[0001] This invention relates to electrical power assisted steering systems of the kind
in which an electrical motor is adapted to apply an assistance torque to a steering
component such as a steering column so as to reduce the driver effort required to
control the vehicle.
[0002] In a simple electric power assisted steering system a torque sensor is provided which
is arranged so that the level of torque in a steering column is measured. From this
measurement a controller calculates the value of a torque demand signal which includes
an assistance torque component that is indicative of the torque that is to be generated
by an electric motor attached to the steering column. The motor applies an assistance
torque to the column of the same sense as that demanded by the driver and thus reduces
the effort needed to turn the wheel.
[0003] A problem with this simple arrangement occurs in certain driving manoeuvres which
excite a vehicle yaw mode transient response - leading to so-called "fish-tailing"
of the vehicle. These manoeuvres are typically the result of "unsupported" driver
actions on the handwheel such as rotational "flicks" where the driver applies a rapid
handwheel angle change but does not follow it through with any substantial applied
torque or perhaps releases the handwheel after initiating a rapid turn.
[0004] In such circumstances it is desirable that the handwheel returns to the central "straight-ahead"
position quickly and with a minimum amount of overshoot or oscillation. In general,
however, geometric and inertial effects of the steering system contribute to a free
mode yaw response that is lightly damped and quite oscillatory - particularly at high
vehicle speeds.
[0005] It is known in the art to overcome this problem by including a damping component
within the torque demand signal that is used to drive the motor. This damping component
in some sense mimics the mechanical phenomenon of viscous friction through software
by generating a component of torque demand that is a function of the handwheel velocity.
The damping component generally increases in magnitude as a function of steering angular
velocity from zero torque at zero rotational speed to a maximum at some arbitrary
maximum speed. In effect, the damping component reduces the actual torque output by
the motor, and hence the amount of assistance, in a particular instance when the velocities
are high. This gives increased damping and hence stability at high vehicle speeds.
[0006] It is further known to provide an electric power assisted steering system in which
the damping component is a function of the torque carried by as well as angular velocity
of the steering column with the damping component being reduced at low torques compared
to the magnitude of the damping component at high torques. Thus, in hands free manoeuvres
where no torque is present in the column the damping will be relatively high and yet
be lower during hands on manoeuvres in which torque is generally present in the column.
[0007] The reduction of damping at low torques in this way will always be a compromise between
the requirements of damping during hands on manoeuvres and hands off manoeuvres. In
order to minimise the intrusion of damping during hands on manoeuvres it has been
proposed to make the threshold at which the damping switches from a high value to
a low value very close to zero torque. This has been found to minimise the intrusion
of the damping during hands on manoeuvres.
[0008] The use of a very low switching threshold value, whilst generally presenting a good
steering feel, can produce some undesired effects during a swerve or rapid lane change
in which the driver is holding on to the wheel (hands on) and rapidly rotates the
wheel first one way and then back in the other direction. In this type of manoeuvre
the driver will be demanding rapid oscillatory changes in the vehicle direction over
time, and the steering wheel velocity and the torque applied to the wheel will conform
to an approximately sinusoidal pattern. During a swerve there will be moments when
the driver applied torque and the velocity will peak and also when the torque passes
through zero torque on at least one occasion. The low threshold will ensure that no
undesired damping is present at all times in this type of manoeuvre except for a band
around the zero torque crossing in which case the damping will suddenly increase as
the torque approaches zero and then decrease after the zero crossing. In effect, the
system is confused into thinking that the point around the zero torque crossing corresponds
to a hands off situation in which damping is needed. This is illustrated in Figures
7(a) and 7(b) which are plots of column position and damping torque over time during
a simulated series of swerves of a small passenger type car. Feeding a frequency swept
sinusoidal input into a model of the system simulated the swerving.
[0009] We aware of the European Patent Application published as
EP 1 170 196, which discloses an electric power assisted steering system where a damping component
is subtracted from the assistance torque signal, the damping component being a function
of the steering column velocity and the column torque. As such, it forms the pre-characterising
portion of claim 1. We are also aware of the Japanese patent application published
as
JP2001-278084, which discloses an electric power assisted steering system in which a damping signal
is deducted from an assist torque.
[0010] An object of the present invention is to ameliorate the above problem associated
with the prior art steering system.
[0011] In accordance with a first aspect the invention we provide an electric power assisted
steering system comprising a steering mechanism (5) which operatively connects a steering
wheel to the road wheels of the vehicle, a torque sensing means (6) adapted to produce
a first output signal (T) indicative of the torque carried by a portion of the steering
mechanism (5), a velocity sensing means (6) for producing a second output signal (ω)
indicative of the angular velocity of the steering wheel, an electric motor (1) operatively
connected to the steering mechanism (5), a signal processing unit (7) adapted to receive
the first and second signals and to produce a torque demand signal (8) representative
of a torque to be applied to the steering mechanism (5) by the motor (1), and a motor
drive stage (9) adapted to provide a drive current to the motor (1) responsive to
the torque demand signal (8), the signal processing unit being adapted to generate
a torque demand signal (8) that comprises a steering assistance component (10) which
is dependent upon the first signal and comprises a damping component (11) that varies
as a function of the values of the first output signal (T) and the second output signal
(ω), and characterised in that the steering system further comprises a difference
means (21) for determining the difference in value of the torque (T) carried by a
portion of the column (5) between two points in time to produce a third output signal
and in that the torque demand signal generated by the processing unit is additionally
dependent upon the third output signal dT, and in which the signal processing unit
generates the damping component by generating a first intermediate value which is
a function of the second output signal (w), a second intermediate value by producing
a scaling value that is a function of the first output signal (T), and a third intermediate
value by producing a scaling value that is a function of the third output signal (dT),
and multiplying the first intermediate value with the second intermediate value and
the third intermediate.
[0012] By making the damping component dependent upon the difference in torque in the column
over time as well as column velocity and torque it is possible to distinguish between
a steady state of zero torque in the column and a zero crossing and make the damping
value generated different in each case.
[0013] It is preferred that the damping component and assistance component are combined
using an additive function. By this we may mean that the two components are added
together or that one is subtracted from the other. It is most preferred that the damping
component is subtracted from the assistance component as this provides for a simpler
understanding of the components-an increase in assistance component means more assistance
is provided and an increase in damping component will result in more "damping" being
applied.
[0014] An assistance component can be produced which is independent of the output of the
second and third output signals. It may be produced by applying a scaling function
to the first output signal. This may be achieved by passing the first output signal
(torque) through an amplifier.
[0015] The assistance component may generally increase with increasing torque applied by
the driver. The assistance component may be a function of other variables such as
vehicle speed.
[0016] The output of the difference means provides a measure of the rate of change of torque.
An output signal may be produced at regular time intervals, or in a most advantageous
arrangement, the difference means may comprise a differentiator which may differentiate
the torque value represented by the first output signal. The difference means may
produce the third output signal by differentiating the second output signal.
[0017] Such a differentiator may in effect produce a continuous output indicating the rate
of change since in effect the two points of time used will be infinitely close together.
[0018] The torque signal may be filtered prior to differentiating using a low pass filter.
The differentiating and filtering may be performed in a single stage using a function
which may take the form:

where ω, is the low pass cut off frequency of the filter and s is the Laplace transform.
The use of a filter is advantageous where the torque signal is noisy. The cut-off
may be set to be at or slightly above the highest expected rate of change that could
arise due to the movement of the wheel by the driver, i.e. typically about 0.1 to
5Hz.
[0019] The magnitude of the damping component preferably generally increases over a range
of steering velocity values bounded by a first velocity and a second, higher, velocity.
Thus, as steering velocity is increased more damping is introduced. The first velocity
may correspond to zero column velocity. The second velocity may correspond to the
maximum expected column velocity or some other arbitrarily selected value. Alternatively,
a deadband may be provided whereby the damping component value remains at or about
zero over a range of velocities bounding zero velocity. The width of this deadband
may be varied in use, and may for example be varied as a function of vehicle speed
or another measured parameter.
[0020] The magnitude of the damping component may generally increase linearly as a function
of column velocity over the whole or a part of the range of values. Thus, the value
of the damping component may become generally higher as the angular velocity of the
steering wheel increases. However, a non-linear relationship may exist between velocity
of the steering wheel and the damping component value.
[0021] In the preferred arrangement the rate of increase of the magnitude of the damping
component between the first and second values preferably decreases as a function of
applied torque.
[0022] The scaling value may vary from a maximum value at zero applied torque to a minimum
value at a predetermined maximum applied torque. In this case, for torque values at
or above the maximum then a zero valued damping component will be produced.
[0023] The scaling value may be adapted to be substantially zero valued over a range of
measured torque values bounding zero torque. This provides a deadband either side
of zero torque about which for a given steering wheel velocity a maximum damping component
is produced, improving steering feel for high speed on centre manoeuvres.
[0024] In a further refinement the width of the deadband may be varied as a function of
the speed of the vehicle to which the steering system is fitted. A measurement of
vehicle speed may therefore be provided to a third input of the signal processor.
[0025] The difference value may be greater at zero rate of change than at higher rates of
change. It may vary between a maximum value at zero rate of change and a minimum value
at a maximum predetermined rate of change.
[0026] A high rate of change during normal driving of a vehicle will typically occur on
a zero torque crossing during a hands on manoeuvre. The above arrangement reduces
the scaling factor in this situation and reduces the intrusion of damping in hands
on manoeuvres. A zero rate of change will typically correspond to a hands off manoeuvre
in which case the scaling value is not reduce and damping levels kept relatively high.
Thus, the spike in damping that occurred in the prior art at the zero crossing in
a swerve can be eliminated since a zero crossing in a swerve and a hands off manoeuvre
can be distinguished from one another.
[0027] In an alternative not part of the invention, the signal processor may calculate the
value of the damping component for any given combination of torque and steering wheel
velocity from entries in a look-up table. In this case, each or specific combinations
of steering velocity and driver input torque will access a specified value stored
in the table.
[0028] In an alternative not part of the invention, the value of the damping component may
be derived by entering the velocity, torque and optionally vehicle speed values into
a suitable equation.
[0029] Whilst the provision of a damping component that is a function of torque as well
as angular velocity of the steering column provides appropriate levels of damping
during "hands-on" slalom manoeuvres it can, in certain circumstances, induce unwanted
torque variations in the steering column shaft. For example, when a high frequency
driver applied torque is generated, or the column kicks back due to impacts on the
road wheels, the torque dependent damping component can interact with the applied
torque setting up an unpleasant oscillation. Thus, the driver applied torque can affect
the damping torque which in turn affects the driver applied torque and so on.
[0030] In a refinement, to ameliorate such an effect the damping component may be filtered
to remove high frequency variations in the damping component caused by high frequency
changes in the column torque. Thus, the system may include limiting means adapted
to limit the rate of change of the damping component due to corresponding changes
in column torque to a predetermined maximum rate.
[0031] Preferably, the rate limiting means may comprise a filter. This may comprise a lower
pass filter, when in one arrangement may have a cut-off frequency of approximately
3Hz (Hertz).
[0032] In a most convenient arrangement, where the damping component comprises the product
of a scaling value that is a function of torque and an intermediate damping value
that is a function of the column velocity, the limiting means may be arranged to limit
the rate of change of the scaling value over time. The scaling value may be low-pass
filtered prior to multiplication by the intermediate damping value to generate the
damping component.
[0033] The low-pass filter may be a frequency domain filter but may be of any known kind,
typically a discrete digital filter implemented on a microprocessor. Of course, any
processing of the scaling value which limits the maximum rate of change of the scaling
value over time could be employed.
[0034] It is most preferred that the torque dependent scaling factor that may be used to
generate the damping value is scaled by a value dependent upon the rate of change
of torque prior to any such frequency domain filtering.
[0035] There will now be described, by way of example only, one embodiment of the present
invention with reference to the accompanying drawings of which:
Figure 1 is a schematic diagram of an electric power assisted steering system in accordance
with the present invention;
Figure 2 is a block diagram illustrating the functional steps undertaken within the -signal
processing unit of the system of Figure 1;
Figure 3 illustrates the relationship between the torque applied by the driver and the assistance
torque value generated;
Figure 4 illustrates the relationship between the damping component and the column velocity;
Figure 5 illustrates the relationship between the value of the damping component and driver
applied torque; and
Figure 6 is a block diagram illustrating an alternative set of functional steps undertaken
with the signal processing unit of the system of Figure 1;
Figure 7(a) is a plot of column position against time and (b) is a plot of damping torque against
time for a prior art steering system as fitted to a passenger vehicle travelling at
70kph subjected to a simulated swept sinusoidal wheel movement; and
Figure 8(a) is a plot of column position against time and (b) is a plot of damping torque against
time for a steering system in accordance with the present invention as fitted to the
same passenger vehicle travelling at 70kph used for the results of Figure 7(a) and
7(b).
[0036] An electric power assisted steering system is illustrated in Figure 1 of the accompanying
drawings. The system comprises an electric motor 1 which acts upon a drive shaft 2
through an (optional) gearbox 3. The drive shaft 2 terminates with a worm gear 4 that
co-operates with a wheel provided on a portion of a steering column 5 or a shaft operatively
connected to the steering column.
[0037] The steering column 5 carries a torque sensor 6 that is adapted to measure the torque
carried by the steering column that is produced by the driver of the vehicle as the
steering wheel (not shown) and hence steering column is turned against the resisting
force provided by the vehicles road wheels (also not shown). The output signal T from
the torque sensor 6 is fed to a first input of an electric circuit which includes
a signal processing means 7. This is typically an ASIC dedicated integrated circuit.
[0038] An angular velocity sensor is also provided on the steering column shaft. As shown
in Figure 1 this is an integral part of the torque sensor 6. This produces an output
signal indicative of the angular velocity ω of the shaft. The output from the velocity
sensor is fed to a second input of the electric circuit 7.
[0039] Furthermore a column position sensor is provided which produces an output signal
N
col indicative of the angular position of the steering column.
[0040] Three input values are passed to the signal processor: column velocity ω, column
angular position N
col and column torque T.
[0041] The circuit 7 acts upon the three input signals to produce, as its output, a torque
demand signal 8 that is passed to a motor controller 9. The motor controller 9 converts
the torque demand signal 8 into drive currents for the electric motor 1.
[0042] The value of the torque demand signal 8 corresponds to the amount of assistance torque
to be applied to the steering column by the electric motor 1. The value will vary
from a minimum value corresponding to maximum output torque for the motor in one sense,
through zero torque when the demand signal is zero, to a maximum motor torque of the
opposite sense.
[0043] The motor controller 9 receives as its input the torque demand signal and produces
currents that are fed to the motor to reproduce the desired torque at the motor drive
shaft 2. It is this assistance torque applied to the steering column shaft 5 that
reduces the effort needed by the driver to turn the wheel.
[0044] Figure 2 illustrates the functional steps undertaken by the circuit 7 in producing
the torque demand signal 8. It can be seen that the torque demand signal 8 is produced
as two components: an assistance torque component 10 and a damping component 11. These
two components 10,11 are additively combined within the circuit to form the final
torque demand signal 8.
[0045] The assistance torque component 10 is derived as a function of the torque in the
steering column as measured by the torque sensor 6. The relationship between the measured
torque and the assistance signal is essentially linear as shown in the plot of Figure
3. However, other possible relationships may be used to map the torque to the assistance
signal. In both cases, as torque increases the magnitude of the assistance signal
increases. It will also be understood that the assistance torque signal 10 may be
dependent upon other parameters such as vehicle speed if required. In that case it
is typical to reduce the value of the assistance torque signal 10 at high speeds to
enhance stability and increase it at very low speeds to ease parking manoeuvres.
[0046] The damping component 11 is produced as a function of the measured torque, the rate
of change of torque, column position and the column velocity. As shown in Figure 4,
an intermediate damping signal 12 is produced as a linear function of column velocity
column velocity ω and column absolute angle position N
col to introduce a position dependent deadband about the straight ahead position of the
steering column.
[0047] The intermediate damping signal 12 increases in value from zero at zero column velocity
to a maximum value at a predetermined column velocity (typically 2 revolutions per
second). Of course, for different applications both the peak damping value and the
velocity corresponding to this value may be varied. Above 2 revolutions per second
the intermediate damping signal value remains constant. A deadband is also provided
around zero velocity which may be of variable width. Thus, the value of the damping
component remains at or about zero for a range of velocities within the deadband.
[0048] The intermediate damping signal 12 is then modified as a function of torque by calculating
another intermediate damping signal which includes a scaling value 13 and multiplying
the intermediate damping signal 12 by the scaling value 13 using a multiplier 14.
[0049] As shown in Figure 2 of the accompanying drawings, the scaling value 13 is produced
by calculating an initial scaling value 15 which is a function of torque, a torque
difference value 16 which is multiplied 17 with the initial scaling value 15 to produce
an intermediate damping value 16, and then passed through a filter 18 prior to combining
with the other intermediate damping signal 12.
[0050] The initial scaling value 15 is calculated by determining the magnitude 19 of the
torque and mapping the magnitude using a suitable map 20 to produce an initial scaling
value 15 that is a function of torque carried by the steering column. The relationship
between the torque and the initial scaling value 16 can be seen in detail in Figure
5 of the accompanying drawings. It increases from unity at zero applied torque to
zero at a predetermined threshold applied torque. A deadband is also provided whereby
the scaling value remains at or around unity for small torque values around zero torque.
The width of the deadband is preferably chosen to exceed the maximum torque that can
arise due to inertia in the system.
[0051] The torque difference value is produced by low pass filtering the torque and differentiating
21 the filtered torque, taking the magnitude 22 of the result of the differentiation
and applying a mapping 23 to the magnitude value. The mapping relationship for the
torque difference value is shown in more detail in Figure 6 of the accompanying drawings.
It takes a maximum unitary value at low rates of change of torque and drops to a minimum
zero value at high rates of change of torque. The transition between these two values
occurs linearly between predetermined lower and upper threshold values of the rate
of change of torque.
[0052] The scaling value and the difference multiplier value are combined in a multiplier
stage 24 to produce a modified scaling factor 25. In practice the effect of applying
the difference multiplier to the scaling factor is to reduce the damping during a
zero torque crossing in a hands on manoeuvre whilst maintaining a useful level of
damping during hands off manoeuvres.
[0053] After producing the modified scaling factor 25 it is passed through a low-pass filter
18 to remove any high-frequency torque dependent variations in value.
[0054] The low-pass filter 18, which is this embodiment has a cut-off frequency of 3Hz,
removes the effect of high speed variation in driver applied torque combing with subsequent
high frequency variations in damping component. In certain circumstances, without
the presence of the low-pass filter, unwanted vibrations may be produced in the steering
column.
[0055] The filter may be implemented in a variety of ways which will be readily appreciated
by the person skilled in the art. A suitable frequency domain filter may be of the
form:

where X is the filtered scaling value.
[0056] The intermediate signal 12 is multiplied by the scaling factor signal 13 in order
to produce the damping component 11. Finally, the signal processor subtracts the damping
component 11 from the assistance torque signal 10 to produce the torque demand signal
8 used to drive the electric motor 1.
[0057] Figure 8(a) and 8(b) of the accompanying drawings illustrate the effect of making
the damping signal dependent upon the difference in torque over time when compared
to an otherwise identical prior art system such as that used to produce the results
shown in Figures 7(a) and (b). The new results are overlain on the old results, clearly
showing that the damping spikes have been reduced.
1. An electric power assisted steering system comprising a steering mechanism (5) which
operatively connects a steering wheel to the road wheels of the vehicle, a torque
sensing means (6) adapted to produce a first output signal (T) indicative of the torque
carried by a portion of the steering mechanism (5), a velocity sensing means (6) for
producing a second output signal (ω) indicative of the angular velocity of the steering
wheel, an electric motor (1) operatively connected to the steering mechanism (5),
a signal processing unit (7) adapted to receive the first and second signals and to
produce a torque demand signal (8) representative of a torque to be applied to the
steering mechanism (5) by the motor (1), and a motor drive stage (9) adapted to provide
a drive current to the motor (1) responsive to the torque demand signal (8), the signal
processing unit being adapted to generate a torque demand signal (8) that comprises
a steering assistance component (10) which is dependent upon the first signal and
comprises a damping component (11) that varies as a function of the values of the
first output signal (T) and the second output signal (ω), and characterised in that the steering system further comprises a difference means (21) for determining the
difference in value of the torque (T) carried by a portion of the column (5) between
two points in time to produce a third output signal and in that the torque demand signal generated by the processing unit is additionally dependent
upon the third output signal dT, and in which the signal processing unit generates
the damping component by generating a first intermediate value which is a function
of the second output signal (w), a second intermediate value by producing a scaling
value that is a function of the first output signal (T), and a third intermediate
value by producing a scaling value that is a function of the third output signal (dT),
and multiplying the first intermediate value with the second intermediate value and
the third intermediate.
2. The system of claim 1 in which the damping component (11) and assistance component
(10) are combined using an additive function.
3. The system of claim 1 or claim 2 in which the assistance component (10) is produced
independently of the output of the second (ω) and third output signals by applying
a scaling function to the first output signal.
4. An electric power assisted steering system according to claim 1 in which the difference
means (21) comprises a differentiator which differentiates the torque value represented
by the first output signal (T).
5. An electric power assisted steering system according to claim 4 in which the torque
signal (T) is filtered prior to differentiating using a low pass filter.
6. An electric power assisted steering system according to claim 5 in which the cut-off
frequency is set to be at or slightly above the highest expected rate of change that
could arise due to the movement of the wheel by the driver.
7. An electric power assisted steering system according to any preceding claim in which
the magnitude of the damping component (11) generally increases over a range of steering
velocity values (ω) bounded by a first velocity and a second, higher, velocity.
8. An electric power assisted steering system according to claim 7 in which the first
velocity corresponds to zero column velocity.
9. An electric power assisted steering system according to claim 7 in which a deadband
is provided whereby the damping component value remains at or about zero over a range
of velocities (ω) bounding zero velocity.
10. An electric power assisted steering system according to any one of claims 7 to 9 in
which the rate of increase of the magnitude of the damping component (11) between
the first and second values decreases as a function of applied torque (T).
11. An electric power assisted steering system according to claim 1 in which the scaling
value (20) varies from a maximum value at zero applied torque to a minimum value at
a predetermined maximum applied torque and in which, for torque values at or above
the maximum, a zero valued damping component will be produced.
12. An electric power assisted steering system according to claim 11 in which the scaling
value (20) is adapted to be substantially zero valued over a range of measured torque
values bounding zero torque.
13. An electric power assisted steering system according to claim 11 in which the difference
value (23) is greater at zero rate of change than at higher rates of change.
14. An electric power assisted steering system according to claim 11 in which the difference
value (23) varies between a maximum value at zero rate of change and a minimum value
at a maximum predetermined rate of change.
15. An electric power assisted steering system according to any preceding claim in which
the damping component (11) is filtered to remove high frequency variations in the
damping component (11).
1. Eine elektrische Servolenkung, die einen Lenkungsmechanismus aufweist, (5) der betriebsfähig
ein Lenkrad mit den Laufrädern des Fahrzeugs verbindet, eine Drehmomentmessvorrichtung
(6), die so angepasst ist, dass sie ein erstes Ausgangssignal (T) erzeugt, das das
Drehmoment, das von einem Teil des Lenkungsmechanismus (5) ausgeführt wird, anzeigt,
eine Geschwindigkeitsmessvorrichtung (6) für die Erzeugung eines zweiten Ausgangssignals
(ω), das die Winkelgeschwindigkeit des Lenkrades anzeigt, einen Elektromotor (1),
der betriebsfähig mit dem Lenkungsmechanismus (5) verbunden ist, eine Signalverarbeitungseinheit
(7), die so angepasst ist, dass sie das erste und zweite Signal empfangen und ein
Drehmomentanforderungssignal (8) erzeugen kann, das ein auf den Lenkungsmechanismus
(5) durch den Motor (1) anzuwendendes Drehmoment repräsentiert, und eine Motorantriebsstufe
(9), die so angepasst ist, dass sie dem Motor (1) einen Ansteuerungsstrom bereitstellen
kann, der auf das Drehmomentanforderungssignal (8) reagiert, die Signalverarbeitungseinheit,
die so angepasst ist, dass sie ein Drehmomentanforderungssignal (8) erzeugt, das eine
Lenkassistenzkomponente (10) aufweist, die vom ersten Signal abhängt, und eine Dämpferkomponente
(11) aufweist, die abhängig von den Werten des ersten Ausgangssignals (T) und des
zweiten Ausgangssignals (ω) variiert, und dadurch gekennzeichnet, dass das Lenkungssystem darüberhinaus eine Differenzvorrichtung (21) für die Bestimmung
der Differenz im Wert des Drehmoments (T) aufweist, das von einem Teil der Säule (5)
zwischen zwei Zeitpunkten ausgeführt wird, um ein drittes Ausgangssignal zu erzeugen,
und dadurch dass das Drehmomentanforderungssignal, das von der Verarbeitungseinheit
erzeugt wird, zusätzlich vom dritten Ausgangssignal dT abhängt, und in dem die Signalverarbeitungseinheit
die Dämpferkomponente erzeugt, durch die Erzeugung eines ersten Zwischenwerts, der
eine Funktion des zweiten Ausgangssignals (ω) darstellt, eines zweiten Zwischenwerts
durch die Erzeugung eines Skalierungswerts, der eine Funktion des ersten Ausgangssignals
(T) darstellt, und eines dritten Zwischenwerts durch die Erzeugung eines Skalierungswerts,
der eine Funktion des dritten Ausgangssignals (dT) ist, und die Multiplikation des
ersten Zwischenwerts mit dem zweiten Zwischenwert und dem dritten Zwischenwert.
2. Das System gemäß Anspruch 1, bei dem die Dämpferkomponente (11) und die Assistenzkomponente
(10), unter Verwendung einer additiven Funktion, kombiniert werden.
3. Das System gemäß Anspruch 1 oder Anspruch 2, bei dem die Assistenzkomponente (10),
unabhängig vom Ausgang des zweiten (ω) und dritten Ausgangssignals, durch Anwendung
einer Skalierungsfunktion auf das erste Ausgangssignal erzeugt wird.
4. Eine elektrische Servolenkung gemäß Anspruch 1, bei der die Differenzvorrichtung (21)
einen Differenzierer aufweist, der den Drehmomentwert, der vom ersten Ausgangssignal
(T) repräsentiert wird, differenziert.
5. Eine elektrische Servolenkung gemäß Anspruch 4, bei der das Drehmomentsignal (T) vor
der Differenzierung durch Verwendung eines Tiefpassfilters gefiltert wird.
6. Eine elektrische Servolenkung gemäß Anspruch 5, bei der die Grenzfrequenz so festgelegt
wird, dass sie bei oder leicht über der höchsten zu erwartenden Veränderungsrate,
die aufgrund der Lenkradbewegung des Fahrers entstehen kann, liegt.
7. Eine elektrische Servolenkung gemäß eines der vorhergehenden Ansprüche, bei der die
Stärke der Dämpferkomponente (11) im Allgemeinen über einen Bereich von Lenkgeschwindigkeitswerten
(ω) ansteigt, die durch eine erste und eine zweite, höhere, Geschwindigkeit beschränkt
sind.
8. Eine elektrische Servolenkung gemäß Anspruch 7, bei der die erste Geschwindigkeit
der Nullspalt-Geschwindigkeit entspricht.
9. Eine elektrische Servolenkung gemäß Anspruch 7, bei der ein Totband bereitgestellt
wird und wobei der Dämpferkomponentenwert bei oder über Null bleibt, in einem Geschwindigkeitsbereich
(ω), der die Nullgeschwindigkeit beschränkt.
10. Eine elektrische Servolenkung gemäß eines der Ansprüche 7 bis 9, bei der die Steigerungsrate
des Werts der Dämpferkomponente (11) zwischen dem ersten und zweiten Wert, abhängig
vom angewendeten Drehmoment (T), abnimmt.
11. Eine elektrische Servolenkung gemäß Anspruch 1, bei der der Skalierungswert (20) von
einem Höchstwert eines bei Null angewendeten Drehmoments zu einem Mindestwert bei
einem vorbestimmten maximal angewendeten Drehmoment variiert und bei der, für die
Drehmomentwerte bei oder über dem Höchstwert, eine nullwertige Dämpferkomponente erzeugt
wird.
12. Eine elektrische Servolenkung gemäß Anspruch 11, bei der der Skalierungswert (20)
so angepasst ist, dass er im Wesentlichen über einen Bereich gemessener Drehmomentwerte,
die an ein Null-Drehmoment gebunden sind, nullwertig ist.
13. Eine elektrische Servolenkung gemäß Anspruch 11, bei der der Differenzwert (23) bei
der Null-Änderungsrate größer ist als bei höheren Änderungsraten.
14. Eine elektrische Servolenkung gemäß Anspruch 11, bei der der Differenzwert (23) zwischen
einem Höchstwert bei der Null-Änderungsrate und einem Mindestwert bei einer maximalen
vorbestimmten Änderungsrate variiert.
15. Eine elektrische Servolenkung gemäß eines der vorhergehenden Ansprüche, bei der das
Dämpferelement (11) gefiltert wird, um Hochfrequenzvariationen in der Dämpferkomponente
(11) zu entfernen.
1. Un système de direction assistée électrique comprenant un mécanisme de direction (5)
qui raccorde de manière opérationnelle un volant de direction aux roues de route du
véhicule, un moyen de détection de couple (6) adapté de façon à produire un premier
signal en sortie (T) indicatif du couple supporté par une partie du mécanisme de direction
(5), un moyen de détection de vélocité (6) destiné à la production d'un deuxième signal
en sortie (ω) indicatif de la vélocité angulaire du volant de direction, un moteur
électrique (1) raccordé de manière opérationnelle au mécanisme de direction (5), une
unité de traitement de signal (7) adaptée de façon à recevoir les premier et deuxième
signaux et à produire un signal de demande de couple (8) représentatif d'un couple
à appliquer au mécanisme de direction (5) par le moteur (1), et un étage d'entraînement
de moteur (9) adapté de façon à fournir un courant d'attaque au moteur (1) en réponse
au signal de demande de couple (8), l'unité de traitement de signal étant adaptée
de façon à générer un signal de demande de couple (8) qui comprend un composant d'assistance
à la direction (10) qui dépend du premier signal et qui comprend un composant d'amortissement
(11) qui varie en fonction des valeurs du premier signal en sortie (T) et du deuxième
signal en sortie (ω), et caractérisé en ce que le système de direction comprend en outre un moyen de calcul de différence (21) destiné
à la détermination de la différence en valeur du couple (T) transporté par une partie
de la colonne (5) entre deux points temporels de façon à produire un troisième signal
en sortie et en ce que le signal de demande de couple généré par l'unité de traitement dépend de plus du
troisième signal en sortie dT, et où l'unité de traitement de signal génère le composant
d'amortissement par la génération d'une première valeur intermédiaire qui est une
fonction du deuxième signal en sortie (ω), d'une deuxième valeur intermédiaire par
la production d'une valeur de graduation qui est une fonction du premier signal en
sortie (T), et d'une troisième valeur intermédiaire par la production d'une valeur
de graduation qui est une fonction du troisième signal en sortie (dT), et la multiplication
de la première valeur intermédiaire par la deuxième valeur intermédiaire et la troisième
valeur intermédiaire.
2. Le système selon la Revendication 1 dans lequel le composant d'amortissement (11)
et le composant d'assistance (10) sont combinés au moyen d'une fonction d'addition.
3. Le système selon la Revendication 1 ou 2 dans lequel le composant d'assistance (10)
est produit indépendamment de la production en sortie des deuxième (ω) et troisième
signaux en sortie par l'application d'une fonction de graduation au premier signal
en sortie.
4. Un système de direction assistée électrique selon la Revendication 1 dans lequel le
moyen de calcul de différence (21) comprend un différentiateur qui différencie la
valeur de couple représentée par le premier signal en sortie (T).
5. Un système de direction assistée électrique selon la Revendication 4 dans lequel le
signal de couple (T) est filtré avant la différenciation au moyen d'un filtre passe-bas.
6. Un système de direction assistée électrique selon la Revendication 5 dans lequel la
fréquence de coupure est définie de façon à se situer au niveau de ou légèrement au-dessus
de la vitesse de modification attendue la plus élevée qui puisse se produire du fait
du déplacement du volant par le conducteur.
7. Un système de direction assistée électrique selon l'une quelconque des Revendications
précédentes dans lequel la magnitude du composant d'amortissement (11) augmente généralement
sur une plage de valeurs de vélocité de direction (ω) délimitée par une première vélocité
et une deuxième vélocité plus élevée.
8. Un système de direction assistée électrique selon la Revendication 7 dans lequel la
première vélocité correspond à une vélocité de colonne nulle.
9. Un système de direction assistée électrique selon la Revendication 7 dans lequel une
zone morte est fournie, grâce à quoi la valeur du composant d'amortissement demeure
à ou autour de zéro sur une plage de vélocités (ω) délimitant la vélocité nulle.
10. Un système de direction assistée électrique selon l'une quelconque des Revendications
7 à 9 dans lequel la vitesse d'accroissement de la magnitude du composant d'amortissement
(11) entre les première et deuxième valeurs diminue en fonction du couple appliqué
(T).
11. Un système de direction assistée électrique selon la Revendication 1 dans lequel la
valeur de graduation (20) varie d'une valeur maximale à un couple appliqué nul à une
valeur minimale à un couple appliqué maximal prédéterminé et dans lequel, pour des
valeurs de couple à ou au-dessus du maximum, un composant d'amortissement à valeur
nulle est produit.
12. Un système de direction assistée électrique selon la Revendication 11 dans lequel
la valeur de graduation (20) est adaptée de façon à être sensiblement à valeur nulle
sur une plage de valeurs de couple mesurées délimitant le couple nul.
13. Un système de direction assistée électrique selon la Revendication 11 dans lequel
la valeur de différence (23) est plus élevée à une vitesse de modification nulle qu'à
des vitesses de modification plus élevées.
14. Un système de direction assistée électrique selon la Revendication 11 dans lequel
la valeur de différence (23) varie entre une valeur maximale à une vitesse de modification
nulle et une valeur minimale à une vitesse de modification maximale prédéterminée.
15. Un système de direction assistée électrique selon l'une quelconque des Revendications
précédentes dans lequel le composant d'amortissement (11) est filtré de façon à supprimer
des variations de fréquence élevées dans le composant d'amortissement (11).