(19)
(11) EP 1 489 262 A1

(12) EUROPÄISCHE PATENTANMELDUNG
veröffentlicht nach Art. 158 Abs. 3 EPÜ

(43) Veröffentlichungstag:
22.12.2004  Patentblatt  2004/52

(21) Anmeldenummer: 03744077.3

(22) Anmeldetag:  07.03.2003
(51) Internationale Patentklassifikation (IPC)7F01D 1/32
(86) Internationale Anmeldenummer:
PCT/RU2003/000083
(87) Internationale Veröffentlichungsnummer:
WO 2003/076767 (18.09.2003 Gazette  2003/38)
(84) Benannte Vertragsstaaten:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR
Benannte Erstreckungsstaaten:
AL LT LV MK

(30) Priorität: 11.03.2002 RU 2002105974

(71) Anmelder: Obschestvo s Ogranichennoi Otvetstvennostyu Midera-k
Moscow, 123053 (RU)

(72) Erfinder:
  • VOROBIEV, Radislav Nikolaevich
    Moscow, 125364 (RU)
  • ZELINSKY, Anatoly Mikhailovich
    St.Petersburg, 197374 (RU)

(74) Vertreter: Jeck, Anton, Dipl.-Ing. 
Patentanwalt, Klingengasse 2
71665 Vaihingen/Enz
71665 Vaihingen/Enz (DE)

   


(54) VERBESSERTE TURBINE


(57) Ein Verfahren zur Gewinnung von mechanischer Energie in einer Turbine ist folgendermaßen realisiert. Das Arbeitsmittel wird in Kanäle eines Rotors eingeführt. Das Arbeitsmittel wird beim Herausfließen aus den Kanälen in Richtung des Umkreises beschleunigt, die zum Radius des Rotors senkrecht steht. Das Arbeitsmittel wird aus den Kanälen des Rotors in den von einer Hülle umgebenen Raum um den Rotor eingeführt und wirkt mittels Reibung mit der Hülle zusammen, die einen geschlossenen Raum bildet und die in der Nähe des Radius des Umkreises und der Ausgangsöffnungen der Rotorkanäle angeordnet ist. Das Arbeitsmittel fließt durch Öffnungen in der Hülle heraus, wobei es in Richtung des Umkreises beschleunigt wird, die zum Radius der Hülle senkrecht steht und der Richtung des Rotors entgegengesetzt ist. Die Turbine enthält ein schottisches Drehkreuz, das als drehbares Rohr ausgebildet ist. Am Rohr sind radial gegenüberliegend mindestens ein Paar Stutzen (3) mit in Gegenrichtungen abgebogenen, offenen Enden befestigt. Eine zylindrische Trommel (5) ist koaxial mit einer drehbaren Welle verbunden, die das schottische Drehkreuz umfasst. Ein zylindrischer Gurt der Trommel (5) schließt an die abgebogenen Enden (4) mit einem Spalt an. Auf der Trommel sind zwei gegenüberliegende Stutzen (8) mit offenen Enden (9) befestigt, die in entgegengesetzte Richtungen abgebogen sind. Die Stutzen (3, 8) des schottischen Drehkreuzes und der Trommel (5) können in Stromlinienform, z.B. als aerodynamisches Flügelprofil, ausgeführt werden.




Beschreibung


[0001] Die Erfindung bezieht sich auf den Bereich des Maschinenbaus, und zwar auf eine hydraulische oder pneumatische Turbine oder eine Dampfturbine für den Antrieb von Elektrogeneratoren, Kompressoren von Kühlanlagen, von Wärmepumpen usw.

[0002] Durch das US-Patent 3 282 560 ist ein Verfahren zur Gewinnung von mechanischer Energie in einer Turbine gemäß dem Oberbegriff des Anspruchs 1 bekannt, wobei das Herausfließen des Arbeitsmittels aus den Kanälen des Rotors und der Hülle in einer Richtung erfolgt. Der Rotor und die Hülle lassen eine Welle drehen, an der sie starr befestigt sind.

[0003] Ein Nachteil dieses Verfahrens besteht darin, dass es nicht möglich ist, die mechanische Energie aus dem Rotor der Turbine zu gewinnen, weil das Moment, das am Rotor beim Herausfließen des Arbeitsmittels aus den Rotorkanälen entsteht (nach dem Gesetz der Erhaltung der Bewegungsenergie), mit einem Gegenmoment ausgeglichen wird, das beim Bremsen des abgearbeiteten Arbeitsmittels im Rotor auf der Innenfläche der Hülle erzeugt wird; das Nutzmoment wird erst beim Herausfließen des Arbeitsmittels aus den Öffnungen der Hülle unter dem Druck erzeugt, der nach der Ausdehnung des Arbeitsmittels in den Rotorkanälen geblieben ist, wodurch wesentliche Energieverluste (etwa 50%) entstehen.

[0004] Durch das CH-Patent 6 694 428 ist ein Verfahren zur Gewinnung von mechanischer Energie in einer Turbine gemäß dem Oberbegriff des Anspruchs 1 bekannt, bei dem die Hülle als radiale Schaufelturbine ausgeführt ist und sich gegen den Rotor dreht.

[0005] Ein Nachteil dieses bekannten Verfahrens besteht in der nicht ausreichenden Größe der gewonnenen, mechanischen Energie, weil das Arbeitsmittel beim Herausfließen über vier Kanäle des Rotors und bei seinem Einführen in den von der Hülle in Form der Schaufelturbine gebildeten Raum um den Rotor herum sowie bei dem Herausfließen über die Öffnungen in der Hülle zwischen den Schaufeln der Turbine im Zeitpunkt der Berührung mit den Strömen aus den Rotorkanälen ausgestoßen wird, wobei es sich bis zur Geschwindigkeit desjenigen Stroms beschleunigt, der aus den Rotorkanälen kommt; dafür wird ein Teil der Energie des Stroms aufgebraucht.

[0006] Beim Herausfließen über die Öffnungen in der Hülle, die als radiale Schaufelturbine ausgebildet ist, gibt es bei der Beschleunigung des Arbeitsmittels in den radialen Schaufeln infolge der Zentrifugalkraft Verluste. Außerdem gibt es Verluste bei der Lüftung wegen des Umlaufs des Arbeitsmittels zwischen den Schaufeln beim Herausfließen über die Öffnungen in der Hülle.

[0007] Aus der sich drehenden Hülle, die als radiales Schaufelrohr ausgebildet ist, fließt das Arbeitsmittel mit einer Geschwindigkeit heraus, die sich wesentlich von der Geschwindigkeit der Drehung der Hülle unterscheidet, wodurch Energieverluste entstehen.

[0008] Ferner ist durch das US-Patent 3 282 560 eine reaktive Strahlturbine bekannt, die folgendes aufweist:
  • ein Arbeitsrad, das als drehbares Rohr mit einem geschlossenen Ende ausgeführt ist; das Rohr ist koaxial mit der Turbinenwelle gekoppelt, und am Rohr ist mindestens ein Paar gegenüberliegender Stutzen mit offenen Enden befestigt,
  • eine drehbare Hülle, die ein Arbeitsrad umfasst,
  • ein das Arbeitsrad und die Hülle umfassendes Gehäuse mit Öffnungen für die Unterbringung der Welle sowie mit Stutzen für die Zuleitung und den Auslauf des Arbeitsmittels, wobei an der Hülle mindestens ein Paar gegenüberliegender Stutzen mit offenen Enden befestigt ist und die Hülle und das Arbeitsrad an einer Welle angebracht sind.


[0009] Ein Nachteil dieser bekannten Turbine ist die feste Verbindung der Hülle und des Arbeitsrads, die an einer Welle installiert sind, sowie die Drehung des Arbeitsrads und der Hülle in einer Richtung, wodurch die Erzeugung von mechanischer Energie nur an einer Hülle sichergestellt wird. Die Stutzen des Arbeitsrads sind nur Elemente der Turbine, die nur den Druck der Zuleitung des Arbeitsmittels drosseln, wobei diese Elemente zu nutzlosen Energieverlusten und damit zu einem geringen Wirkungsgrad führen. Außerdem begrenzt die niedrige Festigkeit der langen zylindrischen Hülle mit vielen Öffnungen auf ihrer Oberfläche die Umlaufgeschwindigkeit der Hülle und setzt den Wirkungsgrad der Turbine noch mehr herab.

[0010] Durch das CH-Patent 6 694 428 ist eine radiale Zweiwellenturbine bekannt, die folgendes aufweist:
  • ein schottisches Drehkreuz, das als drehbares Rohr mit geschlossenen Enden ausgebildet ist, wobei das Rohr koaxial mit einer Welle gekoppelt ist und am Rohr mindestens ein Paar radial gegenüberliegender Stutzen mit von deren Achse in entgegengesetzten Richtungen abgebogenen, offenen Enden aufweist,
wobei die Achsen der abgebogenen, offenen Enden der Stutzen zu derjenigen Fläche senkrecht stehen, die über die Achsen des Stutzenpaars und die Achse des Rohrs verläuft, und wobei an der Rohrwand Öffnungen entsprechend den Stutzen ausgebildet sind,
  • eine drehbare Hülle, die koaxial mit der Welle gekoppelt ist und das schottische Drehkreuz umfasst;
  • ein das Arbeitsrad und die Hülle umfassendes Gehäuse mit Öffnungen für die Unterbringung des Rohrs und der Wellen des schottischen Drehkreuzes und der Hülle mit dem Stutzen für den Auslauf des Arbeitsmittels, wobei die Hülle als Schaufelturbine ausgebildet ist.


[0011] Ein Nachteil dieser bekannten Turbine besteht darin, dass die Schaufeln in der Hülle, die als Schaufelturbine ausgeführt ist, an der Kante einer Scheibe befestigt ist, wodurch die Zentrifugalkraftbelastung der Schaufel durch ein zusätzliches Moment erhöht wird, denn der Knotenpunkt der Befestigung der Schaufeln ist nicht imstande, eine hohe Belastung zu tragen, so dass eine Herabsetzung der Umlaufgeschwindigkeit der Schaufelturbine nötig ist und damit der Wirkungsgrad der Schaufelturbine vermindert wird. Für den Durchgang zwischen den Schaufeln muss der Arbeitsmittelstrom von den Rotordüsen auf die Schaufeln unter einem bestimmten Winkel gerichtet werden, der durch die Form der Schaufeln und durch die Form des Stroms aus den Düsen bestimmt wird. Bei dieser bekannten Turbine gelangt der Arbeitsmittelstrom von den Düsen auf die Schaufeln unter unterschiedlichen Winkeln, wodurch im Querschnitt vergrößerte Winkel, die in den Turbinen mit einem separaten Düsenapparat üblich sind, und eine Verminderung des Wirkungsgrads erreicht werden.

[0012] Die Verwendung des hohlen Rotors (des schottischen Drehkreuzes) führt zu Verlusten bei der Reibung durch die Entstehung des Umlaufs des Arbeitsmittels in der Höhlung des Rotors, das durch die Viskosität an den Wänden und durch den Rückfluss im mittleren Teil der Rotorhöhlung (des schottischen Drehkreuzes) mitgerissen wird, d.h. durch die Bildung eines Krümmerwirbels. Im Ergebnis geht die Kapazität verloren, die vom Rotor mit Höhlung abgenommen wird.

[0013] Bei der partiellen Zuleitung des Arbeitsmittels an die Hülle (Schaufelturbine) durch die vier Düsen des Rotors (des schottischen Drehkreuzes), das sich selbst in Gegenrichtung dreht, wird das Arbeitsmittel, das sich zwischen den Schaufeln unter niedrigem Druck befindet, im Zeitpunkt der Berührung mit den Strömen aus den Rotorkanälen ausgestoßen, wobei es sich bis zur Geschwindigkeit des Stroms beschleunigt, der aus den Rotorkanälen kommt; dafür wird ein Teil der Energie des Stroms aufgebraucht.

[0014] In der Hülle (Schaufelturbine) gibt es Verluste beim Beschleunigen des Arbeitsmittels in den radialen Schaufeln durch die Zentrifugalkraft. Außerdem gibt es Verluste bei der Lüftung durch den Umlauf des Arbeitsmittels zwischen den Schaufeln beim Herausfließen über die Öffnungen in der Hülle.

[0015] Aus der sich drehenden, als Schaufelturbine ausgeführten Hülle fließt das Arbeitsmittel mit einer Geschwindigkeit heraus, die sich erheblich von der Geschwindigkeit der Hüllendrehung unterscheidet, wodurch Energieverluste entstehen.

[0016] Diese bekannte Turbine hat eine komplizierte Konstruktion sowie eine komplizierte Herstellungstechnologie, weil als Hülle eine Schaufelturbine eingesetzt ist.

[0017] Mit dem vorgeschlagenen Verfahren gemäß der Erfindung zur Gewinnung von mechanischer Energie in einer Turbine wird die Aufgabe der Erhöhung der mechanischen Energie gelöst, die in der Turbine aufgrund der Erhöhung des Wirkungsgrads durch einen maximalen Einsatz von kinetischer Energie des Stroms des abgearbeiteten Arbeitsmittels, das aus den Rotorkanälen der Turbine herausfließt, und durch die Gewährleistung einer minimalen, absoluten Geschwindigkeit des Stroms beim Herausfließen aus den Kanälen der Hülle gewonnen wird.

[0018] Die Aufgabe, ein Verfahren zur erhöhten Gewinnung von mechanischer Energie in einer Turbine zu entwickeln, wird folgenderweise gelöst:

[0019] Das Verfahren zur Gewinnung von mechanischer Energie in der Turbine schließt die Zuleitung des Arbeitsmittels in die Rotorkanäle und die Beschleunigung des Arbeitsmittels beim Herausfließen aus den Kanälen in eine Richtung des Umkreises, die zum Rotorradius senkrecht steht, unter Gewährleistung der Rotordrehung ein; nach diesem Verfahren wird das Arbeitsmittel aus den Rotorkanälen in den von der Hülle gebildeten, geschlossenen Raum um den Rotor herum eingeführt, wobei es durch Reibung mit der Hülle zusammenwirkt; das Arbeitsmittel fließt durch Öffnungen in der Hülle heraus, wobei es in einer Richtung unter Gewährleistung der Hüllendrehung beschleunigt wird. Gemäß der Erfindung ist der durch die Hülle gebildete Raum geschlossen ausgebildet und verläuft in der Nähe desjenigen Umkreises, dessen Radius durch den Abstand der Ausgangsöffnung eines Rotorkanals von der Rotorachse gebildet ist; ferner wird das über die Öffnungen in der Hülle herausfließende Arbeitsmittel längs des Umkreises senkrecht zum Hüllenradius in einer Richtung beschleunigt, die dem Herausfließen des Arbeitsmittels aus dem Rotor entgegengesetzt ist.

[0020] Die geschlossene Ausführung des durch die Hülle gebildeten Raums und die auf dem Umkreis angeordneten Ausgangsöffnungen der Rotorkanäle sowie die Beschleunigung des über die Öffnungen in der Hülle herausfließenden Arbeitsmittels längs des Umkreises senkrecht zum Hüllenradius in einer Richtung, die dem Herausfließen aus dem Rotor entgegengesetzt ist, erlauben die Sicherung der Drehung der Turbinenhülle unter Ausnutzung der überflüssigen Energie des Arbeitsmittelstroms, der aus den Rotorkanälen herausfließt. Dies führt zu einer Erhöhung der mechanischen Energie, die in der Turbine gewonnen wird.

[0021] Außerdem erfolgt das Herausfließen des Arbeitsmittels über die Öffnungen in der Hülle mit einer Geschwindigkeit, die der Umlaufgeschwindigkeit der Hülle in der Gegenrichtung nahe ist, so dass die absolute Geschwindigkeit des Arbeitsmittelstroms nahe Null ist, wodurch die Verluste an mechanischer Energie vermindert werden.

[0022] Die Belastung kann für den Rotor und die Hülle so gewählt werden, dass die gleichen Umlaufgeschwindigkeiten an den Umkreisen mit dem Außendurchmesser des Rotors und dem Innendurchmesser der Hülle erreicht werden.

[0023] Die Wahl der Belastung für den Rotor und die Hülle, um die gleichen Umlaufgeschwindigkeiten bei der Drehung des Rotors an dessen Außendurchmesser und der Hülle an deren Innendurchmesser festzulegen, erlaubt das Erreichen eines maximalen Nutzeffekts bei der Wirkung der Turbine.

[0024] Mit der vorgeschlagenen Turbine wird die Aufgabe der Erhöhung der mechanischen Energie gelöst, die in der Turbine durch die Steigerung des Nutzeffekts infolge der minimalen Energieverluste beim Herausfließen des Arbeitsmittels aus der Hülle sowie durch die Vereinfachung der Konstruktion gewonnen wird.

[0025] Die Aufgabe, eine Turbine mit höherem Wirkungsgrad zu schaffen, wird mit einer Turbine gelöst, die folgendes umfasst:
  • ein schottisches Drehkreuz, das als drehbares Rohr mit geschlossenen Enden ausgebildet ist, wobei das Rohr koaxial mit einer Welle gekoppelt ist und am Rohr mindestens ein Paar radial gegenüberliegender Stutzen mit von deren Achse in entgegengesetzte Richtungen abgebogenen, offenen Enden befestigt ist, wobei ferner die Achsen der abgebogenen, offenen Enden der Stutzen senkrecht zu derjenigen Fläche stehen, die über die Achsen des Stutzenpaars und die Achse des Rohrs verläuft; und wobei an der Rohrwand Öffnungen entsprechend den Stutzen vorgesehen sind,
  • eine drehbare Hülle, die koaxial mit der Welle gekoppelt ist und das schottische Drehkreuz umfasst,
  • ein das Arbeitsrad und die Hülle umfassendes Gehäuse mit Öffnungen für die Unterbringung des Rohrs des schottischen Drehkreuzes und der Wellen des schottischen Drehkreuzes und der Hülle mit dem Stutzen für den Auslauf des Arbeitsmittels.


[0026] Gemäß der Erfindung ist die Hülle als zylindrische Trommel ausgebildet, die mit einem zylindrischen Gurt versehen ist, der an die abgebogenen Enden der Stutzen des schottischen Drehkreuzes mit einem Spalt anschließt und auf dem mindestens ein Paar gegenüberliegender Stutzen mit offenen Enden befestigt ist, die in Bezug auf ihre Achsen in entgegengesetzte Richtungen abgebogen sind. Diese Richtungen sind den Richtungen der Stutzen des schottischen Drehkreuzes entgegengesetzt angeordnet, wobei die Achsen der abgebogenen, offenen Enden der Trommelstutzen zu derjenigen Fläche senkrecht stehen, die über die Achsen des Stutzenpaars und die Achse des Rohrs verläuft; an der Wand des Gurts sind Öffnungen entsprechend den Stutzen vorgesehen.

[0027] Die Ausführung der Hülle als zylindrische Trommel, das Anschließen des zylindrischen Trommelgurts an die abgebogenen Enden der Stutzen des schottischen Drehkreuzes mit einem Spalt, die Befestigung mindestens eines Stutzenpaars mit den offenen Enden, die in von ihrer Achse verschiedene Richtungen abgebogen sind, die den Richtungen der auf dem zylindrischen Trommelgurt radial gegenüberliegenden Stutzen des schottischen Drehkreuzes entgegengesetzt sind, wobei die Achsen der abgebogenen, offenen Enden der Trommelstutzen zu derjenigen Fläche senkrecht stehen, die über die Achsen des Stutzenpaars und die Achse des Rohrs verläuft, sowie das Vorsehen von Öffnungen an der Wand des Gurts entsprechend den Stutzen ermöglichen:
  • dem abgearbeiteten Arbeitsmittel, das aus dem schottische Drehkreuz strömt, mit dem zylindrischen Gurt der Trommel zusammenzuwirken, der sehr nahe, und zwar im Abstand eines Spalts, an den abgebogenen Enden der Stutzen des schottischen Drehkreuzes angebracht ist, wobei das Arbeitsmittel das Drehkreuz drehen lässt;
  • die Drehung der Trommel beim Herausfließen des Arbeitsmittels aus den offenen Enden der Trommelstutzen zu verstärken;
  • die Konstruktion und die Herstellungstechnologie durch den Ersatz der Schaufelturbine zu vereinfachen.


[0028] Außerdem erfolgt das Herausfließen des Arbeitsmittels aus den offenen Enden der zylindrischen Trommel mit einer Geschwindigkeit, die der Umlaufgeschwindigkeit der zylindrischen Trommel in der Gegenrichtung nahe ist, so dass die absolute Geschwindigkeit des Arbeitsmittelstroms nahe Null ist, wodurch der Wirkungsgrad der Turbine erhöht wird.

[0029] Der Einsatz eines oder mehrerer Stutzenpaare ermöglicht, die Trommel drehen zu lassen und dadurch zusätzliche, mechanische Energie zu gewinnen. Auf diese Weise entsteht eine zusätzliche, mechanische Energie infolge der Drehung der Trommel, so dass der Wirkungsgrad der Turbine erhöht wird.

[0030] Die Stutzen des schottischen Drehkreuzes können tropfenförmig ausgebildet werden. Die Ausbildung der Stutzen in Stromlinienform, d.h. mit den Außenumrissen, die bei der Bewegung einen minimalen Widerstand des Gegenstroms des Arbeitsmittels sicherstellen, beispielsweise eine im Querschnitt tropfenförmigen Form, erlaubt die Verminderung der aerodynamischen Reibungsverluste bei der Drehung des schottischen Drehkreuzes in der mit dem Arbeitsmittel gefüllten Trommel, wodurch die mechanische Energie, die in der Trommel gewonnen wird, erhöht werden kann.

[0031] Die Stromlinienform des Stutzens des schottischen Drehkreuzes kann im Querschnitt ein flügelartiges Profil im Verhältnis L/b≥5 bilden, wobei L die Sehne des Flügels und b die maximale Stärke des Flügels ist.

[0032] Die Ausbildung der Stutzen des schottischen Drehkreuzes in Stromlinienform, im Querschnitt als flügelartiges Profil im Verhältnis L/b≥5, erlaubt die Schaffung von maximal optimalen Bedingungen mit einer Verminderung der aerodynamischen Reibungsverluste bei der Drehung des schottischen Drehkreuzes in der mit dem Arbeitsmittel gefüllten Trommel.

[0033] Die Trommelstutzen können tropfenförmig ausgebildet werden.

[0034] Die Ausbildung der Trommelstutzen in Stromlinienform, d.h. mit den Außenumrissen, die bei der Bewegung einen minimalen Widerstand des Gegenstroms des Arbeitsmittels sicherstellen und beispielsweise im Querschnitt als tropfenförmiges Profil ausgebildet sind, erlaubt eine Verminderung der aerodynamischen Reibungsverluste bei der Drehung der mit dem Arbeitsmittel gefüllten Trommel im Gehäuse.

[0035] Die Stromlinienform der Trommelstutzen kann im Querschnitt als flügelartiges Profil im Verhältnis L/b≥5 ausgeführt werden, wobei L die Sehne des Flügels und b die maximale Stärke des Flügels ist.

[0036] Die Ausbildung der Stromlinienform der Trommelstutzen im Querschnitt als flügelartiges Profil im Verhältnis L/b≥5 erlaubt die Schaffung von maximal optimalen Bedingungen unter Verminderung der aerodynamischen Reibungsverluste bei der Drehung der mit dem Arbeitsmittel gefüllten Trommel im Gehäuse.

[0037] Die Erfindung wird nun anhand von Ausführungsbeispielen näher beschrieben. Es zeigen:
Fig. 1
eine allgemeine Darstellung der Turbine im Querschnitt,
Fig. 2
eine Frontansicht der in Fig. 1 dargestellten Turbine,
Fig 3
einen Längsschnitt durch einen Stutzen eines schottischen Drehkreuzes oder der Trommel, der im Querschnitt als flügelartiges Profil ausgebildet ist,
Fig. 4
einen Querschnitt längs der Linie A-A in Fig. 3 und
Fig. 5
einen Querschnitt längs der Linie B-B in Fig. 3.


[0038] Die Turbine enthält ein schottisches Drehkreuz, das als Rohr 1 mit einem geschlossenen Ende ausgebildet ist. Das Rohr 1 ist koaxial mit einer Welle 2 gekoppelt und kann sich zusammen mit dieser drehen. Am Rohr 1 ist mindestens ein Paar radial gegenüberliegender Stutzen 3 mit in entgegengesetzte Richtungen abgebogenen, offenen Enden 4 befestigt. Die Achsen der abgebogenen, offenen Enden 4 der Stutzen 3 stehen senkrecht zu derjenigen Fläche, die über die Achsen des Stutzenpaars 3 und die Achse des Rohrs 1 verläuft. An der Rohrwand 1 sind Öffnungen 13 entsprechend den Stutzen 3 vorgesehen. Die offenen Enden 4 können als Düsen ausgebildet sein.

[0039] Eine koaxial mit einer Welle 6 gekoppelte, drehbare, zylindrische Trommel 5 ist koaxial zum Rohr 1 gelagert und umfasst das schottische Drehkreuz. Ein zylindrischer Gurt 7 der zylindrischen Trommel 5 schließt an die abgebogenen Enden 4 der Stutzen 3 des schottischen Drehkreuzes mit einem Spalt an. Auf dem zylindrischen Gurt 7 der zylindrischen Trommel 5 ist mindestens ein Paar Stutzen 8 mit offenen Enden 9 befestigt, die in gegenüber ihrer Achse verschiedene Richtungen abgebogen sind. Radial von den Gegenrichtungen dieser Richtungen sind die Richtungen der Stutzen 3 des schottischen Drehkreuzes entgegengesetzt angeordnet. Die Achsen der abgebogenen, offenen Enden 9 der Stutzen 8 der zylindrischen Trommel 5 stehen zu derjenigen Fläche senkrecht, die über die Achsen des Stutzenpaars 8 der zylindrischen Trommel 5 und die Achse des Rohrs 1 verläuft. An der Wand des zylindrischen Gurts 7 der zylindrischen Trommel 5 sind Öffnungen 10 entsprechend den Stutzen 8 vorgesehen. Ein Gehäuse 11 umfasst das schottische Drehkreuz und die zylindrische Trommel 5 mit den Öffnungen für die Unterbringung des Rohres 1 des schottischen Drehkreuzes und der Wellen 6 und 2 der zylindrischen Trommel 5 und des schottischen Drehkreuzes und mit Stutzen 12 für den Auslauf des Arbeitsmittels. Das Gehäuse 11 ist mit einem Eingangsstutzen 14 der Zuleitung des Arbeitsmittels verbunden. Das Rohr 1 des schottischen Drehkreuzes weist an seinem Ausgangsteil zahlreiche Durchbohrungen 15 auf, wobei es gemeinsam mit dem Eingangsstutzen 14 Labyrinthdichtungen bildet, die einen minimalen Abfluss des Arbeitsmittels sichern, das in die Turbine eingeführt wird.

[0040] Die Stutzen 3 des schottischen Drehkreuzes können in Stromlinienform ausgebildet sein, z.B. im Querschnitt als tropfenförmiges Profil.

[0041] Die Stromlinienform der Stutzen 3 des schottischen Drehkreuzes kann im Querschnitt als flügelartiges Profil im Verhältnis L/b≥5 gebildet werden, wobei L die Sehne des Flügels und b die maximale Stärke des Flügels ist.

[0042] Die Stutzen 8 der zylindrischen Trommel 5 können in Stromlinienform ausgebildet sein, z.B. im Querschnitt als tropfenförmiges Profil.

[0043] Die Stromlinienform der Stutzen 8 der zylindrischen Trommel kann im Querschnitt als flügelartiges Profil im Verhältnis L/b≥5 gebildet werden, wobei L die Sehne des Flügels und b die maximale Stärke des Flügels ist.

[0044] Die Auswahl der minimalen, aerodynamischen, integralen Verluste bei der Drehung der Stutzen 3 des schottischen Drehkreuzes und der Stutzen 8 der zylindrischen Trommel 5, die im Querschnitt als flügelartiges Profil, beispielsweise symmetrisches Zhukovksy-Profil, ausgebildet sind, wurde gemäß dem Wert des Profilwiderstands Cx=0,02 gemäß der Methode durchgeführt, die im Buch von G.I. Abramowitsch "Die angewandte Gasdynamik", Verlag "Nauka"; Redaktion der Literatur für Physik und Mathematik, M, 1969, S. 545, Bild 10.12 dargelegt ist. Das symmetrische Zhukovsky-Profil ist in den Figuren 3, 4 und 5 gezeigt.

[0045] Die Turbine arbeitet folgendermaßen: Das Arbeitsmittel wird in den Eingangsstutzen 14 und das Rohr 1 des schottischen Drehkreuzes eingelassen. Danach wird es in die Kanäle jedes Stutzenpaars weitergeleitet. Das Arbeitsmittel fließt mit einer hohen Geschwindigkeit aus den entgegengesetzten, offenen Enden 4 der Stutzen 3 heraus, wobei es in Richtung des Umkreises senkrecht zum Radius des schottischen Drehkreuzes unter der Gewährleistung von dessen Drehung durch die Erzeugung eines Rückstoßkraftmoments beschleunigt wird.

[0046] Der Rückstrom des Arbeitsmittels aus den offenen Enden 4 der Stutzen 3 mit der hohen Geschwindigkeit gelangt in die Höhlung des geschlossenen Raums um das schottische Drehkreuz herum, der durch die zylindrische Trommel 5 gebildet wird, und wirkt mittels Reibung mit der Wand der zylindrischen Trommel 5 zusammen, wobei es die Trommeldrehung veranlasst. Das Arbeitsmittel gelangt danach in das Stutzenpaar 8 der zylindrischen Trommel 5 und fließt über die offenen Enden 9 mit hoher Geschwindigkeit, wobei es beschleunigt wird und die Drehung der zylindrischen Trommel 5 infolge der Erzeugung des Rückstoßkraftmoments veranlasst.

[0047] Im Zuge der Drehung der zylindrischen Trommel 5 wird der aus den offenen Enden 4 herausfließende Arbeitsmittelstrom innerhalb der zylindrischen Trommel 5 durch die Reibungskräfte bis zur Umlaufgeschwindigkeit gebremst, wobei ein Reibungsmoment erzeugt wird, das die Drehung der zylindrischen Trommel 5 veranlasst.

[0048] Gleichzeitig wirkt auf das Arbeitsmittel bei der Drehung der zylindrischen Trommel 5 (innerhalb der Trommel) eine Zentrifugalkraft ein, wobei ein Zentrifugaldruck erzeugt wird, unter dessen Einwirkung das Arbeitsmittel aus den offenen Enden 9 der zylindrischen Trommel 5 herausfließt, wobei ein Zusatzmoment erzeugt wird, das sich zum Reibungsmoment addieren lässt.

[0049] Vom sich drehenden schottischen Drehkreuz und der zylindrischen Trommel 5 werden die Drehungen an die Wellen 2 und 6 und dann an die Verbraucher übertragen.

[0050] Auf diese Weise erfolgen die nützliche Verwendung der Energie des im schottischen Drehkreuz abgearbeiteten Arbeitsmittels und die Gewinnung der zusätzlichen Leistung.

[0051] Das Arbeitsmittel gelangt weiterhin ins Gehäuse 11 und strömt über den Stutzen 12 für den Auslauf des Arbeitsmittels ab.

[0052] Die Verwendung der Stutzen 3 und 8 des schottischen Drehkreuzes und der zylindrischen Trommel 5 in Stromlinienform erlaubt die Verminderung der aerodynamischen Verluste bei der Drehung der Stutzen und die Erhöhung der gewonnenen, mechanischen Energie in der Turbine.

[0053] Das Verfahren zur Gewinnung von mechanischer Energie in der Turbine wird folgendermaßen umgesetzt:

[0054] Das Arbeitsmittel wird in die Rotorkanäle der Turbine eingeführt und beschleunigt, d. h. seine Geschwindigkeit wird beim Herausfließen aus den Kanälen in Richtung des Umkreises mit dem Rotorradius unter Gewährleistung der Rotordrehung und der Gewinnung von mechanischen Energie erhöht. Dabei dreht sich neben dem Rotor auch dessen Welle, von der die Nutzenergie abgenommen wird.

[0055] Das Arbeitsmittel gelangt aus den Rotorkanälen in den geschlossenen Raum um den Rotor herum und wirkt mittels Reibung mit der Hülle zusammen, die einen geschlossenen Raum bildet und die gemäß dem Umkreis der Ausgangsöffnungen der Rotorkanäle verläuft. Die Ausbildung der Hülle gemäß dem Radius des Umkreises längs den Ausgangsöffnungen der Rotorkanäle erlaubt der Hülle, sich um den Rotor zu drehen; das Zusammenwirken der Reibung des Arbeitsmittels mit der Hülle verursacht die Drehung der Hülle, wobei ein Zentrifugaldruck innerhalb der Hülle erzeugt wird. Die Hülle kann beispielsweise als Trommel ausgeführt werden. Danach fließt das Arbeitsmittel durch Einwirkung des Zentrifugaldrucks über die Öffnungen in der Hülle heraus (das können beispielsweise die Öffnungen 10 in der zylindrischen Trommel 5 und die Öffnungen in den Stutzen 8 sein); dabei wird das Arbeitsmittel in Richtung des Umkreises, die zum Radius der Hülle senkrecht steht, und in der entgegengesetzten Richtung des Herausfließens aus dem Rotor unter Gewährleistung der Drehung der Hülle und der Gewinnung der mechanischen Energie beschleunigt. Das Herausfließen mit Beschleunigung (Erhöhung der Geschwindigkeit) aus den Öffnungen der Hülle in Richtung des Umkreises, die zum Radius der Hülle senkrecht steht, erlaubt ein Drehen der Hülle. Die Bremsung des Arbeitsmittels, das aus den Rotorkanälen in die Hülle fließt, erlaubt die Stärkung der Drehwirkung durch die Kräfte der Reibung des Arbeitmittels mit der Hülle und durch die Rückstoßkräfte. Dabei dreht sich mit der Hülle auch ihre Welle, von der die zusätzliche Nutzenergie abgenommen wird.

[0056] Die Belastung des Rotors und der Hülle kann so gewählt werden, dass gleiche Umlaufgeschwindigkeiten der Drehung des Außendurchmessers des Rotors und des Innendurchmessers der Hülle erreicht werden. Dies wird durch den Anschluss von Energieverbrauchern verwirklicht, beispielsweise von Generatoren an die Wellen des Rotors und der Welle, sowie durch die Einstellung von solchen Betriebsarten verwirklicht, bei denen die Umlaufgeschwindigkeiten der Drehung des Außendurchmessers des Rotors und des Innendurchmessers der Hülle gleich sind. In diesem Fall kann ein maximaler Nutzeffekt der Turbine erreichen werden.

[0057] Nach dem Erhaltungssatz des Moments der Bewegungsenergie ist das Drehmoment, das auf den Rotor M1 einwirkt, gleich dem Gesamtdrehmoment M2, das auf die Hülle einwirkt (M1-M2).

[0058] Wenn die Ausfließgeschwindigkeit von 1kg/s des Arbeitsmittels aus den Rotorkanälen mit dem Radius R W1 ist, dann ist

wobei V1 die Umlaufgeschwindigkeit des Rotors ist.

[0059] Die vom Rotor erreichte Leistung bei der Winkelgeschwindigkeit ω1=V1/R ist



[0060] Jeweils bei gleichem Moment M1=M2 ist die Leistung, die von der Hülle erreicht wird, bei

wobei V2 die Umlaufgeschwindigkeit der Hülle ist,



[0061] Damit erlaubt das Vorhandensein der sich drehenden Hülle bei gleichen Umlaufgeschwindigkeiten V1=V2 und bei Fehlen der aerodynamischen und anderen Verluste, zusätzlich die gleiche Leistung zu erhalten wie die Leistung des Rotors, d.h. die Gesamtleistung des Systems Rotor-Hülle verdoppelt sich, und es wird der theoretisch maximale Nutzeffekt der Turbine erreicht.

[0062] Bei V1=V2=V beträgt der Nutzeffekt:

und bei einem Verhältnis V/W1=0,25



[0063] Als Arbeitsmittel kann in der Turbine eine Flüssigkeit, ein Gas oder Dampf verwendet werden.

Beispiel des Verwendung des Verfahrens



[0064] Die Turbine arbeitet mit Wasserdampf. Ein Rotor vom Typ des schottischen Drehkreuzes mit zwei Kanälen wird verwendet. Der Wasserdampf wird in die zwei Rotorkanäle eingelassen. Der Wasserdampfstrom wird beim Herausfließen aus den Kanälen in Richtung des Umkreises beschleunigt, die zum Rotorradius senkrecht steht, bis zu einer Geschwindigkeit von 790 m/s. Ein Rotor mit einem Radius von r=0,48m und einer Drehzahl von n=5000U/min wird verwendet. Die Umlaufgeschwindigkeit des Rotors beträgt 251 m/s. Der Rotor dreht sich, und von seiner Welle wird die mechanische Energie abgenommen.

[0065] Der Wasserdampf gelangt aus den Rotorkanälen in den geschlossenen Raum um den Rotor herum und wirkt mittels Reibung mit der Hülle zusammen, die einen geschlossenen Raum bildet und die mit Ausgangsöffnungen gemäß dem Radius des Umkreises der Rotorkanäle versehen ist. Über die Öffnungen in der Hülle fließt der Wasserdampf heraus, wobei dieser bis zur Geschwindigkeit von 251 m/s in Richtung des Umkreises, die zum Radius der Hülle senkrecht steht, und in der Richtung, die der Richtung des Herausfließens des Arbeitsmittels aus dem Rotor entgegengesetzt ist, unter Gewährleistung der Drehung der Hülle beschleunigt wird. Der Radius der Hülle überschreitet unwesentlich den Radius des Rotors und beträgt 0,4805m. Die Drehzahl der Hülle beträgt n=4990U/min. Die Hülle dreht sich, und von ihrer Welle wird die zusätzliche mechanische Energie abgenommen.

[0066] Die Wellen des Rotors und der Hülle werden die Belastung durch einzelne Generatoren belastet. Es werden solche Betriebsarten der Generatoren eingestellt, dass die Umlaufgeschwindigkeiten der Drehung des Außendurchmessers des Rotors und des Innendurchmessers der Hülle gleich 251 m/s sind. In diesem Fall wird von der Turbine die maximale mechanische Energie bei dem theoretischen Wirkungsgrad von η=0,86 abgenommen.

[0067] Das Verfahren gemäß der Erfindung zur Gewinnung von mechanischer Energie ist durch Versuche bestätigt worden, und die dieses Verfahren verwirklichende Turbine hat die Prüfung erfolgreich bestanden.

[0068] Am erfolgreichsten kann die Erfindung als hydraulische, pneumatische oder Dampfturbine für den Antrieb von Elektrogeneratoren, Kompressoren von Kühlanlagen und von Wärmepumpen usw. verwendet werden.


Ansprüche

1. Verfahren zur Gewinnung von mechanischer Energie, bei dem das Arbeitsmittel in Kanäle eines Rotors eingeführt, beim Herausfließen aus den Kanälen in Richtung des Unkreises, die zum Radius des Rotors senkrecht steht, unter Drehung des Rotors beschleunigt und aus den Kanälen des Rotors in einen von einer Hülle gebildeten, geschlossenen Raum um den Rotor eingeführt wird, wobei es mittels Reibung mit der Hülle zusammenwirkt, und bei dem das Arbeitsmittel durch Öffnungen in der Hülle herausfließt, wobei es in einer Richtung unter Drehung der Hülle beschleunigt wird,
dadurch gekennzeichnet,
dass der durch die Hülle gebildete Raum geschlossen ausgebildet ist und in der Nähe desjenigen Umkreises verläuft, dessen Radius durch den Abstand der Ausgangsöffnung eines Rotorkanals von der Rotorachse gebildet ist, und dass das über die Öffnungen in der Hülle herausfließende Arbeitsmittel längs des Umkreises senkrecht zum Hüllenradius in einer Richtung beschleunigt wird, die dem Herausfließen des Arbeitsmittels aus dem Rotor entgegengesetzt ist.
 
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass Rotor und Hülle so betrieben werden, dass gleiche Umlaufgeschwindigkeiten an den Stellen des Außendurchmessers des Rotors und des Innendurchmessers der Hülle erreicht werden.
 
3. Turbine zur Durchführung des Verfahrens nach Anspruch 1 oder 2, mit

- einem schottischen Drehkreuz, das als drehbares Rohr (1) mit geschlossenem Ende ausgebildet ist, wobei das Rohr koaxial mit der Turbinenwelle (2) gekoppelt ist und am Rohr (1) mindestens ein Paar radial gegenüberliegender Stutzen (3) mit von ihrer Achse in entgegengesetzte Richtungen abgebogenen, offenen Enden (4) befestigt ist, wobei die Achsen der abgebogenen, offenen Stutzenenden (4) zu derjenigen Fläche senkrecht stehen, die über die Achsen des Stutzenpaars (3) und die Achse des Rohrs (1) verläuft, und wobei an der Rohrwand Öffnungen (13) entsprechend den Stutzen (3) ausgebildet sind,

- einer drehbaren Hülle, die koaxial mit der Welle (2) gekoppelt ist und das schottische Drehkreuz umfasst,

- einem das Arbeitsrad und die Hülle umfassenden Gehäuse (11) mit Öffnungen für die Unterbringung des Rohrs (1) des schottischen Drehkreuzes und der Wellen des schottischen Drehkreuzes und der Hülle mit einem Stutzen (12) für den Auslauf des Arbeitsmittels,

dadurch gekennzeichnet,
dass die Hülle als zylindrische Trommel (5) ausgebildet ist, dass ein zylindrischer Gurt (7) der Trommel an die abgebogenen Enden (4) der Stutzen (3) des schottischen Drehkreuzes mit einem Spalt anschließt, dass auf dem zylindrischen Gurt (7) der Trommel mindestens ein Paar radial gegenüberliegender Stutzen (8) mit offenen Enden (9) befestigt ist, die gegenüber ihrer Achse in verschiedenen Richtungen abgebogen sind, wobei diese Richtungen gegenüber den Richtungen der Stutzen (3) des schottischen Drehkreuzes entgegengesetzt sind und die Achsen der abgebogenen, offenen Enden (9) der Stutzen (8) der Trommel (5) zu derjenigen Fläche senkrecht stehen, die über die Achsen des Stutzenpaars (3) und die Achse des Rohrs (1) verläuft, und dass an der Wand des Gurts (7) Öffnungen (10) entsprechend den Stutzen ausgebildet sind.
 
4. Turbine nach Anspruch 3,
dadurch gekennzeichnet,
dass die Stutzen (3) des schottischen Drehkreuzes tropfenförmig ausgebildet sind.
 
5. Turbine nach Anspruch 4,
dadurch gekennzeichnet,
dass die Stromlinienform der Stutzen (3) des schottischen Drehkreuzes im Querschnitt als flügelartiges Profil im Verhältnis L/b≥5 gebildet ist, wobei L die Sehne des Flügels und b die maximale Stärke des Flügels ist.
 
6. Turbine nach Anspruch einem der Ansprüche 3 bis 5,
dadurch gekennzeichnet,
dass die Stutzen (8) der Trommel (5) tropfenförmig ausgebildet sind.
 
7. Turbine nach Anspruch 6,
dadurch gekennzeichnet,
dass die Stromlinienform der Trommelstutzen (8) im Querschnitt als flügelartiges Profil im Verhältnis L/b≥5 gebildet ist, wobei L die Sehne des Flügels und b die maximale Stärke des Flügels ist.
 




Zeichnung







Recherchenbericht