BACKGROUND OF THE INVENTION
Field of the Invention
[0001] The present invention relates generally to a gas supplying mechanism in a gas powered
toy gun, and more particularly to an improvement in a mechanism provided in a toy
gun, which has a bullet holding chamber and a hammer and powered with gas, for controlling
a movable valve positioned in relation to a gas passage in the toy gun to be operated
by means of the rotation of a hammer for supplying gas through the gas passage to
be used for shooting a sham bullet put in a bullet holding chamber.
Description of the Prior Art
[0002] A model gun which is often called an air soft gun is made to imitate a real gun in
not only its color and shape but also its apparent operations. As one of these model
guns, it has been proposed a gas powered toy gun in which a pressure accumulating
chamber is formed in a grip to be filled with compressed gas and a gas passage extending
from the pressure accumulating chamber is opened, by means of the rotation of a hammer
linked with a trigger to operate in response to the movement of the trigger, to supply
a bullet holding chamber with the gas discharging from the pressure accumulating chamber
to be used for shooting a sham bullet put in the buffet holding chamber, or a pressure
accumulating chamber is formed in a grip to be filled with compressed gas and the
gas discharging from the pressure accumulating chamber is supplied through a gas passage
extending from the pressure accumulating chamber to be used not only for shooting
a sham bullet put in a bullet holding chamber but also for causing a slider provided
to be movable along a barrel to move backward so that the bullet holding chamber having
been made empty is supplied with the next sham bullet by the slider moving forward
after its backward movement, as shown in, for example, Japanese patent application
published before examination under publication number 8-233492.
[0003] The gas powered toy gun thus proposed previously is provided with, in addition to
the hammer, the pressure accumulating chamber and the slider, a movable shooting pin
which is struck by the hammer rotating in response to the pulling operation of the
trigger and a valve means which is constituted with a piston and a valve body and
operative to be moved by the movable shooting pin struck by the hammer to shift the
gas passage extending from the pressure accumulating chamber to be open. When the
gas passage is made open by the valve means, the gas pressure passing through the
gas passage from the pressure accumulating chamber is used for shooting the sham bullet
put in the bullet holding chamber and also for moving the slider backward. Then, the
hammer put in a position for pushing the movable shooting pin is rotated to go away
from the movable shooting pin by means of the backward movement of the slider and
thereby the valve means moves to shift the gas passage extending from the pressure
accumulating chamber to be closed. The slider continues to move backward with inertia
after the gas passage is shifted to be closed and then turns to move forward with
energizing force exerted thereto when having arrived at the most retreated position.
With the forward movement of the slider, a sham bullet held at the upper end portion
of a magazine is carried toward the bullet holding chamber, so that the bullet holding
chamber which has been made empty is supplied with the next sham bullet.
[0004] In a gas powered toy gun to which the above mentioned arrangement wherein the gas
passage extending from the pressure accumulating chamber provided as a gas supplying
source is controlled to be made open or closed by a mechanism constituted with the
hammer, the movable shooting pin operative to be struck by the hammer and the valve
means is applied, as shown in Fig. 1, for example, a valve means 12 is provided movably
to a gas passage 11 extending from a gas supplying source and a movable shooting pin
13 is further provided at the back of the valve means 12,.
[0005] In the gas powered toy gun shown in Fig. 1, a rotary lever 17 which engages with
a hammer 14, which is put in a cocked position for making preparation for shooting
a sham bullet as indicated with broken lines in Fig. 1, so as to prevent the hammer
14, to which energizing force by a hammer spring 16 is transmitted through a hammer
strut 15, from rotating in the forward direction, is caused to be disengaged from
the hammer 14 when a trigger not shown in Fig. 1 is pulled. Thereby, the hammer 14
put in the cocked position is rotated at high speed in the forward direction with
the energizing force by a hammer spring 16. The hammer 14 thus rotated causes a knocking
portion 14A thereof to come into contact with the rear end portion of the movable
shooting pin 13 detached from the valve means 12 which is put in a position for closing
the gas passage 11 as indicated with solid lines in Fig. 1, and then comes into a
space 18A formed at the rear end portion of a slider 18 to strike forcibly the movable
shooting pin 13 as shown in Fig. 2.
[0006] The movable shooting pin 13 struck by the hammer 14 moves against the energizing
force by a spring mounted thereon to push the valve means 12 and thereby the valve
means 12 moves to shift the gas passage 11 to be open.
[0007] Generally, in the case of a gas powered toy gun having a hammer and a movable shooting
pin or a firing pin and a bullet holding chamber, the hammer put in a cocked position
once is manually rotated slowly in the forward direction to return to a decocked position
without striking the movable shooting pin or the firing pin so as not to shoot a sham
bullet put in the bullet holding chamber when the gas powered toy gun is kept in custody
at a predetermined place to be unused or put in an unused condition to be carried,
in almost the same manner as a case of a real gun. At that time, the hammer is slowly
brought down to be in the decocked position from the cocked position.
[0008] To be more concrete, in the case of the gas powered toy gun proposed previously as
shown in Figs. 1 and 2, which has the gas passage 11, the valve means 12, the movable
shooting pin 13 and the hammer 14, the hammer 14 released from the engagement with
the rotary lever 17 in response to the pulling operation of the trigger performed
once is manually shifted slowly for restraining the energizing force by the hammer
spring 16 acting on the hammer 14 to a decocked position as indicated with solid lines
in Fig. 1 from a cocked position as indicated with dash and dot lies in Fig. 1 so
as to stay in the decocked position when the gas powered toy gun shown in Figs. 1
and 2 is kept in custody at a predetermined place to be unused or put in an unused
condition to be carried. The hammer 14 put in the decocked position causes the knocking
portion 14A thereof to come close to or come into contact slightly with the rear end
portion of the movable shooting pin 13 without pushing or moving the movable shooting
pin 13 and engages with the rotary lever 17, so that the valve means 12 is stably
put in the position for keeping the gas passage 11 closed. When the hammer 14 is kept
in the decocked position, the hammer spring 16 is not expanded nor contracted so as
not to exert the energizing force upon the hammer 14.
[0009] As described above, in the gas powered toy gun proposed previously, the hammer 14
is put in the decocked position when the gas powered toy gun is kept in an unused
state. The hammer 14 thus put in the decocked position can not be stable enough due
to its mechanical structure. For example, when a relatively large pushing force is
exerted to the hammer 14 put in the decocked position form behind, it is feared that
the hammer 14 is released unintentionally from the engagement with the rotary lever
17 or the rotary lever 17 engaging with the hammer 14 is deformed or damaged, and
then the hammer 14 is operative undesirably to push the movable shooting pin 13 to
move the same so that the valve means 12 is operative undesirably to shift the gas
passage 11 to be open from closed. When such a situation that the hammer 14 is operative
undesirably to move the movable shooting pin 13 and thereby the valve means 12 is
operative undesirably to shift the gas passage 11 to be open from closed, is brought
about, the gas discharged from the gas supplying source is undesirably supplied through
the gas passage 11 to the bullet holding chamber so as to cause an accidental discharge
of the sham bullet put in the bullet holding chamber.
OBJECTS AND SUMMARY OF THE INVENTION
[0010] Accordingly, it is an object of the present invention to provide a gas supplying
mechanism in a gas powered toy gun, in which a movable valve provided for controlling
a gas passage, through which gas is supplied to be used for shooting a sham bullet,
to be open and closed selectively, is put into its operation for making the gas passage
open by a hammer rotating in response to a triggering operation performed for shooting
the sham bullet so that the supply of gas through the gas passage is carried out,
and which avoids the aforementioned disadvantages encountered with the prior art.
[0011] Another object of the present invention is to provide a gas supplying mechanism in
a gas powered toy gun, in which a movable valve provided for controlling a gas passage,
through which gas is supplied to be used for shooting a sham bullet, to be open and
closed selectively, is put into its operation for making the gas passage open by a
hammer rotating in response to a triggering operation performed for shooting the sham
bullet so that the supply of gas through the gas passage is carried out, and further
in which the hammer, which has been shifted to a decocked position from a cocked position
independently of the triggering operation, can be kept in the decocked position with
certainty.
[0012] A further object of the present invention is to provide a gas supplying mechanism
in a gas powered toy gun, in which a movable valve provided for controlling a gas
passage, through which gas is supplied to be used for shooting a sham bullet, to be
open and closed selectively, is put into its operation for making the gas passage
open by a hammer rotating in response to a triggering operation performed for shooting
the sham bullet so that the supply of gas through the gas passage is carried out,
and further in which the hammer, which has been slowly shifted to a decocked position
from a cocked position independently of the triggering operation, can be kept in the
decocked position with certainty, so that an undesirable operation of the movable
valve caused by a pushing force exerted undesirably to the movable valve due to the
movement of the hammer can be avoided.
[0013] According to the present invention, as claimed in any one of claims 1 to 9, there
is provided a gas supplying mechanism in a gas powered toy gun, which comprises a
gas passage for supplying gas to be used for shooting a sham bullet put in a bullet
holding chamber, a movable valve for controlling the gas passage to be open for supplying
the gas and closed for ceasing to supply the gas selectively, a hammer operative selectively
to rotate at high speed to a first position from a second position in response to
a triggering operation performed for shooting the sham bullet and to rotate at low
speed to the first position from the second position independently of the triggering
operation, a positioning member provided to come into contact with the hammer put
in the first position for positioning the same, and a movable linking member for moving
in a first manner corresponding to the high speed rotation of the hammer to push the
movable valve to move for shifting the gas passage to be open when the hammer rotates
at the high speed and moving in a second manner corresponding to the low speed rotation
of the hammer to cause the movable valve to keep the gas passage closed without pushing
the movable valve to move when the hammer rotates at the low speed.
[0014] In the gas supplying mechanism thus constituted in accordance with the present invention,
the hammer rotates selectively at the high speed in response to the triggering operation
performed for shooting the sham bullet and at the low speed independently of the triggering
operation. With each of the high speed and low speed rotations, the hammer moves to
a decocked position from a cocked position, and the hammer put in the decocked position
is subjected to the positioning by the positioning member.
[0015] When the hammer rotates at the high speed, the movable linking member pushes the
movable valve to move for shifting the gas passage to be open in response to the high
speed rotation of the hammer, so that the supply of gas through the gas passage is
carried out, and thereby, for example, the sham bullet put in the bullet holding chamber
is shot. On the other hand, when the hammer rotates at the low speed, the movable
linking member causes the movable valve to keep the gas passage closed without pushing
the movable valve to move in response to the low speed rotation of the hammer, so
that the supply of gas through the gas passage is not carried out.
[0016] The movable liking member is provided separately from the hammer to be able to engage
with both of the hammer and the movable valve for engaging with a first portion, such
as a knocking portion, of the hammer so as to push the movable valve to move when
the hammer rotates at the high speed and for engaging a second portion, such as an
opening portion, of the hammer so as not to push the movable valve to move when the
hammer rotates at the low speed, as that in an embodiment claimed in claim 4, or mounted
rotatably on the hammer and forced to rotate in a predetermined direction by an energizing
means provided on the hammer so as to be able to engage with the movable valve for
pushing the movable valve to move with a relatively small amount of rotation caused
by the energizing means when the hammer rotates at the high speed and for keeping
the movable valve staying with a relatively large amount of rotation caused by the
energizing means when the hammer rotates at the low speed, as that in another embodiment
claimed in claim 7.
[0017] With the gas supplying mechanism thus constituted in accordance with the present
invention, by means of the operations of the movable linking member performed in response
to both of the high speed and low speed rotations, the movable valve is moved to shift
the gas passage to be open so that the gas supply through the gas passage is carried
out and thereby the sham bullet put in the bullet holding chamber is surely shot with
gas when the hammer rotates at the high speed and the movable valve is not moved to
keep the gas passage closed so that the gas supply through the gas passage is not
carried out when the hammer rotates at the low speed. The hammer having rotated at
the high or low speed to move to the decocked position from the cocked position is
positioned mechanically by the positioning member to be stably put in the decocked
position. Accordingly, the hammer which has rotated at the low speed to move to the
decocked position from the cocked position without pushing the movable valve for keeping
the gas passage closed is subjected to the positioning by the positioning member to
be kept in the decocked position with certainty, so that the undesirable operation
of the movable valve caused by the pushing force exerted undesirably to the movable
valve due to the movement of the hammer put in the decocked position can be avoided.
[0018] The above, and other objects, features and advantages of the present invention will
become apparent from the following detailed description taken in conjunction with
the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0019]
Fig. 1 is a schematic cross sectional view used for explaining the construction and
operation of an example of a gas supplying mechanism in a gas powered toy gun proposed
previously;
Fig. 2 is a schematic cross sectional view used for explanation of the structure and
operation of the example shown in Fig. 1:
Fig. 3 is a partially cross sectional schematic side view showing an example of a
gas powered toy gun to which a first embodiment of gas supplying mechanism in a gas
powered toy gun according to the present invention is applied;
Figs. 4, 5, 6, 7, 8 and 9 are schematic cross sectional views used for explaining
the construction and operation of the embodiment shown in Fig. 3:
Fig. 10 is a partially cross sectional schematic side view showing another example
of a gas powered toy gun to which a second embodiment of gas supplying mechanism in
a gas powered toy gun according to the present invention is applied; and
Figs. 11, 12, 13, 14, 15 and 16 are schematic cross sectional views used for explaining
the construction and operation of the embodiment shown in Fig. 10.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0020] Fig. 3 shows an example of a gas powered toy gun to which a first embodiment of gas
supplying mechanism in a gas powered toy gun according to the present invention is
applied.
[0021] Referring to Fig. 3, the gas powered toy gun to which the first embodiment of gas
supplying mechanism according to the present invention is applied has a body 30 in
which a trigger 21, a barrel 22, a bullet holding chamber 23 positioned in a rear
portion of the barrel 22, a hammer 24 and a grip 25 are provided, a case 31 held to
be detachable in the grip 25, and a slider 32 prov i ded to be movable along the barrel
22. The bullet holding chamber 23 is formed in a tubular member 23A which is made
of elastic frictional material, such as rubber, and put in the inside of the rear
portion of the barrel 22.
[0022] In the grip 25, a movable bar member 33 extending backward from the trigger 21 is
provided to be movable in the direction along the barrel 22. When triggering, the
trigger 21 is moved backward from an operational initial position in front of a contact
portion 34 provided on the body 30 and the movable bar member 33 is also moved backward
together with the trigger 1. A leaf spring 35 is in contact with a rear end portion
of the movable bar member 33 for exerting an energizing force to push the movable
bar member 33 in the forward direction.
[0023] The slider 32 is attached to be movable to a portion of the body 30 where the barrel
22 is provided. When the trigger 21 is put in the operational initial position, the
slider 32 is put in a reference position with a front end thereof positioned to be
close to a front end of the portion of the body 30 where the barrel 22 is provided.
Further, the slider 32 is forced by a co i I spr i ng (not shown in the draw i ngs)
mounted on the body 30 toward the outside in front of the body 30.
[0024] The hammer 24 has an upper portion with which a rear end portion 32A of the slider
32 comes selectively into contact and a lower portion which is provided with a plurality
of engaging steps and attached to be rotatable with an axis 37 to the rear end portion
of the body 30. One end portion of a hammer strut 40 which has the other end portion
connected with a pin 41 to the lower portion of the hammer 24 engages through a cap
39 with a hammer spring 38 provided in the lower portion of the grip 25, and thereby
the hammer 24 is forced upward through the hammer strut 40 and the cap 39 by the hammer
spring 38 to cause the upper portion thereof to rotate in a direction toward the rear
end portion 32A of the slider 32 as indicated by an arrow
a in Fig. 3 (
a direction). Further, an opening 24A is provided on the front side of the lower portion
of the hammer 24.
[0025] In an initial condition wherein the case 31 is inserted into the grip 25 as shown
in Fig. 3, the hammer 24 is so positioned that the rear end portion 32A of the slider
32 is in contact with the upper portion of the hammer 24 and a rear end portion 43A
of a movable linking member 43 is in engagement with the opening 24A provided on the
lower portion of the hammer 24. The hammer 24 thus positioned is put in a decocked
position.
[0026] A rotary lever 44 is attached rotatably with an axis 45 to the body 30 to be positioned
close to the lower portion of the hammer 24 positioned below the movable linking member
43. The axis 45 is also in engagement with a movable contacting member 46.
[0027] A slotted hole 43B is provided on the movable linking member 43 and the movable linking
member 43 is attached to be movable with an axis 42 planted through the slotted hole
43B to the body 30, as shown in Fig. 4. A coil spring 47 is provided in the slotted
hole 43B for energizing the movable linking member 43 in its entirety to move backward
with restraining by the axis 42. Further, a coil spring 48 is provided between the
movable linking member 43 and the body 30 for energizing the movable linking member
43 to move downward. Accordingly, the movable linking member 43, which is forced to
move backward by the coil spring 47 and also forced to move downward by the coil spring
48, is able to move backward and forward selectively under the guidance by the axis
42 engaging with the slotted hole 43B and to rotate around the axis 42. Therefore,
the movable linking member 43 is put selectively in a first condition in which the
rear end portion 43A of the movable linking member 43 is in engagement with the hammer
24 and in a second condition in which a front end portion 43C of the movable linking
member 43 is in contact with a rear end portion of a rod 51 constituting a movable
valve 50 explained later.
[0028] The rotary lever 44 attached to the body 30 to be rotatable around the axis 45 is
provided with a curved shape having an upper end thereof engaging with the lower portion
of the hammer 24 and a lower portion 44B engaging with a leaf spring 53, as shown
in Fig. 4. The leaf spring 53 is operative to exert the energizing force to the rotary
lever 44 for causing an upper end portion 44A of the rotary lever 44 to come into
contact with the lower portion of the hammer 24.
[0029] A lower end portion of the leaf spring 53 is attached, together with a lower portion
of the leaf spring 35, to a portion of the body 30 positioned in the grip 25, as shown
in Fig. 3.
[0030] The case 31 is inserted into the grip 25 through an opening provided at a lower end
portion of the grip 25 and a bottom portion of the case 31 is engaged with the lower
end portion of the grip 25 so that the case 31 is held in the grip 25, as shown in
Fig. 3. The case 31 is provided therein with a magazine 56 for containing sham bullets
BB, in which a coil spring 55 is provided for pushing up the sham bullets BB, a pressure
accumulating chamber 57 which is charged with, for example, liquefied gas, a gas leading
passage 58 extending from the pressure accumulating chamber 57, the movable valve
50 provided in relation to the gas leading passage 58, and a connecting passage 59
connected with the gas leading passage 58. The connecting passage 59 is provided for
connecting the gas leading passage 58 with a bullet shooting gas passage 61, which
is formed in a movable member 60 provided in the slider 32 to reach the bullet holding
chamber 23, in dependence on the position of the movable member 60.
[0031] The movable valve 50 is provided to be movable to the gas leading passage 58 for
controlling the gas leading passage 58 to be open and closed selectively in dependence
on its position. A sealing ring 62 is mounted on the movable valve 50, a portion of
which is shaped into the rod 51, as shown in Fig. 4. Then, the movable valve 50 thus
constituted is normally positioned to make the gas leading passage 58 closed with
an energizing force by a coil spring 63 mounted on the rod 51, as shown in Figs. 3
and 4. The gas leading passage 58 and the connecting passage 59 are formed in an upper
portion of the case 31 which is placed in the grip 25 and therefore the movable valve
50 provided to be movable to the gas leading passage 58 is also provided in the upper
portion of the case 31 above the pressure accumulating chamber 57 held in the grip
25.
[0032] In the condition wherein the slider 32 is put in the reference position and the case
31 is held in the grip 25 in such a manner as shown in Fig. 3, the gas leading passage
58, which is formed in the upper portion of the case 31 above the pressure accumulating
chamber 57 in the grip 25 and closed by the movable valve 50, is connected, through
the connecting passage 59 formed also in the upper portion of the case 31 above the
pressure accumulating chamber 57 in the grip 25, with the bullet shooting gas passage
61 extending to the bullet holding chamber 23. Under such a condition, the hammer
24 is put in the decocked position.
[0033] In the gas powered toy gun shown in Fig. 3 and constituted as described above, a
portion including the hammer 24, the rear end portion 32A of the slider 32, the movable
linking member 43, the gas leading passage 58, the connecting passage 59 and the movable
valve 50 constitutes a first embodiment of the gas supplying mechanism in the gas
powered toy gun according to the present invention.
[0034] Then, in the gas powered toy gun shown in Fig. 3, under a condition wherein the case
31 has been held in the grip 25 and the sham bullet has not been supplied yet to the
bullet holding chamber 23, the slider 32 is once moved backward together with the
movable member 60 manually from the reference position and then released to be move
forward by a coil spring not shown in the drawings to return together with the movable
member 60 to the reference position.
[0035] During such movements of the slider 32, the movable member 60 which makes the upper
end portion of the magazine 56 closed is moved backward together with the slider 32
moving backward, so that the upper end portion of the magazine 56 is made open and
one of the sham bullets BB at the top in the magazine 56 is pushed up by the coil
spring 55 into the upper end portion of the magazine 56 to be held therein.
[0036] When the slider 32 is manually moved back, the hammer 24 is pushed to rotate by the
rear end portion 32A of the slider 32 from the position shown in Figs. 3 and 4 against
the energizing force transmitted through the hammer strut 40 from the hammer spring
38 in a direction indicated by an arrow
b in Fig. 3 (
b direction) and opposite to the
a direction, and thereby, the rotary lever 44 is rotated in the direction following
the energizing force by the leaf spring 53. With the rotation of the hammer 24 in
the
b direction, the rear end portion 43A of the movable linking member 43 is released
from the engagement with the opening 24A formed on the lower portion of the hammer
24.
[0037] After that, the hammer 24 having rotated in the
b direction reaches a cocked position and the upper end portion 44A of the rotary lever
44 engages with the lower portion of the hammer 24, so that the hammer 24 and the
rotary lever 44 are mutually fixed in position and the hammer 24 is kept in the cocked
position, as shown in Fig. 5.
[0038] The lower portion of the hammer 24 put in the cocked position is operative to push
up the movable linking member 43 for rotating the same upward with the center of rotation
on the axis 42, so that the movable linking member 43 is put in an upper position
to compress the coil spring 48. As a result, although the movable linking member 43
is forced downward by the coil spring 48, the lower portion of the hammer 24 put in
the cocked position prevents the movable linking member 43 from rotating downward
with the center of rotation on the axis 42.
[0039] Then, when the slider 32 moves forward after having moved backward once, the movable
member 60 is also moved forward together with the slider 32 moving forward so as to
cause the front portion thereof to come into the upper end portion of the magazine
56 and to carry the sham bullet BB in the upper end portion of the magazine 56 to
the bullet holding chamber 23. On that occasion, the movable member 60 is operative
again to close the upper end portion of the magazine 56 and to cause the front portion
thereof to be coupled with to the bullet holding chamber 23 formed by the tubular
member 23A so that the movable member 60 is fixed in position. As a result, the sham
bullet BB is supplied to the bullet holding chamber 23 to be put in the same, as shown
in Fig. 3.
[0040] When the slider 32 has returned to the reference position after its forward movement
for supplying the bullet holding chamber 23 with the sham bullet BB, the gas leading
passage 58 which is closed by the movable valve 50 is again connected through the
connecting passage 59 with the bullet shooting gas passage 61 extending to the bullet
holding chamber 23.
[0041] After the sham bullet BB has been supplied to the bullet holding chamber 23 as described
above and shown in Fig. 3, when the trigger 21 is pulled, the movable bar member 33
is moved backward against the energizing force by the leaf spring 35. With the backward
movement of the movable bar member 33, the rear end portion of the movable bar member
33 moves to push back the lower portion 44B of the rotary lever 44 through the lower
portion of the movable contacting member 46 and cause the rotary lever 44 to rotate
against the energizing force exerted by the leaf spring 53, as shown in Fig. 6. Consequently,
the upper end portion 44A of the rotary lever 44 is released from the engagement with
the lower portion of the hammer 24.
[0042] The hammer 24 released from the positional restriction by the rotary lever 44 is
rotated by the hammer spring 38 at high speed in the
a direction with the center of rotation on the axis 37. With this high speed rotation
of the hammer 24, the movable linking member 43 is released from the engagement with
the lower portion of the hammer 24 so as not to be pushed up by the lower portion
of the hammer 24, as shown in Fig. 7.
[0043] As a result, the movable linking member 43, which is forced to move downward by the
co i I spr i ng 48, to be put in tendency of mov i ng downward, put in such a condition
as to be able to rotate downward with the center of rotation on the axis 42. However,
in practice, before the movable linking member 43 rotates downward to shift its position
substantially, a knocking portion 24B of the hammer 24 wh i ch is rotated at the high
speed in the a direction strikes forcibly the rear end portion 43A of the movable
linking member 43, as shown in Fig. 8, and thereby the movable linking member 43 is
pushed by the knocking portion 24B of the hammer 24 to move forward rapidly under
the guidance by the axis 42 engaging with the slotted hole 43B formed on the movable
linking member 43.
[0044] When the movable linking member 43 thus moves forward rapidly, the front end port
i on 43C of the movable linking member 43 comes i nto contact with the rear end portion
of the rod 51 constituting the movable valve 50 to push the rod 51, as shown in Fig.
8.
[0045] The rod 51 pushed by the movable linking member 43 causes the movable valve 50 to
move forward against the energizing force by the coil spring 63, together with the
sealing ring 62 mounted on the movable valve 50, so that the movable valve 50 shifts
the gas leading passage 58 to be open.
[0046] Immediately after the gas leading passage 58 is made open by the movable valve 50,
gas discharged from the pressure accumulating chamber 57 is supplied through the gas
leading passage 58 and the connecting passage 59 to the bullet shooting gas passage
61 extending to the bullet holding chamber 23. The gas which is supplied through the
gas leading passage 58 made open by the movable valve 50 to the bullet shooting gas
passage 61 exerts high pressure of gas to the sham bullet BB put in the bullet holding
chamber 23. Thereby, the sham bullet BB put in the bullet holding chamber 23 is caused
by the high pressure of gas exerted thereto to move from the bullet holding chamber
23 into the barrel 22 so as to be shot from the bullet holding chamber 23.
[0047] As described above, the hammer 24 which is operative to cause the knocking portion
24B thereof to strike the rear end portion 43A of the movable linking member 43 for
moving the movable linking member 43 forward, is fixed in position by the rear end
portion 32A of the slider 32 which comes into contact with the portion higher than
the knocking portion 24B of the hammer 24 to be kept in the decocked position. In
this condition, a rocking member 65 provided below the rod 51 constituting the movable
valve 50 is moved upward by a coil spring 66 to engage with the rear portion of the
rod 51 so as to keep the movable valve 50 in the position for making the gas leading
passage 58 open, as shown in Fig. 8.
[0048] After that, for example, a gas blow-back operation is performed and the slider 32
is moved backward by the pressure of gas. With the backward movement of the slider
32, the hammer 24 is rotated by the rear end portion 32A of the slider 32 in the
b direction against the energizing force transmitted thereto through the hammer strut
40 from the hammer spring 38. Thereby, the movable linking member 43 is moved backward
under the guidance of the axis 42 engaging the slotted hole 43B by the coil spring
47 so that the front end portion 43C of the movable linking member 43 is released
from the condition for pushing forward the rear end portion of the rod 51 constituting
the movable valve 50.
[0049] In this condition, the movable valve 50 is kept in the position for making the gas
leading passage 58 open by the rocking member 65 engaging with the rear portion of
the rod 51 until the slider 32 moves backward by a predetermined distance. When the
slider 32 has moved backward by the predetermined distance, the rocking member 65
is pushed downward against the energizing force by the coil spring 66 by means of
a predetermined member (not shown in the drawings) engaging with slider 32 to be released
from the engagement with the rear portion of the rod 51 constituting the movable valve
50. As a result, the movable valve .50 is moved backward by the coil spring 63 to
return to the position for making the gas leading passage 58 closed.
[0050] The movable member 60 is also moved backward together with the slider 32 moving backward.
Then, the pressure of gas acting on the slider 32 is rapidly reduced to the atmospheric
pressure before the slider 32 reaches the most retreated position and the slider 32
is further moved backward to reach the most retreated position with the force of inertia.
Just after the slider 32 has reached the most retreated position, the slider 32 is
moved forward, together with the movable member 60, by a coil spring (not shown in
the drawings) to return to the reference position. When the slider 32 returns to the
reference position from the most retreated position, the movable member 60 which is
moved forward with the forward movement of the slider 32 is operative to supply the
bullet holding chamber 23 with the next sham bullet BB.
[0051] As describe above, the hammer 24 is rotated in the
b direction to the cocked position by the rear end portion 32A of the slider 32 moving
backward to the most retreated position, as shown in Fig. 5, for making a preparation
for shooting the next sham bullet BB.
[0052] When the hammer 24 is shifted to the decocked position from the cocked position without
shooting the shame bullet BB, under the situation in which the upper end portion 44A
of the rotary lever 44 is released from the engagement with the lower portion of the
hammer 24, the hammer 24 put in the cocked position is rotated manually at low speed
in the
a direction with the center of rotation on the axis 37, as shown in Fig. 9. With such
low speed rotation of the hammer 24 in the
a direction from the cocked position, the movable linking member 43 is also released
from the engagement with the lower portion of the hammer 24 so as not to be pushed
up by the lower portion of the hammer 24.
[0053] Then, the movable linking member 43 forced to move downward by the coil spring 48
rotates downward with the center of rotation on the axis 42 to reach the lower position
as shown in Fig. 9 without being interrupted by the hammer 24 which is rotated at
the low speed. After that, the hammer 24 is continuously rotated manually at the low
speed in the
a direction toward the decocked position and the rear end portion 43A of the movable
linking member 43 put in the lower position enters into the opening 24A, which is
formed in the lower portion of the hammer 24 to be positioned below the knocking portion
24B, to engage with the same, as shown in Fig. 9.
[0054] Accordingly, when the hammer 24 having been rotated in the
a direction from the cocked position as shown in Fig. 9 reaches the decocked position,
such a situation that the movable linking member 43 is pushed forward by the hammer
24 is not brought about. Consequently, the movable linking member 43 is kept in the
lower position without moving forward and thereby the front end portion 43C of the
movable linking member 43 does not push the rear end portion of the rod 51 constituting
the movable valve 50.
[0055] As a result, the hammer 24 is put in the decocked position and the movable valve
50 keeps the gas leading passage closed, as shown in Fig. 4, so that the supply of
gas from the pressure accumulating chamber 57 through the gas leading passage 58 and
the connecting passage 59 to the bullet holding chamber 23 is not carried out and
therefore the sham bullet BB put in the bullet holding chamber 23 is not shot. That
is, the hammer 24 put in the cocked position is shifted to be put in the decocked
position without shooting the sham bullet BB.
[0056] When the hammer 24 is put in the decocked position, as shown in Fig. 4, the rear
end portion 43A of the movable linking member 43 engages with the opening 24A formed
in the lower portion of the hammer 24 and the rear end portion 32A of the slider 32
is in contact with the upper portion of the hammer 24. The rear end portion 32A of
the slider 32 functions to position mechanically the hammer 24 in the decocked position.
[0057] Accordingly, the hammer 24 is subjected to the positioning by the rear end portion
32A of the slider 32 to be kept in the decocked position with certainty, so that,
even if a relatively large pushing force is exerted to the hammer 24 from behind,
such a situation that the hammer 24 pushes undesirably the movable linking member
43 to cause the movable valve 50 to make the gas leading passage 58 open undesirably
is surely avoided.
[0058] Fig. 10 shows an example of a gas powered toy gun to which a second embodiment of
gas supplying mechanism in a gas powered toy gun according to the present invention
is applied.
[0059] Referring to Fig. 10, the gas powered toy gun to which the second embodiment of gas
supplying mechanism according to the present invention is applied has a body 80 in
which a trigger 71, a barrel 72, a bullet holding chamber 73 positioned in a rear
portion of the barrel 72, a hammer 74 and a grip 75 are provided, a case 81 held to
be detachable in the grip 75, and a slider 82 prov i ded to be movable along the barrel
72. The bullet holding chamber 73 is formed in a tubular member 73A which is made
of elastic frictional material, such as rubber, and put in the inside of the rear
portion of the barrel 72.
[0060] In the grip 75, a movable bar member 83 extending backward from the trigger 71 is
provided to be movable in the direction along the barrel 72. The trigger 71 is attached
with an axis 84 to the body 80. When triggering, the trigger 71 is rotated backward
from an operational initial position with the center of rotation on the axis 84 and
the movable bar member 83 is moved backward by means of the rotation of the trigger
71.
[0061] The slider 82 is attached to be movable to a portion of the body 80 where the barrel
72 is provided. When the trigger 71 is put in the operational initial position, the
slider 82 is put in a reference position with a front end thereof positioned to be
close to a front end of the portion of the body 80 where the barrel 72 is provided.
Further, the slider 82 is forced by a coil spring (not shown in the drawings) mounted
on the body 80 toward the outside in front of the body 80.
[0062] The hammer 74 has an upper portion with which a rear end portion 82A of the slider
82 comes selectively into contact and a lower portion which is provided with a plurality
of engaging steps and attached to be rotatable with an axis 85 to the rear end portion
of the body 80. An upper end portion of a hammer strut 87 which is forced upward by
a hammer spring 86 provided in a lower portion of the grip 75 engages with the lower
portion of the hammer 74, and thereby the hammer 74 is forced upward through the hammer
strut 87 by the hammer spring 86 to cause the upper portion thereof to rotate in a
direction toward the rear end portion 82A of the slider 82 as indicated by an arrow
a in Fig. 10 (
a direction).
[0063] A hole having its bottom is provided in a mid portion of the hammer 74 to open toward
the outside in front of the hammer 74 and a pushing pin member 89 is provided, together
with a coil spring 88, to be movable in the hole in such a manner that the pushing
pin member is forced forward by the coil spring 88, as shown in Fig. 11. Further,
a movable linking member 90 is attached rotatably with an axis 91 to the mid portion
of the hammer 74 and the pushing pin member 89 provided in the mid portion of the
hammer 74 is in contact with a rear end portion 90A of the movable linking member
90, as shown also in Fig. 11.
[0064] In an initial condition wherein the case 81 is inserted into the grip 75 as shown
in Fig. 10, the hammer 74 is so positioned that the rear end portion 82A of the slider
82 is in contact with the upper portion of the hammer 74 to fix the hammer 74 in its
position. The hammer 74 thus positioned is put in a decocked position.
[0065] A rotary lever 92 is attached rotatably with an axis 93 to the body 80 to be positioned
below the movable linking member 90. This rotary lever 92 extends upward from the
axis 93 so as to position an upper end portion 92A thereof to be close the lower portion
of the hammer 74. An upper end portion 92A of the rotary lever 92 is able to engage
with the lower portion of the hammer 74. A lower end portion of the hammer spring
86 is in engagement with a lower portion of the rotary lever 92 so that the rotary
lever 92 is forced by the hammer spring 86 to be put in tendency of rotating backward
with the center of rotation on the axis 93.
[0066] A pin member 94 is planted on the body 80 in the vicinity of the movable linking
member 90. The movable linking member 90, with the rear end portion 90A of which the
pushing pin member 89 provided in the hammer 74 is in contact, is able to be positioned
for causing an upper side portion thereof to be in contact with the pin member 94
from the lower side, as shown in Fig. 11.
[0067] The case 81 is inserted into the grip 75 through an opening provided at a lower end
portion of the grip 75 and a bottom portion of the case 81 is engaged with the lower
end portion of the grip 75 so that the case 81 is held in the grip 75, as shown in
Fig. 10. The case 31 is provided therein with a magazine 96 for containing sham bullets
BB, in which a coil spring 95 is provided for pushing up the sham bullets BB, a pressure
accumulating chamber 97 which is charged with, for example, liquefied gas, a gas leading
passage 98 extending from the pressure accumulating chamber 97, a movable valve 99
provided in relation to the gas leading passage 98 and a connecting passage 100 connected
with the gas leading passage 98. The connecting passage 100 is provided for connecting
the gas leading passage 98 with a bullet shooting gas passage 102, which is formed
in a movable member 101 provided in the slider 82 to reach the bullet holding chamber
73, in dependence on the position of the movable member 101.
[0068] The movable valve 99 is provided to be movable to the gas leading passage 98 for
controlling the gas leading passage 98 to be open and closed selectively in dependence
on its position. A sealing ring 105 is mounted on the movable valve 99, a portion
of which is shaped into a rod 106, as shown in Fig. 11. Then, the movable valve 99
thus constituted is normally positioned to make the gas leading passage 98 closed
with an energizing force by a coil spring 107 mounted on the rod 106, as shown in
Figs. 10 and 11. The gas leading passage 98 and the connecting passage 100 are formed
in an upper portion of the case 81 which is placed in the grip 75 and therefore the
movable valve 99 provided to be movable to the gas leading passage 98 is also provided
in the upper portion of the case 81 above the pressure accumulating chamber 97 held
in the grip 75.
[0069] In the condition wherein the slider 82 is put in the reference position and the case
81 is held in the grip 75 in such a manner as shown in Fig. 10, the gas leading passage
98, which is formed in the upper portion of the case 81 above the pressure accumulating
chamber 97 in the grip 75 and closed by the movable valve 99, is connected, through
the connecting passage 100 formed also in the upper portion of the case 81 above the
pressure accumulating chamber 97 in the grip 75, with the bullet shooting gas passage
102 extending to the bullet holding chamber 73. Under such a condition, the hammer
74 is put in the decocked position.
[0070] In the gas powered toy gun shown in Fig. 10 and constituted as described above, a
portion including the hammer 74, the rear end portion 82A of the slider 82, the movable
linking member 90, the gas leading passage 98, the movable valve 99 and the connecting
passage 100 constitutes a second embodiment of the gas supplying mechanism in the
gas powered toy gun according to the present invention.
[0071] Then, in the gas powered toy gun shown in Fig. 10, under a condition wherein the
case 81 has been held in the grip 75 and the sham bullet BB has not been supplied
yet to the bullet holding chamber 73, the slider 82 is once moved backward together
with the movable member 101 manually from the reference position and then released
to be moved forward by the coil spring not shown in Fig. 10 so as to return together
with the movable member 101 to the reference position.
[0072] During such movements of the slider 82, the movable member 101 which makes the upper
end portion of the magazine 96 closed is moved backward together with the slider 82
moving backward, so that the upper end port i on of the magaz i ne 96 is made open
and one of the sham bullets BB at the top in the magazine 96 is pushed up by the coil
spring 95 into the upper end portion of the magazine 96 to be held therein.
[0073] When the slider 82 is manually moved backward, the hammer 74 is pushed to rotate
by the rear end portion 82A of the slider 82 from the position shown in Figs. 10 and
11 against the energizing force transmitted through the hammer strut 87 from the hammer
spring 86 in a direction indicated by an arrow
b in Fig. 10 (
b direction) and opposite to the
a direction, and thereby, the rotary lever 92 is slightly rotated in the counterclockwise
direction following the energizing force by the hammer spring 86. After that, the
hammer 74 having rotated in the
b direction reaches a cocked position with the pushing pin member 89 provided in the
mid portion of the hammer 74 to be in contact with the rear end portion 90A of the
movable linking member 90, so that the hammer 74 and the rotary lever 92 are mutually
fixed in position and the hammer 74 is kept in the cocked position, as shown in Fig.
12.
[0074] Under such a condition, although the rear end portion 90A of the movable linking
member 90 which is attached to be rotatable with the axis 91 to the hammer 74 is pushed
by the pushing pin member 89 so that the movable linking member 90 is put in tendency
of rotating with the center of rotation on the axis 91 for causing a front end portion
90B thereof to move upward, the upper side of the front end portion 90B of the movable
linking member 90 is in contact with the pin member 94, as shown in Fig. 12, so as
to prevents the movable linking member 90 from rotating.
[0075] Then, when the slider 82 moves forward after having moved backward once, the movable
member 101 is also moved forward together with the slider 82 moving forward so as
to cause the front portion thereof to come into the upper end portion of the magazine
96 and to carry the sham bullet BB in the upper end portion of the magazine 96 to
the bullet holding chamber 73. On that occasion, the movable member 101 is operative
again to close the upper end portion of the magazine 96 and to cause the front portion
thereof to be coupled with to the bullet holding chamber 73 formed by the tubular
member 73A so that the movable member 101 is fixed in position. As a result, the sham
bullet BB is supplied to the bullet holding chamber 73 to be put in the same, as shown
in Fig. 10.
[0076] When the slider 82 has returned to the reference position after its forward movement
for supplying the bullet holding chamber 73 with the sham bullet BB, the gas leading
passage 98 which is closed by the movable valve 99 is again connected through the
connecting passage 100 with the bullet shooting gas passage 102 extending to the bullet
holding chamber 73.
[0077] After the sham bullet BB has been supplied to the bullet holding chamber 73 as described
above and shown in Fig. 10, when the trigger 71 is pulled, the movable bar member
83 is moved backward to cause the rotary lever 92 to rotate counterclockwise slightly
with the center of rotation on the axis 93 against the energizing force by the hammer
spring 86. Consequently, the upper end portion 92A of the rotary lever 92 is released
from the engagement with the lower portion of the hammer 74, as shown in Fig. 13,
so that the hammer 74 is released from the positional restriction by the rotary lever
92.
[0078] The hammer 74 released from the positional restriction by the rotary lever 92 is
rotated by the hammer spring 86 at the high speed in the
a direction with the center of rotation on the axis 37. With this high speed rotation
of the hammer 74, the movable linking member 90 attached with the axis 91 to the hammer
74 is also rotated counterclockwise at high speed. Accordingly, the movable linking
member 90 is put in a lower position for causing the front end portion 90B thereof
to go away downward from the pin member 94 with the force of inertia and come into
contact with the rear end portion of the rod 106 constituting the movable valve 99,
as shown in Fig 14.
[0079] The hammer 74 having rotated in the a direction at the high speed with the center
of rotation on the axis 85 reaches the decocking position in which the rear end portion
82A of the slider 82 is in contact with the upper portion of the hammer 74 and the
movable linking member 90 having the front end portion 90B in contact with the rear
end portion of the rod 106 constituting the movable valve 99 is operative to push
the rod 106 for causing the movable valve 99 to move forward, as shown in Fig. 15.
With the forward movement of the movable valve 99, the sealing ring 105 mounted on
the movable valve 99 is moved forward, so that the movable valve 99 shifts the gas
leading passage 98 to be open.
[0080] Immediately after the gas leading passage 98 is made open by the movable valve 99,
gas discharged from the pressure accumulating chamber 97 is supplied through the gas
leading passage 98 and the connecting passage 100 to the bullet shooting gas passage
102 extending to the bullet holding chamber 73. The gas which is supplied through
the gas leading passage 98 made open by the movable valve 99 to the bullet shooting
gas passage 102 exerts high pressure of gas to the sham bullet BB put in the bullet
holding chamber 73. Thereby, the sham bullet BB put in the bullet holding chamber
73 is caused by the high pressure of gas exerted thereto to move from the bullet holding
chamber 73 into the barrel 72 so as to be shot from the bullet holding chamber 73.
[0081] As described above, when the hammer 74 is rotated at the high speed in the
a direction to be shifted to the decocked position from the cocked position and thereby
the movable valve 99 is pushed by the movable linking member 90 attached with the
axis 91 to the hammer 74 to move forward for making the gas leading passage open,
a rocking member 110 provided below the rod 106 constituting the movable valve 99
is moved upward by a coil spring 111 to engage with the rear portion of the rod 106
so as to keep the movable valve 99 in the position for making the gas leading passage
98 open, as shown in Fig. 15.
[0082] After that, for example, a gas blow-back operation is performed and the slider 82
is moved backward by the pressure of gas. With the backward movement of the slider
82, the hammer 74 is rotated by the rear end portion 82A of the slider 82 in the
b direction shown in Fig. 15 against the energizing force transmitted thereto through
the hammer strut 87 from the hammer spring 86. Thereby, the movable linking member
90 attached with the axis 91 to the hammer 74 is rotated clockwise in Fig. 15 so that
the front end portion 90B of the movable linking member 90 is released from the condition
for pushing forward the rear end portion of the rod 106 constituting the movable valve
99.
[0083] In this condition, the movable valve 99 is kept in the position for making the gas
leading passage 98 open by the rocking member 110 engaging with the rear portion of
the rod 106 until the slider 82 moves backward by a predetermined distance. When the
slider 82 has moved backward by the predetermined distance, the rocking member 110
is pushed downward against the energizing force by the coil spring 111 by means of
a predetermined member (not shown in the drawings) engaging with the slider 82 to
be released from the engagement with the rear portion of the rod 106 constituting
the movable valve 99. As a result, the movable valve 99 is moved backward by a coil
spring 107 to return to the position for making the gas leading passage 98 closed.
[0084] The movable member 101 is also moved backward together with the slider 82 moving
backward. Then, the pressure of gas acting on the slider 82 is rapidly reduced to
the atmospheric pressure before the slider 82 reaches the most retreated position
and the slider 82 is further moved backward to reach the most retreated position with
the force of inertia. Just after the slider 82 has reached the most retreated position,
the slider 82 is moved forward, together with the movable member 101, by a coil spring
(not shown in the drawings) to return to the reference position. When the slider 82
returns to the reference position from the most retreated position, the movable member
101 which is moved forward with the forward movement of the slider 82 is operative
to supply the bullet holding chamber 73 with the next sham bullet BB.
[0085] As describe above, the hammer 74 is rotated in the
b direction to the cocked position by the rear end portion 82A of the slider 82 moving
backward to the most retreated position, as shown in Fig. 12, for making a preparation
for shooting the next sham bullet BB.
[0086] When the hammer 74 is shifted to the decocked position from the cocked position as
shown in Fig. 12 without shooting the shame bullet BB, under the situation in which
the upper end portion 92A of the rotary lever 92 is released from the engagement with
the lower portion of the hammer 74, the hammer 74 put in the cocked position is rotated
manually at low speed in the
a direction with the center of rotation on the axis 85, as shown in Fig. 16. With such
low speed rotation of the hammer 74 in the
a direction from the cocked position, the movable linking member 90 attached with the
axis 91 to the hammer 74 is also rotated counterclockwise in Fig. 16 at the low speed.
Since the movable linking member 90 is rotated at the low speed and therefore the
force of inertia acting upon the movable linking member 90 is so small, the movable
linking member 90 having the rear end portion 90A thereof pushed by the pushing pin
member 89 is rotated clockwise in Fig. 16 with the center of rotation on the axis
91 relatively to the hammer 74 so as to be kept in the condition wherein the upper
side of the front end portion 90B of the movable linking member 90 is in contact with
the pin member 94 from the lower side. Consequently, the front end portion 90B of
the movable linking member 90 does not come into contact with the rear end portion
of the rod 106 constituting the movable valve 99, as shown in Fig. 16.
[0087] When the hammer 74 having been rotated manually at the low speed in the
a direction with the center of rotation on the axis 85 reaches the decocked position
in which the rear end portion 82A of the slider 82 is in contact with the upper portion
of the hammer 74, as shown in Fig. 11, the movable linking member 90 having the rear
end portion 90A thereof with which the pushing pin member 89 is in contact and the
front end portion 90B thereof, the upper side of which is in contact with the pin
member 94, is put in an upper position for causing the front end portion 90B not to
come into contact with the rear end portion of the rod 106 constituting the movable
valve 99. Accordingly, such a situation that the movable linking member 90 moves the
movable valve 99 forward is not brought about when the hammer 74 has reached the decocked
position as shown in Fig. 11.
[0088] As a result, the hammer 74 is put in the decocked position and the movable valve
99 keeps the gas leading passage 98 closed, as shown in Fig. 11, so that the supply
of gas from the pressure accumulating chamber 97 through the gas leading passage 98
and the connecting passage 100 to the bullet holding chamber 73 is not carried out
and therefore the sham bullet BB put in the bullet holding chamber 73 is not shot.
That is, the hammer 74 put in the cocked position is shifted to be put in the decocked
position without shooting the sham bullet BB.
[0089] When the hammer 74 is put in the decocked position, as shown in Fig. 11, the rear
end portion 82A of the slider 82 is in contact with the upper portion of the hammer
74 to position the hammer 74 in the decocked position. Accordingly, the hammer 24
is subjected to the mechanical positioning by the rear end portion 32A of the slider
32 to be kept in the decocked position with certainty, so that, even if a relatively
large pushing force is exerted to the hammer 74 from behind, such a situation that
the hammer 74 pushes undesirably the movable linking member 90 to cause the movable
valve 99 to make the gas leading passage 98 open undesirably is surely avoided.
[0090] The structure including the hammer 24, the rear end portion 32A of the slider 32,
the movable linking member 43, the gas leading passage 58, the connecting passage
59 and the movable valve 50 in the first embodiment shown in Fig, 3 and the structure
including the hammer 74, the rear end portion 82A of the slider 82, the movable linking
member 90, the gas leading passage 98, the connecting passage 100 and the movable
valve 99 in the second embodiment shown in Fig, 10 are provided for representing just
examples of the gas supplying mechanism in the gas powered toy gun according to the
present invention and it should be understood that the present invention is not limited
to these structures.