

Europäisches Patentamt European Patent Office Office européen des brevets

(11) **EP 1 498 741 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

19.01.2005 Bulletin 2005/03

(51) Int CI.7: **G01R 21/133**, G01R 35/04

(21) Application number: 04468013.0

(22) Date of filing: 15.07.2004

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR Designated Extension States:

AL HR LT LV MK

(30) Priority: 15.07.2003 SI 200300180

(71) Applicant: Iskraemeco, Merjenje in Upravljanje Energije, D.D. 4000 Kranj (SI) (72) Inventors:

- Rozman, Miro 4248 Lesce (SI)
- Kosmac, Milan
 4274 Zirovnica (SI)
- (74) Representative: Gros, Mladen Patentna pisarna d.o.o.
 Copova 14
 P.O. Box 1725
 1001 Ljubljana (SI)

(54) Watthour meter with integrated self-testing

(57) To perform the self-testing of a watthour meter, an electric work WI done on a load and a testing electric work Wt done on a first and a second resistor (R1, R2) of a voltage divider in a voltage sensor (1) are measured. To measure the electric work WI, controlling output signals of a digital signal processor (8) close a first controlled switch (s1) and a third controlled switch (s3) in their first half-period T/2 and close a second controlled switch (s2) and a fourth controlled switch (s4) in their second half-period T/2, whereat the controlled switches

(\$1, \$2, \$3, \$4) connect the outputs of both sensors (1, 2) one with another and to the mass. To measure the testing electric work Wt, the digital signal processor (8) reverses the polarity of test signals synchronously with the said switching of the controlled switches (\$1, \$2, \$3, \$4).

The testing of the watthour meter of the invention proceeds automatically on the metering position and the result may be noticed each time when reading the watthour meter or remotely at any time.

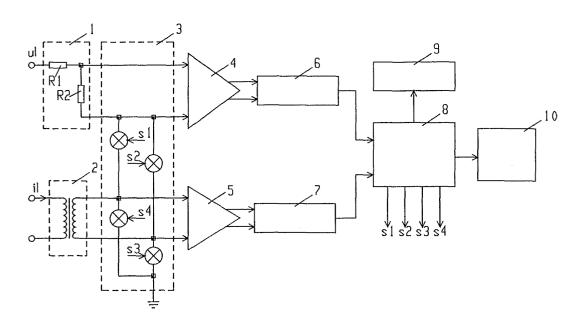


Fig. 1

Description

20

25

30

35

45

50

55

[0001] The invention concerns a watthour meter, which is provided with a voltage sensor in the form of a voltage divider and with an inductive current sensor sensing a current flowing through a load, the output signals of said sensors being amplified and digitized, and with a digital signal processor, which according to the invention generates signals to control a switching matrix so that, in order to perform a self-testing of the watthour-meter operation, an electric work WI on the load and a testing electric work WI done on the resistors of said voltage divider are measured alternatingly.

[0002] A watthour meter has an operating life usually exceeding twenty years and it must operate reliably and precisely through this whole period. The testing of its correct operation is performed in a laboratory. The transport of the watthour-meter to the laboratory is expensive and may even prove unnecessary if the watthour meter operates correctly. These expenses could be avoided if the watthour meter could test itself when operating, since only those watthour meters, at which a maloperation or a failure was ascertained by means of the self-testing, would be tested in the laboratory.

[0003] Consequently, the technical problem to be solved by the present invention is to furnish a watthour meter of said kind in such a way that it will be able to test the operation of all its elements including voltage sensor and the current sensor by itself.

[0004] According to the invention the said technical problem is solved by a watthour meter of said kind, its feature according to the invention being comprised in the characterizing part of the first claim. The features of further embodiments of the invention are specified in dependent claims.

[0005] The invention will now be explained in more detail by way of the description of embodiments and with reference to the accompanying drawing representing in:

Fig. 1 the watthour meter of the invention and

Fig. 2a and b graphs representing the time dependence of the electric work in two circuit arrengements during the watthour-meter self-testing.

[0006] A watthour meter is provided with a voltage sensor 1 sensing the mains voltage ul that is *i.e.* the voltage across a load, and with an inductive current sensor 2 sensing a current il flowing through the load. The output signals of said sensors 1, 2 are amplified in an amplifier 4 and 5, respectively, and then digitized in a Σ - Δ analog-to-digital converter 6 and 7, respectively. Their output signals are processed in a digital signal processor 8 (Fig. 1). The processing of the measuring signals in the watthour meter is performed in any known way, for example according to the technical teaching in the patent application SI 200200216 (EP 1 378 756 A2) by the present applicant.

[0007] The voltage sensor 1 is made as a voltage divider consisting of a first resistor R1 and a second resistor R2. [0008] The sensor 2 sensing the current flowing through the load is preferably an inductive current sensor, however, if a different current sensor is used, it is furnished with an added coil.

[0009] A switching matrix 3 assembled of four controlled switches s1, s2, s3 and s4 is connected to the output terminals of the voltage sensor 1 and of the current sensor 2.

[0010] The first controlled switch s1 is connected between the second output terminal of the voltage sensor 1 and the first output terminal of the current sensor 2. The second output terminal of the voltage sensor 1 is here specified as follows: in the watthour meter performing only the measurent of the electric work WI done on the load without performing also the self-testing of the watthour meter, the second output terminal of the voltage sensor 1 is mass-connected; this can be achieved by closing the controlled switches s2 and s3.

[0011] The second controlled switch s2 is connected between the second output terminal of the voltage sensor 1 and the second output terminal of the current sensor 2. The third controlled switch s3 is connected between the second output terminal of the current sensor 2 and the mass, and the fourth controlled switch s4 is connected between the first output terminal of the current sensor 2 and the mass.

[0012] The electric work WI done on the load and a testing electric work Wt done on the first and second resistor R1 and R2, respectively, of said voltage divider in the voltage sensor 1 are measured in order to perform the self-testing of the watthour meter when it is in operation. The testing electric work Wt results from an excitation by means of a measuring signal, which is known, and the response to this signal is known as well.

[0013] To measure the electric work WI done on the load, the controlling output signals of the digital signal processor 8 close the first controlled switch s1 and the third controlled switch s3 in their first half-period T/2 and close the second controlled switch s2 and the fourth controlled switch s4 in their second half-period T/2. When the first controlled switch s1 and the third controlled switch s3 are closed, across a secondary coil of the current sensor 2, there is induced an additional voltage which results from a current dictated by the mains voltage ul across the resistor chain R1+R2 of the voltage divider in the voltage sensor 1.

[0014] To measure the testing electric work Wt done on the resistors R1, R2 of the voltage divider, the digital signal processor 8 reverses the polarity of test signals synchronously with said switching of the four controlled switches s1,

s2, s3, s4.

5

20

25

30

35

40

45

50

55

[0015] The electric works WI and Wt are specified as:

$$WI = \frac{R1}{R2} * uI * iI * K, \tag{1}$$

$$Wt = \frac{R1}{R2} * ul * \frac{ul}{R1 + R2} * K,$$
 (2)

where K is a watthour-meter constant. Its value determines the precision of the watthour meter and this value is tested in the self-testing procedure.

[0016] Of course, it is supposed that the mains voltage ul is equal in all network and hence known. Thus in the equations (1) and (2) il and K are unknown quantities. The digital signal processor 8 namely calculates the electric work WI done on the load and the testing electric work Wt done on the resistors R1, R2 of the voltage divider in the voltage sensor 1 as it is also graphically shown in Figs. 2a and 2b, on the basis of said measurements during self-testing of the watt-hour meter from the following equations

$$Wl = \frac{1}{2N} \sum_{i=1}^{N} (Wl_i + (-1)^i Wt_i), \qquad (3)$$

$$Wt = \frac{1}{2N} \sum_{i=1}^{N} (Wt_i + (-1)^i Wl_i).$$
 (4)

[0017] In the equations (3) and (4), 2N represents the number of half-periods; an individual addend is related to the ith half-period.

[0018] If the electric work WI done on the load varies within the measuring period T, the measurement is performed until the current value of said electric work WI equals its value at the beginning of the measurement.

[0019] A deviation of the established value of the constant K of the watthour meter from a predetermined value indicates a failure of the watthour meter or an unprecise metering. This is either signalized in the display 9 on the watthour meter front plate, thus warning reader of the meter count, or it is communicated to a control station by means of a modem 10.

[0020] The testing of the watthour meter of the invention proceeds automatically on the metering position and the result may be noticed each time when reading the watthour meter or remotely at any time.

Claims

1. Watthour meter, provided with a voltage sensor (1) in the form of a voltage divider, consisting of a first resistor (R1) and a second resistor (R2), and with an inductive current sensor (2) sensing a current flowing through a load, the output signals of said sensors (1, 2) being amplified and digitized, and with a digital signal processor (8),

characterized in

that, in order to perform a self-testing of the watthour meter,

a first controlled switch (s1), connected between a second output terminal of the voltage sensor (1) and a first output terminal of the current sensor (2), said second output terminal of the voltage sensor (1) being mass-connected, when only the electric work WI done on the load is measured without performing the watthour-meter self-testing, and

a second controlled switch (s2) connected between the second output terminal of the voltage sensor (1) and the second output terminal of the current sensor (2), and

a third controlled switch (s3) connected between the second output terminal of the current sensor (2) and the mass, and

a fourth controlled switch (s4) connected between the first output terminal of the current sensor (2) and the mass,

EP 1 498 741 A1

are controlled by output signals of the digital signal processor (8) in such a way

that in order to determine the electric work WI done on the load,

only the first controlled switch (s1) and the third controlled switch (s3) are closed in their first half-period of the control signals and

only the second controlled switch (s2) and the fourth controlled switch (s4) are closed in their second half-period of the control signals

and **that**, in order to determine a testing electric work Wt done on the resistors (R1, R2) of the voltage divider of the voltage sensor (1),

the digital signal processor (8) reverses the polarity of test signals synchronously with said switching of the four controlled switches (s1, s2, s3, s4),

and that the digital signal processor (8) calculates a watthour-meter constant K by means of the measured electric work WI done on the load and of the measured testing electric work Wt.

2. Watthour meter as recited in claim 1, characterized in

5

10

15

20

25

30

35

40

45

50

55

- <u>that</u>, in the case that the electric work WI done on the load varies within the measuring period, the measurement is performed until the current value of said electric work WI equals its value at the beginning of the measurement.
- 3. Watthour meter as recited in any of previous claims, **characterized in that** the output of the digital signal processor (8) is connected to a display (9).
- 4. Watthour meter as recited in claim 1, **characterized in that** the output of the digital signal processor (8) is connected to a modem (10).

4

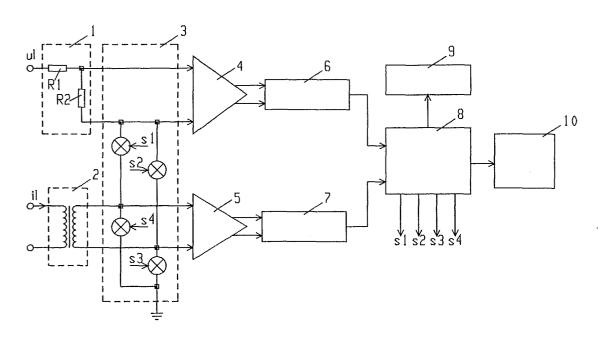


Fig.1

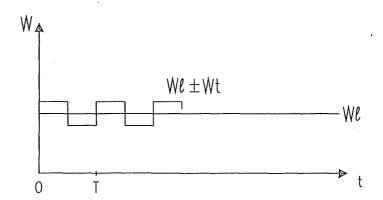
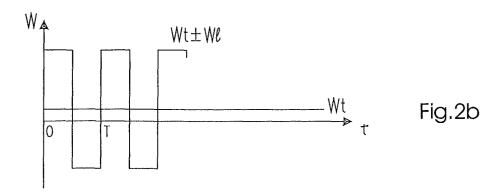



Fig.2a

EUROPEAN SEARCH REPORT

Application Number EP 04 46 8013

Category A	Citation of document with inc of relevant passag				
A			to claim	APPLICATION (Int.Cl.7)	
	US 5 128 611 A (KONI 7 July 1992 (1992-0) * column 3, line 28 figures 3,4 *		1-4	G01R21/133 G01R35/04	
A	EP 0 871 040 A (SCH 14 October 1998 (199 * abstract; figures	98-10-14)	1-4		
A	US 6 078 870 A (WINI 20 June 2000 (2000-0 * abstract; figure 1 * column 2, line 17 * column 4, line 59	96-20) 1 *	1-4		
A	<pre>ELECTRIC (US)) 22 Ma * abstract; figures * page 6, line 17 -</pre>		1-4	TECHNICAL FIELDS SEARCHED (Int.Cl.7) G01R	
	The present search report has b	een drawn up for all claims			
	Place of search	Date of completion of the search		Examiner	
Berlin		8 November 2004	8 November 2004 Er		
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure		T: theory or princip E: earlier patent d after the filing d er D: document cited L: document cited	ocument, but publi ate in the application for other reasons	ished on, or	

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 04 46 8013

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

08-11-2004

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 5128611	A	07-07-1992	CH AU AU CA CN CZ DD DE DK EP ES GR JP NZ PT ZA	680537 A 115290 T 640914 B 5056990 A 2010568 A 1045457 A 9000982 A 297517 A 59007894 D 386604 T 0386604 A 2064505 T 3015310 T 2254369 A 232791 A 93354 A	2 1 3 5 1 3 2 3 3 3	15-09-1992 15-12-1994 09-09-1993 13-09-1990 07-09-1990 19-09-1996 09-01-1995 27-02-1995 12-09-1990 01-02-1995 30-06-1995 15-10-1990 25-11-1992 07-11-1990 28-12-1990
EP 0871040	Α	14-10-1998	GB CN DE EP ZA	2324160 A 1201909 A 69824659 D 0871040 A 9802963 A	,B 1 2	14-10-1998 16-12-1998 29-07-2004 14-10-1998 21-10-1998
US 6078870	Α	20-06-2000	DE CA WO DE EP ES	19526723 C 2227288 A 9704321 A 59608514 D 0840896 A 2170247 T	1 1 1	13-02-1997 06-02-1997 06-02-1997 31-01-2002 13-05-1998 01-08-2002
EP 0644431	A	22-03-1995	US EP EP EP CA DE EP JP JP JP JP	5059896 A 0644431 A 0645636 A 0644433 A 9004756 A 2021078 A 69029313 D 0420545 A 2094747 T 3120477 A 2000298147 A 2000298148 A 2000304778 A 2000304778 A	1 1 1 1 1 2 3	22-10-1991 22-03-1995 29-03-1995 22-03-1995 10-09-1991 26-03-1991 16-01-1997 03-04-1991 01-02-1997 22-05-1991 24-10-2000 24-10-2000 02-11-2000 02-11-2000 29-05-1992

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 04 46 8013

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

08-11-2004

Patent document cited in search report	Publication date	F	Patent family member(s)	Publication date
EP 0644431 /	1	US CA US US CA US	5289115 A 2014914 A1 5258704 A 5245275 A 2021092 A1 5325051 A	22-02-199 25-03-199 02-11-199 14-09-199 26-03-199 28-06-199

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

FORM P0459