| (19) |
 |
|
(11) |
EP 1 497 116 B9 |
| (12) |
CORRECTED EUROPEAN PATENT SPECIFICATION |
|
Note: Bibliography reflects the latest situation |
| (15) |
Correction information: |
|
Corrected version no 1 (W1 B1) |
|
Corrections, see Claims EN |
| (48) |
Corrigendum issued on: |
|
19.08.2009 Bulletin 2009/34 |
| (45) |
Mention of the grant of the patent: |
|
14.01.2009 Bulletin 2009/03 |
| (22) |
Date of filing: 17.04.2003 |
|
| (51) |
International Patent Classification (IPC):
|
| (86) |
International application number: |
|
PCT/US2003/011861 |
| (87) |
International publication number: |
|
WO 2003/089237 (30.10.2003 Gazette 2003/44) |
|
| (54) |
ULTRA-LONGLIFE, HIGH FORMABILITY BRAZING SHEET
LÖTFOLIE MIT HOHER FORMBARKEIT UND LANGER LEBENSDAUER
FEUILLE DE BRASAGE TRES LONGUE DUREE A FORMABILITE ELEVEE
|
| (84) |
Designated Contracting States: |
|
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
| (30) |
Priority: |
18.04.2002 US 373829 P
|
| (43) |
Date of publication of application: |
|
19.01.2005 Bulletin 2005/03 |
| (60) |
Divisional application: |
|
09000349.2 |
|
09002026.4 / 2065180 |
| (73) |
Proprietor: Alcoa Inc. |
|
Pittsburgh, PA 15212-5858 (US) |
|
| (72) |
Inventor: |
|
- KILMER, Raymond J.,
Alcoa Mill Products, Inc.
Lancaster, PA 17601 (US)
|
| (74) |
Representative: Barton, Matthew Thomas et al |
|
Forrester & Boehmert
Pettenkoferstrasse 20-22 80336 München 80336 München (DE) |
| (56) |
References cited: :
EP-A- 0 823 305 US-A- 4 727 001 US-A- 6 063 510
|
US-A- 4 489 140 US-A- 5 476 725 US-B2- 6 555 251
|
|
| |
|
|
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
Field of the Invention
[0001] This invention relates to brazing sheet with high corrosion resistance in a fully
annealed "O" temper and to the process for making such products. More particularly,
it relates to multiple layer alloy products for applications requiring a high degree
of formability in concert with post-brazed corrosion resistance.
Background of the Invention
[0002] Brazing sheet commonly includes a core alloy bonded to a silicon-containing brazing
alloy. External corrosion resistance is a concern common to many brazed aluminum heat
exchangers. For example, most brazed aluminum plate type evaporators have a coating
applied to the brazed assemblies to aid in corrosion protection. Commonly this is
a hexavalent chromate based coating. These coatings are recognized as the industry
standard from a corrosion resistance standpoint but hexavalent chromium is a carcinogen
and many countries are banning its use in the near future. Hence the necessity for
a highly corrosion resistant base aluminum material is now greater than ever.
[0003] The use of an interlayer as a means of alleviating intergranular corrosion problems
from penetration of Si into the core alloy of brazing sheet and minimizing localized
melting of the core alloy is well documented. United States Patent No.
2,821,014 to Miller describes use of an interliner to avoid in very substantial measure any penetration
and resultant weakening of a core alloy by a brazing filler metal. Retention of the
core alloy after brazing is generally recognized as an important consideration in
the determination of post-brazed corrosion resistance. United States Patent No.
4,586,964 to Finnegan et al. describes a procedure including a full anneal followed by cold working of a 3xxx
series core alloy (i.e., an -H1X temper) to improve post brazed corrosion resistance.
The introduction of cold working after a full anneal can result in recrystallization
of the core alloy which itself provides greater general resistance to Si penetration
and localized erosion during the braze cycle.
[0004] The above approaches recognize that Si diffusion into the core can have deleterious
effects on corrosion resistance. Neither of the approaches, by themselves, identifies
highly corrosion resistant, long-life products.
[0005] An approach to achieving substantially improved corrosion resistance is documented
in United States Patent Nos.
5,037,707 and
5,041,343, both to Fortin et al. These patents describe the use of a low Si containing (less than 0.15 wt.%) 3xxx
series core alloy, fabricated to final gauge without benefit of a substantial homogenization
or interannealing practice, bonded directly to a 4xxx series braze cladding containing
1-15 wt.% Si. A manganese bearing dispersoid band is described as developing within
the core at a core/cladding interfacial region after the brazing cycle due to the
localized diffusion of Si from the 4xxx braze cladding. The Si reduces the local solubility
of Mn and precipitation of the Mn-Si dispersoids (e.g., Al
12(Fe,Mn)
3Si dispersoids) results in the interfacial region of Si diffusion. These Si containing
dispersoids are resistant to reversion during the brazing cycle. The interfacial region
becomes depleted in Mn in solid solution relative to the underlying core alloy. Corrosion
attack is described as occurring preferentially within the band of precipitates before
the main alloy body is attacked. Example 3 of these patents demonstrates that once
the main body is attacked, corrosion occurs quite rapidly through the 3xxx core, perforating
in less than 48 hours. The processes for fabricating products that are back annealed
(referred to in the industry as -H2X type tempers) and fully annealed (referred in
the industry as -0 tempers) with corresponding annealing temperatures are also outlined.
[0006] Alloys relying on the precipitation of dense Mn bearing (e.g., Al
12(Fe,Mn)
3Si) dispersoids for extended corrosion resistance have found broad commercial applications
for products having minimal formability requirements (i.e., in -HXX tempers), for
example in radiator and heater tube applications. However, the practice described
in Patent No.
5,041,343 has not found commercial acceptance for fully annealed tempers as these alloys are
susceptible to localized erosion of the core alloy when subjected to levels of cold
working insufficient to result in recrystallization of the core prior to melting of
the braze cladding. Fully annealed O-tempers are commonly specified for applications
requiring significant formability and hence the material will be subjected to widely
varying degrees of cold work during the forming operation. As a result of this localized
melting (also termed "erosion") of the core, the formation of a dense dispersoid band
in the core alloy adjacent to the cladding is largely compromised. Furthermore, the
braze cladding flow is poor as a result of the enrichment of aluminum from the core
alloy into the braze cladding. The net result is poor brazeability and poor corrosion
behavior. The problems with localized erosion in fully annealed tempers in these alloys
(i.e., alloys where the core alloy does not receive a homogenization and is bonded
directly to a 4xxx braze cladding) are well documented in the literature.
EP 823 305 also discloses a multi-layered braze sheet with a homogenized core 3xxx alloy, a
cladding of 4xxx alloy and an interlayer with 0·5-1·6 Mn in solid solution for precipitating
a dense dispersaid on brazing.
[0007] As a result of the problems associated with localized erosion and its compromising
effects on the development of a consistent and continuous dispersoid band, the 3xxx
core alloy of O-temper brazing sheet products almost universally receives a homogenization
treatment. This homogenization treatment coarsens the size of the average Mn bearing
dispersoid and influences the number and size distribution of the Mn bearing dispersoids
in the core alloy with the net result of promoting the ease of recrystallization and/or
recovery of the core during the brazing cycle. After homogenization, there are fewer
small Mn particles that can revert during the braze cycle, significantly lowering
the Mn levels in solid solution. This helps to alleviate localized erosion in formed
parts but largely mitigates the development of a dense and continuous dispersoid band
as an effective means of corrosion protection.
[0008] Hence there exists a need for an alloy and process to produce an alloy that is supplied
in a fully annealed temper, can be subjected to a broad spectrum of forming strains,
can be exposed to a brazing event and subsequently develops a continuous, dense dispersoid
band with minimal erosion of the core alloy. Furthermore there exists a need for an
alloy that retains a high inherent corrosion resistance even after the dispersoid
band region corrodes away. There also is a need for products produced from O-temper
brazing sheet to have exceptional corrosion resistance particularly for use in non-chromate
coated brazed heat exchangers.
Summary of the Invention
[0009] The present invention as given in the claims relates to a multiple layer aluminum
brazing sheet having an Aluminum Association (AA) 3xxx alloy core, an AA 4xxx alloy
braze cladding, and an aluminum alloy interliner therebetween that, when fabricated
in the fully annealed condition (O-temper), can be subjected to a broad spectrum of
strains during the forming operation, be brazed to a component and subsequently forms
a generally continuous and dense dispersoid band in the core in addition to having
an additional sacrificial layer (i.e., the interliner) along with elevated Ti additions
to the core for exceptional post brazed corrosion resistance. The present invention
also relates to the process used to fabricate this sheet. The brazing sheet may be
a fully annealed temper and the interliner may be electrochemically more negative
than the core alloy.
[0010] The 3xxx core is clad with a thin (up to about 60 µm) interliner and a 4xxx braze
cladding. This arrangement allows for interdiffusion of Si from the 4xxx braze cladding
through the interliner to the 3xxx core during a process of brazing a component to
the sheet, resulting in the generation of a continuous dense Mn containing dispersoid
band within the core at the interface between the core and the interliner (hereinafter
the core/interliner interface). The optimum thickness range of the interliner depends
on the braze cycle being employed as diffusion is time and temperature dependent;
longer braze cycles and/or higher brazing temperatures allow for thicker interliners.
Conversely, shorter braze cycles and/or lower brazing temperatures allow for thinner
interliners to be used. The core alloy does not receive a thermal treatment (homogenization
or a treatment above about 525° C such as in a re-heat for roll, interanneal or final
anneal) prior to being subjected to a brazing event.
[0011] The core may be clad on the opposing face with a 1xxx, 3xxx, 5xxx, 6xxx, or 7xxx
alloy or an interliner may be employed on both sides of the 3xxx core, with each interliner
being of similar thickness and composition or purposefully different composition and/or
thickness. The opposing face of the 3xxx core may be bonded to an interliner thicker
than about 60 µm at final gauge which largely mitigates the formation of a Mn containing
dispersoid band after the brazing event. This composition of this interliner may also
purposefully select to promote precipitation of strengthening particles after brazing
and aging.
[0012] The present invention given in the claims also includes a process of producing a
corrosion resistant aluminum brazing sheet product including steps of (a) producing
a composite of an aluminum alloy interliner sandwiched between a 4xxx alloy braze
cladding and a 3xxx alloy core; (b) hot rolling the composite below about 525°C to
metallurgically bond the components of the composite together; and (c) cold rolling
the composite to final gauge without exposure to a thermal treatment. The step of
producing a composite may involve casting the braze cladding, the interliner and the
core alloys as separate ingots, hot rolling the 4xxx braze cladding and interliner
ingots to the appropriate plate thickness and arranging the core ingot and plates
as the composite. Alternatively, the composite may be produced by simultaneously casting
the core alloy and the braze cladding alloy on opposing sides of a solid interliner.
In another embodiment, the composite is produced by continuously casting the core
alloy against the interliner, the interliner being pre-bonded to the braze cladding.
The brazing sheet is then rolled to final gauge and is partially annealed to an -H
temper or -0 temper. Upon brazing of a component to the sheet (referred to herein
as a brazing event), a dense band of Mn containing dispersoid forms in the core at
the core/interliner interface.
[0013] The final brazed component may be age hardenable due to the interdiffusion of solute
(primarily Mg, Si, and Cu) in the interliner and core. Post-brazed and aged tensile
yield strengths above 65MPa and ultimate tensile strength above 165 MPa have been
observed for the brazing sheet of the present invention.
Brief Description of the Drawings
[0014] Figs. 1a, 1b and 1c are each a schematic diagram showing the various embodiments
of the invention;
[0015] Fig. 2 is a photomicrograph of a cross section of a brazing sheet produced according
to the present invention;
[0016] Fig. 3 is a graph of formability of brazing sheet of the present invention;
[0017] Fig. 4 is a graph of formability of brazing sheet of the present invention;
[0018] Fig. 5 is a photomicrograph of a cross section of -O temper brazing sheet made with
a nonhomogenized core alloy and no interliner;
[0019] Fig. 6 is a photomicrograph of a cross section of brazing sheet of the present invention;
and
[0020] Figs. 7a-7i and Figs. 7j-7q are photomicrographs of a prior three later brazing sheet
and a five layer-brazing sheet of the present invention, respectively.
Detailed Description of Preferred Embodiments
[0021] All component percentages herein are by weight percent unless otherwise indicated.
As used herein, the term "substantially free" means that no purposeful additions of
that alloying element were made to the composition, but that due to impurities and/or
leaching from contact with manufacturing equipment, trace quantities of such elements
may, nevertheless, find their way into the final alloy product.
[0022] When referring to any numerical range of values, such ranges are understood to include
about each and every number and/or fraction between the stated range minimum and maximum.
A range of 0.5 to 1.6 wt. % Mn, for example, would expressly include all intermediate
values of about 0.46, 0.47, 0.48, all the way up to and including 1.61, 1.62, 1.63
and 1.64 Mn. The same applies to each other numerical property, relative thickness
and/or elemental range set forth herein.
[0023] The present invention relates to a multiple layer aluminum brazing sheet that, when
fabricated in a fully annealed condition (O-temper) and subjected to a brazing event,
forms a generally continuous and dense dispersoid band in addition to having an additional
sacrificial layer (i.e., the interliner) along with elevated Ti additions in the core
alloy for exceptional post brazed corrosion resistance. The present invention also
relates to processes for fabricating this sheet.
[0024] Referring to Fig. 1, the brazing sheet may be a three, four or five-layered product
including a 4xxx braze cladding 1, a nonhomogenized 3xxx core 3 and an interliner
2 therebetween. A three layered product (Fig. 1a) includes a core 3 bonded to an interliner
2, bonded to a 4xxx braze cladding 1. A four layered product (Fig. 1b) includes a
core 3 bonded on one side to a non braze cladding (e.g., a waterside liner) 4 composed
of an AA 1xxx, 3xxx, 5xxx, 6xxx, 7xxx or 8xxx alloy with the other side of the core
3 bonded to an interliner 2 which in turn is bonded to a 4xxx braze cladding 1. A
five layered product (Fig. 1c) includes a core 3 bonded to interliners 2 and 5 on
both sides thereof with a 4xxx braze cladding 1 bonded to each of the interliners
2 and 5.
[0025] The alloy of the core 3 used in the product of the invention is an aluminum based
alloy containing no more than 0.18 wt.% Si, no more than 0.8 wt.% Fe, from 0.5 wt.%
to 1.6 wt.% Mn, up to 1 wt.% Cu, up to 0.3 wt.% Cr, from 0.01 to 1.5 wt.% Mg, and
up to 0.25 wt.% Ti. Preferably, the core alloy may be an aluminum alloy containing
no more than 0.08 wt.% Si, no more than 0.7 wt.% Fe, from 1 wt.% to 1.5 wt. % Mn,
from 0.2 wt. % to 0.8 wt. % Cu, from 0.01 to 1.5 wt.% Mg and optionally 0.1 wt.% to
0.25 wt.% Ti. The Mg level of the core is largely determined by the brazing method
employed (vacuum or controlled atmosphere brazing (using flux) referred to as CAB),
the flux used (standard Nocolock type or more Mg tolerant flux e.g., Cs-containing
fluxes) and the strength level desired. Superior corrosion resistance is obtained
with alloys containing elevated Ti additions). The effect of Ti on corrosion resistance
of 3xxx alloys in general is well documented. Elevated Ti additions alter the mode
of attack in the underlying core (the core 3 largely unaffected by Si diffusion from
the 4xxx braze cladding 1 during the braze cycle) and are important at extending corrosion
lifetime if the sacrificial regions (residual interliner and dispersoid band regions)
no longer protect the underlying core 3. As such, additions of up to 0.25 wt.% Ti
may be included in the core alloy with additions of 0.1 wt.% to 0.25 wt.% Ti being
preferred. The use of Cr is optional but should generally be kept at a level such
that Mn + Cr + Ti is less than 1.4 wt.% (e.g., up to about 0.3 wt.%). The use of Zr
is optional at up to 0.25 wt.% (e.g., from 0.02 wt.% to 0.25 wt.% Zr). The use of
Ag is optional from 0.01 to 1.0 wt.%.
[0026] The core 3 may be cast via a DC (direct chill) process or may be created by a variety
of methods including but not limited to continuous casting (roll casting, slab casting,
belt casting etc); or via an extrusion process and the like. It is important that
the fabrication practice be such as to minimize the amount of time the material is
exposed to temperatures above 350° C and avoid exposure of the material to temperatures
above 540° C.
[0027] As stated herein, by the absence of a thermal treatment (of the components of the
brazing sheet or of the brazing sheet itself prior to being subjected to a brazing
event) is meant the absence of a homogenization treatment and the absence of a thermal
treatment above about 525° C in a process such as a re-heat for rolling, interanneal
or final anneal or the like. By avoiding such high temperature treatments, Mn in the
core remains in solution. While it is explicitly stated herein that the core alloy
does not receive a thermal treatment (homogenization, interanneal or final anneal)
greater than 525° C during processing, short duration interanneals or final anneals
(i.e., a "flash" anneal, also referred to as a continuous anneal) involving rapid
heating rates (above 50° C/sec) resulting in metal temperatures above 260° C for times
below 30 minutes in duration are allowed as they do not constitute as a thermal treatment.
If the metal temperature were to reach above 525° C for a short duration (less than
about 15 minutes above 525° C) this would not constitute a thermal treatment. In general,
the brazing sheet of the present invention preferably is subjected to hot rolling
and annealing temperatures less than about 485° C and annealing hold periods of less
than about 10 hours.
[0028] The selection of interliner thickness and composition is important in achieving the
desired post braze corrosion resistance and strength. In a product containing two
interliners (Fig. 1c), it should be noted that the chemistry and thickness of the
interliners may be purposefully different from each other. The interliner 2 on the
face of the core 3 requiring the formation of a dispersoid band for high external
corrosion resistance should be thin enough to allow for Si diffusion during the braze
cycle from the 4xxx braze cladding 1 (and potentially from the interliner 2) to the
underlying core 3, yet thick enough to resist localized erosion from the molten braze
cladding 1. Furthermore the resistance to localized erosion of the interliner 2 must
be high, particularly when strained (i.e., worked as a result of a forming operation)
to levels below those which promote recrystallization of the underlying core 3 during
the subsequent brazing event. If the strain levels from the pre-braze forming operation
are high enough to result in local recrystallization of the core 3, the issue of minimum
interliner thickness is moot as the underlying core is generally resistant to localized
erosion. It is recognized that working the material, particularly drawing or stretching
operations prior to brazing, results in localized thinning of the brazing sheet with
concomitant thinning of the interliner. As such, the final interliner thickness of
the formed material will vary throughout the worked part. A primary role of the interliner
is to inhibit localized erosion of the core 3. As described above, this is only an
issue at strain levels below that necessary to promote recrystallization of the core
3, hence at low strain levels which generally translates to areas of the worked part
that are minimally thinned (i.e., generally less than 20% reduction), and as such
the interliner is also minimally thinned hence providing protection against localized
core erosion.
[0029] The interliner may or may not be homogenized. If the interliner alloy contains Mn
than it is generally preferred that the interliner be homogenized to avoid excessive
erosion of the interliner and/or underlying core alloy in the formed part during the
brazing event. Whatever the specific chemistry of the interliner alloy is, its microstructure
must be resistant to localized erosion across a broad spectrum of strains during the
brazing event. The composition of the interliner should be chosen such that the solidus
of the interliner alloy is above 600° C with alloys having higher solidus values preferred.
If the solidus of the interliner is too low, the interliner may have difficulties
surviving a braze cycle due to localized melting. When selecting a specific interliner
chemistry, the effect of solute diffusing from the core and 4xxx braze cladding should
be considered. For the above-mentioned reasons, relatively pure interliners with relatively
low levels of solute are preferred such that the solidus values of the interliners
are above 630° C and generally free from alloying elements forming dispersoids.
[0030] The metallurgical features influencing the inherent resistance of a material to localized
erosion during brazing are well documented. In addition, the thickness and Si content
of the 4xxx braze cladding 1 also influences the extent of localized erosion with
lower Si contents generally preferred to minimize erosion. Furthermore, the actual
brazing times and temperatures influence the localized erosion process as it is highly
dependent on Si diffusion: as a general rule, longer times and higher superheat temperatures
(i.e., temperatures above the liquidus temperature of the cladding) result in more
erosion. It is well understood that brazing time above the solidus temperature of
the braze cladding should be minimized (for most commercial 4xxx braze claddings this
translates to minimizing the time above approximately 570°C) to minimize localized
erosion. Given this, there is no hard and fast absolute minimum thickness for an interliner.
Short braze cycles with low peak temperatures and low Si claddings allow for thinner
interliner(s). Likewise there is no hard and fast rule for maximum thickness although
for practical considerations 60 µm can be considered an upper limit for interliners
allowing for the development of a dispersoid band with suitable thicknesses of about
5-60 µm or about 15-45 µm or about 20-40 µm. For a typical vacuum brazing application
employing an Al-12Si-0.2Mg braze cladding, 30-35 µm is sufficient thickness for many
interliners. Nevertheless, it should be appreciated that the interliner 2 should be
no thicker than necessary to largely mitigate localized erosion of the underlying
core 3. In this way a generally continuous dispersoid band of Mn containing dispersoids
can be generated within the core3 at the core/interliner interface during a brazing
cycle.
[0031] After brazing and concomitant partial erosion of the interliner 2, the electrochemical
potential of the residual interliner (i.e., the interliner left after brazing) is
also important in establishing good corrosion resistance. The interliner 2 should
be anodic to the core 3 and preferably anodic also to the region occupied by the dense
dispersoid band within the core 3 at the interliner/core interface. For example, the
electrochemical potential difference between the core 3 and the interliner 2 is at
least about 25 millivolts. Hence the relationship between the electrochemical potential
of the core 3 and interliner 2 is very important. Additions to the core of Cu, Cr
or Ag can be used to help ennoble the core (i.e., make the core more cathodic). Additions
of Zn, In, or Sn may be used to make the interliner more anodic. It also should be
noted that interdiffusion of solute occurs during brazing and as such the electrochemical
potential relationships after brazing are important. In some cases, additions of Zn
or In may be made to the 4xxx braze cladding 1 to also influence the post brazed electrochemical
potentials.
[0032] For products requiring braze cladding on both sides of the brazing sheet (for example,
plate type evaporator tubeplate), it may be beneficial to vary the chemical composition
and thickness of the interliners It may be desirable to increase the thickness of
the second interliner 5 to over 60 µm (e.g., on the refrigerant side of a plate type
evaporator tubeplate) to largely or mostly inhibit the formation of a dispersoid band
as internal corrosion resistance is generally not a paramount issue. It may be further
desirable to encourage the intermixing of solute during the braze cycle, primarily
Mg, Si and Cu, in sufficient levels to promote a layer of the material that is locally
age hardenable. By doing this, high post braze strengths are possible after allowing
for aging.
[0033] The interliner 2 employed in this invention includes alloys which promote the formation
of a dispersoid band in the core alloy at the interliner/core interface and the interliner
5 of the present invention may also be an alloy promoting the same or an alloy not
promoting a dispersoid band. In general, the addition of dispersoid forming elements
(Mn, Cr, V, Zr etc.) to either interliner type are generally discouraged as they tend
to result in higher degrees of localized erosion in formed parts unless given homogenization
treatments which, for economic reasons, are undesirable. This is not to say that interliners
containing these alloying elements are excluded from consideration, just that their
use is generally less desirable.
[0034] For interliners promoting the formation of a dispersoid band, the material should
contain no more than about 0.9 wt.% Si (e.g., about 0.02-0.9 wt.% Si), no more than
about 2 wt.% Mg, no more than 0.6 wt.% Fe and no more than about 1 wt.% Cu, with no
purposeful additions of Cu above 0.5 wt.% preferred. The addition of Cu, Ag, Zn, In,
or Sn is optional for the establishment of the appropriate electrochemical potential
and potential difference between core and interliner alloys. The addition of Zr is
optional up to about 0.2 wt.% and the addition of Mn is optional up to about 1.7 wt.%.
The addition of Ti is optional up to about 0.25 wt.% (e.g., about 0.1-0.25 wt.% Ti).
Interliners with Si contents up to 0.6 wt.%, Fe levels up to 0.6 wt.% with or without
Cu, Zn or In for the establishment of a desired electrochemical potential (for corrosion)
are especially useful for product to be brazed by vacuum or controlled atmosphere
brazing (CAB) methods. Interliners with Si levels up to about 0.6 wt.%, Mg levels
up to about 0.5 wt.%, Fe levels up to about 0.3 wt.% (e.g., about 0.15 -0.3 wt.% Fe)
with or without Zn, Cu or In for the establishment of a desired electrochemical potential
(for corrosion) are especially useful for product to be brazed by vacuum processes.
In one embodiment of the brazing sheet, the 4xxx braze cladding has no more than about
0.05 wt.% Mg, the interliner has no more than about 0.05 wt.% Mg and the core has
no more than about 0.5 wt.% Mg. Whatever the specific chemistry of the interliner
alloy is, its microstructure must be resistant to localized erosion across a broad
spectrum of strains during the brazing event. The composition of the interliner should
be chosen such that the solidus of the interliner alloy is above 600° C with alloys
having higher solidus values preferred. If the solidus of the interliner alloy is
too low, the interliner 2 may have difficulties surviving a braze cycle due to localized
melting. When selecting a specific interliner chemistry, the effect of solute diffusing
from the core 3 and 4xxx braze cladding 1 should be considered. For the above-mentioned
reasons, relatively pure interliners with relatively low levels of solute are preferred
such that the solidus values of the interliners are above 630° C and generally free
from alloying elements forming dispersoid.
[0035] For interliners not designed for the express purpose of forming a dense dispersoid
band in the core at the core/interliner interface, the aluminum material may contain
no more than about 0.9 wt.% Si (e.g., 0.02-0.9 wt.% Si), no more than about 0.6 wt.%
Fe, no more than about 1 wt.% Cu (e.g., 0.2-1 wt.% Cu), no more than about 0.25 wt.%
Ti (e.g., 0.1-0.2 wt.% Ti), and up to about 1.7 wt.% Mn. The addition of Mg is optional
up to about 1 wt.% for products to be brazed via brazing process tolerant of Mg (e.g.,
vacuum brazing, CAB brazing with fluxes specifically designed to braze Mg bearing
materials, etc.). The dense (Al-Mn-Si-Fe) band of dispersoids forms in the core at
the core/interliner interface due to Si diffusion from the 4xxx cladding and potentially
from the interliner (if the interliner contains Si). As such, it may be desirable
to intentionally add Si to the interliner to promote a dense dispersoid band in the
core at the core/interliner interface.
[0036] Table 1 is included as a summary of the suitable chemistries for the alloys of the
core and for both types of interliners (i.e., those designed to promote formation
of a dense band of Mn containing dispersoids in the core at the core/interliner interface
and those designed to largely avoid the generation of a band of Mn bearing dispersoids).
The preferred composition and preferred relative thickness of each layer of brazing
sheet are summarized in Table 1, with more preferred ranges listed parenthetically
beneath their respective, broader ranges.
Table 1
| |
Interliner to generate a dispersoid band |
Core layer |
Second interliner (not generate dispersoid band) |
| Thickness at final gauge (µm) |
60 max |
Balance |
60-100 |
| (5-60) |
| (20-40) |
(60) |
| Si |
0.9 max |
0.18 max |
0.02-0.9 |
| (0.02-0.9) |
(0.11 max) |
| (0.6 max) |
(0.08 max) |
| (0.4) |
|
| Fe |
0.6 max |
0.8 max |
0.6 max |
| (0.15-0.3) |
(0.10-0.7) |
(0.15-0.3) |
| Mn |
1.7 max |
0.5-1.6 |
1.7 max |
| (1-1.5) |
| Cr |
|
0.3 max |
0.3 max |
| 0.3 max |
Mn +Ti + Cr < 1.4 |
| Cu |
1 max (0.01-1) |
1 max |
0.2-1 |
| (0.01-1) |
| (0.2-0.8) |
| Mg |
Generally dependant on brazing practice |
0.01-1.5 |
1.0 max |
| Zn |
Optional to establish e-chemical potential 2 max |
0.3 max |
Optional to establish e-chemical potential 3 max |
| Ti |
0.25 max |
0.25 max |
0.25 max |
| (0.1-0.25) |
(0.1-0.25) |
|
| Zr |
0.25 max |
0.25 max |
0.25 max |
| (0.02-0.25) |
(0.1-0.2) |
| Other optional elements |
V = 0.2 max |
V = 0.2 max |
V = 0.2 max |
| In =0.2 max |
Ag = 0.01-1.0 |
In = 0.2 max |
| Al and incidental impurities |
Balance |
Balance |
Balance |
[0037] The 4xxx braze cladding 1 includes an alloy containing about 4-18 wt.% Si, up to
about 0.5 wt.% Cu, up to about 2 wt.% Mg, up to about 0.3 wt.% Mn; up to about 0.8
wt.% Fe, up to about 1.5 wt.% Zn, up to about 0.2 wt.% Ti, and up to about 0.4 wt.%
Bi. The cladding percentages for the braze cladding 1 is about 1-30 % of the thickness
of the product at final gauge. Where more than one braze cladding is present (e.g.,
Fig. 1c), the cladding percentages and chemistries of each cladding may be the same
as or different from each other.
[0038] These sheet products may be fabricated via traditional roll bonding practices, or
by continuous casting (one approach is described in United States Patent No.
5,476,725) or by the practices described in a United States Patent Application No.
10/004,041 filed October 23, 2001 entitled "Simultaneous Multi-Alloy Casting", incorporated herein by reference. If
the practice described in United States Patent No.
5,476,725 is employed, the 3xxx core alloy may be fed into the caster as a molten alloy and
rapidly solidified against the surface of the interliner(s). Furthermore it may be
convenient for the interliner and 4xxx braze cladding to be pre-bonded as a composite
sheet product and fed into the caster as the cladding. If the simultaneous multi-alloy
casting practice is used, the interliner alloy(s) described herein are used as the
divider alloy(s) separating the 4xxx braze cladding and 3xxx core alloy in the casting
practice. The core may be about 60-98% of the thickness of the final product. The
final gauge of the brazing sheet may be about 150-5000 µm.
[0039] Although the invention has been described generally above, the particular examples
give additional illustration of the product of the present invention.
Example 1
[0040] The following experiment demonstrates the importance of interliner chemistry and
thickness on the successful generation of a continuous, dense Mn bearing dispersoid
band in the core at the core/interliner interface. Five-layered brazing sheets made
in accordance with the present invention were produced having layers with the compositions
set forth in Table 2. The alloy combinations tested appear in Table 3 along with interliner
thicknesses and data on localized erosion and whether or not a generally continuous
dense dispersoid band was generated. After fabrication of the alloys in Table 3 to
a fully annealed condition, evaporator tubeplates were stamped and subsequently brazed.
These tubeplates, while smaller in total length than commercial evaporator tubeplates,
have all the same basic forming features and to similar scale including deep cup draws,
dimple draws, formation of the outer rails, etc. These tubeplates were formed to be
able to examine a variety of strain levels representative of that seen commercially.
After brazing, sections were taken from the tubeplates, mounted, polished, etched
and examined. If the interliner was, at any point, unable to inhibit localized erosion
of the core alloy leading to the concomitant lack thereof of a continuous and dense
dispersoid band in the core at the core/interliner interface, then it was noted in
Table 3. In some cases each side of the tubeplate was clad with differing interliner
thicknesses to keep the number of fabricated brazing sheet composites to a minimum.
An example of an etched cross section through the fully annealed (O-temper) as produced
sheet is provided as a micrograph in Fig. 2.
[0041] It is clear from the data in Table 3 that interliners with thicknesses below 13 µm
were too thin to protect the nonhomogenized core alloy from localized erosion (Composites
F through L). It is also apparent that Mn additions to 1xxx alloys, even in relatively
dilute levels (0.35 wt.% Mn in Alloy No. 7) negatively impacts the ability of the
interliner to survive during brazing in composites where the interliner is not homogenized
(compare composites D and E). It is also evident that Zr additions to 1xxx (0.18 wt.%
in Alloy No. 5) also negatively impacts the ability of the interliner to survive a
brazing cycle (although to a much lesser degree) in composites where the interliners
were both homogenized and nonhomogenized (compare composites B, C and E). Comparing
the results from Composites A, M, N and O suggests that 3xxx alloys can be used as
interliners provided they are homogenized, thick enough and the 4xxx braze cladding
to interliner thickness ratio is low enough. Regardless of what alloy is used as an
interliner, or how that interliner is processed, it must be in a microstructural state
that is resistant to localized erosion caused by Si diffusion from the 4xxx cladding
during the brazing event. All of the above results suggest that the ideal candidate
is an alloy that can recrystallize easily without fine intermetallic particles to
provide the zener drag to dislocations and grain boundaries that inhibit recrystallization.
This would further suggest that solid solution type alloying elements such as Si,
Cu, Mg etc., provided they are present in relatively dilute levels, should not have
significant deleterious effects to erosion of the interliner. See Example 2.
Table 2
| Alloy No: |
Layer |
Composition (wt.%) |
| Si |
Fe |
Mn |
Cu |
Mg |
Zn |
Ti |
Zr |
In |
| 1 |
core |
0.06 |
0.17 |
0.92 |
0.29 |
0.24 |
0.0 |
0.18 |
0.0 |
0.0 |
| 2 |
core |
0.06 |
0.17 |
0.90 |
0.49 |
0.13 |
0.01 |
0.17 |
0.00 |
0.0 |
| 3 |
core |
0.05 |
0.15 |
0.89 |
0.53 |
0.01 |
0.01 |
0.18 |
0.00 |
0.0 |
| 4 |
interliner |
0.05 |
0.20 |
0.01 |
0.01 |
0.01 |
0.01 |
0.005 |
0.0 |
0.0 |
| 5 |
interliner |
0.12 |
0.19 |
0.05 |
0.06 |
0.01 |
0.03 |
0.02 |
0.18 |
0.0 |
| 6 |
interliner |
0.19 |
0.46 |
0.98 |
0.00 |
0.02 |
0.65 |
0.016 |
0.0 |
0.0 |
| 7 |
interliner |
0.26 |
0.27 |
0.35 |
0.00 |
0.01 |
0.00 |
0.165 |
0.0 |
0.0 |
| 8 |
interliner |
0.10 |
0.16 |
0.00 |
0.01 |
0.05 |
1.0 |
0.01 |
0.10 |
0.0 |
| 9 |
interliner |
0.08 |
0.20 |
1.02 |
0.23 |
0.04 |
0.02 |
0.02 |
0.0 |
0.0 |
| 10 |
interliner |
0.88 |
0.45 |
1.17 |
0.22 |
0.03 |
0.02 |
0.18 |
0.0 |
0.0 |
| 11 |
4xxx braze clad |
10.0 |
0.15 |
0.03 |
0.02 |
0.02 |
0.01 |
0.01 |
0.0 |
0.0 |
| 12 |
4xxx braze clad |
12.0 |
0.20 |
0.05 |
0.05 |
0.18 |
0.08 |
0.02 |
0.0 |
0.0 |
Table 3
| Composite I.D. |
Gauge (µm) |
Alloys used from Table 2 |
Actual Layer Thicknesses (µm) |
Layer Homogenized? |
Interliner Compromised? |
| A |
500 |
12/6/1/6/12 |
61/26/320/36/57 |
yes/yes/no/yes/yes |
yes |
| B |
505 |
12/5/1/5/12 |
52/25/332/36/60 |
yes/no/no/no/yes |
Rarely, at widely spaced locations |
| C |
500 |
12/5/1/5/12 |
63/25/320/37/55 |
yes/yes/no/yes/yes |
Rarely, at widely spaced locations |
| D |
515 |
12/7/1/7/12 |
62/30/324/37/62 |
yes/no/no/no/yes |
yes |
| E |
515 |
12/4/1/4/12 |
56/30/340/35/54 |
yes/no/no/no/yes |
no |
| F |
483 |
11/4/2/4/11 |
72/5/329/5/54 |
yes/no/no/no/yes |
yes |
| G |
483 |
11/4/2/4/11 |
71/7/325/7/73 |
yes/no/no/no/yes |
yes |
| H |
483 |
11/4/2/4/11 |
72/10/319/10/72 |
yes/no/no/no/yes |
yes |
| I |
483 |
11/4/2/4/11 |
72/13/313/13/72 |
yes/no/no/no/yes |
yes |
| J |
483 |
11/8/2/8/11 |
72/13/313/13/72 |
yes/no/no/no/yes |
yes |
| K |
483 |
11/8/2/8/11 |
72/13/313/13/72 |
yes/yes/no/ yes/yes |
yes |
| L |
482 |
11/4/3/11 |
72/5/333/72 |
yes/no/no/yes |
yes |
| M |
483 |
11/9/1/9/11 |
50/40/305/41/47 |
yes/yes/no/yes/yes |
Rarely at widely spaced locations |
| N |
483 |
11/10/2/10/11 |
48/48/292/49/46 |
yes/yes/no/ves/yes |
No |
| O |
484 |
11/10/2/10/11 |
45/43/310/41/45 |
yes/no/no/no/yes |
Yes |
Example 2
[0042] The following testing was performed to shed insight on the role of interliner/core
combinations on pre-braze mechanical properties, formability properties and post braze
properties such as 4xxx braze clad flow, localized erosion of the core alloy and corrosion
resistance. The details of the pre-brazed and post-brazed materials are provided in
Tables 4 through 7. The brazing cycle involved metal temperatures above 590° C for
5 minutes with a peak temperature of 600° C. Formability was assessed via Olsen cup
testing ASTM E-643 and forming limit diagrams (FLDs) were generated in Figs. 3 and
4. Note that in two cases (samples P and U) alloys were annealed to O-temper using
two different final annealing practices - a conventional type anneal and a flash anneal
(noted hereinafter as "FA"). The flash anneal (i.e., rapid heat up through the recrystallization
temperatures) resulted in a finer grain size for all layers of the composite alloy
(4xxx cladding, interliner and core alloys). Hence, the impact of grain size could
be separated from chemistry. The FLDs were calculated and generated off tensile property
measurements of samples taken from the materials parallel to the rolling direction,
along with 45° and 90° to the rolling direction. Information on three layer composite
alloys are provided for reference purposes including a comparison to two three layer
evaporator sheet composites with homogenized core alloys, currently fused commercially,
as well as a three layer composite with a nonhomogenized core. Five layer composites,
of identical chemistry and cladding percentages were fabricated using a process route
whereby one composite had a homogenized core alloy and one composite had a nonhomogenized
core alloy. Homogenizing the core alloy greatly diminishes the density of the dispersoid
band and as such the comparison of the corrosion performance illustrates the importance
of the dense dispersoid band as a contributory element to the corrosion resistance.
The information from testing is presented in Tables 4 through 6.
[0043] It is clear from this data that the use of an interliner between the 4xxx braze cladding
and nonhomogenized core alloy clearly help with cladding flow (compare samples P through
U with Y. Composite Y was highly susceptible to localized core erosion during brazing
and poor cladding flow resulted. A cross section of the tubeplate after brazing is
provided as Fig. 5 which shows an eroded core. A non-eroded core would otherwise have
still occupied about 95 % of thickness of the sheet. In contrast, Fig. 6 shows that
the corrosion resistance is greatly enhanced with the presence of an interliner and
the formation of a continuous dense dispersoid band within the core at the core/interliner
interface, as can be clearly observed in Fig. 6. It is also apparent that braze cladding
flow is similar between five layer composites U through Y (each having a nonhomogenized
core alloy) and three layer composites where the core alloy was homogenized (X and
Z).
[0044] A number of observations can be made from the calculated FLDs. First, a fine grain
size is clearly important for good formability. For example, the average grain size
of the core may be less than about 200 µm x 300 µm x 100 µm in the directions transverse
to the rolling direction, parallel to the rolling direction and in the sheet thickness
direction, respectively. Second, as a general trend, increasing the magnesium content
tends to reduce the FLDs, particularly in the plane strain regime. Lastly, it is possible
to achieve similar forming characteristics between a three layer material with a homogenized
core (sample Z) and a five layer material, with a nonhomogenized core, even with higher
magnesium content, provided that the grain size is sufficiently fine. This is evident
by comparing the FLDs of sample Z and U-FA, as measured by these FLDs. Note also that
alloy U and AA are clearly age hardenable, with a significant rise in yield and ultimate
strengths after aging. It is also clear from the data that the corrosion resistance
is greatly improved in the alloys with a thin interliner versus three layer alloys
where the core was or was not homogenized. A cross section of sample P is provided
as Fig. 6 which clearly shows that attack is limited to the anodic band on the surface
after 14 days of SWAAT (sea water acetic acid) testing according to ASTM G-85.
[0045] Lastly, it should be noted that in all samples P, Q, R, S, T, U, and AA there were
small localized areas where erosion depth exceeded the initial interliner thickness.
In none of these cases did it result in significant degradation of the dispersoid
band in the underlying core. The extent of localized core erosion, across a broad
range of applied strains, is approximately the same or better than the amount of localized
core erosion in conventional brazing sheet alloys with a homogenized core alloy (and
no interliner(s)). This is demonstrated in Figs. 7a-q where the extent of post brazed
localized core erosion is visually presented and compared between a five layer brazing
sheet with nonhomogenized core (Figs. 7j-7q) and a similar three layer alloy with
a homogenized core (Figs. 7a-7i) as a function of applied uniaxial strain from 0 to
about 12-14%. It should be noted that erosion depth did not exceed the interliner
in thickness in either of the flash annealed samples (P-FA or U-FA) even with the
fine grain size of the interliners. The data also indicates that the best combination
of corrosion resistance is obtained by multi-layer products that had a nonhomogenized
core that generated a dense Mn containing dispersoid band at the core/interliner interface,
with interliners and core alloys that had elevated levels of Ti (Samples P through
U and AA versus samples V through Z). Multi-layer products with homogenized high Ti
cores and interliners, displayed better corrosion resistance than did similar homogenized
high Ti cores without interliners (samples U and V versus X) but multi-layer products
with nonhomogenized high Ti cores and interliners had the best corrosion resistance
(compare P through U and AA with W and V).
Table 4
| Alloy No. |
Layer |
Composition (wt. %) |
| Si |
Fe |
Mn |
Cu |
Mg |
Zn |
Ti |
Zr |
Bi |
| 13 |
core |
0.06 |
0.17 |
0.92 |
0.29 |
0.24 |
0.0 |
0.18 |
0.0 |
0.0 |
| 14 |
core |
0.06 |
0.18 |
1.01 |
0.25 |
0.25 |
0.0 |
0.01 |
0.0 |
0.0 |
| 15 |
core |
0.03 |
0.30 |
0.99 |
0.26 |
0.48 |
0.0 |
0.175 |
0.0 |
0.0 |
| 16 |
core |
0.03 |
0.31 |
1.0 |
0.49 |
0.49 |
0.0 |
0.185 |
0.0 |
0.0 |
| 17 |
core |
0.08 |
0.41 |
0.97 |
0.51 |
0.23 |
0.02 |
0.15 |
0.0 |
0.0 |
| 18 |
core |
0.10 |
0.45 |
0.98 |
0.53 |
0.49 |
0.02 |
0.16 |
0.0 |
0.0 |
| 19 |
core |
0.04 |
0.31 |
0.99 |
0.25 |
0.72 |
0.0 |
0.18 |
0.0 |
0.0 |
| 20 |
core |
0.05 |
0.17 |
1.08 |
0.52 |
0.22 |
0.02 |
0.16 |
0.0 |
0.0 |
| 21 |
interliner |
0.05 |
0.20 |
0.01 |
0.01 |
0.01 |
0.01 |
0.005 |
0.0 |
0.0 |
| 22 |
interliner |
0.12 |
0.19 |
0.05 |
0.06 |
0.0 |
0.03 |
0.02 |
0.18 |
0.0 |
| 23 |
interliner |
0.59 |
0.20 |
0.03 |
0.04 |
0.40 |
0.02 |
0.175 |
0.0 |
0.0 |
| 24 |
interliner |
0.44 |
0.19 |
0.0 |
0.01 |
0.0 |
1.43 |
0.170 |
0.0 |
0.0 |
| 25 |
interliner |
0.39 |
0.20 |
0.03 |
0.04 |
0.40 |
0.02 |
0.175 |
0.0 |
0.0 |
| 26 |
interliner |
0.40 |
0.15 |
0.01 |
0.01 |
0.01 |
0.02 |
0.01 |
0.0 |
0.0 |
| 27 |
interliner |
0.41 |
0.16 |
0.01 |
0.01 |
0.41 |
0.02 |
0.01 |
0.0 |
0.0 |
| 28 |
interliner |
0.40 |
0.18 |
0.05 |
0.10 |
0.03 |
0.05 |
0.05 |
0.0 |
0.0 |
| 29 |
interliner |
0.35 |
0.18 |
0.05 |
0.20 |
0.03 |
0.05 |
0.05 |
0.0 |
0.0 |
| 30 |
interliner |
0.40 |
0.18 |
0.05 |
0.10 |
0.30 |
0.05 |
0.05 |
0.0 |
0.0 |
| 31 |
interliner |
0.35 |
0.18 |
0.05 |
0.20 |
0.30 |
0.05 |
0.05 |
0.0 |
0.0 |
| 32 |
braze liner |
12.0 |
0.20 |
0.05 |
0.05 |
0.18 |
0.08 |
0.02 |
0.0 |
0.0 |
| 33 |
braze liner |
10.0 |
0.20 |
0.01 |
0.01 |
0.01 |
0.01 |
0.02 |
0.0 |
0.0 |
| 34 |
braze liner |
9.99 |
0.25 |
0.03 |
0.01 |
1.36 |
0.05 |
0.01 |
0.0 |
0.11 |
Table 5
| Composite I.D. |
Gauge (µm) |
Alloys used from Table 4 |
Actual Layer Thicknesses (µm) |
Layer Homogenized? |
Interliner Compromised? |
| P |
483 |
32/21/13/21/32 |
53/31/304/32/63 |
yes/no/no/no/yes |
No |
| Q |
483 |
32/24/13/24/32 |
58/32/308/32/53 |
yes / no / no / no /yes |
No |
| R |
483 |
32/24/13/24/32 |
58/35/301/31/58 |
yes/ no / no / no / yes |
No |
| S |
483 |
32/21/15/21/32 |
53/32/312/32/54 |
yes/ no / no / no / yes |
No |
| T |
483 |
32/21/16/21/32 |
48 / 32 / 329 / 30 / 44 |
yes/ no / no / no /yes |
No |
| U |
483 |
32/21/19/21/32 |
48/33/317/31/54 |
yes/ no / no / no / yes |
No |
| V |
483 |
32/21/19/21/32 |
45/31/321/34/52 |
yes/no/yes/no/yes |
No |
| W |
483 |
32/21/16121/32 |
47/29/317/32/58 |
yes/no/yes/no/yes |
No |
| X |
419 |
32/20/32 |
53/313/53 |
yes/yes/yes |
NA (not applicable) |
| Y |
480 |
32/14/32 |
58/365/57 |
yes/ no /yes |
NA |
| |
|
|
|
|
NA |
| Z |
483 |
32/14/32 |
58/366/59 |
yes/yes/yes |
|
| AA |
482 |
32/27/18/27/32 |
57/31/306/31/57 |
yes/no/no/no/yes |
No |
Table 6
| Composite I.D. |
4xxx braze cladding flow (%) |
Post-Brazed Properties (MPa) |
| As-Brazed (AB) |
AB+7days @ RT |
AB + 25 min @ 218°C |
SWAAT TTP (days) |
| TYS |
UTS |
TYS |
UTS |
TYS |
UTS |
| P |
60 |
53 |
141 |
54 |
142 |
55 |
143 |
60+ |
| Q |
74 |
55 |
144 |
55 |
144 |
54 |
141 |
60+ |
| R |
67 |
55 |
146 |
55 |
144 |
56 |
143 |
60+ |
| S |
61 |
60 |
155 |
60 |
155 |
59 |
155 |
60+ |
| T |
68 |
63 |
164 |
64 |
165 |
65 |
166 |
60+ |
| U |
63 |
62 |
163 |
66 |
167 |
68 |
169 |
60+ |
| V |
70 |
66 |
166 |
67 |
171 |
69 |
172 |
35 |
| W |
69 |
60 |
162 |
61 |
162 |
63 |
164 |
34 |
| X |
67 |
60 |
150 |
61 |
153 |
61 |
152 |
24 |
| Y |
12 |
58 |
158 |
58 |
156 |
58 |
159 |
2 |
| Z |
72 |
55 |
152 |
55 |
151 |
55 |
152 |
7 |
| AA |
|
61 |
163 |
65 |
170 |
70 |
172 |
60+ |
Table 7
| Composite I.D. |
O-temper grain size (approx.) (µm) |
O temper properties |
Max Erosion Depth (µm) |
Continuous Dispersoid Band? |
| length |
thickness |
TYS (MPa) |
UTS (MPa) |
% el |
Olsen (mm) |
| P |
400 |
30 |
58 |
143 |
21 |
8.2 |
40 |
moderate to strong |
| P-FA (FA =flash anneal) |
80 |
15 |
59 |
140 |
21 |
8.4 |
20 |
moderate to strong |
| Q |
600 |
50 |
61 |
146 |
19 |
8.2 |
45 |
moderate to strong |
| R |
400 |
40 |
61 |
143 |
19 |
8.2 |
40 |
moderate to strong |
| S |
300 |
30 |
62 |
155 |
18 |
8.0 |
50 |
moderate to strong |
| T |
300 |
30 |
64 |
161 |
18 |
7.9 |
70 |
moderate to strong |
| U |
300 |
30 |
64 |
159 |
18 |
7.7 |
70 |
moderate to strong |
| U-FA |
40 |
10 |
70 |
162 |
19 |
8.3 |
30 |
moderate to strong |
| V |
250 |
50 |
64 |
165 |
22 |
8.2 |
50 |
no |
| W |
300 |
50 |
55 |
159 |
22 |
8.3 |
60 |
no |
| X |
150 |
50 |
62 |
145 |
21 |
8.1 |
45 |
no |
| Y |
400 |
75 |
56 |
148 |
18 |
7.6 |
170 |
no |
| Z |
300 |
50 |
54 |
145 |
22 |
8.1 |
30 |
no |
| AA |
78 |
22 |
68 |
156 |
18 |
7.5 |
60 |
moderate to strong |
[0046] The brazing sheet of the present invention is particularly suited for use as a tubeplate
for a plate type heat exchanger, although it is particularly suitable for any application
requiring high degrees of post-brazed corrosion resistance and pre-brazed formability.
[0047] What is claimed is:
1. A multi-layered brazing sheet comprising:
a non-homogenized core comprising a 3xxx series alloy comprising up to 0.18 wt.% Si,
up to 0.8 wt.% Fe, 0.5-1.6 wt.% Mn in solution, up to 1 wt.% Cu, 0.01-1.5 wt.% Mg,
up to 0.3 wt.% Cr and up to 0.25 wt.% Ti, up to 0.3 wt % Zn, up to 0.25 wt % Zr, optionally
up to 0.2 wt.% V and optionally 0.01 to 1.0 wt % Ag, with the balance being aluminum
and incidental impurities,
an aluminum alloy interliner having a thickness of 60 µm or less positioned on one
side of said core, and
a braze cladding positioned on the other side of said interliner, said braze cladding
comprising a 4xxx series alloy, whereby upon brazing of said sheet to a component,
said core develops a continuous dense Mn-containing dispersoid band-at the interface
between said core and said interliner resulting from diffusion of Si from said cladding
into said core.
2. The brazing sheet of claim 1 wherein said 3xxx series alloy contains less than 0.1
wt.% Si.
3. The brazing sheet of claim 1 wherein said interliner has a thickness of 14-45 µm.
4. The brazing sheet of claim 1 further comprising a second interliner, positioned on
the other side of said core and a second braze cladding - positioned on the other
side of said second interliner.
5. The brazing sheet of claim 1 wherein said 4xxx alloy in said braze cladding comprises
4-18 wt.% Si, up to 0.5 wt.% Cu, up to 2 wt.% Mg, up to 0.3 wt.% Mn, up to 0.8 wt.%
Fe, up to 1.5 wt.% Zn, up to 0.2 wt% Ti, and up to 0.4 wt.% Bi, with the balance being
aluminum.
6. The brazing sheet of claim 5 wherein the thickness of each said braze cladding is
1-30% of the thickness of the brazing sheet
7. The brazing sheet in claim 1 wherein said interliner comprises an aluminum alloy containing
up to 0.9 wt.% Si, up to 0.8 wt.% Fe, and up to 1 wt.% Mg, with the balance being
aluminum.
8. The brazing sheet of claim 7 wherein said interliner contains up to 1.7 wt% Mn, up
to 2 wt.% Zn, up to 0.2 wt.% In, up to 0.25 wt.% Ti, up to 1.0 wt.% Cu, up to 0.25
wt. % Zr, and up to 0.3 wt.% Cr.
9. The brazing sheet of claim 7 wherein said the interliner alloy contains up to 0.6
wt.% Si, up to 0.6 wt.% Fe, up to 0.5 wt.% Cu, up to 1 wt.% Zn, and up to 0.2 wt.%
In.
10. The brazing sheet of claim 7 wherein said interliner alloy contains up to 0.6 wt.%
Si, up to 0.3 wt% Fe, up to 0.4 wt% Mg, up to 0.25 wt.% Ti, up to 0.4 wt.% Cu, up
to 1.5 wt.% Zn, up to 0.2 wt.% In, up to 0.2 wt.% V, and up to 0.3 wt.% Cr.
11. The brazing sheet of claim 1 wherein said interliner is 15-45 µm thick at final gauge.
12. The brazing sheet of claim 1 wherein said interliner is 20-40 µm thick at final gauge.
13. The brazing sheet of claim 1 wherein said core comprises an aluminum alloy containing
up to 0.08 wt.% Si, up to 0.7 wt.% Fe, 1.0-1.5 wt.% Mn, 0.2-0.8 wt.% Cu, 0.01-1 wt.%
Mg and up to 0.25 wt.% Ti.
14. The brazing sheet of claim 1 wherein said core comprises an aluminum alloy containing
up to 0.11 wt.% Si, up to 0.6 wt.% Fe, 1.0-1.5 wt.% Mn, up to 0.8 wt.% Cu, 0.01-1
wt.% Mg and up to 0.25 wt.% Ti.
15. The brazing sheet of claim 1 whereby said core is not thermally treated prior to being
subjected to a brazing event.
16. The brazing sheet in claim 1 wherein the sheet is not thermally treated prior to being
subjected to a brazing event.
17. The brazing sheet of claim 1 wherein said interliner is electrochemically more negative
than said core.
18. The brazing sheet of claim 17 wherein the electrochemical potential difference between
said core and said interliner is at least 25 millivolts.
19. The brazing sheet of claim 1 wherein said core is electrochemically more positive
than said interliner.
20. The brazing sheet of claim 1 further comprising a cladding of a 1xxx, 3xxx, 5xxx ,
6xxx, 7xxx or 8xxx alloy on the other side of said core.
21. The brazing sheet of claim 1 wherein said interliner is homogenized.
22. The brazing sheet of claim 1, wherein the core of the brazing sheet does not receive
a thermal treatment above 525°C prior to being subjected to a brazing event.
23. The brazing sheet of claim 1 wherein said interliner is not homogenized.
24. The brazing sheet of claim 4 wherein said interliners have different composition and/or
thicknesses from each other.
25. The brazing sheet of claim 4 wherein said second interliner is thicker than 60 µm
at final gauge.
26. The brazing sheet of claim 4 wherein said second interliner does not develop a dense
Mn containing dispersoid band in said core at the core/second interliner interface.
27. The brazing sheet of claim 1 wherein said core is 60-98% of the thickness of the final
product.
28. The brazing sheet in claim 1 wherein the average grain size of the core is less than
200 µm x 300 µm x 100 µm in the directions transverse to the rolling direction, parallel
to the rolling direction and in the sheet thickness direction, respectively.
29. The brazing sheet of claim 1 wherein the 4xxx braze cladding has no more than 0.05
wt.% Mg, said interliner has no more than 0.05 wt.% Mg and said core has no more than
0.5 wt.% Mg.
30. The brazing sheet of claim 1 wherein said sheet is brazed and age hardened due to
the interdiffusion of solute in said interliner and said core.
31. The brazing sheet of claim 1 wherein said sheet is brazed and aged to a tensile yield
greater than 65 MPa and the ultimate tensile strength greater than 165 MPa.
32. The brazing sheet of claim 1 having a final gauge of 150-5000 µm.
33. The brazing sheet of claim 1 having a post-brazed corrosion resistance greater than
20 days as measured by SWAAT testing according to ASTM G-85.
34. A brazed assembly comprising the brazing sheet of claim 1.
35. A process of producing a corrosion resistant aluminum brazing sheet product consisting
of:
(a) producing a composite of an aluminum alloy interliner having a thickness of 60µm
or less sandwiched between a 4xxx alloy braze cladding and a 3xxx alloy non-homogenized
core alloy comprising up to 0.18 wt.% Si, up to 0.8 wt.% Fe, 0.5-1.6 wt.% Mn in solution,
up to 1 wt.% Cu, 0.01-1.5 wt.% Mg, up to 0.3 wt. % Cr, up to 0.25 wt.% Ti, up to 0.3
wt% Zn, optionally up to 0.2 wt % V and optionally 0.01 to 1.0 wt % Ag with the balance
being aluminum.
(b) hot rolling the composite below 525°C to metallurgically bond the components of
the composite together; and
(c) cold rolling the compose to final gauge without exposure to a thermal treatment.
36. The process of claim 35 wherein step (a) comprises casting the braze cladding, the
interliner and the core alloys as separate ingots and stacking the ingots into the
composite.
37. The process of claim 35 wherein step (a) comprises simultaneously casting the core
alloy and the braze cladding alloy on opposing sides of a solid interliner to produce
the composite.
38. The process of claim 35 wherein step (a) comprises continuous casting the core alloy
against the interliner, the interliner being pre-bonded to the braze cladding to produce
the composite.
39. The process of claim 35 wherein the product rolled to final gauge is partially annealed
to an -H temper.
40. The process of claim 35 wherein the product rolled to final gauge is fully annealed
to an -O temper.
41. The process of claim 35 wherein the product obtained is subjected to a brazing event
whereby a dense band of Mn containing dispersoids form in the core at the core/interliner
interface.
42. A brazed assembly comprising a brazing sheet according to any of claims 1 to 33 brazed
to a component and wherein said core has a continuous dense Mn-containing dispersoid
band at the interface between said core and said interliner and contains Si diffused
from said cladding.
1. Mehrlagige Lötfolie umfassend:
einen nicht homogenisierten Kern umfassend eine 3xxx Serienlegierung umfassend bis
zu 0,18 Gew.% Si, bis zu 0,8 Gew.% Fe, 0,5 - 1,6 Gew.% Mn in Lösung, bis zu 1 Gew.%
Cu, 0,01 - 1,5 Gew.% Mg, bis zu 0,3 Gew.% Cr und
bis zu 0,25 Gew.% Ti, bis zu 0,3 Gew.% Zn, bis zu 0,5 Gew.% Zr, optional bis zu 0,2
Gew.% V und optional 0,01 bis 1,0 Gew.% Ag, wobei der Rest Aluminium und zufällige
Verunreinigungen ist,
eine Aluminiumlegierungzwischenschicht mit einer Dicke von 60 µm oder weniger, die
auf einer Seite des Kerns angeordnet ist, und
einen auf der anderen Seite der Zwischenschicht angeordneten. Lötbelag, wobei der
Lötbelag eine 4xxx Serienlegierung umfasst, wodurch beim Löten der Lötfolie an eine
Komponente der Kern einen kontinuierlich dichten Mnenthaltenden dispersen Bereich
an der Grenzfläche zwischen dem Kern und der Zwischenschicht entwickelt, der durch
die Diffusion von Si von dem Belag in den Kern resultiert.
2. Lötfolie nach Anspruch 1, wobei die 3xxx Serienlegierung weniger als 0,1 Gew.% Si
enthält.
3. Lötfolie nach Anspruch 1, wobei die Zwischenlage eine Dicke von 14 - 45 µm aufweist.
4. Lötfolie nach Anspruch 1, darüber hinaus umfassend eine zweite Zwischenschicht, die
auf der anderen Seite des Kerns angeordnet ist, und einen zweiten Lötbelag, der auf
der anderen Seite der zweiten Zwischenschicht angeordnet ist.
5. Lötfolie nach Anspruch 1, wobei die 4xxx Legierung in dem Lötbelag 4 - 18 Gew.% Si,
bis zu 0,5 Gew.% Cu, bis zu 2 Gew.% Mg, bis zu 0,3 Gew.% Mn, bis zu 0,8 Gew.% Fe,
bis zu 1,5 Gew.% Zn, bis zu 0,2 Gew.% Ti, und bis zu 0,4 Gew.% Bi, wobei der Rest
Aluminium ist, umfasst.
6. Lötfolie nach Anspruch 5, wobei die Dicke eines jeden Lötbelags 1 - 30% der Dicke
der Lötfolie beträgt.
7. Lötfolie nach Anspruch 1, wobei die Zwischenschicht eine Aluminiumlegierung umfasst,
die bis zu 0,9 Gew.% Si, bis zu 0,8 Gew.% Fe, und bis zu 1 Gew.% Mg enthält, wobei
der Rest Aluminium ist.
8. Lötfolie nach Anspruch 7, wobei die Zwischenschicht bis zu 1,7 Gew.% Mn, bis zu 2
Gew.% Zn, bis zu 0,2 Gew.% In, bis zum 0,25 Gew.% Ti, bis zu 1,0 Gew.% Cu, bis zu
0,25 Gew.% Zr, und bis zu 0,3 Gew.% Cr enthält.
9. Lötfolie nach Anspruch 7, wobei die Zwischenschichtlegierung bis zu 0,6 Gew.% Si,
bis zu 0,6 Gew.% Fe, bis zu 0,5 Gew.% Cu, bis zu 1 Gew.% Zn, und bis zu 0,2 Gew.%
In enthält.
10. Lötfolie nach Anspruch 7, wobei die Zwischenschichtlegierung bis zu 0,6 Gew.% Si,
bis zu 0,3 Gew.% Fe, bis zu 0,4 Gew.% Mg, bis zu 0,25 Gew.% Ti, bis zu 0,4 Gew.% Cu,
bis zu 1,5 Gew.% Zn, bis zu 0,2 Gew.% In, bis zu 0,2 Gew.% V, und bis zu 0,3 Gew.%
Cr enthält.
11. Lötfolie nach Anspruch 1, wobei die Zwischenschicht bei Enddicke 15 - 45 µm dick ist.
12. Lötfolie nach Anspruch 1, wobei die Zwischenschicht bei Enddicke 20 - 40 µm dick ist.
13. Lötfolie nach Anspruch 1, wobei der Kern eine Aluminiumlegierung umfasst, die bis
zu 0,08 Gew.% Si, bis zu 0,7 Gew.% Fe, 1,0 - 1,5 Gew.% Mn, 0,2 - 0,8 Gew.% Cu, 0,01
- 1 Gew.% Mg und bis zu 0,25 Gew.% Ti enthält.
14. Lötfolie nach Anspruch 1, wobei der Kern eine Aluminiumlegierung umfasst, die bis
zu 0,11 Gew.% Si, bis zu 0,6 Gew.% Fe, 1,0 - 1,5 Gew.% Mn, bis zu 0,8 Gew.% Cu, 0,01
- 1 Gew.% Mg und bis zu 0,25 Gew.% Ti enthält.
15. Lötfolie nach Anspruch 1, wobei der Kern nicht thermisch behandelt ist bevor er einem
Lötereignis unterworfen wird.
16. Lötfolie nach Anspruch 1, wobei die Folie nicht thermisch behandelt ist bevor sie
einem Lötereignis unterworfen wird.
17. Lötfolie nach Anspruch 1, wobei die Zwischenschicht elektrochemisch negativer ist
als der Kern.
18. Lötfolie nach Anspruch 17, wobei die elektrochemische Potentialdifferenz zwischen
dem Kern und der Zwischenschicht mindestens 25 Millivolt beträgt.
19. Lötfolie nach Anspruch 1, wobei der Kern elektrochemisch positiver als die Zwischenschicht
ist.
20. Lötfolie nach Anspruch 1, darüber hinaus umfassend einen Belag aus einer 1 xxx, 3xxx,
5xxx, 6xxx, 7xxx oder 8xxx auf der anderen Seite des Kerns.
21. Lötfolie nach Anspruch 1, wobei die Zwischenschicht homogenisiert ist.
22. Lötfolie nach Anspruch 1, wobei der Kern der Lötfolie keine thermische Behandlung
oberhalb 525°C erhielt bevor er einem Lötereignis unterworfen wird.
23. Lötfolie nach Anspruch 1, wobei die Zwischenschicht nicht homogenisiert ist.
24. Lötfolie nach Anspruch 4, wobei die Zwischenschichten voneinander unterschiedliche
Zusammensetzungen und/oder Dicken aufweisen.
25. Lötfolie nach Anspruch 4, wobei die zweite Zwischenschicht dicker als 60 µm bei Enddicke
ist.
26. Lötfolie nach Anspruch 4, wobei die zweite Zwischenschicht keinen dichten Mn enthaltenden
dispersen Bereich in dem Kern an der Kern/zweiten Zwischenschichtgrenzfläche wickelt.
27. Lötfolie nach Anspruch 1, wobei der Kern 60 - 98 % der Dicke des Endproduktes ist.
28. Lötfolie nach Anspruch 1, wobei die mittlere Korngröße des Kerns weniger als 200 µm
x 300 µm x 100 µm in den Richtungen quer zu der Walzrichtung, parallel zur der Walzrichtung
und in Foliendickenrichtung beträgt.
29. Lötfolie nach Anspruch 1, wobei der 4xxx Lötbelag nicht mehr als 0,05 Gew.% Mg, die
Zwischenschicht nicht mehr als 0,05 Gew.% Mg und der Kern nicht mehr als 0,5 Gew.%
Mg aufweist.
30. Lötfolie nach Anspruch 1, wobei die Folie gelötet und alterungsgehärtet aufgrund der
Zwischendiffusion von gelöster Substanz in die Zwischenschicht und in den Kern ist.
31. Lötfolie nach Anspruch 1, wobei die Folie gelötet und gealtert zu einer Dehngrenze
(englisch "tensile yield") größer als 65 MPa und die Zerreißfestigkeit (englisch "ultimate
tensile strength") größer als 165 MPa ist.
32. Lötfolie nach Anspruch 1, die eine Endprüfung von 150 - 5000 µm aufweist.
33. Lötfolie nach Anspruch 1, die eine Korrosionsbeständigkeit nach dem Löten größer als
20 Tage gemessen nach SWAAT Test gemäß ASTM G-85 hat.
34. Eine gelötete Anordnung umfassend eine Lötfolie nach Anspruch 1.
35. Verfahren zur Herstellung eines korrosionsbeständigen Aluminiumlötfolienprodukts bestehend
aus:
(a) Herstellung eines Verbunds von einer Aluminiumlegierungzwischenschicht mit einer
Dicke von 60 µm oder weniger, die zwischen einem 4xxx Lötlegierungsbelag und einer
3xxx nicht homogenisierten Kernlegierung eingelegt ist, umfassend bis zu 0,18 Gew.%
Si, bis zu 0,8 Gew.%Fe, 0,5 - 1,6 Gew.% Mn in Lösung, bis zu 1 Gew.% Cu, 0,01 - 1,5
Gew.% Mg, bis zu 0,3 Gew.% Cr, bis zu 0,25 Gew.% Ti, bis zu 0,3 Gew.% Zn, optional
bis zu 0,2 Gew.% V und optional 0,01 bis 1,0 Gew.% Ag, wobei der Rest Aluminium ist.
(b) Heißwalzen des Verbundes unterhalb 525° C um die Komponenten des Verbundes metallurgisch
miteinander zu verbinden; und
(c) Kaltwalzen des Verbundes bis zur Enddicke ohne Aussetzen einer thermischen Behandlung.
36. Verfahren nach Anspruch 35, wobei Schritt (a) Gießen des Lötbelags, der Zwischenschicht
und der Kernlegierung als separate Blöcke und Aufschichten der Blöcke zu dem Verbund
umfasst.
37. Verfahren nach Anspruch 35, wobei der Schritt (a) simultanes Gießen der Kernlegierung
und der Lötbelaglegierung auf gegenüberliegenden Seiten einer festen Zwischenschicht
um den Verbund herzustellen umfasst.
38. Verfahren nach Anspruch 35, wobei Schritt (a) kontinuierliches Gießen der Kernlegierung
auf die Zwischenschicht, das Vorverbinden der Zwischenschicht mit dem Lötbelag um
den Verbund herzustellen umfasst.
39. Verfahren nach Anspruch 35, wobei das zur Enddicke gewalzte Produkt zu einem H-Zustand
teilweise ausgeglüht ist.
40. Verfahren nach Anspruch 35, wobei das zu der Enddicke gewalzte Produkt zu einem O-Zustand
vollständig ausgeglüht ist.
41. Verfahren nach Anspruch 35, wobei das erhaltene Produkt einem Lötereignis unterworfen
ist, bei dem sich ein dichter Bereich von Mn enthaltenden Dispersionen in dem Kern
an der Kern/Zwischenschichtgrenzfläche bilden.
42. Eine gelötete Anordnung umfassend eine Lötfolie nach einem der Ansprüche 1 bis 33,
die an eine Komponente gelötet ist und wobei der Kern einen kontinuierlich dichten
Mn enthaltenden dispersen Bereich an der Grenzfläche zwischen dem Kern und der Zwischenschicht
umfasst und Si enthält, welches von dem Belag diffundiert ist.
1. Feuille de brasage multicouche comprenant :
un noyau non homogénéisé comprenant un alliage de série 3xxx comprenant jusqu'à 0,18
% en poids de Si, jusqu'à 0,8 % en poids de Fe, de 0,5 à 1,6 % en poids de Mn en solution,
jusqu'à 1 % en poids de Cu, de 0,01 à 1,5 % en poids de Mg, jusqu' à 0,3 % en poids
de Cr et jusqu'à 0,25 % en poids de Ti, jusqu'à 0,3 % en poids de Zn, jusqu'à 0,25
% en poids de Zr, éventuellement jusqu'à 0,2 % en poids de V et éventuellement de
0,01 à 1,0 % d'Ag, le reste étant constitué d'aluminium et d'impuretés éventuelles,
une intercouche en alliage d'aluminium ayant une épaisseur de 60 µm ou moins, placée
d'un côté dudit noyau, et
une gaine de brasure placée de l'autre côté de ladite intercouche, ladite gaine de
brasure comprenant un alliage de série 4xxx de sorte que, au moment de brasage de
ladite feuille sur un composant, ledit noyau développe une bande dispersoïde continue
dense contenant du Mn au niveau de l'interface entre ledit noyau et ladite intercouche,
résultant de la diffusion du Si à partir de ladite gaine, dans ledit noyau.
2. Feuille de brasage selon la revendication 1, dans laquelle ledit alliage de série
3xxx contient moins de 0,1 % en poids de Si.
3. Feuille de brasage selon la revendication 1, dans laquelle ladite intercouche a une
épaisseur allant de 14 à 45 µm.
4. Feuille de brasage selon la revendication 1, comprenant en outre une seconde intercouche
placée de l'autre côté dudit noyau et une seconde gaine de brasure placée de l'autre
côté de ladite seconde intercouche.
5. Feuille de brasage selon la revendication 1, dans laquelle ledit alliage 4xxx dans
ladite gaine de brasure comprend de 4 à 18 % en poids de Si, jusqu' à 0,5 % en poids
de Cu, jusqu'à 2 % en poids de Mg, jusqu'à 0,3 % en poids de Mn, jusqu'à 0,8 % en
poids de Fe, jusqu'à 1,5 % en poids de Zn, jusqu'à 0,2 % en poids de Ti, et jusqu'
à 0,4 % en poids de Bi, le reste étant constitué d'aluminium.
6. Feuille de brasage selon la revendication 5, dans laquelle l'épaisseur de chaque dite
gaine de brasure est égale à 1 à 30 % de l'épaisseur de la feuille de brasage.
7. Feuille de brasage selon la revendication 1, dans laquelle ladite intercouche comprend
un alliage d'aluminium contenant jusqu'à 0,9% en poids de Si, jusqu'à 0,8% en poids
de Fe et jusqu'à 1 % en poids de Mg, le reste étant constitué d'aluminium.
8. Feuille de brasage selon la revendication 7, dans laquelle ladite intercouche contient
jusqu'à 1,7 % en poids de Mn, jusqu'à 2 % en poids de Zn, jusqu'à 0,2 % en poids d'In,
jusqu'à 0,25 % en poids de Ti, jusqu'à 1,0 % en poids de Cu, jusqu'à 0,25 % en poids
de Zr, et jusqu'à 0,3 % en poids de Cr.
9. Feuille de brasage selon la revendication 7, dans laquelle ledit alliage d'intercouche
contient jusqu'à 0,6 % en poids de Si, jusqu'à 0,6 % en poids de Fe, jusqu'à 0,5 %
en poids de Cu, jusqu'à 1 % en poids de Zn, jusqu'à 0,2 % en poids d'In.
10. Feuille de brasage selon la revendication 7, dans laquelle ledit alliage d'intercouche
contient jusqu'à 0,6 % en poids de Si, jusqu'à 0,3 % en poids de Fe, jusqu'à 0,4%
en poids de Mg, jusqu'à 0,25 % en poids de Ti, jusqu'à 0,4 % en poids de Cu, jusqu'à
1,5 % en poids de Zn, jusqu'à 0,2 % d'In, jusqu'à 0,2 % en poids de V, et jusqu'à
0,3 % en poids de Cr.
11. Feuille de brasage selon la revendication 1, dans laquelle ladite intercouche a une
épaisseur de 15 à 45 µm au gabarit final.
12. Feuille de brasage selon la revendication 1, dans laquelle ladite intercouche a une
épaisseur de 20 à 40 µm au gabarit final.
13. Feuille de brasage selon la revendication 1, dans laquelle ledit noyau comprend un
alliage d'aluminium contenant jusqu'à 0,08 % en poids de Si, jusqu'à 0,7 % en poids
de Fe, de 1,0 à 1,5 % en poids de Mn, de 0,2 à 0,8 % en poids de Cu, de 0,01 à 1 %
en poids de Mg et jusqu'à 0,25 % en poids de Ti.
14. Feuille de brasage selon la revendication 1, dans laquelle ledit noyau comprend un
alliage d'aluminium contenant jusqu'à 0,11 % en poids de Si, jusqu'à 0,6 % en poids
de Fe, de 1,0 à 1,5 % en poids de Mn, jusqu'à 0,8 % en poids de Cu, de 0,01 à 1 %
en poids de Mg et jusqu'à 0,25 % en poids de Ti.
15. Feuille de brasage selon la revendication 1, grâce à laquelle ledit noyau n'est pas
traité thermiquement avant d'être soumis à une opération de brasage.
16. Feuille de brasage selon la revendication 1, dans laquelle la feuille n'est pas traitée
thermiquement avant d'être soumise à une opération de brasage.
17. Feuille de brasage selon la revendication 1, dans laquelle ladite intercouche est
électrochimiquement plus négative que ledit noyau.
18. Feuille de brasage selon la revendication 17, dans laquelle la différence de potentiel
électrochimique entre ledit noyau et ladite intercouche est d'au moins 25 millivolts.
19. Feuille de brasage selon la revendication 1, dans laquelle ledit noyau est électrochimiquement
plus positif que ladite intercouche.
20. Feuille de brasage selon la revendication 1, comprenant en outre une gaine d'alliage
1xxx, 3xxx, 5xxx, 6xxx, 7xxx ou 8xxx de l'autre côté dudit noyau.
21. Feuille de brasage selon la revendication 1, dans laquelle ladite intercouche est
homogénéisée.
22. Feuille de brasage selon la revendication 1, dans laquelle le noyau de la feuille
de brasage ne reçoit pas de traitement thermique supérieur à 525 °C avant d'être soumise
à une opération de brasage.
23. Feuille de brasage selon la revendication 1, dans laquelle ladite intercouche n'est
pas homogénéisée.
24. Feuille de brasage selon la revendication 4, dans laquelle lesdites intercouches ont
des compositions et/ou des épaisseurs différentes les unes des autres.
25. Feuille de brasage selon la revendication 4, dans laquelle la seconde intercouche
a une épaisseur supérieure à 60 µm au gabarit final.
26. Feuille de brasage selon la revendication 4, dans laquelle ladite seconde intercouche
ne développe pas de bande dispersoïde dense contenant du Mn dans ledit noyau au niveau
de l'interface noyau/seconde intercouche.
27. Feuille de brasage selon la revendication 1, dans laquelle ledit noyau a une épaisseur
égale à 60 à 98 % de celle du produit final.
28. Feuille de brasage selon la revendication 1, dans laquelle la taille de grain moyenne
du noyau est inférieure à 200 µm x 300 µm x 100 µm dans les directions transversales
à la direction du laminage, parallèles à la direction du laminage et en direction
de l'épaisseur de la feuille, respectivement.
29. Feuille de brasage selon la revendication 1, dans laquelle la gaine de brasure 4xxx
n'a pas plus de 0,05 % en poids de Mg, ladite intercouche n'a pas plus de 0,05 % en
poids de Mg et ledit noyau n'a pas plus de 0,5 % en poids de Mg.
30. Feuille de brasage selon la revendication 1, dans laquelle ladite feuille est brasée
et durcie par vieillissement du fait de l'interdiffusion de la substance dissoute
dans ladite intercouche et ledit noyau.
31. Feuille de brasage selon la revendication 1, dans laquelle ladite feuille est brasée
et vieillie jusqu'à une limite élastique supérieure à 65 MPa et une résistance à la
traction finale supérieure à 165 MPa.
32. Feuille de brasage selon la revendication 1, ayant un gabarit final de 150 à 5 000
µm.
33. Feuille de brasage selon la revendication 1, ayant une résistance à la corrosion post-brasage
supérieure à 20 jours tel que mesuré par le test SWAAT selon la norme ASTM G-85.
34. Ensemble brasé comprenant la feuille de brasage selon la revendication 1.
35. Procédé de fabrication d'un produit de feuille de brasage en aluminium résistant à
la corrosion consistant en :
(a) la production d'un composite d'une intercouche d'alliage d'aluminium ayant une
épaisseur de 60 µm ou moins, intercalé entre une gaine de brasure d'alliage 4xxx et
un alliage de noyau non homogénéisé d'alliage 3xxx comprenant jusqu'à 0,18 % en poids
de Si, jusqu'à 0,8 % en poids de Fe, de 0,5 à 1,6 % en poids de Mn en solution, jusqu'à
1 % en poids de Cu, de 0,01 à 1,5 % en poids de Mg, jusqu'à 0,3 % en poids de Cr,
jusqu'à 0,25 % en poids de Ti, jusqu'à 0,3 % en poids de Zn, éventuellement jusqu'à
0,2 % en poids de V et éventuellement de 0,01 à 1,0 % en poids d'Ag, le reste étant
constitué d'aluminium.
(b) le laminage à chaud du composite en dessous de 525 °C afin de lier métallurgiquement
les composants du composite ensemble ; et
(c) le laminage à froid du composite au gabarit final sans exposition à un traitement
thermique.
36. Procédé selon la revendication 35, dans lequel l'étape (a) comprend la coulée des
alliages de gaine de brasure, d'intercouche et de noyaux sous la forme de lingots
séparés et l'empilage des lingots en le composite.
37. Procédé selon la revendication 35, dans lequel l'étape (a) comprend la coulée simultanée
de l'alliage de noyau et de l'alliage de gaine de brasure sur les cotés opposés d'une
intercouche solide afin de produire le composite.
38. Procédé selon la revendication 35 dans lequel l'étape (a) comprend la coulée en continu
de l'alliage du noyau contre l'intercouche, l'intercouche étant pré-liée à la gaine
de brasure pour produire le composite.
39. Procédé selon la revendication 35 dans lequel le produit laminé au gabarit, final
est partiellement recuit à une trempe-H.
40. Procédé selon la revendication 35 dans lequel le produit laminé au gabarit final est
totalement recuit à une trempe-O.
41. Procédé selon la revendication 35 dans lequel le produit obtenu est soumis à- une
opération de brasage grâce à quoi une bande dense de dispersoïdes contenant du Mn
se forme dans le noyau, au niveau de l'interface noyau/intercouche.
42. Ensemble brasé comprenant une feuille de brasage selon l'une quelconque des revendications
1 à 33 brasé sur un composant et dans lequel ledit noyau a une bande dispersoïde continue
dense contenant du Mn au niveau de l'interface entre ledit noyau et ladite intercouche
et contient le Si diffusé à partir de ladite gaine.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description