BACKGROUND OF THE INVENTION
1. Technical Field
[0001] The present invention relates to the field of radio frequency (R.F.) output power
control and more particularly to an R.F. power amplifier circuit comprising a power
control loop including an R.F. power amplifier. The invention further relates to a
method of controlling the output power of the R.F. power amplifier.
2. Description of the Prior Art
[0002] Modern R.F. applications like wireless communications devices require an efficient
R.F. output power control for example to ensure a high transmission quality and to
keep output signal fluctuations within limits that are defined in various standards.
[0003] Typically, R.F. output power control involves a power control loop including the
R.F. power amplifier, a detector device for detecting the output power of the R.F.
power amplifier and an error amplifier. Such an R.F. power control loop is known for
example from
US 5,378,996.
[0004] The power amplifier known from
US 5,378,996 has a control input, a signal input, an R.F. power output and a detector output.
The detector signal at the detector output is provided by a detector device in the
form of a detector diode coupled between the R.F. power output and the detector output
of the power amplifier. The detector output is coupled to a negative input of the
error amplifier and an output of the error amplifier is connected to the control input
of the power amplifier. Thus the power amplifier, the detector and the error amplifier
form a power control loop with negative feedback. The error amplifier also has a positive
input to which a reference signal is applied.
[0005] The R.F. output power control described in
US 5,378,996 is based on the measurement of the R.F. output power. However, in principle R.F.
output power control could also be based on a measurement of the R.F. power amplifier
current, i.e. on the power or current consumption of the R.F. power amplifier.
[0007] The controller is part of a closed loop solution that permits calibration of the
R.F. power amplifier's gate biasing voltage in real-time modes. A schematic block
diagram of an R.F. power amplifier circuit comprising the known controller is depicted
in Fig. 1a. As becomes apparent from Fig. 1a, the R.F. power amplifier circuit 10
comprises a power control loop 12 and a signal supply branch 14. The power control
loop 12 comprises an R.F. power amplifier 22, a current sensing element in the form
of a resistor 24, a detector in the form of a comparator 16 and a filter 18.
[0008] The resistor 24 is used to sense the drain current of the R.F. power amplifier 22.
The drain current is converted into a voltage that is fed together with an external
voltage reference from the signal supply branch 14 to the comparator 16.
[0009] The output signal of the comparator 16 is filtered by the filter 18 and the filtered
signal is used to control the R.F. power amplifier's 22 gate biasing voltage.
[0010] To cope with temperature drift and aging that affect efficiency and linearization
of the R.F. power amplifier 22, a control input 14' is provided outside the power
control loop 12 between the signal supply branch 14 and the comparator 16. By means
of a control signal applied to the control input 14' the output power Pour of the
power amplifier 22 can be controlled.
[0011] Document
US 6,351,189 B1 concerns a system and a method for auto-bias of an amplifier. The system monitors
a physical quantity indicative of the operating state of the amplifier and controls
the amplifier bias so as to control the amplifier operating point sufficiently to
compensate for variations in amplifier electrical characteristics, amplifier load,
amplifier temperature and input signals.
[0012] Document
EP 0 905 883 A2 concerns a temperature compensation circuit for field effect transistor amplifier
circuits. In one embodiment, an amplifier circuit comprising a power control loop
is disclosed. The amplifier has a power control input and a power supply input. A
differential amplifier provides an input signal to the amplifier.
[0013] Document
WO 03/073603 A2, which is prior art according to Art. 54 (3) EPC for the present invention, concerns
a current modulator with a dynamic amplifier impedance compensation. The modulator
comprises an amplitude modulation circuit, which provides a modulated supply current
to a radio frequency power amplifier. The modulation circuit includes a detection
circuit responsive to changes in the ratio of a supply voltage to the modulated supply
current.
[0014] Departing from an R.F. output power control scheme taking into account the R.F. power
amplifier current, there is a need for a R.F. power amplifier circuit which allows
a robust implementation of a power control scheme. There is also a need for a method
of controlling the R.F. power amplifier of such an R.F. power amplifier circuit.
SUMMARY OF THE INVENTION
[0015] The above problems are solved by an R.F. power amplifier circuit having the features
of claim 1 and a method of controlling the output power of an R.F. power amplifier
having the features of claim 9.
[0016] According to the present invention an R.F. power amplifier circuit is provided which
comprises a power control loop including an R.F. power amplifier having a power control
input and a power supply input, and at least one variable loop element coupled between
the power control input and the power supply input of the power amplifier, the at
least one variable loop element having a control input configured to reduce variations
of control loop parameters.
[0017] The control input of the variable loop element thus enables to actually control the
control loop by taking into account a feedback signal characteristic of a current
consumption of the power amplifier. This control of the control loop preferably aims
at indirectly controlling the output power by attaining a stationary state, whereas
prior art solutions aim at changing such a stationary state. The variable loop element
may be an element that can be tuned continuously or stepwise. The characteristics
of the variable loop element arranged in the feedback path may be controlled such
that variations of dynamic loop parameters like the loop damping factor or the natural
loop frequency are reduced and, ideally, completely compensated.
[0018] It is thus firstly proposed to base the output power control on a feedback signal
characteristic of the power amplifier current and secondly to reduce loop parameter
variations, many of which are specific to such a feedback mechanism, by providing
one or more variable loop elements in the feedback path. The variable loop elements
may be actively or passively controlled for example such that the control loop parameters
become linearized or stationary.
[0019] Reduced control loop parameter variations lead to an output power control which is
more robust. Furthermore, calibration time required e.g. for power-time-template calibration
can be reduced especially in the case of power amplifier circuits that are to be operated
in multiple frequency bands.
[0020] The variable loop element may be controlled directly or after signal conversion by
a signal readily available at the power amplifier circuit and preferably by a signal
related to the output power control like an externally provided reference power control
signal fed to the power control loop or a power control signal created within the
power control loop. Additionally or alternatively, the variable loop element may be
controlled by a dedicated control signal like an offset signal. Preferably, the variable
loop element is configured such that it is simultaneously controlled by a readily
available signal related to the output power control and a signal related to the output
power control and a dedicated control signal.
[0021] The variable loop element has a control input to which a dedicated control signal
and/or a readily available but, if required, additionally processed control signal
may be fed. This control input allows for example to tune the variable loop element
continuously or discretely. In particular, the control input allows to create a further
(internal) feedback path (i.e. an internal control loop for the variable loop element)
by coupling the control input for example to a particular node of the (external) feedback
path between the power control input and the power supply input of the power amplifier.
Alternatively, the internal feedback path may be created by coupling the control input
of the variable loop element to a node outside the external feedback path. For example
the control input may be coupled to a signal supply branch of the power control loop.
By means of the internal control loop a feedback signal tapped from the power control
loop or the signal supply branch may thus be fed directly or after signal conversion
to the control input of the variable loop element.
[0022] The control input of the variable loop element may be coupled to a signal converter
which may be arranged in the internal feed back path and which may comprise at least
one of a filter circuit, a multiplier, a level shifter, a buffer, a limiter, a look-up
table and a voltage or current source. Preferably, the signal converter converts a
converter input signal into a converter output signal that is coupled via the control
input to the variable loop element.
[0023] The converter input signal is preferably a readily available power control signal
or a signal derived therefrom. The signal converter may have his own control terminal
to which for example the power control signal or the signal derived therefrom is fed.
Alternatively, such a signal may be coupled directly to the control input of the variable
loop element. A digital control interface may be coupled either to the control terminal
of the signal converter or directly to the control input of the variable loop element.
The digita control interface is preferably arranged in the internal feed back path.
[0024] In a preferred embodiment the power amplifier is operable in multiple frequency bands.
In such a case the variable loop element may be controlled in each frequency band
differently. Such an individual control is preferably performed such that identical
loop parameters for all frequency bands are achieved. To that end, frequency band
specific control signals may be fed to the variable control element. Identical loop
parameters for all frequency bands allow to expedite calibration since calibration
values found for one frequency band can be used (in conjunction with the appropriate
control signal) for the remaining frequency bands as well.
[0025] Variations of control loop parameters are caused by a plurality of mechanisms. In
the case the output power control is based on a feedback signal characteristic of
the power amplifier current, variations of the power amplifier constant are a major
contribution to loop parameter variations. The power amplifier constant describes
the relationship between current consumption and control voltage of the power amplifier.
[0026] It is advantageous if the characteristic of the variable loop element is selected
to vary and/or is varied in such a manner that the adverse effects of variations of
the power amplifier constant are reduced. Of course, the characteristic of the variable
loop element may also vary or be varied such that additional effects or other effects
that cause loop parameter variations are reduced.
[0027] The variable loop element may be a dedicated component arranged in the feedback path
solely for the purpose of reducing loop parameter variations. Additionally or alternatively,
a component already present in the feed path, for example a filter, a sensing element
or a detector, may be configured such that the component allows in addition to its
primary task a deliberate reduction of loop parameter variations.
[0028] Preferably, the variable loop element is constituted by a variable filter like a
loop filter or a low pass filter of the power control loop. The variable filter may
comprise at least one of a variable resistor and a variable capacitance. Furthermore,
in the case of an active filter a dedicated control routine may be implemented which
allows to reduce loop parameter variations.
[0029] The variable loop element may be constituted by or may comprise a varicap diode.
Such a varicap diode provides a variable capacitance which is controlled by the voltage
across the anode terminal and the cathode terminal. Thus the varicap diode may be
controlled by the loop control signal and more particularly by the loop control voltage.
An additional control signal may be applied to either one or both of the two terminals
of the varicap diode to introduce a further control parameter.
[0030] If used in a filter arrangement, the varicap diode renders the filter variable. However,
the varicap diode may also be used in conjunction with other variable loop elements
like a loop detector. Instead of or in addition to a varicap diode, the loop detector
may have a variable gain which is controlled such that loop parameter variations are
reduced.
[0031] The invention described above may be implemented as a hardware solution or as a software
solution. In the case of a software solution the invention may be realized in the
form of a computer program product comprising program code portion for performing
the steps of the invention. This computer program product may be stored on a computer
readable recording medium.
[0032] According to a preferred embodiment of the invention, the R.F. power amplifier circuit
of the invention is arranged in a network component like a mobile terminal for wireless
communications (for example a multi-band mobile telephone) or a driver stage of a
base station of a mobile communications network.
BRIEF DESCRIPTION OF THE DRAWINGS
[0033] Further aspects and advantages of the invention will become apparent upon reading
the following detailed description of preferred embodiments of the invention and upon
reference to the drawings, in which:
- Fig. 1a
- is a block diagram of a prior art R.F. power amplifier circuit;
- Fig. 1b
- is a block diagram of an R.F. power amplifier circuit according to the invention;
- Fig. 2
- is a diagram depicting the relationship between the power amplifier constant and the
power amplifier control voltage;
- Fig. 3
- shows a first implementation of a static loop filter;
- Fig. 4
- shows a second implementation of a static loop filter;
- Fig. 5a and 5b
- schematically show a first embodiment in accordance with the invention of a variable
loop element in the form of a variable loop filter;
- Fig. 6
- schematically shows a second embodiment in accordance with the invention of a variable
loop element in the form of a variable loop filter;
- Fig. 7
- shows the relationships between the power amplifier control voltage and the variable
capacitances of the two embodiments depicted in Figs. 5 and 6;
- Fig. 8
- shows the variation of the damping factor in dependence of the power amplifier control
voltage for a prior art loop filter capacitor and a variable loop filter capacitor
according to the invention;
- Fig. 9
- schematically shows a third embodiment in accordance with the invention of a variable
loop element in the form of a variable loop filter;
- Fig. 10
- schematically shows a fourth embodiment in accordance with the invention of a variable
loop element in the form of a variable loop filter;
- Fig. 11
- schematically shows a fifth embodiment in accordance with the invention of a variable
loop element in the form of a variable loop filter;
- Fig. 12
- shows a block diagram of an R.F. power amplifier circuit comprising the variable loop
element depicted in Fig. 11 or 12;
- Fig. 13
- shows a practical arrangement of a variable loop filter in a variable loop filter;
- Fig. 14
- shows the relationship between the power amplifier output power and the power amplifier
control voltage for the arrangement depicted in Fig. 13; and
- Figs. 15a and 15b
- show the power amplifier output power as a function of time step response of a prior
art power amplifier circuit and of a power amplifier circuit according to the invention.
DESCRIPTION OF PREFERRED EMBODIMENTS
[0034] In the following the invention is exemplarily set forth with respect to an R.F. power
amplifier circuit comprising a variable loop element in the form of a variable loop
filter. It should be noted however that in principle any other element of the power
control loop could be modified such that it functions as a variable loop element in
addition to or instead of the variable loop filter. Moreover, although the invention
is exemplarily explained in conjunction with a variable loop capacitor, other variable
components like variable resistors and other variable parameters like a variable detector
gain may be used also to implement a variable loop element.
[0035] Furthermore, the following discussion of the preferred embodiments does not take
temperature drift of the variable capacitors or requirements for properly biasing
the variable capacitors into consideration. In practical realizations, appropriate
means to compensate for the temperature drift and means to properly bias the variable
capacitors will have to be provided.
[0036] In Fig. 1b block diagram of an exemplary R.F. power amplifier circuit 10 according
to the invention is shown. The power amplifier circuit 10 includes a power control
loop 12 and a reference voltage supply branch 14 coupled to the power control loop
12.
[0037] The power control loop 12 comprises a detector circuit 16, a loop filter 18, an optional
low pass filter 20, a power amplifier 22 and a current sensing element 24. In the
exemplary embodiment described with reference to Fig. 1b, the detector circuit 16
comprises an error amplifier having a negative input 26 and a positive input 28. The
positive input 28 is coupled to the reference voltage supply branch 14 which includes
a first pulse shaping filter 32 in communication with the positive input 28 of the
detector circuit 16, an exponential amplifier 30 having an output coupled to the first
pulse shaping filter 32, and a second pulse shaping filter 28 coupled to the input
of the exponential amplifier 30.
[0038] An output of the detector circuit 16 is coupled to the loop filter 18 which has a
control input 46 configured to reduce loop parameter variations. The loop filer 18
is coupled via the low pass filter 20 to a power control input 34 of the power amplifier
22. The power amplifier 22 further has a power supply input 36, an R.F. power output
38 and an R.F. signal input not shown in Fig. 1b. The current sensing element 24 is
constituted by a resistor that is coupled between the power supply input 36 of the
power amplifier 22 and a current supply (V
bat).
[0039] The basic operation of the power amplifier circuit 10 depicted in Fig. 1b is as follows.
[0040] A discrete control voltage POWLEV* fed into the second pulse shaping filter 28 is
converted in the reference voltage supply branch 14 into a continuous power amplifier
reference voltage POWLEV that is applied to the positive input 28 of the detector
circuit 16. In the detector circuit 16 this power amplifier reference voltage POWLEV
is compared with a feedback signal generated by the current sensing element 24. The
difference signal is amplified by the detector circuit 16 and fed in the form of a
power amplifier control voltage PAREG via the loop filter 18 and the low pass filter
20 to the power control input 34 of the power amplifier 22. The power amplifier 22
amplifies an R.F. input signal in accordance with the power amplifier control voltage
PAREG and outputs the amplified signal via its power output 38.
[0041] As can be seen from Fig. 1b, the power control loop 12 comprises a feedback path
coupled between the power control input 34 and the power supply input 36 of the power
amplifier 22. This feedback path comprises the current sensing element 24, the detector
circuit 16, the loop filter 18 and the low pass filter 20.
[0042] By coupling the feedback path to the power supply input 36 of the power amplifier
22, the output power control of the power amplifier 22 is based on a feedback signal
characteristic of the current consumption of the power amplifier 22. As a result of
the fact that output power control is based on a feedback signal characteristic of
the current consumption of the power amplifier 22, the power amplifier constant K
pa, which describes the relationship between current consumption and control voltage
PAREG of the power amplifier 22, influences the dynamic parameters of the power control
loop 12. This becomes apparent from the transfer function H(s) of the power control
loop 12, which can be written

where the transfer function Hf(s) of the loop filter 18 can exemplarily be written
as

the transfer function Hlp(s) of the low pass filter 20 can be written as

the transfer function K
sense of the current sensing element 24 can be written as

and the transfer function K
detector of the detector circuit 16 can be written as

[0043] In the following, two specific control loop parameters, namely the loop damping factor
d and the natural loop frequency w
n, of the power control loop 12 will exemplarily be considered in more detail. These
control loop parameters can be written as

and

[0044] From equations (6) and (7) it is obvious that dynamic properties like the loop damping
factor d and the loop bandwidth of the power control loop 12 strongly depend on variations
of the power amplifier constant K
pa. The power amplifier constant K
pa, however, strongly varies with the power amplifier control voltage PAREG. This becomes
apparent from Fig. 2 that shows a diagram depicting the functional relationship between
the power amplifier constant K
pa and the power amplifier control voltage PAREG as derived on the basis of a power
amplifier model.
[0045] It has been experimentally found that the power amplifier constant K
pa of a typical power amplifier for the 900 MHz band of the Global System for Mobile
communications (GSM 900) varies between 1,6 A/V and 0,96 A/V, that the power amplifier
constant K
pa of a typical triple band GSM900/GSM1800/GSM1900 power amplifier ranges between 3A/V
and 0,2 A/V, and that a dual band power amplifier has a maximum power amplifier constant
K
pa which can be as high as 6 A/V.
[0046] As becomes apparent from the above, the relationship between the power amplifier
control voltage PAREG and the power amplifier constant K
pa is highly non-linear. Consequently, typical dynamic control loop parameters like
the loop damping factor d and the natural loop frequency W
n strongly vary with the power amplifier control voltage PAREG.
[0047] Such variations of the control loop parameters render power control loop design very
difficult. Power control loop design has to ensure that on the one hand the loop bandwidth
is wider than the bandwidth of the pulse shaping filters 28, 32 to ensure that pulse
shaping remains independent of power control loop parameters. On the other hand the
loop bandwidth shall be as small as possible (with constant damping factor) in order
to reduce noise. Furthermore, constant control loop parameters are advantageous from
a calibration point of view. Power control loop design aims at finding a compromise
on all aspects discussed above. This requires, however, that variations of the control
loop parameters are reduced as strong as possible.
[0048] According to the exemplary embodiment of the invention discussed in context with
Fig. 1b, a variable loop element with a control input is provided which reduces the
loop parameter variations that result from variations of the power amplifier constant
K
pa. Of course, variations of additional parameters or of other parameters apart from
the power amplifier constant K
pa could also be compensated in accordance with the invention to linearize the control
loop parameters.
[0049] In principle, variations of the power amplifier constant K
pa in equations (6) and (7) could be compensated by rendering one or more of the other
parameters of equations (6) and (7) variable and be varying these one or more other
parameters appropriately. This means that basically a variable loop element in the
form of a variable current sensing element 24, a variable detector circuit 16, a variable
loop filter 18 and/or a variable low pass filter 20 could be provided. Additionally
or alternatively, a dedicated variable loop element could be introduced into the power
control loop 12.
[0050] As becomes apparent from equations (6) and (7), the capacitance C
c of the loop filter 18 and the gain G
m of the detector circuit 16 are parameters that can especially advantageously be used
for compensating variations of control loop parameters that are induced by a varying
power amplifier constant K
pa. In the following, linearization of the power control loop 12 is exemplarily illustrated
in conjunction with a variable capacitance C
c.
[0051] Departing from the relationship between the power amplifier constant K
pa and the control voltage PAREG depicted in Fig. 2 on the one hand and typical values
for the individual parameters of equations (6) and (7) on the other hand, the damping
factor d and the natural loop frequency w
n can vary as illustrated in the following table:
| Gm |
0.008 S |
0.008 S |
| Cc |
100 pF |
100 pF |
| Rlp |
56 Ω |
56 Ω |
| Clp |
1nF |
1nF |
| Rsense |
0.05 Ω |
0.05 Ω |
| Kpa |
2.84 A/V (PAREG=1.7V) |
0.03 A/V (PAREG=2.5V) |
| d |
2.0 |
22.3 |
| wn |
4.501 x 106rad/s |
4.401 x 106rad |
[0052] The above variation of the damping factor d and of the natural loop frequency w
n is made less dependent on the variation of the power amplifier constant K
pa by introducing a variable loop filter having a variable capacitance C
c that can be varied at the same rate as the variation of K
pa. However, prior to discussing realization of variable loop filters, possible implementations
of (static) realizations are considered with reference to Figs. 3 and 4.
[0053] According to a first variant, the detector circuit is realized in the form of an
amplifier as part of a mixed signal ASIC, whereas the passive loop filter is created
with a discrete capacitor C and a discrete resistor R' which form a PI loop filter
as depicted in Fig. 3. As becomes apparent from Fig. 3, the discrete capacitor C is
connected single sided to ground.
[0054] The transfer function Hf(s) of the loop filter depicted in Fig. 3 can be written
as follows:

[0055] Equation (8) basically corresponds to equation (2) and equations (6) and (7) could
be rewritten accordingly.
[0056] According to a second variant, the detector circuit and the loop filter might be
realized as depicted in Fig. 4, i.e. with an amplifier stage 40 and a driver stage
42. The amplifier stage 40 and the driver stage 42 are both part of a mixed signal
ASIC, whereas loop filter capacitor C remains a discrete component. The transfer function
F(s) of the combined amplifier stage 40 and driver stage 42 depicted in Fig. 4 can
be written as

[0057] The implementation depicted in Fig. 4 is advantageous because compared to the implementation
depicted in Fig. 3 there is no external resistor required for the loop filter.
[0058] In Fig. 5a a first variant of a variable loop filter 18 according to the invention
is depicted. As becomes apparent from Fig. 5a, the variable loop filter 18 comprises
a resistor R' and a variable loop capacitor C
var in the form of a varicap diode. The loop capacitor C
var depicted in Fig. 5a is the equivalent of loop capacitor C depicted in Fig. 3, but
the capacitance of loop capacitor C
var is variable and basically controlled by the power amplifier control voltage PAREG,
i.e. changes approximately at the same rate as the power amplifier constant K
pa varies.
[0059] The variable loop filter 18 has a control input 46 that is coupled between a cathode
of the variable loop capacitor C
var on the one hand and a common node to which the resistor R' is coupled on the other
hand. An external resistor R'' is also coupled to this common node and provides a
control signal from the detector 16 to the control input 46 of the variable loop filter
18. Thus an internal control loop including the variable loop capacitor C
var is formed. An internal control signal of the control loop 12 is tapped via the resistor
R'' and fed to the control input 46 coupled to the variable loop capacitor C
var.
[0060] In principle, the two parallel resistors R', R'' depicted in Fig. 5a could be combined
to a single resistor R. A corresponding equivalent circuit of the variable loop filter
18 of Fig. 5a is depicted in Fig. 5b.
[0061] The loop filter 18 depicted in Figs. 5a and 5b constitutes a passive PI loop filter
with variable "I" part due to the variable capacitor C
var. The transfer function Hf(s) of the loop filter 18 becomes a function of the voltage
U
cvar across the terminals of C
var.This allows to reduce variations of control loop parameters that are caused by variations
of the power amplifier constant K
pa.
[0062] Fig. 6 shows the same PI loop filter configuration as depicted in Figs. 5a and 5b
but with an (additional) control terminal 46 for the loop capacitor C
var that is coupled between an anode of the loop capacitor C
var and an additional capacitor C
o which provides a dc block to ground. A control signal in the form of a control voltage
U
offset may be applied to the control input 46 of the variable loop filter 18. In the presence
of U
offset the value of C
var_
offset is determined by the difference between the power amplifier control voltage PAREG
and the control voltage U
offset. The control voltage U
offset thus allows to tune the loop capacitor C
var in order to even better reduce variations of control loop parameters.
[0063] The transfer function Hf(s) of the loop filter 18 depicted in Fig. 6, which is a
function of the voltage difference U
cvar between the power amplifier control voltage PAREG and the control voltage U
offset, can be written as

with

[0064] As a result of the control voltage U
offest applied to the control input 46 of the variable loop filter 18, the C
var_
offset versus power amplifier control voltage PAREG curve is shifted along the x-axis. Such
a tuning is extremely useful for matching the characteristics of C
var_
offset to the characteristics of the power amplifier constant K
pa.
[0065] The characteristics of the C
var and C
var_
offset are depicted in Fig. 7. As becomes apparent from Fig. 7, C
var_offset is the shifted replica of C
var.
[0066] In Fig. 8 a comparison of the damping factors d for a loop filter having a fixed
capacitance C and a variable loop filter 18 as depicted in Fig. 6 having a tuned and
variable loop filter capacity C
var_offset is shown. The use of the variable loop filter 18 allows to reduce the variation of
the damping factor d by approximately a factor of 2. This also becomes apparent from
the table below.
| |
Cc=Cvar_offset |
Cc=const |
| Kpa |
2.84 A/V (PAREG=1.7V) |
| D |
1.6 |
2.0 |
| Wn |
5.601 x 106rad/s |
9.501 x 106rad/s |
| Kpa |
0.03 A/V (PAREG=2.5V) |
| D |
10.5 |
22.3 |
| Wn |
0.852 x 106rad/s |
0.401 x 106rad/s |
| d_ratio |
6.6 |
11.2 |
| wn_ratio |
0.152 |
0.089 |
[0067] Further approvements can be achieved by using a varicap diode with a capacitance
characteristic that better matches the characteristic of the power amplifier constant
K
pa and by actively controlling the control voltage U
offset.
[0068] Since the power amplifier constant K
pa also varies with frequency, the characteristics of the power amplifier constant K
pa will be different for different frequency bands. The control voltage U
offset can thus be used to tune C
var_offset for each frequency band individually to achieve identical control loop parameters
for all frequency bands. In the case of identical control loop parameters power-time-template
calibration for multiple frequency band mobile telephones is expedited because calibration
values found for one frequency band can readily be used (if the appropriate control
voltage U
offset is applied) for the remaining frequency bands as well. Consequently, the calibration
time might be reduced by more than 50 % for a triple band mobile telephone.
[0069] An additional resistor R
c could be added, for example for filtering purposes, to the variable loop filter 18
as shown in Fig. 9. The resistor R
c is coupled to the control terminal 46 and a modified control voltage U
offset* has to be applied to the resistor R
c.
[0070] As depicted in Fig. 10, the control signal U
offset* can be provided by a signal converter 50 which helps to better adapt the characteristic
of C
var_
offset of the varicap diode to the characteristic of the power amplifier constant K
pa. The signal converter 50 comprises a control terminal 52 for receiving a control
signal U
offset** and an output terminal 54 coupled to the resistor R
c. In principle, the resistor R
c depicted in Fig. 10 could be omitted and the output terminal 54 of the signal converter
50 could be directly coupled to the control input 46.
[0071] The signal converter 50 linearily or non-linearily transforms the control signal
U
offset** into the control signal U
offset** in accordance with the relationship U
offset* = f
converter(U
offset**). The signal converter 50 may comprise a filter circuit, a multiplier, a level
shifter, a buffer, a limiter, a look-up table or a voltage/current source.
[0072] An alternative embodiment of the variable loop filter 18 with C
var_
offset connected single sided to ground is depicted in Fig. 11.
[0073] In principle, the control input 46 of the variable loop filter 18 could be connected
directly or indirectly to the power amplifier control voltage PAREG or another power
control signal like the power amplifier reference voltages POWLEV or POWLEV*. In this
regard Fig. 12 exemplarily shows the block diagram of the power control loop 12 with
the control terminal 52 of the signal inverter 50 coupled to the PAREG signal to create
an internal control loop 12'. It should be noted that the control input 46 of the
variable loop filter 18, or of any other variable loop element (for example the current
sensing element 24 or the detector 16), could alternatively be coupled to a node arranged
between the pulse shaping filter 28 and the detector 16 or the detector 16 and the
loop filter 18. Of course, U
offset, U
offset* or U
offset** could also be supplied directly from a digital control interface like an analog/digital
converter.
[0074] Fig. 13 shows a circuit with a variable loop filter used for practical measurements
performed on a mobile telephone board. The circuit of Fig. 13 is based on the circuit
of Fig. 4 with the static loop filter.
[0075] Returning to Fig. 13, resistor R
d is used to provide a dc path for the varicap diode C
var. Capacity C
dc is used to provide dc decoupling for the signal U
offset**. The sigal U
offset** is supplied by an external, variable voltage source. The diagram of Fig. 14 shows
the power amplifier output power versus power control voltage POWLEV as measured for
the circuit of Fig. 13. From Fig. 14 it becomes apparent that the loop filter arrangement
depicted in Fig. 13 helps to reduce the overshot in output power compared to the unmodified
circuit depicted in Fig. 4.
[0076] Figs. 15a and 15b show the output power versus time step response of the unmodified
and modified circuit depicted in Figs. 4 and 13, respectively. It can be clearly seen
that the maximum power overshot is reduced by about more than 75 %.
1. An R.F. power amplifier circuit (10) comprising a power control loop (12) with an
R.F. power amplifier (22) having a power control input (34) and a power supply input
(36) and a feedback path, the feedback path being coupled between the power control
input (34) and the power supply input (36) and comprising a current sensing element
(24), a detector circuit (16), and a loop filter (18), the current sensing element
(24) being configured to generate a feedback signal from the power amplifier (22)
and to supply the feedback signal to the detector circuit (16), the detector circuit
(16) being configured to compare the feedback signal with a power amplifier reference
voltage (POWLEV) in order to obtain a difference signal, to amplify the difference
signal, and to supply the amplified difference signal via the loop filter (18) as
a power amplifier control voltage (PAREG) to the power control input (34) of the R.F.
power amplifier (22), wherein
at least one of the loop filter (18) and the current sensing element (24) has variable
characteristics, and wherein
the at least one of the elements having variable characteristics (18, 24) has a control
input (46) to reduce variations of control loop parameters (d, wn).
2. The power amplifier circuit of claim 1,
wherein the control input (46) is coupled to the power control loop (12) or to a signal
supply branch (14) of the power control loop (12) to form an internal control loop
(12') which includes the at least one element having variable characteristics (18,
24).
3. The power amplifier circuit of claim 1 or 2,
wherein the at least one element having variable characteristics (18, 24) is a variable
filter (18) or a variable current sensing element (24).
4. The power amplifier circuit of claim 3,
wherein the variable filter (18) comprises at least one of a variable resistor and
a variable capacitance (Cvar).
5. The power amplifier circuit of one of claims 1 to 4,
wherein the at least one element having variable characteristics (18, 24) comprises
a varicap diode (Cvar).
6. The power amplifier circuit of one of claims 1 to 5,
further comprising a signal converter (50) coupled to the control input (46).
7. The power amplifier circuit of one of claims 1 to 6,
wherein the control input (46) or a control terminal (52) of the signal converter
(50) is coupled to a digital control interface.
8. A component of a wireless communications network comprising the power amplifier circuit
(10) of one of claims 1 to 7.
9. A method of controlling the output power of an R.F. power amplifier (22) provided
within a power control loop (12), the power control loop (12) comprising a feedback
path coupled between a power control input (34) and a power supply input (36) of the
R.F. power amplifier (22), the feedback path comprising a current sensing element
(24), a detector circuit (16), and a loop filter (18), wherein the current sensing
element (24) generates a feedback signal from the power amplifier (22) and supplies
the feedback signal to the detector circuit (16), the detector circuit (16) compares
the feedback signal with a power amplifier reference voltage (POWLEV) in order to
obtain a difference signal, amplifies the difference signal, and supplies the amplified
difference signal via the loop filter (18) as a power amplifier control voltage (PAREG)
to the power control input (34) of the R.F. power amplifier (22), wherein at least
one of the loop filter (18) and the current sensing element (24) has variable characteristics,
wherein the at least one element having variable characteristics (18, 24) has a control
input (46), and wherein the characteristics of the at least one element having variable
characteristics (18, 24) are varied by applying a control signal to the control input
(46) such that variations of control loop parameters (d, wn) are reduced.
10. The method of claim 9,
wherein the characteristics are varied to reduce variations of control loop parameters
(d, wn) that result from variations of the power amplifier constant (Kpa).
11. The method of claim 9 or 10,
wherein a feedback signal tapped from the power control loop (12) or from a signal
supply branch (14) of the power control loop (12) is directly or after signal conversion
fed to the control input (46).
12. The method of one of claims 9 to 11,
wherein the characteristics are controlled by a power control signal (POWLEV, PAREG)
for the power amplifier (22) or a signal derived therefrom.
13. The method of one of claims 9 to 12,
wherein the characteristics are controlled by a dedicated control signal.
14. The method of one of claims 9 to 13,
wherein the R.F. power amplifier (22) is operable in multiple frequency bands and
wherein the characteristics are individually controlled in each frequency band.
15. A computer program product comprising program code portions for performing the steps
of at least one of claims 9 to 14.
16. The computer program product of claim 15, stored on a computer readable recording
medium.
1. RF-Leistungsverstärkerschaltung (10), umfassend eine Leistungs-Regelschleife (12)
mit einem RF-Leistungsverstärker (22), welcher einen Leistungssteuereingang (34) und
einen Stromversorgungseingang (36) und einen Rückkopplungsweg aufweist, wobei der
Rückkopplungsweg zwischen den Leistungssteuereingang (34) und den Stromversorgungseingang
(36) gekoppelt ist und ein Strommesselement (24), eine Detektorschaltung (16) und
ein Schleifenfilter (18) umfasst, wobei das Strommesselement (24) dazu konfiguriert
ist, ein Rückkopplungssignal vom Leistungsverstärker (22) zu erzeugen und das Rückkopplungssignal
der Detektorschaltung (16) zuzuführen, wobei die Detektorschaltung (16) konfiguriert
ist, das Rückkopplungssignal mit einer Leistungsverstärker-Referenzspannung (POWLEV)
zu vergleichen, um ein Differenzsignal zu erhalten, das Differenzsignal zu verstärken
und das verstärkte Differenzsignal durch das Schleifenfilter (18) als eine Leistungsverstärker-Steuerspannung
(PAREG) dem Leistungssteuereingang (34) des RF-Leistungsverstärkers (22) zuzuführen,
wobei
das Schleifenfilter (18) und/oder das Strommesselement (24) variable Charakteristika
aufweist und wobei
das wenigstens eine der Elemente, welches variable Charakteristika (18, 24) aufweist,
einen Steuereingang hat (46), um Schwankungen von Parametern (d, Wn) der Regelschleife zu reduzieren.
2. Leistungsverstärkerschaltung nach Anspruch 1,
wobei der Steuereingang (46) mit der Leistungs-Regelschleife (12) oder mit einem Signal-Versorgungszweig
(14) der Leistungs-Regelschleife (12) gekoppelt ist, um eine interne Regelschleife
(12') auszubilden, welche das wenigstens eine Element enthält, welches variable Charakteristika
(18, 24) aufweist.
3. Leistungsverstärkerschaltung nach Anspruch 1 oder 2,
wobei das wenigstens eine Element, welches variable Charakteristika (18, 24) aufweist,
ein variables Filter (18) oder ein variables Strommesselement (24) ist.
4. Leistungsverstärkerschaltung nach Anspruch 3,
wobei das variable Filter (18) einen variablen Widerstand und/oder eine variable Kapazität
(Cvar) umfasst.
5. Leistungsverstärkerschaltung nach einem der Ansprüche 1 bis 4, wobei das wenigstens
eine Element, welches variable Charakteristika (18, 24) aufweist, eine Kapazitätsdiode
(Cvar) umfasst.
6. Leistungsverstärkerschaltung nach einem der Ansprüche 1 bis 5, zusätzlich umfassend
einen Signalwandler (50), der mit dem Steuereingang (46) gekoppelt ist.
7. Leistungsverstärkerschaltung nach einem der Ansprüche 1 bis 6, wobei der Steuereingang
(46) oder ein Steueranschluss (52) des Signalwandlers (50) mit einer digitalen Steuerschnittstelle
gekoppelt ist.
8. Komponente eines drahtlosen Kommunikationsnetzes, umfassend die Leistungsverstärkerschaltung
(10) nach einem der Ansprüche 1 bis 7.
9. Verfahren zum Steuern der Ausgangsleistung eines RF-Leistungsverstärkers (22), welcher
innerhalb einer Leistungs-Regelschleife (12) bereitgestellt wird, wobei die Leistungs-Regelschleife
(12) einen Rückkopplungsweg umfasst, der zwischen einen Leistungssteuereingang (34)
und einen Stromversorgungseingang (36) des RF-Leistungsverstärkers (22) gekoppelt
ist, wobei der Rückkopplungsweg ein Strommesselement (24), eine Detektorschaltung
(16) und ein Schleifenfilter (18) umfasst, wobei das Strommesselement (24) ein Rückkopplungssignal
vom Leistungsverstärker (22) erzeugt und das Rückkopplungssignal der Detektorschaltung
(16) zuführt, wobei die Detektorschaltung (16) das Rückkopplungssignal mit einer Leistungsverstärker-Referenzspannung
(POWLEV) vergleicht, um ein Differenzsignal zu erhalten, das Differenzsignal verstärkt
und das verstärkte Differenzsignal durch das Schleifenfilter (18) als eine Leistungsverstärker-Steuerspannung
(PAREG) dem Leistungssteuereingang (34) des RF-Leistungsverstärker (22) zuführt, wobei
das Schleifenfilter (18) und/oder das Strommesselement (24) variable Charakteristika
aufweist, wobei das wenigstens eine Element, welches variable Charakteristika (18,
24) aufweist, einen Steuereingang (46) hat und wobei die Charakteristika des wenigstens
einen Elements, welches variable Charakteristika (18, 24) aufweist, durch Anlegen
eines Steuersignals an den Steuereingang (46) variiert werden, so dass Schwankungen
von Parametern (d, wn) der Regelschleife reduziert werden.
10. Verfahren nach Anspruch 9, wobei die Charakteristika variiert werden, um Schwankungen
von Parametern (d, wn) der Regelschleife zu reduzieren, welche aus Schwankungen der Leistungsverstärker-Konstante
(Kpa) resultieren.
11. Verfahren nach Anspruch 9 oder 10, wobei ein Rückkopplungssignal, welches von der
Leistungs-Regelschleife (12) oder von einem Signalversorgungszweig (14) der Leistungs-Regelschleife
(12) abgegriffen wird, direkt oder nach Signalumwandlung dem Steuereingang (46) eingespeist
wird.
12. Verfahren nach einem der Ansprüche 9 bis 11, wobei die Charakteristika durch ein Leistungssteuersignal
(POWLEV, PAREG) für den Leistungsverstärker (22) oder ein davon abgeleitetes Signal
gesteuert werden.
13. Verfahren nach einem der Ansprüche 9 bis 12, wobei die Charakteristika durch ein dediziertes
Steuersignal gesteuert werden.
14. Verfahren nach einem der Ansprüche 9 bis 13, wobei der RF-Leistungsverstärker (22)
in mehreren Frequenzbändern betreibbar ist, und wobei die Charakteristika in jedem
Frequenzband individuell gesteuert werden.
15. Computerprogrammprodukt, welches Teile eines Programmcodes für das Durchführen der
Schritte wenigstens eines der Ansprüche 9 bis 14 umfasst.
16. Computerprogrammprodukt nach Anspruch 15, welches auf einem Computerlesbaren Aufzeichnungsmedium
gespeichert ist.
1. Circuit (10) d'amplification de puissance R.F comprenant une boucle (12) de commande
de puissance avec un amplificateur (22) de puissance R.F ayant une entrée (34) de
commande de puissance et une entrée (36) d'alimentation de puissance et une voie de
rétroaction, la voie de rétroaction étant couplée entre l'entrée (34) de commande
de puissance et l'entrée (36) d'alimentation de puissance et comprenant un élément
(24) de détection de courant, un circuit de détection (16), et un filtre de boucle
(18), l'élément (24) de détection de courant étant configuré pour générer un signal
de rétroaction à partir de l'amplificateur (22) de puissance et pour alimenter le
signal de rétroaction au circuit de détection (16), le circuit de détection (16) étant
configuré pour comparer le signal de rétroaction à une tension de référence (POWLEV)
de l'amplificateur de puissance afin d'obtenir un signal de différence, pour amplifier
le signal de différence, et pour alimenter le signal de différence amplifié à travers
le filtre de boucle (18) en tant que tension de commande (PAREG) de l'amplificateur
de puissance à l'entrée (34) de commande de puissance de l'amplificateur (22) de puissance
R.F, dans lequel
au moins l'un parmi le filtre de boucle (18) et l'élément (24) de détection de courant
possède des caractéristiques variables, et dans lequel
l'au moins un des éléments ayant des caractéristiques variables (18, 24) a une entrée
de commande (46) afin de réduire des variations de paramètres (d, wn) de boucle de commande.
2. Circuit d'amplification de puissance de la revendication 1,
dans lequel l'entrée de commande (46) est couplée à la boucle (12) de commande de
puissance ou à une branche (14) d'alimentation de signal de la boucle (12) de commande
de puissance afin de former une boucle (12') de commande interne qui comporte l'au
moins un élément ayant des caractéristiques variables (18, 24).
3. Circuit d'amplification de puissance de la revendication 1 ou 2,
dans lequel l'au moins un élément ayant des caractéristiques variables (18, 24) est
un filtre (18) variable ou un élément (24) de détection de courant variable.
4. Circuit d'amplification de puissance de la revendication 3,
dans lequel le filtre (18) variable comprend au moins l'une parmi une résistance variable
et une capacitance variable (Cvar).
5. Circuit d'amplification de puissance de l'une des revendications 1 à 4,
dans lequel l'au moins un élément ayant des caractéristiques variables (18, 24) comprend
un varacteur (Cvar).
6. Circuit d'amplification de puissance de l'une des revendications 1 à 5,
comprenant en plus un convertisseur de signal (50) couplé à l'entrée de commande (46).
7. Circuit d'amplification de puissance de l'une des revendications 1 à 6,
dans lequel l'entrée de commande (46) ou une borne de commande (52) du convertisseur
(50) de signal est couplé à une interface de commande numérique.
8. Composant d'un réseau de communications sans fil comprenant le circuit (10) d'amplification
de puissance de l'une des revendications 1 à 7.
9. Procédé de commande de la puissance de sortie d'un amplificateur (22) de puissance
R.F prévu dans une boucle (12) de commande de puissance, la boucle (12) de commande
de puissance comprenant une voie de rétroaction couplée entre une entrée (34) de commande
de puissance et une entrée (36) d'alimentation de puissance de l'amplificateur (22)
de puissance R.F, la voie de rétroaction comprenant un élément (24) de détection de
courant, un circuit de détection (16), et un filtre de boucle (18), dans lequel l'élément
(24) de détection de courant génère un signal de rétroaction à partir de l'amplificateur
(22) de puissance et alimente le signal de rétroaction au circuit de détection (16),
le circuit de détection (16) compare le signal de rétroaction à une tension de référence
(POWLEV) de l'amplificateur de puissance afin d'obtenir un signal de différence, amplifie
le signal de différence, et alimente le signal de différence amplifié à travers le
filtre de boucle (18) en tant que tension de commande (PAREG) de l'amplificateur de
puissance à l'entrée (34) de commande de puissance de l'amplificateur (22) de puissance
R.F, dans lequel au moins l'un parmi le filtre de boucle (18) et l'élément (24) de
détection de courant électrique possède des caractéristiques variables, dans lequel
l'au moins un élément ayant des caractéristiques variables (18, 24) a une entrée de
commande (46), et dans lequel on fait varier les caractéristiques de l'au moins un
élément ayant des caractéristiques variables (18, 24) en appliquant un signal de commande
à l'entrée de commande (46) de telle sorte que des variations de paramètre (d, wn) de la boucle de commande soient réduites.
10. Procédé de la revendications 9,
dans lequel on fait varier les caractéristiques afin de réduire des variations de
paramètres (d, wn) de la boucle de commande qui résultent de variations de la constante (Kpa) d'amplification de puissance.
11. Procédé de la revendications 9 ou 10,
dans lequel un signal de rétroaction tiré de la boucle (12) de commande de puissance
ou d'une branche (14) d'alimentation de signal de la boucle (12) de commande de puissance
est alimenté, directement ou après conversion de signal, à l'entrée de commande (46).
12. Procédé de l'une des revendications 9 à 11,
dans lequel les caractéristiques sont commandées par un signal (POWLEV, PAREG) de
commande de puissance pour l'amplificateur de puissance (22) ou un signal qui en est
dérivé.
13. Procédé de l'une des revendications 9 à 12,
dans lequel les caractéristiques sont commandées par un signal de commande dédié.
14. Procédé de l'une des revendications 9 à 13,
dans lequel l'amplificateur (22) de puissance R.F peut fonctionner dans plusieurs
bandes de fréquences et dans lequel les caractéristiques sont commandées individuellement
dans chaque bande de fréquences.
15. Produit de programme informatique comprenant des parties de code de programme pour
exécuter les étapes an moins de l'une des revendications 9 à 14.
16. Produit de programme informatique de la revendication 15, stocké sur un support d'enregistrement
lisible par un ordinateur.