[0001] This application claims the benefit of Taiwan application Serial No. 091124225, filed
Oct. 21, 2002.
BACKGROUND OF THE INVENTION
Field of the Invention
[0002] The invention relates in general to a digital analog signal converting apparatus,
and more particularly, to a gamma correction apparatus for a liquid crystal display.
Description of the Related Art
[0003] Featuring the favorable advantages of thinness, lightness, and low electromagnetic
radiation, liquid crystal displays (LCDs) have been widely used nowadays.
[0004] An LCD panel includes a plurality of pixels arranged in matrix form. Each pixel is
composed of an upper plate, a lower plate and a liquid crystal layer set between the
lower plate and the upper plate. When the potential difference between the upper plate
voltage and the lower plate voltage changes, the liquid crystal molecular arrangement
of the liquid crystal layer will change accordingly. As a result, the pixel luminance
is affected. Therefore, the luminance of the pixels of an LCD can be controlled by
adjusting the magnitude of voltages applied to the lower plate and the upper plate
respectively. The difference between the upper plate voltage and the lower plate voltage
is called the "gray-scale voltage".
[0005] Please refer to FIG. 1, a diagram of gamma curve illustrating the relationship between
pixel voltage and pixel luminance. As illustrated in FIG. 1, the relationship between
pixel voltage and pixel luminance is nonlinear..
In addition, pixel luminance is related to the magnitude of pixel voltage but is not
related to the polarity of pixel voltage. The gamma curve, thus, is symmetrical to
the Y-axis, with a positive polarity gamma curve 102 and a negative polarity gamma
104 on the both sides of the Y-axis. According to the gamma curve, when pixel voltages
of the same magnitude are individually applied to a pixel, the pixel will generate
the same level of luminance regardless of the polarity of the pixel voltage. If it
is desired to display a pixel at the same luminance over a long period of time, the
liquid crystal molecules can be protected by alternating the polarity of the pixel
voltage applied to the pixel.
[0006] Normally, pixel signals are binary digital signals. Since the gamma curve relationship
between pixel voltage and pixel luminance is non-linear, the LCD needs a particular
circuit to convert digital pixel signals into corresponding pixel voltages according
to the gamma curve relationship and to output the pixel voltages to achieve a linear
relationship between pixel signal and pixel luminance. This conversion is called "gamma
correction", which is used to improve the display quality of an LCD panel.
[0007] Please refer to FIG. 2, a schematic diagram illustrating the theory of gamma correction.
When executing gamma correction, first of all, a plurality of pixel signals are selected
as reference pixel signals. In FIG. 2, pixel signals D0, D1, D2, D3, and D4 are selected
as reference pixel signals. According to the gamma curve, each reference pixel signal
corresponds to a positive polarity reference voltage and a negative polarity reference
voltage respectively. Take pixel signal D0 for example; D0 corresponds to positive
polarity reference voltage V0 and negative polarity reference voltage V9 respectively.
By the same analogy, reference pixel signals D0, D1, D2, D3, and D4 respectively correspond
to five positive polarity reference voltages V0, V1, V2, V3, and V4, and five negative
polarity reference voltages V9, V8, V7, V6, and V5 as shown in FIG. 2. During gamma
correction, the corresponding pixel voltages of other pixel signals can be obtained
via interpolation based on the relationship between the reference pixel signals and
reference voltages. Each pixel corresponds to a positive polarity pixel voltage and
a negative pixel voltage respectively.
[0008] It is noteworthy that the more pixel signals are selected for gamma correction, the
more accurate the corresponding pixel voltage of each pixel signal estimated will
be. Normally 8 pixel signals are selected for the execution of gamma correction. According
to the gamma curve, 8 pixel signals correspond to 8 positive polarity reference voltages
and 8 negative reference voltages respectively. The gamma correction device thus executes
gamma correction based on the 16 reference voltages.
[0009] Please refer to FIG. 3, a schematic diagram for a conventional gray-scale voltage
generating circuit. Normally, pixel signals, denoted by DATA, are signals of 8-bit
binary data which can represent at most 256 gray levels. Therefore, a gray-scale voltage
generating circuit 300 needs to be set in the gamma correction device to output 256
positive polarity gray-scale voltages and 256 negative polarity gray-scale voltages
according to inputted reference voltages, wherein each gray-scale voltage corresponds
to a pixel signal DATA. Gray-scale voltage generating circuit 300 is composed of two
series of resistors for outputting positive polarity gray-scale voltages and negative
gray-scale voltages respectively. Each series of resistors have 255 resistors, numbered
as R0, R1, ..., R254; a plurality of input nodes for the input of corresponding reference
voltage signals V0 to V4 and V5 to V9; and 256 output nodes for outputting gray-scale
voltages. According to voltage dividing rule, by setting appropriate resistance value
of each resistor in the two series of resistors, the corresponding gray-scale voltage
of each of the digital pixel signals DATA can be outputted from each output nodes
in the two series of resistors.
[0010] Please refer to FIGS. 4A to 4G, diagrams illustrating gamma curves of various patterns.
To make the diagrams simpler and clearer, FIGS. 4A to 4G illustrate only part of the
gamma curve with the remaining part of corresponding complete gamma curves left to
be inferred from the illustrated part in FIGS. 4A to 4G. According to what color is
to be displayed, three kinds of pixel signals corresponding to the red, green and
blue colors are employed to control the luminance of the red, green and blue pixels
respectively in a color LCD. In FIGS. 4A to 4G, the three gamma curves labeled R,
G and B represent the gamma curve relationship between the luminance of a pixel and
the gray-scale voltage of the pixel when the pixel is used to display the red, green,
and blue colors respectively. The gamma curve relationship between the gray-scale
voltage applied to the pixel and pixel luminance changes when the conformation of
the pixel's liquid crystal molecules changes. The possible patterns of the gamma curve
are illustrated in FIGS. 4A to 4G.
[0011] In FIG. 4A, as the pixel voltages applied to pixels of different colors approach
their maxima, the luminance difference between the pixels of different colors turns
larger. FIG. 4B shows that as the pixel voltages applied to pixels of different colors
approach their minima, luminance difference between the pixels of different colors
turns larger. FIG. 4C, a mixture of FIGS. 4A and 4B, shows that whatever the pixel
voltages applied to pixels approach their maxima or minima, luminance difference between
the pixels of different colors turns larger. FIG. 4D is similar to FIG. 4A except
that when the pixel voltage applied to the pixel reaches its maximum, the liquid crystal
molecules will have the same light transmittance no matter what color the pixel displays.
FIG. 4E is similar to FIG. 4B except that when the pixel voltage applied to a pixel
reaches its minimum, the light transmittance of the liquid crystal molecules will
be the same no matter what color the pixel displays. FIG. 4F is similar to FIG. 4C
except that when the pixel voltage applied to a pixel reaches whatever its maximum
or minimum, the light transmittance of the liquid crystal molecules will be the same
no matter what color the pixel displays. FIG. 4G shows that the luminance difference
between pixels of different colors turns smaller as the pixel voltages applied to
the pixels approach their minima or maxima, but turns larger as the pixel voltages
are getting closer to middle values. The gamma curve of an ordinary TN mode LCD panel
is basically the same as the gamma curve shown in FIG. 4A, while the gamma curve of
an ordinary VA mode LCD panel is basically the same as the gamma curve shown in FIG.
4B.
[0012] It can be understood from FIGS. 4A to 4G that patterns of gamma curve vary with the
conformation of the liquid crystal molecules in an LCD panel. However, they share
one common characteristic: the gamma curve changes when the displaying color of the
pixel changes.
[0013] When executing gamma correction, the conventional gamma correction device determines
the relationship between the pixel signal and the reference voltage according to an
already established gamma curve disregarding what color the corresponding pixel of
each pixel signal displays, thereby determining the magnitude of the corresponding
pixel voltage of each pixel signal. This method avoids the circuit of the gamma correction
device becoming too complicated and prevents the drive circuit of the gamma correction
device from occupying too large a space. However, the conventional method is disadvantaged
by failing to execute gamma correction of pixel signals with respect to the colors
of the pixels to which the pixel signals are to be applied. In this way, a linear
relationship between the pixel signal and the pixel luminance, as well as the maximum
luminance, under certain circumstances, can not be obtained. Therefore, the display
quality of the LCD panel is affected.
SUMMARY OF THE INVENTION
[0014] It is therefore an object of the invention to provide a gamma correction device executing
gamma correction of pixel signals according to different gamma curves with respect
to different colors of pixels. In this way, a linear relationship between the pixel
signal and the pixel luminance can be obtained no matter what color a pixel displays,
thus improving the display quality of LCDs.
[0015] It is therefore an object of the invention to provide a gamma correction apparatus
for outputting the corresponding pixel voltage of a pixel signal for an LCD. The gamma
correction device includes a gray-scale voltage generating circuit and a gamma correction
circuit. The gray-scale voltage generating circuit includes a common gray-scale voltage
generating circuit for generating a plurality of common gray-scale voltages, and a
plurality of individual gray-scale voltage generating circuits, coupled to the common
gray-scale voltage, for generating a plurality of individual gray-scale voltages.
In a color LCD panel, pixels can be used to display the red, the blue and the green
colors. While each individual gray-scale voltage generating circuit corresponds to
one of the three colors mentioned above, the value of each individual gray-scale voltage
generated by each individual gray-scale voltage generating circuit is determined according
to what color the individual gray-scale voltage generating circuit corresponds to.
The gamma correction circuit, coupled to the gray-scale voltage generating circuit,
is used for outputting the corresponding pixel voltage of the pixel signal according
to the common gray-scale voltages and the individual gray-scale voltages. If the pixel
signal is used to display the red color, the gamma correction circuit will output
the corresponding pixel voltage of the pixel signal according to the common gray-scale
voltages and the red gray-scale voltages. If the pixel signal is used to display the
green color, the gamma correction circuit will output the corresponding pixel voltage
for the pixel signal according to the common gray-scale voltages and the green gray-scale
voltages. If the pixel signal is used to display the blue color, the gamma correction
circuit will output the corresponding pixel voltage for the pixel signal according
to the common gray-scale voltages and the blue gray-scale voltages.
[0016] Other objects, features, and advantages of the invention will become apparent from
the following detailed description of the preferred but non-limiting embodiments.
The following description is made with reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0017] FIG. 1 (Prior Art) is a diagram of gamma curve illustrating the relationship between
pixel voltage and pixel luminance.
[0018] FIG. 2 (Prior Art) is a schematic diagram illustrating the theory of gamma correction.
[0019] FIG. 3 (Prior Art) is a schematic diagram for a conventional gray-scale voltage generating
circuit.
[0020] FIGS. 4A to 4G (Prior Art) illustrate gamma curves of various patterns.
[0021] FIG. 5 is a circuit diagram for the first gray-scale voltage generating circuit according
to the preferred embodiment of the present invention.
[0022] FIGS. 6A to 6B are diagrams of the gamma curve relationship applicable to the gray-scale
voltage generating circuit shown in FIG. 5.
[0023] FIG. 7 is a circuit diagram for the second gray-scale voltage generating circuit
according to the preferred embodiment of the present invention.
[0024] FIG. 8 is a diagram of the gamma curve relationship applicable to the gray-scale
voltage generating circuit shown in FIG. 7.
[0025] FIG.9 is a circuit diagram for the third gray-scale voltage generating circuit according
to the preferred embodiment of the present invention.
[0026] FIG. 10 is a diagram of the gamma curve relationship applicable to the gray-scale
voltage generating circuit shown in FIG. 9.
[0027] FIG. 11 is a circuit diagram for the fourth gray-scale voltage generating circuit
according to the preferred embodiment of the present invention.
[0028] FIG. 12 is a diagram of the gamma curve relationship applicable to the gray-scale
voltage generating circuit shown in FIG. 11.
[0029] FIG. 13 is a circuit diagram for the fifth gray-scale voltage generating circuit
according to the preferred embodiment of the present invention.
[0030] FIG. 14 is a diagram of the gamma curve relationship applicable to the gray-scale
voltage generating circuit shown in FIG. 13.
DETAILED DESCRIPTION OF THE INVENTION
[0031] The feature of the present invention is that for the part of gamma curve where large
difference exists between gamma curves for different colors, the values of gray-scale
voltages generated by the gray-scale voltage generating circuit and their corresponding
relationship with the pixel signal are determined according to respective gamma curve
for respective colors. During gamma correction, the pixel signal and the value of
gray-scale voltage will have a linear relationship no matter what color the pixel
signal corresponds to, thereby improving the display quality of the LCD panel.
[0032] Please refer to FIG. 5, a circuit diagram for a first gray-scale voltage generating
circuit according to the preferred embodiment of the present invention. The gray-scale
voltage generating circuit 500 is utilized to generate 256 gray-scale voltages according
to inputted reference voltages, wherein each gray-scale voltage corresponds to a pixel
signal. It is noteworthy that a complete gray-scale voltage generating circuit includes
two gray-scale voltage generating circuits 500, as shown in FIG. 5, one for generating
256 positive polarity gray-scale voltages and the other for generating 256 negative
gray-scale voltages. The theory and operation of the two gray-scale voltage generating
circuits are very similar. Basing on the theory and operation of one of the two gray-scale
voltage generating circuits, anyone who is skilled in the technology disclosed in
the present invention can understand the theory and operation of the other gray-scale
voltage generating circuit by analogy. In this regard, the other gray-scale voltage
generating circuit will not be explained for the sake of brevity.
[0033] The gray-scale voltage generating circuit 500 includes two parts: a common gray-scale
voltage generating circuit 502 and an individual gray-scale voltage generating circuit
504, wherein the individual gray-scale voltage generating circuit 504 includes a red
gray-scale voltage generating circuit 506, a green gray-scale voltage generating circuit
508, and a blue gray-scale voltage generating circuit 510. The red gray-scale voltage
generating circuit 506, the green gray-scale voltage generating circuit 508, and the
blue gray-scale voltage generating circuit 510 are coupled to the common gray-scale
voltage generating circuit at the same end line as shown in FIG. 5.
[0034] Please refer to FIG. 6A, a diagram of the gamma curve relationship applicable to
the gray-scale voltage generating circuit shown in FIG. 5. In FIG. 6A, the three gamma
curves labeled R, G, B represent the relationship between the gray-scale voltages
applied to pixels of different colors and the luminance of the pixels which display
the red, green, and blue colors individually. It can be seen in FIG. 6A that when
pixel voltage is relatively low, pixel luminance has only little difference and can
thus be neglected.
However, when pixel voltage turns higher, luminance difference becomes larger accordingly.
[0035] In the present embodiment, the common gray-scale voltage generating circuit 502 is
a series circuit composed of 191 serial resistors with 5 input nodes for the input
of five common reference voltages V4, V5, V6, V7, and V8 respectively, and with 192
output nodes for outputting common gray-scale voltages VO0 to VO191 respectively.
According to voltage dividing rule, the value of the gray-scale voltage outputted
from each output node can be controlled by appropriately setting the resistance value
of each serial resistor. The values of reference voltages V4 to V8 are indicated in
FIG. 6A. It can be seen that the gamma curves of different pixel color shows very
tiny difference in the part corresponding to reference voltages V4 to V8. Gray-scale
voltages VO1 to VO191 generated by the common gray-scale voltage generating circuit
502 according to reference voltages V4 to V8 correspond to the 192 pixel signals labeled
from 0 to 191 respectively. In addition, the relationship between pixel signals 0
to 191 and the corresponding gray-scale voltages VO0 to VO191 does not vary with the
different colors that the pixels display.
[0036] Please refer to FIGS. 6A and 6B again. In FIG. 6A, when pixel voltage turns higher,
luminance difference among pixels displaying different colors turns larger accordingly.
FIG. 6B is the enlargement for the part indicated by a dashed rectangle in FIG. 6A.
In FIG. 6B, differences among gamma curves for different colors are significant and
are intensified when gray-scale voltage turns higher. In the present invention, individual
gray-scale voltage generating circuits 504 generate gray-scale voltages according
to respective gamma curves (for the red, green, and blue colors respectively) for
the part where differences among them are large (as is shown in FIG. 6B). In this
way, a linear relationship between pixel signal is achieved, regardless of the color
that the pixel displays.
[0037] In the present embodiment, the individual gray-scale voltage generating circuits
504, corresponding to the three colors displayed in the pixels of an ordinary LCD
panel, includes a red gray-scale voltage generating circuit 506, a green gray-scale
voltage generating circuit 508 and a blue gray-scale voltage generating circuit 510.
Take the red gray-scale voltage generating circuit 506 for example. The red gray-scale
voltage generating circuit 506 is a series of resistors composed of 64 serial resistors,
wherein each series of resistors has 3 input nodes for the input of common reference
voltages V1 R, V2R and V3R respectively, and 64 output nodes for the output of red
gray-scale voltages VO192r to VO255r respectively. The value of each of the 64 red
gray-scale voltages VO192r to VO255r outputted from output nodes is determined according
to gamma curve R shown in FIG. 6B. The values of the above 64 gray-scale voltages
can be determined in two ways. The first way is to set an appropriate resistance value
of each of the 64 resistors Rr0 to Rr63; the second way is to set an appropriate voltage
value of each of the three reference voltages V1 R to V3R applied to the series of
resistors and determine an appropriate location for each input node in the series
of resistors. According to the voltage dividing rule, the value of each gray-scale
voltage outputted from an output node can thus be determined. Referring to FIG. 5
again, since reference voltage V1 R must be applied at the input node situated at
the top end of the red gray-scale voltage generating circuit 506, the value of the
gray-scale voltage to be generated can only be controlled via the control of V1 R
value. For reference voltages V2R and V3R, the value of each gray-scale voltage outputted
from an output node can be determined by controlling the values of reference voltages
V2R and V3R as well as the locations of the corresponding input nodes disposed in
the gray-scale voltage generating circuit 506. A linear relationship between the pixel
signals numbered 192 to 255 and the pixel luminance according to gamma curve R can
thus be obtained by controlling the values of gray-scale voltages VO192r to VO255r
outputted from the red gray-scale voltage generating circuit 506.
[0038] The operation and theory of the green gray-scale voltage generating circuit 508 and
the blue gray-scale voltage generating circuit 510 are similar to those of the red
gray-scale voltage generating circuit disclosed above and will not be repeated here.
It is noteworthy that the green gray-scale voltage generating circuit 508 and the
blue gray-scale voltage generating circuit 510 determine the values of the outputted
gray-scale voltages according to gamma curve G and gamma curve B respectively as shown
in FIG. 6A and 6B. Thus, for the green gray-scale voltage generating circuit 508 and
the blue gray-scale voltage generating circuit 510, the resistance value of each resistor,
the value of each reference voltage, and the location in a series of resistors for
the corresponding input node of a gray-scale voltage generating circuit will not be
exactly identical to those of the red gray-scale voltage generating circuit 506. As
a result, the relationship between the pixel signals 192 to 255, corresponding to
green gray-scale voltages VO192g to VO255g outputted from the green gray-scale voltage
generating circuit 508, and pixel luminance levels will be linear according to gamma
curve G. In addition, the relationship between the pixel signals 192 to 255, corresponding
to blue gray-scale voltages VO192b to VO255b outputted from the blue gray-scale voltage
generating circuit 510, and pixel luminance will be linear according to gamma curve
B.
[0039] It is noteworthy that although both the common gray-scale voltage generating circuit
502 and the individual gray-scale voltage generating circuit 504 are series of resistors
in the present embodiment, this is not a restriction to the present invention. Any
device, which outputs corresponding gray-scale voltages of pixel signals via inputted
reference voltages according to respective gamma curve, is in accordance with the
spirit of the present invention.
[0040] As is disclosed above, the gamma curve relationship between the gray-scale voltage
applied to pixels and the luminance of the pixels varies with the molecular conformation
of liquid crystal of the pixels. The gray-scale voltage generating circuit provided
in the present invention can be modified to become applicable to varied gamma curves.
Referring to FIG. 7, a circuit diagram for a second gray-scale voltage generating
circuit is illustrated according to the preferred embodiment of the present invention,
with the common gray-scale voltage generating circuit which outputs gray-scale voltages
VO64 to VO255 corresponding to pixel signals 64 to 255 respectively. According to
gamma curves R, G, and B shown in FIG. 8, the red gray-scale voltage generating circuit,
the green gray-scale voltage generating circuit and the blue gray-scale voltage generating
circuit generate red gray-scale voltages VO0r to VO63r, green gray-scale voltages
VO0g to VO63g, and blue gray-scale voltages VO0b to VO63 respectively. The three groups
of gray-scale voltages all correspond to pixel signal 0 to pixel signal 63. The gray-scale
voltage generating circuit shown in FIG. 7 is applicable to the gamma curve relationship
shown in FIG. 8.
[0041] The individual gray-scale voltage generating circuits as shown in FIG. 9 have two
parts. Take the red gray-scale voltage generating circuit for example. The red gray-scale
voltage generating circuit includes two series of resistors: one generates red gray-scale
voltages VO255r to VO191r according to reference voltages V1 R to V3R, while the other
generates red gray-scale voltages VO63r to VO1r according to reference voltages V6R
to V8R. The gray-scale voltage generating circuit as shown in FIG. 9 is applicable
to the gamma curve relationship as shown in FIG. 10. Similarly, the gray-scale voltage
generating circuit as shown in FIG. 11 is applicable to the gamma curve relationship
as shown in FIG. 12, while the gray-scale voltage generating circuit as shown in FIG.
13 is applicable to the gamma curve relationship as shown in FIG. 14. It is noteworthy
that although the gray-scale voltage generating circuits shown in FIGS. 5, 7, 9, 11,
and 13 are different and are applicable to gamma curves of varied types, they still
share one common characteristic. That is, when differences among gamma curves for
different colors are large, the relationship between gray-scale voltage values of
the gray-scale voltage generating circuit and corresponding pixel signals thereof
is determined and outputted according to respective gamma curve. In this way, no matter
what color the pixel displays, a linear relationship between pixel signal and pixel
luminance can be obtained without deviating from the spirit of the present invention.
[0042] The gray-scale voltages outputted from the gray-scale voltage generating circuit
will be inputted to a gamma correction circuit. The gray-scale voltages include common
gray-scale voltages and individual gray-scale voltages, wherein the individual gray-scale
voltages include red gray-scale voltages VOr, green gray-scale voltages VOg, and blue
gray-scale voltages VOb. After receiving a pixel signal, the gamma correction circuit
executes gamma correction according to the common gray-scale voltages and the individual
gray-scale voltages corresponding to the pixel signal to determine a corresponding
pixel voltage of the pixel signal, and to output the pixel voltage. If the pixel signal
is used to control the luminance of a pixel used to display the red color, the relationship
between the pixel signal and the pixel voltage will be determined according to values
of the common gray-scale voltages and the red gray-scale voltages. By the same analogy,
if the pixel signal is used to control the luminance of a pixel used to display the
green (the blue) color, the relationship between the pixel signal and the pixel voltage
will be determined according to the values of the common gray-scale voltages and the
green (the blue) gray-scale voltages.
[0043] A gamma correction device is disclosed in above examples of embodiment. When gamma
correction is performed, the relationship between the pixel signals for displaying
different colors and the values of corresponding gray-scale voltages are identical
in some pixel signal value region but different in others. In this way, the gamma
characteristics for the three colors, red, green and blue, can be optimized and the
display quality of the LCD panel be improved.
[0044] While the invention has been described by way of example and in terms of a preferred
embodiment, it is to be understood that the invention is not limited thereto. On the
contrary, it is intended to cover various modifications and similar arrangements and
procedures, and the scope of the appended claims therefore should be accorded the
broadest interpretation so as to encompass all such modifications and similar arrangements
and procedures.
1. A gamma correction apparatus for outputting a corresponding pixel voltage according
to a pixel signal for a liquid crystal display (LCD), wherein the LCD has a plurality
of pixels used to display a plurality of colors, the gamma correction apparatus comprising:
a gray-scale voltage generating circuit, which comprises:
a common gray-scale voltage generating circuit for generating a plurality of common
gray-scale voltages; and
a plurality of individual gray-scale voltage generating circuits, coupled to the common
gray-scale voltage generating circuit, each of which generates a plurality of individual
gray-scale voltages corresponding to one of the colors, wherein the values of the
individual gray-scale voltages generated by each individual gray-scale voltage generating
circuit is determined according to what color the individual gray-scale voltage generating
circuit corresponds to; and
a gamma correction circuit, coupled to the gray-scale voltage generating circuit,
according to a corresponding color of the pixel signal, for selectively using the
common gray-scale voltages and the corresponding individual gray-scale voltages of
the corresponding color to determine the corresponding pixel voltage and outputting
the corresponding pixel voltage.
2. A gamma correction apparatus according to claim 1, wherein the common gray-scale voltage
generating circuit comprises a series of resistors with a plurality of connecting
nodes wherein each of the common gray-scale voltages is generated through a corresponding
one of the connecting nodes.
3. A gamma correction apparatus according to claim 1, wherein each of the individual
gray-scale voltage generating circuits has a plurality of input nodes with each of
the input nodes being coupled to a corresponding input voltage source which supplies
a corresponding reference voltage to the individual gray-scale voltage generating
circuit coupled thereto.
4. A gamma correction apparatus according to claim 3, wherein the value of the reference
voltage supplied is determined according to the color corresponding to the individual
gray-scale voltage generating circuit coupled to the corresponding input voltage source.
5. A gamma correction apparatus according to claim 3, wherein the input nodes of each
individual gray-scale voltage generating circuit are disposed therein according to
the color corresponding to the individual gray-scale voltage generating circuit.
6. A gamma correction apparatus according to claim 3, wherein each individual gray-scale
voltage generating circuit has a plurality of output nodes for generating the individual
gray-scale voltages according to the reference voltages.
7. A gamma correction apparatus according to claim 6, wherein each individual gray-scale
voltage generating circuit is a voltage divider with a series of resistors with a
plurality of connecting nodes.
8. A gamma correction apparatus according to claim 1, wherein the colors include red,
green and blue colors.
9. A gamma correction apparatus according to claim 8, wherein the individual gray-scale
voltage generating circuits are:
a red gray-scale voltage generating circuit for generating a plurality of red gray-scale
voltages;
a green gray-scale voltage generating circuit for generating a plurality of green
gray-scale voltages; and
a blue gray-scale voltage generating circuits for generating a plurality of blue gray-scale
voltages;
wherein the gamma correction circuit outputs the pixel voltage corresponding to
the pixel signal according to:
the common gray-scale voltages and the red gray-scale voltages when the pixel signal
is used to display the red color;
the common gray-scale voltages and the green gray-scale voltages when the pixel signal
is used to display the green color; and
the common gray-scale voltages and the blue gray-scale voltages when the pixel signal
is used to display the blue color.
10. A gamma correction apparatus for outputting a corresponding pixel voltage according
to a pixel signal for a liquid crystal display (LCD), wherein the LCD has a plurality
of pixels used to display red, green, and blue colors, the gamma correction apparatus
comprising:
a gray-scale voltage generating circuit, comprising:
a common gray-scale voltage generating circuit for generating a plurality of common
gray-scale voltages;
a red individual gray-scale voltage generating circuit coupled to the common gray-scale
voltage generating circuit for generating a plurality of red gray-scale voltages;
a green individual gray-scale voltage generating circuit coupled to the common gray-scale
voltage generating circuit for generating a plurality of green gray-scale voltages;
and
a blue individual gray-scale voltage generating circuit coupled to the common gray-scale
voltage generating circuit for generating a plurality of blue gray-scale voltages;
and
a gamma correction circuit coupled to the gray-scale voltage generating circuit;
wherein the gamma correction circuit outputs the pixel voltage corresponding to the
pixel signal according to:
the common gray-scale voltages and the red gray-scale voltages when the pixel signal
is used to display the red color;
the common gray-scale voltages and the green gray-scale voltages when the pixel signal
is used to display the green color; and
the common gray-scale voltages and the blue gray-scale voltages when the pixel signal
is used to display the blue color.
11. A gamma correction apparatus according to claim 10, wherein:
the red gray-scale voltage generating circuit has a plurality of input nodes with
each of the input nodes being coupled to a corresponding input voltage source which
supplies a corresponding reference voltage to the red gray-scale voltage generating
circuit coupled thereto;
the green gray-scale voltage generating circuit has a plurality of input nodes with
each of the input nodes being coupled to a corresponding input voltage source which
supplies a corresponding reference voltage to the green gray-scale voltage generating
circuit coupled thereto; and
the blue gray-scale voltage generating circuit has a plurality of input nodes with
each of the input nodes being coupled to a corresponding input voltage source which
supplies a corresponding reference voltage to the blue gray-scale voltage generating
circuit coupled thereto.
12. A gamma correction apparatus according to claim 11, wherein the red gray-scale voltage
generating circuit includes a plurality of output nodes for generating the red gray-scale
voltages according to the reference voltages thereof; the green gray-scale voltage
generating circuit includes a plurality of output nodes for generating the green gray-scale
voltages according to the reference voltages thereof; and the blue gray-scale voltage
generating circuit includes a plurality of output nodes for generating the blue gray-scale
voltages according to the reference voltages thereof.
13. A gamma correction apparatus according to claim 12, wherein the red gray-scale voltage
generating circuit, the green gray-scale voltage generating circuit, and the blue
gray-scale voltage generating circuit each include a series of resistors with a plurality
of connecting nodes.
14. A gamma correction apparatus according to claim 13, wherein at least one of the connecting
nodes is the input node, at least one of the connecting nodes is the output node,
and at least one output node is the input node.
15. A liquid crystal display (LCD), comprising:
a plurality of pixels for displaying a plurality of colors; and
a gamma correction apparatus, which outputs a corresponding pixel voltage according
to a pixel signal, comprising:
a gray-scale voltage generating circuit, comprising:
a common gray-scale voltage generating circuit for generating a plurality of common
gray-scale voltages; and
a plurality of individual gray-scale voltage generating circuits, coupled to the common
gray-scale voltage, for generating a plurality of individual gray-scale voltages,
wherein each individual gray-scale voltage generating circuit corresponds to one of
the colors, and the values of the individual gray-scale voltages generating from each
individual gray-scale voltage generating circuit is determined according to what color
the individual gray-scale voltage generating circuit corresponds to; and
a gamma correction circuit, coupled to the gray-scale voltage generating circuit,
according to a color corresponding to the pixel signal, for selectively using the
common gray-scale voltages and the corresponding individual gray-scale voltages to
determine the corresponding pixel voltage and outputting the corresponding pixel voltage.
16. An LCD according to claim 15, wherein the common gray-scale voltage generating circuit
comprises a series of resistors with a plurality of connecting nodes wherein each
of the common gray-scale voltages is generated through one of the connecting nodes.
17. An LCD according to claim 15, wherein each of the individual gray-scale voltage generating
circuits has a plurality of input nodes with each of the input nodes being coupled
to a corresponding input voltage source which supplies a corresponding reference voltage
to the individual gray-scale voltage generating circuit coupled thereto.
18. An LCD according to claim 17, wherein the value of the reference voltage is determined
according to the color corresponding to the individual gray-scale voltage generating
circuit coupled to the corresponding input voltage source.
19. An LCD according to claim 17, wherein the input nodes of each individual gray-scale
voltage generating circuit are disposed therein according to the color corresponding
to the individual gray-scale voltage generating circuit.
20. An LCD according to claim 17, wherein each individual gray-scale voltage generating
circuit has a plurality of output nodes for generating the individual gray-scale voltages
according to the reference voltages.
21. An LCD according to claim 20, wherein each individual gray-scale voltage generating
circuit is a series of resistors with a plurality of connecting nodes.
22. An LCD according to claim 15, wherein the colors include red, green, and blue colors.
23. An LCD according to claim 22, wherein the individual gray-scale voltage generating
circuits are:
a red gray-scale voltage generating circuit for generating a plurality of red gray-scale
voltages;
a green gray-scale voltage generating circuit for generating a plurality of green
gray-scale voltages; and
a blue gray-scale voltage generating circuits for generating a plurality of blue gray-scale
voltages;
wherein the gamma correction circuit outputs the pixel voltage corresponding to
the pixel signal according to:
the common gray-scale voltages and the red gray-scale voltages when the pixel signal
is used to display the red color;
the gamma correction circuit outputs the pixel voltage corresponding to the pixel
signal according to the common gray-scale voltages and the green gray-scale voltages
when the pixel signal is used to display the green color; and
the gamma correction circuit outputs the pixel voltage corresponding to the pixel
signal according to the common gray-scale voltages and the blue gray-scale voltages
when the pixel signal is used to display the blue color.