 8 et sur la figure 9. Le volet d'obturation totale 26 est décalé de la moitié de la largeur de l'orifice radial de sortie 23, et l'on distingue également la moitié de la lumière de passage 25.

[0063] Dans le mode de réalisation illustré sur les figures, la vanne de régulation, munie d'un volet d'obturation totale 26, peut assurer également la fonction de vanne d'isolation.

[0064] On comprend que, selon l'invention, on peut prévoir un mode de réalisation simplifié dans lequel l'obturateur annulaire coaxial 24 comporte seulement une lumière de passage 25, et est dépourvu de volet d'obturation totale 26. Dans ce cas, la vanne remplit seulement la fonction de vanne de régulation, l'obturation complète de la vanne n'étant pas étanche.

[0065] Egalement, dans le mode de réalisation illustré sur les figures, l'obturateur annulaire coaxial 24 est disposé à l'intérieur de la pompe, et vient en appui contre la face intérieure de la paroi périphérique cylindrique 17 autour de l'orifice radial de sortie 23.

[0066] En alternative, on peut placer l'obturateur annulaire coaxial 24 à l'extérieur de la paroi périphérique cylindrique 17, en appui sur les bords de l'orifice radial de sortie 23.

[0067] La présente invention n'est pas limitée aux modes de réalisation qui ont été explicitement décrits, mais elle en inclut les diverses variantes et généralisations qui sont à la portée de l'homme du métier.


Revendications

1. Pompe moléculaire, turbomoléculaire ou hybride (5), comprenant un étage de sortie ayant une paroi périphérique cylindrique (17) et un orifice radial de sortie (23) traversant la paroi périphérique cylindrique (17), caractérisée en ce qu'elle comprend en outre une vanne de régulation et/ou d'isolation intégrée ayant un obturateur annulaire coaxial (24) à lumière de passage (25) qui coopère directement avec l'orifice radial de sortie (23) de l'étage de sortie pour réaliser l'obturation et/ou la régulation.
 
2. Pompe moléculaire, turbomoléculaire ou hybride selon la revendication 1, dans laquelle l'obturateur annulaire coaxial (24) est placé à l'intérieur de la paroi périphérique cylindrique (17) dans un espace annulaire de refoulement (22), en appui sur la face interne de l'orifice radial de sortie (23).
 
3. Pompe moléculaire, turbomoléculaire ou hybride selon la revendication 1, dans laquelle l'obturateur annulaire coaxial (24) est en appui sur la face externe de l'orifice radial de sortie (23), et logé autour de la paroi périphérique cylindrique (17) de l'étage de sortie.
 
4. Pompe moléculaire, turbomoléculaire ou hybride selon l'une des revendications 1 à 3, dans laquelle l'obturateur annulaire coaxial (24) est sollicité en rotation axiale par un moteur (8) pour positionner de façon réglable la lumière de passage (25) par rapport à l'orifice radial de sortie (23).
 
5. Pompe moléculaire, turbomoléculaire ou hybride selon la revendication 4, dans laquelle l'obturateur annulaire coaxial (24) comporte une crémaillère (24e) en prise sur une roue dentée (29) entraînée en rotation par le moteur (8).
 
6. Pompe moléculaire, turbomoléculaire ou hybride selon l'une des revendications 4 ou 5, dans laquelle le moteur (8) est logé dans un boîtier (28) rapporté radialement contre la paroi périphérique cylindrique (17) de la pompe, avec interposition de joints d'étanchéité (30, 31).
 
7. Pompe moléculaire, turbomoléculaire ou hybride selon l'une des revendications 1 à 6, dans laquelle la vanne réalise une obturation totale étanche en position fermée.
 
8. Pompe moléculaire, turbomoléculaire ou hybride selon la revendication 7, dans laquelle l'obturateur annulaire coaxial (24) comprend des moyens d'étanchéité (26, 26a) montés pour assurer l'étanchéité d'obturation en position fermée.
 
9. Pompe moléculaire, turbomoléculaire ou hybride selon la revendication 8, dans laquelle l'obturateur annulaire coaxial (24) comprend un volet d'obturation totale (26) monté mobile radialement sur l'obturateur annulaire coaxial (24), et sollicité en déplacement radial par des moyens de déplacement (26b, 32a, 32b) qui le plaquent contre le pourtour de l'orifice radial de sortie (23) lorsqu'il est au regard dudit orifice radial de sortie (23), et qui l'écartent de la paroi périphérique cylindrique (17) dans ses autres positions angulaires.
 
10. Pompe moléculaire, turbomoléculaire ou hybride selon l'une des revendications 1 à 9, dans laquelle on prévoit en outre une injection d'azote dans un espace annulaire de refoulement (22) de l'étage de sortie.
 
11. Pompe moléculaire, turbomoléculaire ou hybride selon la revendication 10, dans laquelle l'injection d'azote est réalisée à l'intérieur d'un boîtier (28) contenant un moteur (8) d'entraînement de l'obturateur annulaire coaxial (24).
 
12. Pompe moléculaire, turbomoléculaire ou hybride selon l'une des revendications 1 à 11, dans laquelle la lumière de passage (25) de l'obturateur annulaire coaxial (24) a une forme adaptée pour obtenir une courbe de conductance appropriée pour une régulation stable et efficace.
 
13. Système de pompage des gaz d'une chambre de procédés (1), comprenant au moins une pompe secondaire (5) moléculaire, turbomoléculaire ou hybride à étage de sortie, et comprenant au moins une vanne de régulation et/ou d'isolation commandant le flux des gaz pompés, dans lequel la vanne de régulation et/ou d'isolation est intégrée dans l'étage de sortie de la pompe moléculaire, turbomoléculairecomme ou hybride comme définie dans l'une quelconque des revendications 1 à 12.
 
14. Système de pompage des gaz selon la revendication 13, dans lequel la vanne de régulation et/ou d'isolation est pilotée par un moteur (8) et des moyens de commande (9) pour réaliser une régulation de pression en amont de la pompe secondaire (5).
 




Dessins




























Rapport de recherche