Field of the Invention
[0001] The present invention is directed generally to methods and apparatus for providing
power to devices on A.C. power circuits. More particularly, the invention relates
to methods and apparatus for providing power to light emitting diode (LED) based devices,
primarily for illumination purposes.
Background
[0002] In various lighting applications (e.g., home, commercial, industrial, etc.), there
are instances in which it is desirable to adjust the amount of light generated by
one or more conventional light sources (e.g., incandescent light bulbs, fluorescent
light fixtures, etc.). In many cases, this is accomplished via a user-operated device,
commonly referred to as a "dimmer," that adjusts the power delivered to the light
source(s). Many types of conventional dimmers are known that allow a user to adjust
the light output of one or more light sources via some type of user interface (e.g.,
by turning a knob, moving a slider, etc., often mounted on a wall in proximity to
an area in which it is desirable to adjust the light level). The user interface of
some dimmers also may be equipped with a switching/adjustment mechanism that allows
one or more light sources to be switched off and on instantaneously, and also have
their light output gradually varied when switched on.
[0003] Many lighting systems for general interior or exterior illumination often are powered
by an A.C. source, commonly referred to as a "line voltage" (e.g., 120 Volts RMS at
60 Hz, 220 Volts RMS at 50 Hz). A conventional A.C. dimmer typically receives the
A.C. line voltage as an input, and provides an A.C. signal output having one or more
variable parameters that have the effect of adjusting the average voltage of the output
signal (and hence the capability of the A.C. output signal to deliver power) in response
to user operation of the dimmer. This dimmer output signal generally is applied, for
example, to one or more light sources that are mounted in conventional sockets or
fixtures coupled to the dimmer output (such sockets or fixtures sometimes are referred
to as being on a "dimmer circuit").
[0004] Conventional A.C. dimmers may be configured to control power delivered to one or
more light sources in one of a few different ways. For example, in one implementation,
the adjustment of the user interface causes the dimmer to increase or decrease a voltage
amplitude of the A.C. dimmer output signal. More commonly, however, in other implementations,
the adjustment of the user interface causes the dimmer to adjust the duty cycle of
the A.C. dimmer output signal (e.g., by "chopping-out" portions of A.C. voltage cycles).
This technique sometimes is referred to as "angle modulation" (based on the adjustable
phase angle of the output signal). Perhaps the most commonly used dimmers of this
type employ a triac that is selectively operated to adjust the duty cycle (i.e., modulate
the phase angle) of the dimmer output signal by chopping-off rising portions of A.C.
voltage half-cycles (i.e., after zero-crossings and before peaks). Other types of
dimmers that adjust duty cycles may employ gate turn-off (GTO) thyristors that are
selectively operated to chop-off falling portions of A.C. voltage half-cycles (i.e.,
after peaks and before zero-crossings).
[0005] Fig. 1 generally illustrates some conventional A.C. dimmer implementations. In particular,
Fig. 1 shows an example of an A.C. voltage waveform 302 (e.g., representing a standard
line voltage) that may provide power to one or more conventional light sources. Fig.
1 also shows a generalized A.C. dimmer 304 responsive to a user interface 305. In
the first implementation discussed above, the dimmer 304 is configured to output the
waveform 308, in which the amplitude 307 of the dimmer output signal may be adjusted
via the user interface 305. In the second implementation discussed above, the dimmer
304 is configured to output the waveform 309, in which the duty cycle 306 of the waveform
309 may be adjusted via the user interface 305.
[0006] As discussed above, both of the foregoing techniques have the effect of adjusting
the average voltage applied to the light source(s), which in turn adjusts the intensity
of light generated by the source(s). Incandescent sources are particularly well-suited
for this type of operation, as they produce light when there is current flowing through
a filament in either direction; as the average voltage of an A.C. signal applied to
the source(s) is adjusted (e.g., either by an adjustment of voltage amplitude or duty
cycle), the current (and hence the power) delivered to the light source also is changed
and the corresponding light output changes. With respect to the duty cycle technique,
the filament of an incandescent source has thermal inertia and does not stop emitting
light completely during short periods of voltage interruption. Accordingly, the generated
light as perceived by the human eye does not appear to flicker when the voltage is
"chopped," but rather appears to gradually change.
[0007] US-6,127,783 discloses a white light emitting luminaire including a plurality of LEDs in each
of the colors red, green, and blue have a separate current regulator which receives
current outputs from an A.C. converter.
[0008] US-6,369,525 discloses a white LED array driver circuit with a multiple output flyback converter
with output current mode control. The circuit comprises a power supply source, a transformer,
and a controller arranged to control the flow of current to the primary winding of
the transformer.
[0009] US-A-2002/0048169 discloses the general concept of converting A.C. power signals from a dimmer circuit
into D.C. power for an LED. However, it does not disclose that higher frequency components
present in a chopped signal from a dimmer circuit can cause fatal damage to LED light
sources in certain circumstances. It is an aim of the present invention to address
this problem.
Summary
[0010] There is provided according to the present invention an illumination apparatus, comprising:
at least one LED; and at least one controller coupled to the at least one LED and
configured to provide D.C. power to the at least one LED, wherein the controller is
configured to receive from an A.C. power source an A.C. power-related signal having
higher frequency components than a standard A.C. line voltage and to provide said
D.C. power based on the A.C. power-related signal, characterized in that the at least
one controller is configured to filter out the higher frequency components. According
to a second aspect of the present invention there is provided an illumination method,
comprising an act of: A) providing D.C. power to at least one LED based on a power-related
signal provided by an A.C. power source having higher frequency components than a
standard A.C. line voltage, characterized in that the higher frequency components
are filtered out of the power-related signal prior to providing D.C. power to the
at least one LED.
[0011] In one embodiment, methods and apparatus of the invention particularly facilitate
the use of LED-based light sources on A.C. power circuits that are controlled by conventional
dimmers (i.e. "A.C. dimmer circuits"). In one aspect, methods and apparatus of the
present invention facilitate convenient substitution of LED-based light sources in
lighting environments employing A.C. dimming devices and conventional light sources.
In yet other aspects, methods and apparatus according to the present invention facilitate
the control of one or more parameters relating to the light generated by LED-based
light sources (e.g., intensity, color, color temperature, temporal characteristics,
etc.) via operation of a conventional A.C. dimmer and/or other signals present on
the A.C. power circuit.
[0012] More generally, one embodiment of the invention is directed to an illumination apparatus,
comprising at least one LED and at least one controller coupled to the at least one
LED. The controller is configured to receive a power-related signal from an A.C. power
source that provides signals other than a standard A.C, line voltage. The controller
further is configured to provide power to the at least one LED based on the power-related
signal.
[0013] Another embodiment of the invention is directed to an illumination method, comprising
an act of providing power to at least one LED based on a power-related signal from
an A.C. power source that provides signals other than a standard A.C. line voltage.
[0014] Another embodiment of the invention is directed to an illumination apparatus, comprising
at least one LED, and at least one controller coupled to the at least one LED and
configured to receive a power-related signal from an alternating current (A.C.) dimmer
circuit and provide power to the at least one LED based on the power-related signal.
[0015] Another embodiment of the invention is directed to an illumination method, comprising
an act of providing power to at least one LED based on a power-related signal from
an alternating current (A.C.) dimmer circuit.
[0016] Another embodiment of the invention is directed to an illumination apparatus, comprising
at least one LED adapted to generate an essentially white light, and at least one
controller coupled to the at least one LED and configured to receive a power-related
signal from an alternating current (A.C.) dimmer circuit and provide power to the
at least one LED based on the power-related signal. The A.C. dimmer circuit is controller
by a user interface to vary the power-related signal. The controller is configured
to variably control at least one parameter of the essentially white light in response
to operation of the user interface so as to approximate light generation characteristics
of an incandescent light source.
[0017] Another embodiment of the invention is directed to a lighting system, comprising
at least one LED, a power connector, and a power converter associated with the power
connector and adapted to convert A.C. dimmer circuit power received by the power connector
to form a converted power. The system also includes an adjustment circuit associated
with the power converter adapted to adjust power delivered to the at least one LED.
[0018] Another embodiment of the invention is directed to a method of providing illumination,
comprising the steps of providing an AC dimmer circuit, connecting an LED lighting
system to the AC dimmer circuit, generating light from the LED lighting system by
energizing the AC dimmer circuit, and adjusting the light generated by the LED lighting
system by adjusting the AC dimmer circuit.
[0019] Another embodiment of the invention is directed to method for controlling at least
one device powered via an A.C. line voltage. The method comprises an act of generating
a power signal based on the A.C. line voltage, wherein the power signal provides an
essentially constant power to the at least one device and includes at least one communication
channel carrying control information for the at least one device, the at least one
communication channel occupying a portion of a duty cycle over a period of cycles
of the A.C. line voltage.
[0020] Another embodiment of the invention is directed to an apparatus for controlling at
least one device powered via an A.C. line voltage. The apparatus comprises a supply
voltage controller configured to generate a power signal based on the A.C. line voltage,
wherein the power signal provides an essentially constant power to the at least one
device and includes at least one communication channel carrying control information
for the at least one device, the at least one communication channel occupying a portion
of a duty cycle over a period of cycles of the A.C. line voltage. In one aspect of
this embodiment, the supply voltage controller includes at least one user interface
to provide variable control information in the at least one communication channel.
[0021] As used herein for purposes of the present disclosure, the term "LED" should be understood
to include any electroluminescent diode or other type of carrier injection / junction-based
system that is capable of generating radiation in response to an electric signal.
Thus, the term LED includes, but is not limited to, various semiconductor-based structures
that emit light in response to current, light emitting polymers, electroluminescent
strips, and the like.
[0022] In particular, the term LED refers to light emitting diodes of all types (including
semi-conductor and organic light emitting diodes) that may be configured to generate
radiation in one or more of the infrared spectrum, ultraviolet spectrum, and various
portions of the visible spectrum (generally including radiation wavelengths from approximately
400 nanometers to approximately 700 nanometers). Some examples of LEDs include, but
are not limited to, various types of infrared LEDs, ultraviolet LEDs, red LEDs, blue
LEDs, green LEDs, yellow LEDs, amber LEDs, orange LEDs, and white LEDs (discussed
further below). It also should be appreciated that LEDs may be configured to generate
radiation having various bandwidths for a given spectrum (e.g., narrow bandwidth,
broad bandwidth).
[0023] For example, one implementation of an LED configured to generate essentially white
light (e.g., a white LED) may include a number of dies which respectively emit different
spectra of electroluminescence that, in combination, mix to form essentially white
light. In another implementation, a white light LED may be associated with a phosphor
material that converts electroluminescence having a first spectrum to a different
second spectrum. In one example of this implementation, electroluminescence having
a relatively short wavelength and narrow bandwidth spectrum "pumps" the phosphor material,
which in turn radiates longer wavelength radiation having a somewhat broader spectrum.
[0024] It should also be understood that the term LED does not limit the physical and/or
electrical package type of an LED. For example, as discussed above, an LED may refer
to a single light emitting device having multiple dies that are configured to respectively
emit different spectra of radiation (e.g., that may or may not be individually controllable).
Also, an LED may be associated with a phosphor that is considered as an integral part
of the LED (e.g., some types of white LEDs). In general, the term LED may refer to
packaged LEDs, non-packaged LEDs, surface mount LEDs, chip-on-board LEDs, T-package
mount LEDs, radial package LEDs, power package LEDs, LEDs including some type of encasement
and/or optical element (e.g., a diffusing lens), etc.
[0025] The term "light source" should be understood to refer to any one or more of a variety
of radiation sources, including, but not limited to, LED-based sources (employing
one or more LEDs as defined above), incandescent sources (e.g., filament lamps, halogen
lamps), fluorescent sources, phosphorescent sources, high-intensity discharge sources
(e.g., sodium vapor, mercury vapor, and metal halide lamps), lasers, other types of
electroluminescent sources, pyro-luminescent sources (e.g., flames), candle-luminescent
sources (e.g., gas mantles, carbon arc radiation sources), photo-luminescent sources
(e.g., gaseous discharge sources), cathode luminescent sources using electronic satiation,
galvano-luminescent sources, crystallo-luminescent sources, kine-luminescent sources,
thermo-luminescent sources, triboluminescent sources , sonoluminescent sources, radioluminescent
sources, and luminescent polymers.
[0026] A given light source may be configured to generate electromagnetic radiation within
the visible spectrum, outside the visible spectrum, or a combination of both. Hence,
the terms "light" and "radiation" are used interchangeably herein. Additionally, a
light source may include as an integral component one or more filters (e.g., color
filters), lenses, or other optical components. Also, it should be understood that
light sources may be configured for a variety of applications, including, but not
limited to, indication and/or illumination. An "illumination source" is a light source
that is particularly configured to generate radiation having a sufficient intensity
to effectively illuminate an interior or exterior space.
[0027] The term "spectrum" should be understood to refer to any one or more frequencies
(or wavelengths) of radiation produced by one or more light sources. Accordingly,
the term "spectrum" refers to frequencies (or wavelengths) not only in the visible
range, but also frequencies (or wavelengths) in the infrared, ultraviolet, and other
areas of the overall electromagnetic spectrum. Also, a given spectrum may have a relatively
narrow bandwidth (essentially few frequency or wavelength components) or a relatively
wide bandwidth (several frequency or wavelength components having various relative
strengths). It should also be appreciated that a given spectrum may be the result
of a mixing of two or more other spectra (e.g., mixing radiation respectively emitted
from multiple light sources).
[0028] For purposes of this disclosure, the term "color" is used interchangeably with the
term "spectrum." However, the term "color" generally is used to refer primarily to
a property of radiation that is perceivable by an observer (although this usage is
not intended to limit the scope of this term). Accordingly, the terms "different colors"
implicitly refer to multiple spectra having different wavelength components and/or
bandwidths. It also should be appreciated that the term "color" may be used in connection
with both white and non-white light.
[0029] The term "color temperature" generally is used herein in connection with white light,
although this usage is not intended to limit the scope of this term. Color temperature
essentially refers to a particular color content or shade (e.g., reddish, bluish)
of white light. The color temperature of a given radiation sample conventionally is
characterized according to the temperature in degrees Kelvin (K) of a black body radiator
that radiates essentially the same spectrum as the radiation sample in question. The
color temperature of white light generally falls within a range of from approximately
700 degrees K (generally considered the first visible to the human eye) to over 10,000
degrees K.
[0030] Lower color temperatures generally indicate white light having a more significant
red component or a "warmer feel," while higher color temperatures generally indicate
white light having a more significant blue component or a "cooler feel." By way of
example, fire has a color temperature of approximately 1,800 degrees K, a conventional
incandescent bulb has a color temperature of approximately 2848 degrees K, early morning
daylight has a color temperature of approximately 3,000 degrees K, and overcast midday
skies have a color temperature of approximately 10,000 degrees K. A color image viewed
under white light having a color temperature of approximately 3,000 degree K has a
relatively reddish tone, whereas the same color image viewed under white light having
a color temperature of approximately 10,000 degrees K has a relatively bluish tone.
[0031] The terms "lighting unit" and "lighting fixture" are used interchangeably herein
to refer to an apparatus including one or more light sources of same or different
types. A given lighting unit may have any one of a variety of mounting arrangements
for the light source(s), enclosure/housing arrangements and shapes, and/or electrical
and mechanical connection configurations. Additionally, a given lighting unit optionally
may be associated with (e.g., include, be coupled to and/or packaged together with)
various other components (e.g., control circuitry) relating to the operation of the
light source(s). An "LED-based lighting unit" refers to a lighting unit that includes
one or more LED-based light sources as discussed above, alone or in combination with
other non LED-based light sources.
[0032] The terms "processor" or "controller" are used herein interchangeably to describe
various apparatus relating to the operation of one or more light sources. A processor
or controller can be implemented in numerous ways, such as with dedicated hardware,
using one or more microprocessors that are programmed using software (e.g., microcode)
to perform the various functions discussed herein, or as a combination of dedicated
hardware to perform some functions and programmed microprocessors and associated circuitry
to perform other functions.
[0033] In various implementations, a processor or controller may be associated with one
or more storage media (generically referred to herein as "memory," e.g., volatile
and non-volatile computer memory such as RAM, PROM, EPROM, and EEPROM, floppy disks,
compact disks, optical disks, magnetic tape, etc.). In some implementations, the storage
media may be encoded with one or more programs that, when executed on one or more
processors and/or controllers, perform at least some of the functions discussed herein.
Various storage media may be fixed within a processor or controller or may be transportable,
such that the one or more programs stored thereon can be loaded into a processor or
controller so as to implement various aspects of the present invention discussed herein.
The terms "program" or "computer program" are used herein in a generic sense to refer
to any type of computer code (e.g., software or microcode) that can be employed to
program one or more processors or controllers.
[0034] The term "addressable" is used herein to refer to a device (e.g., a light source
in general, a lighting unit or fixture, a controller or processor associated with
one or more light sources or lighting units, other non-lighting related devices, etc.)
that is configured to receive information (e.g., data) intended for multiple devices,
including itself, and to selectively respond to particular information intended for
it. The term "addressable" often is used in connection with a networked environment
(or a "network," discussed further below), in which multiple devices are coupled together
via some communications medium or media.
[0035] In one network implementation, one or more devices coupled to a network may serve
as a controller for one or more other devices coupled to the network (e.g., in a master
/ slave relationship). In another implementation, a networked environment may include
one or more dedicated controllers that are configured to control one or more of the
devices coupled to the network. Generally, multiple devices coupled to the network
each may have access to data that is present on the communications medium or media;
however, a given device may be "addressable" in that it is configured to selectively
exchange data with (i.e., receive data from and/or transmit data to) the network,
based, for example, on one or more particular identifiers (e.g., "addresses") assigned
to it.
[0036] The term "network" as used herein refers to any interconnection of two or more devices
(including controllers or processors) that facilitates the transport of information
(e.g. for device control, data storage, data exchange, etc.) between any two or more
devices and/or among multiple devices coupled to the network. As should be readily
appreciated, various implementations of networks suitable for interconnecting multiple
devices may include any of a variety of network topologies and employ any of a variety
of communication protocols. Additionally, in various networks according to the present
invention, any one connection between two devices may represent a dedicated connection
between the two systems, or alternatively a non-dedicated connection. In addition
to carrying information intended for the two devices, such a non-dedicated connection
may carry information not necessarily intended for either of the two devices (e.g.,
an open network connection). Furthermore, it should be readily appreciated that various
networks of devices as discussed herein may employ one or more wireless, wire/cable,
and/or fiber optic links to facilitate information transport throughout the network.
[0037] The term "user interface" as used herein refers to an interface between a human user
or operator and one or more devices that enables communication between the user and
the device(s). Examples of user interfaces that may be employed in various implementations
of the present invention include, but are not limited to, switches, potentiometers,
buttons, dials, sliders, a mouse, keyboard, keypad, various types of game controllers
(e.g., joysticks), track balls, display screens, various types of graphical user interfaces
(GUIs), touch screens, microphones and other types of sensors that may receive some
form of human-generated stimulus and generate a signal in response thereto.
[0038] It should be appreciated the all combinations of the foregoing concepts and additional
concepts discussed in greater detail below are contemplated as being part of the inventive
subject matter disclosed herein. In particular, all combinations of claimed subject
matter appearing at the end of this disclosure are contemplated as being part of the
inventive subject matter.
Brief Description of the Figures
[0039] The following figures depict certain illustrative embodiments of the invention in
which like reference numerals refer to like elements. These depicted embodiments are
to be understood as illustrative of the invention and not as limiting in any way.
Fig. 1 illustrates exemplary operation of conventional A.C. dimming devices;
Fig. 2 illustrates a conventional implementation for providing power to an LED-based
light source from an A.C. line voltage;
Fig. 3 illustrates a lighting unit including an LED-based light source according to
one embodiment of the invention;
Fig. 4 is a circuit diagram illustrating various components of the lighting unit of
Fig. 3, according to one embodiment of the invention;
Fig. 5 illustrates a lighting unit including an LED-based light source according to
another embodiment of the invention;
Fig. 6 is a circuit diagram illustrating various components of the lighting unit of
Fig. 5, according to one embodiment of the invention;
Fig. 7 is a block diagram of a processor-based lighting unit including an LED-based
light source according to another embodiment of the invention;
Fig. 8 is a circuit diagram illustrating various components of the power circuitry
for the lighting unit of Fig. 7;
Fig. 9 is a circuit diagram illustrating a conventional current sink employed in driving
circuitry for an LED-based light source, according to one embodiment of the invention;
Fig. 10 is a circuit diagram illustrating an improved current sink, according to one
embodiment of the invention; and
Fig. 11 is a circuit diagram illustrating an improved current sink, according to another
embodiment of the invention.
Detailed Description
1. Overview
[0040] Light Emitting Diode (LED) based illumination sources are becoming more popular in
applications where general, task, accent, or other lighting is desired. LED efficiencies,
high intensities, low cost, and high level of controllability are driving demand for
LED-based light sources as replacements for conventional non LED-based light sources.
[0041] While conventional A.C. dimming devices as discussed above often are employed to
control conventional light sources such as incandescent lights using an A.C. power
source, Applicants have recognized and appreciated that generally such dimmers are
not acceptable for use with solid-state light sources such as LED-based light sources.
Stated differently, Applicants have identified that LED-based light sources, which
operate based on substantially D.C. power sources, generally are incompatible with
dimmer circuits that provide A.C. output signals. This situation impedes convenient
substitution of LED-based light sources into pre-existing lighting systems in which
conventional light sources are operated via A.C. dimmer circuits.
[0042] There are some solutions currently for providing power to LED-based lighting systems
via an A.C. line voltage, but these solutions suffer from significant drawbacks if
applied to A.C. dimmer circuits. Fig. 2 illustrates one such generalized scenario,
in which a standard A.C. line voltage 302 (e.g., 120 Vrms, 220 Vrms, etc.) is used
to power an LED-based lighting system, such as a traffic light 808 (the traffic light
includes three modules of LED arrays, one red, one yellow and one green, with associated
circuitry). In the arrangement of Fig. 2, a full-wave rectifier 802, together with
capacitors 800 and 806 and resistor 804, filter the applied A.C. line voltage so as
to supply a substantially D.C. source of power for the traffic light 808. In particular,
the capacitor 800 may be specifically selected, depending on the impedance of other
circuit components, such that energy is passed to the traffic light based primarily
on the expected frequency of the A.C. line voltage (e.g., 60 Hz).
[0043] One problem with the arrangement shown in Fig. 2 if the applied A.C. signal is provided
by a dimmer circuit rather than as a line voltage is that the applied signal may include
frequency components that are significantly different from the frequency of the line
voltage for which the circuit was designed. For example, consider a dimmer circuit
that provides a duty cycle-controlled (i.e., angle modulated) A.C. signal 309 such
as that shown in Fig. 1; by virtue of the abrupt signal excursions due to the "chopping-off'
of portions of voltage cycles, signals of this type include significantly higher frequency
components than a typical line voltage. Were such an angle modulated A.C. signal to
be applied to the arrangement of Fig. 2, the capacitor 800 would allow excess energy
associated with these higher frequency components to pass through to the traffic light,
in most cases causing fatal damage to the light sources.
[0044] In view of the foregoing, one embodiment of the present invention is directed generally
to methods and apparatus for facilitating the use of LED-based light sources on A.C.
power circuits that provide either a standard line voltage or that are controlled
by conventional dimmers (i.e, "A.C. dimmer circuits"). In one aspect, methods and
apparatus of the present invention facilitate convenient substitution of LED-based
light sources in lighting environments employing conventional dimming devices and
conventional light sources. In yet other aspects, methods and apparatus according
to the present invention facilitate the control of one or more parameters relating
to the light generated by LED-based light sources (e.g., intensity, color, color temperature,
temporal characteristics, etc.) via operation of a conventional dimmer and/or other
control signals that may be present in connection with an A.C. line voltage.
[0045] Lighting units and systems employing various concepts according to the principles
of the present invention may be used in a residential setting, commercial setting,
industrial setting or any other setting where conventional A.C. dimmers are found
or are desirable. Furthermore, the various concepts disclosed herein may be applied
in lighting units according to the present invention to ensure compatibility of the
lighting units with a variety of lighting control protocols that provide various control
signals via an A.C. power circuit.
[0046] One example of such a control protocol is given by the X10 communications language,
which allows X10-compatible products to communicate with each other via existing electrical
wiring in a home (i.e., wiring that supplies a standard A.C. line voltage). In a typical
X10 implementation, an appliance to be controlled (e.g., lights, thermostats, jacuzzi/hot
tub, etc.) is plugged into an X10 receiver, which in turn plugs into a conventional
wall socket coupled to the A.C. line voltage. The appliance to be controlled can be
assigned with a particular address. An X10 transmitter/controller is plugged into
another wall socket coupled to the line voltage, and communicates control commands
(e.g., on, off, dim, bright, etc.), via the same wiring providing the line voltage,
to one or more X10 receivers based at least in part on the assigned address(es) (further
information regarding X10 implementations may be found at the website "www.smarthome.com").
According to one embodiment, methods and apparatus of the present invention facilitate
compatibility of various LED-based light sources and lighting units with X10 and other
communication protocols that communicate control information in connection with an
A.C. line voltage.
[0047] In general, methods and apparatus according to the present invention allow a substantially
complete retrofitting of a lighting environment with solid state LED-based light sources;
in particular, pursuant to the present invention, the use of LED-based light sources
as substitutes for incandescent light sources is not limited to only those A.C. power
circuits that are supplied directly from a line voltage (e.g., via a switch); rather,
methods and apparatus of the present invention allow LED-based light sources to be
used in most any conventional (e.g., incandescent) socket, including those coupled
to an A.C. dimmer circuit and/or receiving signals other than a standard line voltage.
[0048] In various embodiments, an LED-based lighting unit or fixture according to the invention
may include a controller to appropriately condition an A.C. signal provided by a dimmer
circuit so as to provide power to (i.e., "drive") one or more LEDs of the lighting
unit. The controller may drive the LED(s) using any of a variety of techniques, including
analog control techniques, pulse width modulation (PWM) techniques or other power
regulation techniques. Although not an essential feature of the present invention,
in some embodiments the circuitry of the LED-based lighting unit may include one or
more microprocessors that are programmed to carry out various signal conditioning
and/or light control functions. In various implementations of both processor and non-processor
based embodiments, an LED-based lighting unit according to the invention may be configured
for operation on an A.C. dimmer circuit with or without provisions for allowing one
or more parameters of generated light to be adjusted via user operation of the dimmer.
[0049] More specifically, in one embodiment, an LED-based lighting unit may include a controller
wherein at least a portion of the power delivered to the controller, as derived from
an A.C. dimmer circuit, is regulated at a substantially constant value over a significant
range of dimmer operation so as to provide an essentially stable power source for
the controller and other circuitry associated with the lighting unit. In one aspect
of this embodiment, the controller also may be configured to monitor the adjustable
power provided by the dimmer circuit so as to permit adjustment of one or more parameters
of the light generated by the lighting unit in response to operation of the dimmer.
[0050] In particular, there are several parameters of light generated by an LED-based light
source (other than, or in addition to, intensity or brightness, for example) that
may be controlled in response to dimmer operation according to the present invention.
For example, in various embodiments, an LED-based lighting unit may be configured
such that one or more properties of the generated light such as color (e.g., hue,
saturation or brightness), or the correlated color temperature of white light, as
well as temporal parameters (e.g., rate of color variation or strobing of one or more
colors) are adjustable via dimmer operation.
[0051] As discussed above, in one embodiment, an LED-based lighting unit may include one
or more processor-based controllers, including one or more memory storage devices,
to facilitate the foregoing and other examples of adjustable light generation via
dimmer operation. In particular, in one embodiment, such a lighting unit may be configured
to selectively execute, via dimmer operation, one or more lighting programs stored
in controller memory. Such lighting programs may represent various static or time-varying
lighting effects involving multiple colors, color temperatures, and intensities of
generated light, for example. In one aspect of this embodiment, the processor-based
controller of the lighting unit may be configured to monitor the A.C. signal provided
by the dimmer circuit so as to select different programs and/or program parameters
based on one or more changes in the monitored dimmer signal having a particular characteristic
(e.g., a particular instantaneous value relating to the dimmer signal, a particular
time averaged value relating to the dimmer signal, an interruption of power provided
by the dimmer for a predetermined duration, a particular rate of change of the dimmer
signal, etc). Upon the selection of a new program or parameter, further operation
of the dimmer may adjust the selected parameter or program.
[0052] In another exemplary embodiment, an LED-based lighting unit according to the present
invention may be configured to be coupled to an A.C. dimmer circuit and essentially
recreate the lighting characteristics of a conventional incandescent light as a dimmer
is operated to increase or decrease the intensity of the generated light. In one aspect
of this embodiment, this simulation may be accomplished by simultaneously varying
the intensity and the color of the light generated by the LED-based source in response
to dimmer operation, so as to approximate the variable lighting characteristics of
an incandescent source whose intensity is varied. In another aspect of this embodiment,
such a simulation is facilitated by a processor-based controller particularly programmed
to monitor an A.C. signal provided by the dimmer circuit and respectively control
differently colored LEDs of the lighting unit in response to dimmer operation so as
to simultaneously vary both the overall color and intensity of the light generated
by the lighting unit.
[0053] While many of the lighting effects discussed herein are associated with dimmer compatible
control, several effects may be generated according to the present invention using
other control systems as well. For example, the color temperature of an LED-based
light source may be programmed to reduce as the intensity is reduced and these lighting
changes may be controlled by a system other than a dimmer system (e.g. wireless communication,
wired communication and the like) according to various embodiments of the invention.
[0054] Another embodiment of the present invention is directed to a method for selling,
marketing, and advertising of LED-based light sources and lighting systems. The method
may include advertising an LED lighting system compatible with conventional A.C. dimmers
or dimming systems. The method may also include advertising an LED light that is compatible
with both dimmable and non-dimmable lighting control systems.
[0055] Following below are more detailed descriptions of various concepts related to, and
embodiments of, methods and apparatus for providing power to LED-based lighting according
to the present invention. It should be appreciated that various aspects of the invention,
as discussed above and outlined further below, may be implemented in any of numerous
ways, as the invention is not limited to any particular manner of implementation.
Examples of specific implementations are provided for illustrative purposes only.
2. Non-processor based Exemplary Embodiments
[0056] As discussed above, according to various embodiments, LED-based light sources capable
of operation via A.C. dimmer circuits may be implemented with or without microprocessor-based
circuitry. In this section, some examples are given of lighting units that include
circuitry configured to appropriately condition A.C. signals provided by a dimmer
circuit without the aid of a microprocessor or microcontroller. In the sections that
follow, a number of processor-based examples are discussed.
[0057] Fig. 3 illustrates an LED-based lighting unit 200 according to one embodiment of
the present invention. For purposes of illustration, the lighting unit 200 is depicted
generally to resemble a conventional incandescent light bulb having a screw-type base
connector 202 to engage mechanically and electrically with a conventional light socket.
It should be appreciated, however, that the invention is not limited in this respect,
as a number of other configurations including other housing shapes and/or connector
types are possible according to other embodiments. Various examples of power connector
configurations include, but are not limited to, screw-type connectors, wedge-type
connectors, multi-pin type connectors, and the like, to facilitate engagement with
conventional incandescent, halogen, fluorescent or high intensity discharge (HID)
type sockets. Such sockets, in turn, may be connected directly to a source of A.C.
power (e.g., line voltage), or via a switch and/or dimmer to the source of A.C. power.
[0058] The lighting unit 200 of Fig. 3 includes an LED-based light source 104 having one
or more LEDs. The lighting unit also includes a controller 204 that is configured
to receive an A.C. signal 500 via the connector 202 and provide operating power to
the LED-based light source 104. According to one aspect of this embodiment, the controller
204 includes various components to ensure proper operation of the lighting unit for
A.C. signals 500 that are provided by a dimmer circuit and, more specifically, by
a dimmer circuit that outputs duty cycle-controlled (i.e., angle modulated) A.C. signals
as discussed above.
[0059] To this end, according to the embodiment of Fig. 3, the controller 204 includes a
rectifier 404, a low pass (i.e., high frequency) filter 408 and a DC converter 402.
In one aspect of this embodiment, the output of the DC converter 402 provides an essentially
stable DC voltage as a power supply for the LED-based light source 104, regardless
of user adjustments of the dimmer that provides the A.C. signal 500. More specifically,
in this embodiment, the various components of the controller 204 facilitate operation
of the lighting unit 200 on a dimmer circuit without providing for adjustment of the
generated light based on dimmer operation; rather, the primary function of the controller
204 in the embodiment of Fig. 3 is to ensure that no damage is done to the LED-based
light source based on deriving power from an A.C. dimmer circuit.
[0060] In particular, according to one aspect of this embodiment, an essentially constant
DC power is provided to the LED-based light source as long as the dimmer circuit outputs
an A.C. signal 500 that provides sufficient power to operate the controller 204. In
one implementation, the dimmer circuit may output an A.C. signal 500 having a duty
cycle of as low as 50% "on" (i.e., conducting) that provides sufficient power to cause
light to be generated by the LED-based light source 104. In yet another implementation,
the dimmer circuit may provide an A.C. signal 500 having a duty cycle of as low as
25% or less "on" that provides sufficient power to the light source 104. In this manner,
user adjustment of the dimmer over a significantly wide range does not substantially
affect the light output of the lighting unit 200. Again, the foregoing examples are
provided primarily for purposes of illustration, as the invention is not necessarily
limited in these respects.
[0061] Fig. 4 is an exemplary circuit diagram that illustrates some of the details of the
various components shown in Fig. 3, according to one embodiment of the invention.
Again, one of the primary functions of the circuitry depicted in Fig. 4 is to ensure
safe operation of the LED-based light source 104 based on an A.C. signal 500 provided
to the lighting unit 200 via a conventional A.C. dimmer circuit. As shown in Fig.
4, the rectifier 404 may be realized by a diode bridge (D47, D48, D49 and D50), while
the low pass filter is realized from the various passive components (capacitors C2
and C3, inductor L2, and resistors R4 and R6) shown in the figure. In this embodiment,
the DC converter 402 is realized in part using the integrated circuit model number
TNY264/266 manufactured by Power Integrations, Inc., 5245 Hellyer Avenue, San Jose,
California 95138 (www.powerint.com), and is configured to provide a 16 VDC supply
voltage to power the LED-based light source 104.
[0062] It should be appreciated that filter parameters (e.g., of the low pass filter shown
in Fig. 4) are significantly important to ensure proper operation of the controller
204. In particular, the cutoff frequencies of the filter must be substantially less
than a switching frequency of the DC converter, but substantially greater than the
typical several cycle cutoff frequency employed in ordinary switch-mode power supplies.
According to one implementation, the total input capacitance of the controller circuit
is such that little energy remains in the capacitors at the conclusion of each half
cycle of the AC waveform. The inductance similarly should be chosen to provide adequate
isolation of the high frequency components created by the DC converter to meet regulatory
requirements (under certain conditions this value may be zero). In yet other implementations,
it may be advantageous to place all or part of the filter components ahead of the
bridge rectifier 404.
[0063] The light source 104 of Fig. 4 may include one or more LEDs (as shown for example
as the LEDs D52 and D53 in Fig. 4) having any of a variety of colors, and multiple
LEDs may be configured in a variety of serial or parallel arrangements. Additionally,
based on the particular configuration of the LED source 104, one or more resistors
or other components may be used in serial and/or parallel arrangements with the LED
source 104 to appropriately couple the source to the DC supply voltage.
[0064] According to another embodiment of the invention, an LED-based light source not only
may be safely powered by an A.C. dimmer circuit, but additionally the intensity of
light generated by the light source may be adjusted via user operation of a dimmer
that controls the A.C. signal provided by the dimmer circuit. Fig. 5 shows another
example of a lighting unit 200A, similar to the lighting unit shown in Fig. 3, that
is suitable for operation via a dimmer circuit. Unlike the lighting unit shown in
Fig. 3, however, the lighting unit 200A of Fig. 5 is configured to have an adjustable
light output that may be controlled via a dimmer. To this end, the controller 204A
shown in Fig. 5 includes an additional adjustment circuit 208 that further conditions
a signal output from the DC converter 402. The adjustment circuit 208 in turn provides
a variable drive signal to the LED-based light source 104, based on variations in
the A.C. signal 500 (e.g., variations in the average voltage of the signal) in response
to user operation of the dimmer.
[0065] Fig. 6 is an exemplary circuit diagram that illustrates some of the details of the
various components shown in Fig. 5, according to one embodiment of the invention.
Many of the circuit elements shown in Fig. 6 are similar or identical to those shown
in Fig. 4. The additional adjustment circuit 208 is implemented in Fig. 6 in part
by the resistors R2 and R6 which form a voltage divider in the feedback loop of the
integrated circuit U1. A control voltage 410 is derived at the junction of the resistors
R2 and R6, which control voltage varies in response to variations in the A.C. signal
500 due to dimmer operation. The control voltage 410 is applied via diode D5 to a
voltage-to-current converter implemented by resistor R1 and transistor Q1, which provide
a variable drive current to the LED-based light source 104 that tracks adjustments
of the dimmer's user interface. In this manner, the intensity of the light generated
by the light source 104 may be varied via the dimmer over a significant range of dimmer
operation. Of course, it should be appreciated that if the dimmer is adjusted such
that the A.C. signal 500 is no longer capable of providing adequate power to the associated
circuitry, the light source 104 merely ceases to produce light.
[0066] It should be appreciated that in the circuit of Fig. 6, the control voltage 410 is
essentially a filtered, scaled, maximum limited version of average DC voltage fed
to the DC converter. This circuit relies on the DC converter to substantially discharge
the input capacitors each half cycle. In practice this is easily achieved because
input current to the controller stays fairly constant or increases as the duty cycle
of the signal 500 is reduced, so long as device output does not decrease faster than
the control voltage.
3. Processor-based Exemplary Embodiments
[0067] According to other embodiments of the invention, an LED-based lighting unit suitable
for operation via an A.C. dimmer circuit may be implemented using a processor-based
controller. Below, an embodiment of an LED-based lighting unit including a processor
is presented, including a discussion of how such a lighting unit may be particularly
configured for operation via an A.C. dimmer circuit. For example, in addition to a
microprocessor, such a processor-based lighting unit also may include, and/or receive
signal(s) from, one or more other components associated with the microprocessor to
facilitate the control of the generated light based at least in part on user adjustment
of a conventional A.C. dimmer. Once a processor-based control scheme is implemented
in a lighting unit according to the present invention, a virtually limitless number
of configurations are possible for controlling the generated light.
[0068] Fig. 7 shows a portion of an LED-based lighting unit 200B that includes a processor-based
controller 204B according to one embodiment of the invention. Various examples of
processor controlled LED-based lighting units similar to that described below in connection
with Fig. 7 may be found, for example, in
U.S. Patent No. 6,016,038, issued January 18, 2000 to Mueller et al., entitled "Multicolored LED Lighting Method and Apparatus," and
U.S. Patent No. 6,211,626, issued April 3, 2001 to Lys et al, entitled "Illumination Components," which patents are both hereby incorporated herein
by reference.
[0069] In one aspect, while not shown explicitly in Fig. 7, the lighting unit 200B may include
a housing structure that is configured similarly to the other lighting units shown
in Figs. 3 and 5 (i.e., as a replacement for an incandescent bulb having a conventional
screw-type connector). Again, however, it should be appreciated that the invention
is not limited in this respect; more generally, the lighting unit 200B may be implemented
using any one of a variety of mounting arrangements for the light source(s), enclosure/housing
arrangements and shapes to partially or fully enclose the light sources, and/or electrical
and mechanical connection configurations.
[0070] As shown in Fig. 7, the lighting unit 200B includes one or more light sources 104A,
104B, and 104C (shown collectively as 104), wherein one or more of the light sources
may be an LED-based light source that includes one or more light emitting diodes (LEDs).
In one aspect of this embodiment, any two or more of the light sources 104A, 104B,
and 104C may be adapted to generate radiation of different colors (e.g. red, green,
and blue, respectively). Although Fig. 7 shows three light sources 104A, 104B, and
104C, it should be appreciated that the lighting unit is not limited in this respect,
as different numbers and various types of light sources (all LED-based light sources,
LED-based and non-LED-based light sources in combination, etc.) adapted to generate
radiation of a variety of different colors, including essentially white light, may
be employed in the lighting unit 200B, as discussed further below.
[0071] As shown in Fig. 7, the lighting unit 200B also may include a processor 102 that
is configured to control drive circuitry 109 to drive the light sources 104A, 104B,
and 104C so as to generate various intensities of light from the light sources. For
example, in one implementation, the processor 102 may be configured to output via
the drive circuitry 109 at least one control signal for each light source so as to
independently control the intensity of light generated by each light source. Some
examples of control signals that may be generated by the processor and drive circuitry
to control the light sources include, but are not limited to, pulse modulated signals,
pulse width modulated signals (PWM), pulse amplitude modulated signals (PAM), pulse
code modulated signals (PCM) analog control signals (e.g., current control signals,
voltage control signals), combinations and/or modulations of the foregoing signals,
or other control signals.
[0072] In one implementation of the lighting unit 200B, one or more of the light sources
104A, 104B, and 104C shown in Fig. 7 may include a group of multiple LEDs or other
types of light sources (e.g., various parallel and/or serial connections of LEDs or
other types of light sources) that are controlled together by the processor 102. Additionally,
it should be appreciated that one or more of the light sources 104A, 104B, and 104C
may include one or more LEDs that are adapted to generate radiation having any of
a variety of spectra (i.e., wavelengths or wavelength bands), including, but not limited
to, various visible colors (including essentially white light), various color temperatures
of white light, ultraviolet, or infrared. LEDs having a variety of spectral bandwidths
(e.g., narrow band, broader band) may be employed in various implementations of the
lighting unit 200B.
[0073] In another aspect of the lighting unit 200B shown in Fig. 7, the lighting unit may
be constructed and arranged to produce a wide range of variable color radiation. For
example, the lighting unit 200B may be particularly arranged such that the processor-controlled
variable intensity light generated by two or more of the light sources combines to
produce a mixed colored light (including essentially white light having a variety
of color temperatures). In particular, the color (or color temperature) of the mixed
colored light may be varied by varying one or more of the respective intensities of
the light sources (e.g., in response to one or more control signals output by the
processor and drive circuitry). Furthermore, the processor 102 may be particularly
configured (e.g., programmed) to provide control signals to one or more of the light
sources so as to generate a variety of static or time-varying (dynamic) multi-color
(or multi-color temperature) lighting effects.
[0074] Thus, the lighting unit 200B may include a wide variety of colors of LEDs in various
combinations, including two or more of red, green, and blue LEDs to produce a color
mix, as well as one or more other LEDs to create varying colors and color temperatures
of white light. For example, red, green and blue can be mixed with amber, white, UV,
orange, IR or other colors of LEDs. Such combinations of differently colored LEDs
in the lighting unit 200B can facilitate accurate reproduction of a host of desirable
spectrums of lighting conditions, examples of which includes, but are not limited
to, a variety of outside daylight equivalents at different times of the day, various
interior lighting conditions, lighting conditions to simulate a complex multicolored
background, and the like. Other desirable lighting conditions can be created by removing
particular pieces of spectrum that may be specifically absorbed, attenuated or reflected
in certain environments.
[0075] As shown in Fig. 7, the lighting unit 200B also may include a memory 114 to store
various information. For example, the memory 114 may be employed to store one or more
lighting programs for execution by the processor 102 (e.g., to generate one or more
control signals for the light sources), as well as various types of data useful for
generating variable color radiation (e.g., calibration information). The memory 114
also may store one or more particular identifiers (e.g., a serial number, an address,
etc.) that may be used either locally or on a system level to identify the lighting
unit 200B. In various embodiments, such identifiers may be pre-programmed by a manufacturer,
for example, and may be either alterable or non-alterable thereafter (e.g., via some
type of user interface located on the lighting unit, via one or more data or control
signals received by the lighting unit, etc.). Alternatively, such identifiers may
be determined at the time of initial use of the lighting unit in the field, and again
may be alterable or non-alterable thereafter.
[0076] In another aspect, as also shown in Fig. 7, the lighting unit 200B optionally may
be configured to receive a user interface signal 118 that is provided to facilitate
any of a number of user-selectable settings or functions (e.g., generally controlling
the light output of the lighting unit 200B, changing and/or selecting various pre-programmed
lighting effects to be generated by the lighting unit, changing and/or selecting various
parameters of selected lighting effects, setting particular identifiers such as addresses
or serial numbers for the lighting unit, etc.). In one embodiment of the invention
discussed further below, the user interface signal 118 may be derived from an A.C.
signal provided by a dimmer circuit and/or other control signal(s) on an A.C. power
circuit, so that the light generated by the light source 104 may be controlled in
response to dimmer operation and/or the other control signal(s).
[0077] More generally, in one aspect of the embodiment shown in Fig. 7, the processor 102
of the lighting unit 200B is configured to monitor the user interface signal 118 and
control one or more of the light sources 104A, 104B, and 104C based at least in part
on the user interface signal. For example, the processor 102 may be configured to
respond to the user interface signal by originating one or more control signals (e.g.,
via the drive circuitry 109) for controlling one or more of the light sources. Alternatively,
the processor 102 may be configured to respond by selecting one or more pre-programmed
control signals stored in memory, modifying control signals generated by executing
a lighting program, selecting and executing a new lighting program from memory, or
otherwise affecting the radiation generated by one or more of the light sources.
[0078] To this end, the processor 102 may be configured to use any one or more of several
criteria to "evaluate" the user interface signal 118 and perform one or more functions
in response to the user interface signal. For example, the processor 102 may be configured
to take some action based on a particular instantaneous value of the user interface
signal, a change of some characteristic of the user interface signal, a rate of change
of some characteristic of the user interface signal, a time averaged value of some
characteristic of the user interface signal, periodic patterns or interruptions of
the user interface signal having particular durations, zero-crossings of an A.C. user
interface signal, etc.
[0079] In one embodiment, the processor is configured to digitally sample the user interface
signal 118 and process the samples according to some predetermined criteria to determine
if one or more functions need to be performed. In yet another embodiment, the memory
114 associated with the processor 102 may include one or more tables or, more generally,
a database, that provides a mapping of values relating to the user interface signal
to values for various control signals used to control the LED-based light source 104
(e.g., a particular value or condition associated with the user interface signal may
correspond to particular duty cycles of PWM signals respectively applied to differently
colored LEDs of the light source). In this manner, a wide variety of lighting control
functions may be performed based on the user interface signal.
[0080] Fig. 7 also illustrates that the lighting unit 200B may be configured to receive
one or more signals 122 from one or more other signal sources 124. In one implementation,
the processor 102 of the lighting unit may use the signal(s) 122, either alone or
in combination with other control signals (e.g., signals generated by executing a
lighting program, user interface signals, etc.), so as to control one or more of the
light sources 104A, 104B and 104C in a manner similar to that discussed above in connection
with the user interface. Some examples of a signal source 124 that may be employed
in, or used in connection with, the lighting unit 200B of Fig. 7 include any of a
variety of sensors or transducers that generate one or more signals 122 in response
to some stimulus. Examples of such sensors include, but are not limited to, various
types of environmental condition sensors, such as thermally sensitive (e.g., temperature,
infrared) sensors, humidity sensors, motion sensors, photosensors/light sensors (e.g.,
sensors that are sensitive to one or more particular spectra of electromagnetic radiation),
various types of cameras, sound or vibration sensors or other pressure/force transducers
(e.g., microphones, piezoelectric devices), and the like.
[0081] As also shown in Fig. 7, the lighting unit 200B may include one or more communication
ports 120 to facilitate coupling of the lighting unit to any of a variety of other
devices. For example, one or more communication ports 120 may facilitate coupling
multiple lighting units together as a networked lighting system, in which at least
some of the lighting units are addressable (e.g., have particular identifiers or addresses)
and are responsive to particular data transported across the network.
[0082] In particular, in a networked lighting system environment, as data is communicated
via the network, the processor 102 of each lighting unit coupled to the network may
be configured to be responsive to particular data (e.g., lighting control commands)
that pertain to it (e.g., in some cases, as dictated by the respective identifiers
of the networked lighting units). Once a given processor identifies particular data
intended for it, it may read the data and, for example, change the lighting conditions
produced by its light sources according to the received data (e.g., by generating
appropriate control signals to the light sources). In one aspect, the memory 114 of
each lighting unit coupled to the network may be loaded, for example, with a table
of lighting control signals that correspond with data the processor 102 receives.
Once the processor 102 receives data from the network, the processor may consult the
table to select the control signals that correspond to the received data, and control
the light sources of the lighting unit accordingly.
[0083] In one aspect of this embodiment, the processor 102 of a given lighting unit, whether
or not coupled to a network, may be configured to interpret lighting instructions/data
that are received in a DMX protocol (as discussed, for example, in
U.S. Patents 6,016,038 and
6,211,626), which is a lighting command protocol conventionally employed in the lighting industry
for some programmable lighting applications. However, it should be appreciated that
lighting units suitable for purposes of the present invention are not limited in this
respect, as lighting units according to various embodiments may be configured to be
responsive to other types of communication protocols so as to control their respective
light sources.
[0084] The lighting unit 200B of Fig. 7 also includes power circuitry 108 that is configured
to derive power for the lighting unit based on an A.C. signal 500 (e.g., a line voltage,
a signal provided by a dimmer circuit, etc.). In one implementation of the lighting
unit 200B, the power circuitry 108 may be configured similarly to portions of the
circuits shown in Figs. 4 and 6, for example. In particular, Fig. 8 illustrates one
exemplary circuit arrangement for the power circuitry 108, based on several of the
elements shown in Figs. 4 and 6, that may be employed in one implementation of the
lighting unit 200B. In the circuit shown in Fig. 8, a 5 Volt DC output 900 is provided
for at least the processor 102, whereas a 16 Volt DC output 902 is provided for the
drive circuitry 109, which ultimately provides power to the LED-based light source
104. Like the circuits shown in Figs. 4 and 6, it should be appreciated that as the
overall power provided by the A.C. signal 500 is reduced due to operation of a dimmer,
for example, at some point the power circuitry 108 will be unable to provide sufficient
power to the various components of the lighting unit 200B and it will cease to generate
light. Nonetheless, in one aspect, the power circuitry 108 is configured to provide
sufficient power to the lighting unit over a significant range of dimmer operation.
[0085] According to another embodiment of the invention, the power circuitry 108 shown in
Fig. 8 may be modified to also provide a control signal that reflects variations in
the A.C. signal 500 (e.g., changes in the average voltage) in response to dimmer operation.
For example, the circuit of Fig. 8 may be modified to include additional components
similar to those shown in connection with the adjustment circuit 208 of Fig. 6 which
provide the control voltage 410 (e.g., a resistor divider network in the opto-isolator
feedback loop). A control signal similarly derived from the circuit of Fig. 8 may
serve as the user interface signal 118 applied to the processor 102, as indicated
by the dashed line 410B shown in Fig. 7. In other embodiments, the circuit of Fig.
8 may be modified so as to derive a control/user interface signal from other portions
of the circuitry, such as an output of the rectifier or low pass filter, for example.
[0086] In yet another embodiment, the user interface signal 118 provided to the processor
102 may be the A.C. signal 500 itself, as indicated in Fig. 7 by the connections 500B.
In this embodiment, the processor 102 may be particularly programmed to digitally
sample the A.C. signal 500 and detect changes in one or more characteristics of the
A.C. signal (e.g., amplitude variations, degree of angle modulation, etc.). In this
manner, rather than respond to a control signal that is derived based on variations
of an average voltage of the A.C. signal 500 due to dimmer operation, the processor
may respond to dimmer operation by "more directly" monitoring some characteristic
(e.g., the degree of angle modulation) of the A.C. dimmer output signal. A number
of techniques readily apparent to those skilled in the art, some of which were discussed
above in connection with the user interface signal 118, may be similarly implemented
by the processor to sample and process the A.C. signal 500.
[0087] Once a user interface signal 118 that represents dimmer operation is derived using
any of the techniques discussed above (or other techniques), the processor 102 may
be programmed to implement any of a virtually limitless variety of light control functions
based on user adjustment of the dimmer. For example, user adjustment of a dimmer may
cause the processor to change one or more of the intensity, color, correlated color
temperature, or temporal qualities of the light generated by the lighting unit 200B.
[0088] To more specifically illustrate the foregoing, consider the lighting unit 200B configured
with two lighting programs stored in the memory 114; the first lighting program is
configured to allow adjustment of the overall color of the generated light in response
to dimmer operation, and the second lighting program is configured to allow adjustment
of the overall intensity of the generated light, at a given color, in response to
dimmer operation. Moreover, the processor is programmed such that a particular type
of dimmer operation toggles between the two programs, and such that on initial power-up,
one of the two programs (e.g., the first program) is automatically executed as a default.
[0089] In this example, on power up, the first program (e.g., adjustable color) begins executing,
and a user may change the overall color of the generated light by operating the dimmer
user interface in a "normal" fashion over some range of adjustment (e.g., the color
may be varied through a rainbow of colors from red to blue with gradual adjustment
of the dimmer's user interface).
[0090] Once arriving at a desirable color, the user may then select the second program (e.g.,
adjustable intensity) for execution by operating the dimmer user interface in some
particular predetermined manner (e.g., instantaneously interrupting the power for
a predetermined period via an on/off switch incorporated with the dimmer, adjusting
the dimmer's user interface at a quick rate, etc.). As discussed above in connection
with user interface signal concepts, any number of criteria may be used to evaluate
dimmer operation and determine if a new program selection is desired, or if adjustment
of a currently executing program is desired. Various examples of program or mode selection
via a user interface, as well as parameter adjustment within a selected program or
mode, are discussed in
U.S. Non-provisional Application Serial No. 09/805,368 and
U.S. Non-provisional Application Serial No. 10/045,629, incorporated herein by reference.
[0091] In this example, once the second program begins to execute, the user may change the
intensity of the generated light (at the previously adjusted color) by subsequent
"normal" operation (e.g., gradual adjustment) of the dimmer's user interface. Using
the foregoing exemplary procedure, the user may adjust both the intensity and the
color of the light emitted from the lighting unit via a conventional A.C. dimmer.
[0092] It should be appreciated that the foregoing example is provided primarily for purposes
of illustration, and that the invention is not limited in these respects. In general,
according to various embodiments of the invention, multiple parameters relating to
the generated light may be changed in sequence, or simultaneously in combination.
Also, via selection and execution of a lighting program, temporal characteristics
of the generated light also may be adjusted (e.g., rate of strobing of a given color,
rate of change of a rainbow wash of colors, etc.).
[0093] For example, in one embodiment, an LED-based light source coupled to an A.C. dimmer
circuit may be configured to essentially recreate the lighting characteristics of
a conventional incandescent light as a dimmer is operated to increase or decrease
the intensity of the generated light. In one aspect of this embodiment, this simulation
may be accomplished by simultaneously varying the intensity and the color of the light
generated by the LED-based source via dimmer operation.
[0094] More specifically, in conventional incandescent light sources, the color temperature
of the light emitted generally reduces as the power dissipated by the light source
is reduced (e.g., at lower intensity levels, the correlated color temperature of the
light produced may be near 2000K, while the correlated color temperature of the light
at higher intensities may be near 3200K). This is why an incandescent light tends
to appear redder as the power to the light source is reduced. Accordingly, in one
embodiment, an LED-based lighting unit may be configured such that a single dimmer
adjustment may be used to simultaneously change both the intensity and color of the
light source so as to produce a relatively high correlated color temperature at higher
intensities (e.g. when the dimmer provides essentially "full" power) and produce lower
correlated color temperatures at lower intensities, so as to mimic an incandescent
source.
[0095] Another embodiment of the present invention is directed to a flame simulation control
system, or other simulation control system. The system may include an LED-based light
source or lighting unit arranged to produce flame effects or simulations. Such a flame
simulation system may be used to replace more conventional flame simulation systems
(e.g. incandescent or neon). The flame simulation lighting device may be configured
(e.g., include a lighting program) for altering the appearance of the generated light
to simulate wind blowing through the flame or random flickering effects to make the
simulation more realistic. Such a simulation system may be associated with a user
interface to control the effects, and also may be configured to be adapted for use
and/or controlled via an A.C. dimmer circuit (e.g., a dimmer control system may be
used to change the effects of the simulation system). In other implementations, the
user interface may communicate to the simulation device through wired or wireless
communication and a user may be able to alter the effects of the device through the
user interface. The simulation device may include an effect that can be modified for
rate of change, intensity, color, flicker rate, to simulate windy conditions, still
conditions, moderate conditions or any other desirable modification.
[0096] Many lighting control systems do not include dimmer circuits where dimming and other
alterable lighting effects would be desirable. Accordingly, yet another embodiment
of the present invention is directed to a lighting effect control system including
a wireless control system. According to this embodiment, an LED-based light source
or lighting unit may be adapted to receive wireless communications to effect lighting
changes in the lighting system (e.g., see Fig. 7 in connection with communication
link 120). A wireless transmitter may be used by a user to change the lighting effects
generated by the lighting system. In one implementation, the transmitter is associated
with a power switch for the control system. For example, the power switch may be a
wall mounted power switch and a user interface may be associated with the wall-mounted
switch. The user interface may be used to generate wireless communication signals
that are communicated to the lighting system to cause a change in the light emitted.
In another embodiment, the signals are communicated to the lighting system over the
power wires in a multiplexed fashion where the light decodes the data from the power.
[0097] Yet another embodiment of the invention is directed to methods and apparatus for
communicating control information to one or more lighting devices, as well as other
devices that typically are powered via a standard A.C. line voltage, by using a portion
of the duty cycle of the line voltage to communicate the control information. For
example, according to one embodiment, a supply voltage controller is configured to
receive a standard A.C. line voltage as an input, and provide as an output a power
signal including control information. The power signal provides an essentially constant
A.C. power source; however, according to one aspect of this embodiment, the signal
periodically is "interrupted" (e.g., a portion of the AC duty cycle over a period
of cycles is removed) to provide one or more communication channels over which control
information (e.g., digitally encoded information) may be transmitted to one or more
devices coupled to the power signal. The device(s) coupled to the power signal may
be particularly configured to be responsive in some way to such control information.
[0098] For example, it should be appreciated that the various LED-based lighting units disclosed
herein, having the capability to provide power to LED-based light sources from a standard
A.C. line voltage, an A.C. dimmer circuit (e.g., providing an angle modulated power
source), or from a power source in which other control signals may be present in connection
with an A.C. line voltage, may be particularly configured to be compatible with the
power signal described above and responsive to the control information transmitted
over the communication channel.
[0099] According to one aspect of this embodiment, a supply voltage controller to provide
a power signal as discussed above may be implemented as a processor-based user interface,
including any number of features (e.g., buttons, dials, sliders, etc.) to facilitate
user operation of the controller. In particular, in one implementation, the supply
voltage controller may be implemented to resemble a conventional dimmer (e.g., having
a knob or a slider as a user interface), in which an associated processor is particularly
programmed to monitor operation of the user interface and generate control information
in response to such operation. The processor also is programmed to transmit the control
information via one or more communication channels of the power signal, as discussed
above.
[0100] In other aspects of this embodiment, unlike currently available home control networks/systems
such as X10, the device(s) being controlled by the power signal essentially are defined
by the electrical wiring that provides the power signal, rather than by programming
or addresses assigned to the device(s). Additionally, other "non-controllable" devices
(i.e., not configured to be responsive to the control information transported on the
power signal) may be coupled to the power signal without any detrimental effect, and
allow for a mix of controllable and non-controllable devices on the same power circuit
(i.e., delivering the same power signal to all devices on the circuit). Moreover,
devices in different wiring domains (i.e., on different power circuits) are guaranteed
through topology not to interfere with, or be responsive to, the power signal on a
particular power circuit. In yet another aspect, the power signal of this embodiment
is essentially "transparent" to (i.e., does not interfere with) other protocols such
as X10.
[0101] In one exemplary implementation based on a supply voltage controller providing a
power signal as discussed above on a given power circuit, a number of lighting devices
(e.g., conventional lighting devices, LED-based lighting units, etc) may be coupled
to the power circuit and configured such that they are essentially non-responsive
to any control information transmitted on the power circuit. For example, the "non-responsive"
lighting devices may be conventional incandescent light sources or other devices that
receive power via the portion of the power signal that does not include the communication
channel. These lighting devices may serve in a given environment to provide general
illumination in the environment.
[0102] In addition to the non-responsive lighting devices in this example, one or more other
controllable lighting devices (e.g., particularly configured LED-based lighting units)
also may be coupled to the same power circuit and configured to be responsive to the
control information in the communication channel of the power signal (i.e., responsive
to user operation of the supply voltage controller). In this manner, the controllable
lighting device(s) may provide various types of accent/special effects lighting to
complement the general illumination provided by the other "non-responsive" devices
on the same power circuit.
4. Exemplary Drive Circuit Embodiments
[0103] With reference again to Fig. 7, the drive circuitry 109 of the lighting unit 200B
may be implemented in numerous ways, one of which employs one or more current drivers
respectively corresponding to the one or more light sources 104A, 104B and 104C (collectively
104). In particular, according to one embodiment, the drive circuitry 109 is configured
such that each differently colored light source is associated with a voltage to current
converter that receives a voltage control signal (e.g., a digital PWM signal) from
the processor 102 and provides a corresponding current to energize the light source.
Such a driver circuit is not limited to implementations of lighting units that are
particularly configured for operation via an A.C. dimmer circuit; more generally,
lighting units similar to the lighting unit 200B and configured for use with various
types of power sources (e.g, A.C. line voltages, A.C. dimmer circuits, D.C. power
sources) may employ driver circuitry including one or more voltage to current converters.
[0104] Fig. 9 illustrates one example of a portion of the driver circuitry 109 employing
a conventional voltage to current converter, also referred to as a "current sink"
910. As shown in Fig. 9, the current sink 910 receives a digital input control signal
from the processor 102 and provides a current I
A to drive the light source 104A. It should be appreciated that, according to one embodiment,
multiple light sources are included in the lighting unit, and that the driver circuitry
109 includes circuitry similar to that shown in Fig. 9 for each light source (wherein
the processor provides one control signal for each current sink).
[0105] The current sink 910 illustrated in Fig. 9 is widely used for control of current
in various applications, and is discussed in many popular textbooks (e.g., see
Intuitive IC OPAMPS, Thomas M. Frederiksen, 1984, pages 186-189). The operational amplifier based current sink of Fig. 9 functions to maintain the
voltage at the node "A" (i.e., across the resistor R6) and the "reference" voltage
at the node "C" (at the non-inverting input of the operational amplifier U1A) at the
same value. In this manner, the light source current I
A is related to (i.e., tracks) the digital control signal provided by the processor
102.
[0106] The reference voltage at the point "C" in Fig. 9 may be developed in a variety of
ways, and the Frederiksen text referenced above suggests that a resistor divider (e.g.,
R2 and R5) is a good method of creating this voltage. Generally, the reference voltage
is chosen by a designer of the circuit as a compromise; on one hand, the voltage should
be as low as possible, to reduce the burden voltage (i.e. the lowest voltage at which
the current I
A is maintained) of the current sink. On the other hand, lowering the reference voltage
increases the circuit error, due to various sources, including: 1) the offset voltage
of the op-amp; 2) differences in the input bias currents of the op-amp; 3) poor tolerances
of low value resistors; and 4) errors in sensing small voltages due to voltage drops
across component interconnections. Lowering the reference voltage also decreases the
speed of the circuit, because feedback to the op-amp is reduced. This situation can
also lead to instabilities in the circuit.
[0107] The reference voltage at the point "C" in Fig. 9 need not be constant, and it may
be switched between any desired voltages to generate different currents. In particular,
a pulse width modulated (PWM) digital control voltage may be applied to the circuit
from the processor 102, to generate a switched current I
A. Through careful selection of resistor values for the voltage divider formed by resistors
R2 and R5, various circuit goals may be achieved, including the matching of op-amp
bias currents.
[0108] One issue with the circuit shown in Fig. 9 is that when the digital control signal
from the processor is not present or off (e.g., at zero volts), the operational amplifier
U1A may not turn the transistor M1 fully off. As a result, some current I
A may still flow through the light source 104A, even though the light source is intended
to be off. In view of the foregoing, one embodiment of the present invention is directed
to drive circuitry for LED-based light sources that incorporates an improved current
sink design to ensure more accurate control of the light sources.
[0109] Fig. 10 illustrates one example of such an improved current sink 910A according to
one embodiment of the invention. The current sink 910A is configured such that there
is a known "error voltage" at the node "B" (e.g., the inverting input of the operational
amplifier U1A), through the use of resistors R4 and R1. In particular, the values
of resistors R4 and R1 are selected so as to slightly increase the voltage at the
node "B" as compared to the arrangement shown in Fig. 9. As a result, when the reference
voltage at the node "C" is zero (i.e., when the digital control signal is such that
the light source 104A is intended to be off), the voltage at the node "B" is slightly
above that at the node "C". This voltage difference forces the op-amp to drive its
output low, which hence drives transistor M1 well into its "off" region and avoids
any inadvertent flow of the current I
A.
[0110] The small known error voltage introduced at the node "B" does not necessarily result
in any increase in current error. In one embodiment, the values of resistors R2 and
R5 may be adjusted to compensate for the effects of the error voltage. For example,
resistors R4 and R1 may be selected to result in 20mV at the node "B" when the node
"C" is at zero volts (such that the OP AMP is in the "off" state). In the "on" state,
the circuit may be configured such that there is approximately 5mV of sense voltage
at the node "A" (across the resistor R6). The error voltage is added to the desired
sense resistor voltage, and the values of resistors R2 and R5 are appropriately selected
to result in a 25mV reference voltage at the node "C" in the presence of a digital
control signal indicating an "on" state. In one embodiment, the circuit may be configured
such that the output current I
A and sense voltage at node "A" may be much greater than the minimums, for various
reasons, but most notably because lower cost op-amps may be used to achieve 1% accuracy
if the sense voltage is increased to the 300-700mV range.
[0111] Fig. 11 shows yet another embodiment of a current sink 910B, in which several optional
components are added to the circuit of Fig. 10, which increase the speed and current
capability of the circuit. In particular, as the size of transistor M1 is increased
towards larger currents, capacitor C1 and resistor R3 may be added to compensate for
the larger capacitance of M1. This capacitance presents a large load to the op-amp,
and for many op-amp designs, this can cause instability. Resistor R3 lowers the apparent
load presented by M1, and C1 provides a high frequency feedback path for the op-amp,
which bypasses M1. In one aspect of this embodiment, the circuit impedance at nodes
"B" and "C" may be matched, to reduce the effects of op-amp bias current. In another
embodiment this matching may be avoided by using modem FET input op-amps.
[0112] Having thus described several illustrative embodiments of the invention, various
alterations, modifications, and improvements will readily occur to those skilled in
the art. Such alterations, modifications, and improvements are intended to be within
the spirit and scope of the invention. While some examples presented herein involve
specific combinations of functions or structural elements, it should be understood
that those functions and elements may be combined in other ways according to the present
invention to accomplish the same or different objectives. In particular, acts, elements
and features discussed in connection with one embodiment are not intended to be excluded
from a similar or other roles in other embodiments. Accordingly, the foregoing description
is by way of example only, and is not intended as limiting.
1. An illumination apparatus (200), comprising:
at least one LED (104); and
at least one controller (204) coupled to the at least one LED (104) and configured
to provide D.C. power to the at least one LED (104), wherein the controller is configured
to receive from an A.C. power source an A.C. power-related signal having higher frequency
components than a standard A.C. line voltage and to provide said D.C. power based
on the A.C. power-related signal, characterized in that the at least one controller (204) is configured to filter out the higher frequency
components.
2. The apparatus of claim 1, wherein the A.C. power source is an (A.C.) dimmer circuit.
3. The apparatus of claim 2, wherein the A.C. dimmer circuit is controlled by a user
interface to vary the power-related signal, and wherein the at least one controller
is configured to provide an essentially non-varying power to the at least one LED
(104) over a significant range of operation of the user interface.
4. The apparatus of claim 3, wherein the operation of the user interface varies a duty
cycle of the power-related signal, and wherein the at least one controller (204) is
configured to provide the essentially non-varying power to the at least one LED (104)
over a significant range of operation of the user interface notwithstanding variations
in the duty cycle of the power-related signal.
5. The apparatus of claim 3, wherein the at least one controller (204) comprises:
a rectifier (404) to receive the power-related signal and provide a rectified power-related
signal;
a low pass filter (408) to filter the rectified power-related signal; and
a DC converter (402) to provide the essentially non-varying power based on the filtered
rectified power-related signal.
6. The apparatus of claim 3, further comprising:
a screw-type power connector configured to engage mechanically and electrically with
a conventional incandescent light socket so as to couple the apparatus to the A.C.
dimmer circuit.
7. The apparatus of claim 6, further comprising:
a housing, coupled to the screw-type power connector, to enclose the at least one
LED and the at least one controller, the housing being structurally configured to
resemble an incandescent light bulb.
8. The apparatus of claim 7, wherein the at least one LED (104) includes a plurality
of differently colored LEDs.
9. The apparatus of claim 2, wherein the A. C. dimmer circuit is controlled by a user
interface to vary the power-related signal, and wherein the at least one controller
is configured to variably control at least one parameter of generated by the at least
one LED (104) in response to operation of the user interface.
10. The apparatus of claim 9, wherein the operation of the user interface varies a duty
cycle of the power-related signal, and wherein the at least one controller (204) is
configured to variably control the at least one parameter of the light based at least
on the variable duty cycle of the power-related signal.
11. The apparatus of claim 9, wherein the at least one parameter of the light that is
variably controlled by the at least one controller (204) in response to operation
of the user interface includes at least one of an intensity of the light, a color
of the light, a color temperature of the light, and a temporal characteristic of the
light.
12. The apparatus of claim 9, wherein the at least one controller (204) is configured
to variably control at least two different parameters of the light generated by the
at least one LED (104) in response to operation of the user interface.
13. The apparatus of claim 12, wherein the at least one controller (204) is configured
to variably control at least an intensity and a color of the light simultaneously
in response to operation of the user interface.
14. The apparatus of claim 12, wherein the at least one LED (204) is configured to generate
an essentially white light, and wherein the at least one controller (204) is configured
to variably control at least an intensity and a color temperature of the white light
simultaneously in response to operation of the user interface.
15. The apparatus of claim 14, wherein the at least one controller (204) is configured
to variably control at least the intensity and the color temperature of the essentially
white light in response to operation of the user interface so as to approximate light
generation characteristics of an incandescent light source.
16. The apparatus of claim 15, wherein the at least one controller (204) is configured
to variably control the color temperature of the essentially white light over a range
from approximately 2000 degrees K at a minimum intensity to 3200 degrees K at a maximum
intensity.
17. The apparatus of claim 15, further comprising:
a screw-type power connector (202) configured to engage mechanically and electrically
with a conventional incandescent light socket so as to couple the apparatus to the
A.C. dimmer circuit.
18. The apparatus of claim 17, further comprising:
a housing, coupled to the screw-type power connector, to enclose the at least one
LED (104) and the at least one controller (204), the housing being structurally configured
to resemble an incandescent light bulb.
19. The apparatus of claim 15, wherein the at least one LED includes a plurality of differently
colored LEDs.
20. The apparatus of claim 9, wherein the at least one controller includes:
an adjustment circuit (208) to variably control the at least one parameter of light
based on the varying power-related signal; and
power circuitry to provide at least the power to the at least one LED (104) based
on the varying power-related signal.
21. The apparatus of claim 20, wherein the power circuitry includes:
a rectifier (404) to receive the power-related signal and provide a rectified power
related signal;
a low pass filter to filter (408) the rectified power-related signal; and
a DC converter (404) to provide the power to at least the at least one LED (104) based
on the filtered rectified power-related signal.
22. The apparatus of claim 21, wherein the adjustment circuit is coupled to the DC converter
and is configured to variably control the at least one LED (104) based on the filtered
rectified power-related signal.
23. The apparatus of claim 21, wherein the adjustment circuit includes at least one processor
(102) configured to monitor at least one of the power-related signal, the rectified
power-related signal, and the filtered rectified power-related signal so as to variably
control the at least one LED (104).
24. The apparatus of claim 21, wherein the power circuitry is configured to provide at
least the power to the at least one LED (104) and power to the at least one processor
(102) based on the varying power-related signal.
25. The apparatus of claim 21, wherein the at least one processor (102) is configured
to sample the varying power-related signal and determine at least one varying characteristic
of the varying power-related signal.
26. The apparatus of claim 21, wherein the operation of the user interface varies a duty
cycle of the power-related signal, and wherein the at least one processor (102) is
configured to variably control the at least one parameter of the light based at least
on the varying duty cycle of the power-related signal.
27. The apparatus of claim 26, wherein the at least one LED (104) includes a plurality
of differently colored LEDs.
28. The apparatus of claim 27, wherein:
the plurality of differently colored LEDs includes:
at least one first LED (104A,104B,104C) adapted to output at least first radiation
having a first spectrum; and
at least one second LED (104A,104B,104C) adapted to output second radiation having
a second spectrum different than the first spectrum; and
the at least one processor (102) is configured to independently control at least a
first intensity of the first radiation and a second intensity of the second radiation
in response to operation of the user interface.
29. The apparatus of claim 28, wherein the at least one processor (102) is programmed
to implement a pulse width modulation (PWM) technique to control at least the first
intensity of the first radiation and the second intensity of the second radiation.
30. The apparatus of claim 29, wherein the at least one processor (102) further is programmed
to:
generate at least a first PWM signal to control the first intensity of the first radiation
and a second PWM signal to control the second intensity of the second radiation; and
determine duty cycles of the respective first and second PWM signals based at least
in part on variations in the power-related signal due to operation of the user interface.
31. The apparatus of claim 20, wherein the adjustment circuit includes drive circuitry
(109) including at least one voltage-to-current converter to provide at least one
drive current to the at least one LED so as to control the at least one parameter
of the generated light.
32. The apparatus of claim 31, wherein the at least one voltage-to-current converter includes
an operational amplifier (UIA) configured so as to have a predetermined error voltage
applied across its non-inverting and inverting inputs during operation to essentially
reduce to zero a current output of the at least one voltage-to-current converter when
a voltage applied to the at least one voltage-to-current converter is essentially
zero.
33. An illumination method, comprising an act of:
A) providing D.C. power to at least one LED (104) based on a power-related signal
provided by an A.C. power source having higher frequency components than a standard
A.C. line voltage, characterized in that the higher frequency components are filtered out of the power-related signal prior
to providing D.C. power to the at least one LED (104).
34. The illumination method of claim 33, wherein the act A) includes an act of:
providing the D.C. power to the at least one LED (104) based on a power-related signal
from an alternating current (A.C.) dimmer circuit.
35. The method of claim 34, wherein the A.C. dimmer circuit is controlled by a user interface
to vary the power-related signal, and wherein the act A) comprises an act of:
B) providing an essentially non-varying power to the at least one LED (104) over a
significant range of operation of the user interface.
36. The method of claim 35, wherein the operation of the user interface duty cycle of
the power-related signal, and wherein the act B) includes an act of providing the
essentially non-varying power to the at least one LED (104) over a significant range
of operation of the user interface notwithstanding variations in the duty cycle of
the power-related signal.
37. The method of claim 35, wherein the act B) includes acts of:
rectifying the power-related signal to provide a rectified power-related signal;
filtering the rectified power-related signal; and
providing the essentially non-varying power based on the filtered rectified power
related signal.
38. The method of claim 35, wherein the at least one LED includes a plurality of differently
colored LEDs.
39. The method of claim 34, wherein the A.C. dimmer circuit is controlled by a user interface
to vary the power-related signal, and wherein the act A) includes an act of:
C) variably controlling at least one parameter of light generated by the at least
one LED (104) in response to operation of the user interface.
40. The method of claim 39, wherein the operation of the user interface varies a duty
cycle of the power-related signal, and wherein the act C) includes an act of:
D) variably controlling the at least one parameter of the light based at least on
the variable duty cycle of the power-related signal.
41. The method of claim 39, wherein the act D) includes an act of:
variably controlling at least one of an intensity of the light, a color of the light,
a color temperature of the light, and a temporal characteristic of the light in response
to operation of the user interface.
42. The method of claim 39, wherein the act D) includes an act of:
E) variably controlling at least two different parameters of the light generated by
the at least one LED in response to operation of the user interface.
43. The method of claim 42, wherein the act E) includes an act of:
variably controlling at least an intensity and a color of the light simultaneously
in response to operation of the user interface.
44. The method of claim 42, wherein the at least one LED (104) is configured to generate
an essentially white light, and wherein the act E) includes an act of:
F) variably controlling at least an intensity and a color temperature of the white
light simultaneously in response to operation of the user interface.
45. The method of claim 44, wherein the act F) includes an act of:
G) variably controlling at least the intensity and the color temperature of the essentially
white light in response to operation of the user interface so as to approximate light
generation characteristics of an incandescent light source.
46. The method of claim 45, wherein the act G) includes an act of:
variably controlling the color temperature of the essentially white light over a range
from approximately 2000 degrees K at a minimum intensity to 3200 degrees K at a maximum
intensity.
47. The method of claim 46, wherein the at least one LED includes a plurality of differently
colored LEDs.
48. The method of claim 39, wherein the act C) includes an act of
H) digitally sampling the varying power-related signal and determine at least one
varying characteristic of the varying power-related signal.
49. The method of claim 48, wherein the operation of the user interface varies a duty
cycle of the power-related signal, and wherein the act H) includes an act of variably
controlling the at least one parameter of the light based at least on the varying
duty cycle of the sampled power-related signal.
50. The method of claim 39, wherein:
the at least one LED (104) includes;
at least one first LED (104A,104B,104C) adapted to output at least first radiation
having a first spectrum; and
at least one second LED (104A,104B,104C) adapted to output second radiation having
a second spectrum different than the first spectrum; and
the act C) includes an act of:
I) independently controlling at least a first intensity of the first radiation and
a second intensity of the second radiation in response to operation of the user interface.
51. The method of claim 50, wherein the act 1) includes an act of:
J) implementing a pulse width modulation (PWM) technique to control at least the first
intensity of the first radiation and the second intensilty of the second radiation.
52. The method of claim 51, wherein the act J) includes acts of:
generating at least a first PWM signal to control the first intensity of the first
radiation and a second PWM signal to control the second intensity of the second radiation;
and
determining duty cycles of the respective first and second PWM signals based at least
in part on variations in the power-related signal due to operation of the user interface.
1. Beleuchtungsvorrichtung (200) mit:
mindestens einer LED (104) sowie
mindestens einer Steuereinrichtung (204), die an die mindestens eine LED (104) gekoppelt
und so konfiguriert ist, dass sie der mindestens einen LED (104) Gleichstromleistung
zuführt, wobei die Steuereinrichtung so konfiguriert ist, dass sie von einer Wechselstromquelle
ein wechselstromleistungsbezogenes Signal mit höheren Frequenzkomponenten als eine
normale Netzwechselspannung empfängt und die auf dem wechselstromleistungsbezogenen
Signal basierende Gleichstromleistung abgibt, dadurch gekennzeichnet, dass die mindestens eine Steuereinrichtung (204) so konfiguriert ist, dass sie die höheren
Frequenzkomponenten ausfiltert.
2. Vorrichtung nach Anspruch 1, wobei die Wechselstromquelle eine (Wechselstrom-) Dimmerschaltung
ist.
3. Vorrichtung nach Anspruch 2, wobei die Wechselstrom-Dimmerschaltung von einer Anwenderschnittstelle
gesteuert wird, um das leistungsbezogene Signal zu variieren, und wobei die mindestens
eine Steuereinrichtung so konfiguriert ist, dass sie der mindestens einen LED (104)
über einen signifikanten Bereich des Betriebs der Anwenderschnittstelle eine im Wesentlichen
nicht variierende Leistung zuführt.
4. Vorrichtung nach Anspruch 3, wobei der Betrieb der Anwenderschnittstelle ein Tastverhältnis
des leistungsbezogenen Signals variiert, und wobei die mindestens eine Steuereinrichtung
(204) so konfiguriert ist, dass sie, ungeachtet Variationen in dem Tastverhältnis
des leistungsbezogenen Signals, der mindestens einen LED (104) über einen signifikanten
Bereich des Betriebs der Anwenderschnittstelle die im Wesentlichen nicht variierende
Leistung zuführt.
5. Vorrichtung nach Anspruch 3, wobei die mindestens eine Steuereinrichtung (204) umfasst:
einen Gleichrichter (404), um das leistungsbezogene Signal zu empfangen und ein gleichgerichtetes,
leistungsbezogenes Signal vorzusehen,
ein Tiefpassfilter (408), um das gleichgerichtete, leistungsbezogene Signal zu filtern,
sowie
einen Gleichstromwandler (402), um die im Wesentlichen nicht variierende Leistung
aufgrund des gefilterten, gleichgerichteten, leistungsbezogenen Signals vorzusehen.
6. Vorrichtung nach Anspruch 3, welche weiterhin umfasst:
einen Leistungsstecker mit Schraubanschluss, der so konfiguriert ist, dass er mechanisch
und elektrisch in eine konventionelle Glühlampenfassung greift, um die Vorrichtung
an die Wechselstrom-Dimmerschaltung zu koppeln.
7. Vorrichtung nach Anspruch 6, welche weiterhin umfasst:
ein an den Leistungsstecker mit Schraubanschluss gekoppeltes Gehäuse, um die mindestens
eine LED und die mindestens eine Steuereinrichtung zu umschließen, wobei das Gehäuse
strukturell so konfiguriert ist, dass es einer Glühlampe gleicht.
8. Vorrichtung nach Anspruch 7, wobei die mindestens eine LED (104) mehrere verschiedenfarbige
LEDs enthält.
9. Vorrichtung nach Anspruch 2, wobei die Wechselstrom-Dimmerschaltung von einer Anwenderschnittstelle
gesteuert wird, um das leistungsbezogene Signal zu variieren, und wobei mindestens
eine Steuereinrichtung so konfiguriert ist, dass sie mindestens einen Parameter des
von der mindestens einen LED (104) in Reaktion auf den Betrieb der Anwenderschnittstelle
erzeugten Lichts variabel steuert.
10. Vorrichtung nach Anspruch 9, wobei der Betrieb der Anwenderschnittstelle ein Tastverhältnis
des leistungsbezogenen Signals variiert, und wobei die mindestens eine Steuereinrichtung
(204) so konfiguriert ist, dass sie den mindestens einen Parameter des Lichts zumindest
aufgrund des variablen Tastverhältnisses des leistungsbezogenen Signals variabel steuert.
11. Vorrichtung nach Anspruch 9, wobei der mindestens eine Parameter des Lichts, welches
von der mindestens einen Steuereinrichtung (204) in Reaktion auf den Betrieb der Anwenderschnittstelle
variabel gesteuert wird, mindestens eine Intensität des Lichts, eine Farbe des Lichts,
eine Farbtemperatur des Lichts sowie eine temporale Charakteristik des Lichts enthält.
12. Vorrichtung nach Anspruch 9, wobei die mindestens eine Steuereinrichtung (204) so
konfiguriert ist, dass sie mindestens zwei unterschiedliche Parameter des von der
mindestens einen LED (104) in Reaktion auf den Betrieb der Anwenderschnittstelle erzeugten
Lichts variabel steuert.
13. Vorrichtung nach Anspruch 12, wobei die mindestens eine Steuereinrichtung (204) so
konfiguriert ist, dass sie zumindest eine Intensität und eine Farbe des Lichts in
Reaktion auf den Betrieb der Anwenderschnittstelle gleichzeitig variabel steuert.
14. Vorrichtung nach Anspruch 12, wobei die mindestens eine LED (204) so konfiguriert
ist, dass sie ein im Wesentlichen weißes Licht erzeugt, und wobei die mindestens eine
Steuereinrichtung (204) so konfiguriert ist, dass sie zumindest eine Intensität und
eine Farbtemperatur des weißen Lichts in Reaktion auf den Betrieb der Anwenderschnittstelle
gleichzeitig variabel steuert.
15. Vorrichtung nach Anspruch 14, wobei die mindestens eine Steuereinrichtung (204) so
konfiguriert ist, dass sie zumindest die Intensität und die Farbtemperatur des im
Wesentlichen weißen Lichts in Reaktion auf den Betrieb der Anwenderschnittstelle variabel
steuert, um sich der Lichterzeugungscharakteristik einer Glühlichtquelle zu nähern.
16. Vorrichtung nach Anspruch 15, wobei die mindestens eine Steuereinrichtung (204) so
konfiguriert ist, dass sie die Farbtemperatur des im Wesentlichen weißen Lichts über
einen Bereich von ungefähr 2000 Grad K bei einer minimalen Intensität bis 3200 Grad
K bei einer maximalen Intensität variabel steuert.
17. Vorrichtung nach Anspruch 15, welche weiterhin umfasst:
einen Leistungsstecker mit Schraubanschluss, welcher so konfiguriert ist, dass er
mechanisch und elektrisch in eine konventionelle Glühlampenfassung greift, um die
Vorrichtung an die Wechselstrom-Dimmerschaltung zu koppeln.
18. Vorrichtung nach Anspruch 17, welche weiterhin umfasst:
ein an den Leistungsstecker mit Schraubanschluss gekoppeltes Gehäuse, um die mindestens
eine LED (104) und die mindestens eine Steuereinrichtung (204) zu umschließen, wobei
das Gehäuse strukturell so konfiguriert ist, dass es einer Glühlampe gleicht.
19. Vorrichtung nach Anspruch 15, wobei die mindestens eine LED mehrere verschiedenfarbige
LEDs enthält.
20. Vorrichtung nach Anspruch 9, wobei die mindestens eine Steuereinrichtung enthält:
eine Einstellschaltung (208), um den mindestens einen Lichtparameter aufgrund des
variierenden, leistungsbezogenen Signals variabel zu steuern, sowie
einen Leistungsschaltkreis, um der mindestens einen LED (104) die Leistung aufgrund
des variierenden, leistungsbezogenen Signals zuzuführen.
21. Vorrichtung nach Anspruch 20, wobei der Leistungsschaltkreis enthält:
einen Gleichrichter (404), um das leistungsbezogene Signal zu empfangen und ein gleichgerichtetes,
leistungsbezogenes Signal vorzusehen,
ein Tiefpassfilter (408), um das gleichgerichtete, leistungsbezogene Signal zu filtern,
sowie
einen Gleichstromwandler (404), um der mindestens einen LED (104) die Leistung aufgrund
des gefilterten, gleichgerichteten, leistungsbezogenen Signals zuzuführen.
22. Vorrichtung nach Anspruch 21, wobei die Einstellschaltung an den Gleichstromwandler
gekoppelt und so konfiguriert ist, dass sie die mindestens eine LED (104) aufgrund
des gefilterten, gleichgerichteten, leistungsbezogenen Signals variabel steuert.
23. Vorrichtung nach Anspruch 21, wobei die Einstellschaltung mindestens einen Prozessor
(102) enthält, der so konfiguriert ist, dass er zumindest das leistungsbezogene Signal,
das gleichgerichtete, leistungsbezogene Signal oder das gefilterte, gleichgerichtete,
leistungsbezogene Signal überwacht, um die mindestens eine LED (104) variabel zu steuern.
24. Vorrichtung nach Anspruch 21, wobei der Leistungsschaltkreis so konfiguriert ist,
dass er zumindest der mindestens einen LED (104) und dem mindestens einen Prozessor
(102) Leistung aufgrund des variierenden, leistungsbezogenen Signals zuführt.
25. Vorrichtung nach Anspruch 21, wobei der mindestens eine Prozessor (102) so konfiguriert
ist, dass er das variierende, leistungsbezogene Signal abtastet und mindestens eine
variierende Charakteristik des variierenden, leistungsbezogenen Signals bestimmt.
26. Vorrichtung nach Anspruch 21, wobei der Betrieb der Anwenderschnittstelle ein Tastverhältnis
des leistungsbezogenen Signals variiert, und wobei der mindestens eine Prozessor (102)
so konfiguriert ist, dass er den mindestens einen Parameter des Lichts aufgrund des
variierenden Tastverhältnisses des leistungsbezogenen Signals variabel steuert.
27. Vorrichtung nach Anspruch 26, wobei die mindestens eine LED (104) mehrere verschiedenfarbige
LEDs enthält.
28. Vorrichtung nach Anspruch 27, wobei die mehreren verschiedenfarbigen LEDs enthalten:
mindestens eine erste LED (104A,104B,104C), die zumindest eine erste Strahlung mit
einem ersten Spektrum abgeben kann, sowie
mindestens eine zweite LED (104A,104B,104C), die eine zweite Strahlung mit einem sich
von dem ersten Spektrum unterscheidenden, zweiten Spektrum abgeben kann, und wobei
der mindestens eine Prozessor (102) so konfiguriert ist, dass er zumindest eine erste
Intensität der ersten Strahlung und eine zweite Intensität der zweiten Strahlung in
Reaktion auf den Betrieb der Anwenderschnittstelle unabhängig steuern kann.
29. Vorrichtung nach Anspruch 28, wobei der mindestens eine Prozessor (102) so programmiert
ist, dass er eine Pulsbreitenmodulations-(PWM)-Technik realisiert, um zumindest die
erste Intensität der ersten Strahlung und die zweite Intensität der zweiten Strahlung
zu steuern.
30. Vorrichtung nach Anspruch 29, wobei der mindestens eine Prozessor (102) weiterhin
so programmiert ist, dass er
zumindest ein erstes PWM-Signal zur Steuerung der ersten Intensität der ersten Strahlung
und ein zweites PWM-Signal zur Steuerung der zweiten Intensität der zweiten Strahlung
erzeugt und
Tastverhältnisse des jeweiligen ersten und zweiten PWM-Signals, die infolge des Betriebs
der Anwenderschnittstelle zumindest zum Teil auf Variationen in dem leistungsbezogenen
Signal basieren, bestimmt.
31. Vorrichtung nach Anspruch 20, wobei die Einstellschaltung eine Treiberschaltung (109)
mit mindestens einem Spannungs-Strom-Wandler enthält, um der mindestens einen LED
mindestens einen Ansteuerungsstrom zur Steuerung des mindestens einen Parameters des
erzeugten Lichts zuzuführen.
32. Vorrichtung nach Anspruch 31, wobei der mindestens eine Spannungs-Strom-Wandler einen
Operationsverstärker (U1A) enthält, der so konfiguriert ist, dass er eine vorgegebene,
bei Betrieb über seinen nicht invertierenden und invertierenden Eingang angelegte
Fehlerspannung aufweist, um eine Stromabgabe des mindestens einen Spannungs-Strom-Wandlers
im Grunde genommen auf Null zu reduzieren, wenn eine an den mindestens einen Spannungs-Strom-Wandler
angelegte Spannung im Grunde genommen Null ist.
33. Beleuchtungsverfahren, welches den Schritt des
A) Zuführens von Gleichstromleistung zu mindestens einer LED (104) aufgrund eines
von einer Wechselstromquelle vorgesehenen, leistungsbezogenen Signals mit höheren
Frequenzkomponenten als eine normale Netzwechselspannung umfasst, dadurch gekennzeichnet, dass die höheren Frequenzkomponenten aus dem leistungsbezogenen Signal ausgefiltert werden,
bevor der mindestens einen LED (104) Gleichstromleistung zugeführt wird.
34. Beleuchtungsverfahren nach Anspruch 33, wobei der Schritt A) einen Schritt des
Zuführens der Gleichstromleistung zu der mindestens einen LED (104) aufgrund eines
leistungsbezogenen Signals von einer Wechselstrom-(AC)-Dimmerschaltung enthält.
35. Verfahren nach Anspruch 34, wobei die Wechselstrom-Dimmerschaltung von einer Anwenderschnittstelle
gesteuert wird, um das leistungsbezogene Signal zu variieren, und wobei der Schritt
A) einen Schritt des
B) Zuführens einer im Wesentlichen nicht variierenden Leistung zu der mindestens einen
LED (104) über einen signifikanten Bereich des Betriebs der Anwenderschnittstelle
umfasst.
36. Verfahren nach Anspruch 35, wobei der Betrieb der Anwenderschnittstelle ein Tastverhältnis
des leistungsbezogenen Signals variiert, und wobei der Schritt B), ungeachtet Variationen
in dem Tastverhältnis des leistungsbezogenen Signals, einen Schritt des Zuführens
der im Wesentlichen nicht variierenden Leistung zu der mindestens einen LED (104)
über einen signifikanten Bereich des Betriebs der Anwenderschnittstelle enthält.
37. Verfahren nach Anspruch 35, wobei der Schritt B) die folgenden Schritte enthält:
Gleichrichten des leistungsbezogenen Signals, um ein gleichgerichtetes, leistungsbezogenes
Signal vorzusehen,
Filtern des gleichgerichteten, leistungsbezogenen Signals sowie
Vorsehen der im Wesentlichen nicht variierenden Leistung aufgrund des gefilterten,
gleichgerichteten, leistungsbezogenen Signals.
38. Verfahren nach Anspruch 35, wobei die mindestens eine LED mehrere verschiedenfarbige
LEDs enthält.
39. Verfahren nach Anspruch 34, wobei die Wechselstrom-Dimmerschaltung von einer Anwenderschnittstelle
gesteuert wird, um das leistungsbezogene Signal zu variieren, und wobei der Schritt
A) einen Schritt der
C) variablen Steuerung von mindestens einem Parameter des von der mindestens einen
LED (104) erzeugten Lichts in Reaktion auf den Betrieb der Anwenderschnittstelle enthält.
40. Verfahren nach Anspruch 39, wobei der Betrieb der Anwenderschnittstelle ein Tastverhältnis
des leistungsbezogenen Signals variiert, und wobei der Schritt C) einen Schritt der
D) variablen Steuerung des mindestens einen Parameters des Lichts zumindest aufgrund
des variablen Tastverhältnisses des leistungsbezogenen Signals enthält.
41. Verfahren nach Anspruch 39, wobei der Schritt D) einen Schritt der
variablen Steuerung von zumindest einer Intensität des Lichts, einer Farbe des Lichts,
einer Farbtemperatur des Lichts oder einer temporalen Charakteristik des Lichts in
Reaktion auf den Betrieb der Anwenderschnittstelle enthält.
42. Verfahren nach Anspruch 39, wobei der Schritt D) einen Schritt der
E) variablen Steuerung von mindestens zwei unterschiedlichen Parametern des von der
mindestens einen LED erzeugten Lichts in Reaktion auf den Betrieb der Anwenderschnittstelle
enthält.
43. Verfahren nach Anspruch 42, wobei der Schritt E) einen Schritt der
variablen, gleichzeitigen Steuerung von zumindest einer Intensität und einer Farbe
des Lichts in Reaktion auf den Betrieb der Anwenderschnittstelle enthält.
44. Verfahren nach Anspruch 42, wobei die mindestens eine LED (104) so konfiguriert ist,
dass sie ein im Wesentlichen weißes Licht erzeugt, und wobei der Schritt E) einen
Schritt der
F) variablen, gleichzeitigen Steuerung von zumindest einer Intensität und einer Farbtemperatur
des weißen Lichts in Reaktion auf den Betrieb der Anwenderschnittstelle enthält.
45. Verfahren nach Anspruch 44, wobei der Schritt F) einen Schritt der
G) variablen Steuerung von zumindest der Intensität und Farbtemperatur des im Wesentlichen
weißen Lichts in Reaktion auf den Betrieb der Anwenderschnittstelle enthält, um sich
den Lichterzeugungscharakteristiken einer Glühlichtquelle zu nähern.
46. Verfahren nach Anspruch 45, wobei der Schritt G) einen Schritt der
variablen Steuerung der Farbtemperatur des im Wesentlichen weißen Lichts über einen
Bereich von ungefähr 2000 Grad K bei einer minimalen Intensität bis 3200 Grad K bei
einer maximalen Intensität enthält.
47. Verfahren nach Anspruch 46, wobei die mindestens eine LED mehrere verschiedenfarbige
LEDs enthält.
48. Verfahren nach Anspruch 39, wobei der Schritt C) einen Schritt des
H) digitalen Abtastens des variierenden, leistungsbezogenen Signals und Bestimmens
von mindestens einer variierenden Charakteristik des variierenden, leistungsbezogenen
Signals enthält.
49. Verfahren nach Anspruch 48, wobei der Betrieb der Anwenderschnittstelle ein Tastverhältnis
des leistungsbezogenen Signals variiert, und wobei der Schritt H) einen Schritt der
variablen Steuerung des mindestens einen Parameters des Lichts zumindest aufgrund
des variierenden Tastverhältnisses des abgetasteten, leistungsbezogenen Signals enthält.
50. Verfahren nach Anspruch 39, wobei die mindestens eine LED (104) enthält:
mindestens eine erste LED (104A,104B,104C), die zumindest eine erste Strahlung mit
einem ersten Spektrum abgeben kann, sowie
mindestens eine zweite LED (104A,104B,104C), die eine zweite Strahlung mit einem sich
von dem ersten Spektrum unterscheidenden, zweiten Spektrum abgeben kann, und wobei
der Schritt C) einen Schritt der
I) unabhängigen Steuerung von zumindest einer ersten Intensität der ersten Strahlung
sowie einer zweiten Intensität der zweiten Strahlung in Reaktion auf den Betrieb der
Anwenderschnittstelle enthält.
51. Verfahren nach Anspruch 50, wobei der Schritt I) einen Schritt des
J) Realisierens einer Pulsbreitenmodulations-(PWM)-Technik enthält, um zumindest die
erste Intensität der ersten Strahlung und die zweite Intensität der zweiten Strahlung
zu steuern.
52. Verfahren nach Anspruch 51, wobei der Schritt J) einen Schritt des
Erzeugens von mindestens einem ersten PWM-Signal zur Steuerung der ersten Intensität
der ersten Strahlung und einem zweiten PWM-Signal zur Steuerung der zweiten Intensität
der zweiten Strahlung, sowie
Bestimmens von Tastverhältnissen des jeweiligen ersten und zweiten PWM-Signals zumindest
zum Teil aufgrund von Variationen des leistungsbezogenen Signals infolge des Betriebs
der Anwenderschnittstelle enthält.
1. Appareil d'illumination (200), comprenant :
au moins une DEL (104) ; et
au moins un contrôleur (204) couplé à l'au moins une DEL (104) et configuré pour fournir
du courant continu à l'au moins une DEL (104), dans lequel le contrôleur est configuré
pour recevoir d'une source de courant alternatif un signal se rapportant au courant
alternatif ayant des composants de fréquence supérieure à une tension de ligne de
courant alternatif standard et pour fournir ledit courant continu sur la base du signal
se rapportant au courant alternatif, caractérisé en ce que l'au moins un contrôleur (204) est configuré pour filtrer les composants de fréquence
supérieure.
2. Appareil selon la revendication 1, dans lequel la source de courant alternatif est
un circuit de gradateur (de courant alternatif).
3. Appareil selon la revendication 2, dans lequel le circuit de gradateur de courant
alternatif est commandé par une interface utilisateur pour faire varier le signal
se rapportant au courant, et dans lequel l'au moins un contrôleur est configuré pour
fournir un courant essentiellement non variable à l'au moins une DEL (104) sur une
plage significative de fonctionnement de l'interface utilisateur.
4. Appareil selon la revendication 3, dans lequel le fonctionnement de l'interface utilisateur
fait varier un cycle d'usage du signal se rapportant au courant, et dans lequel l'au
moins un contrôleur (204) est configuré pour fournir le courant essentiellement non
variable à l'au moins une DEL (104) sur une plage significative de fonctionnement
de l'interface utilisateur indépendamment des variations du cycle d'usage du signal
se rapportant au courant.
5. Appareil selon la revendication 3, dans lequel l'au moins un contrôleur (104) comprend
:
un redresseur (404) pour recevoir le signal se rapportant au courant et fournir un
signal se rapportant au courant redressé ;
un filtre passe-bas (408) pour filtrer le signal se rapportant au courant redressé
; et
un convertisseur de courant continu (402) pour fournir le courant essentiellement
non variable sur la base du signal se rapportant au courant redressé filtré.
6. Appareil selon la revendication 3, comprenant en outre :
un connecteur de courant de type vissé configuré pour se mettre en prise mécaniquement
et électriquement avec une douille de lumière incandescente conventionnelle de manière
à coupler l'appareil au circuit de gradateur de courant alternatif.
7. Appareil selon la revendication 6, comprenant en outre :
un boîtier, couplé au connecteur de courant de type vissé, pour enfermer l'au moins
une DEL et l'au moins un contrôleur, le boîtier étant structurellement configuré pour
ressembler à une ampoule de lumière incandescente.
8. Appareil selon la revendication 7, dans lequel l'au moins une DEL (104) comprend une
pluralité de DEL de couleurs différentes.
9. Appareil selon la revendication 2, dans lequel le circuit de gradateur de courant
alternatif est commandé par une interface utilisateur pour faire varier le signal
se rapportant au courant, et dans lequel l'au moins un contrôleur est configuré pour
commander de manière variable au moins un paramètre de la lumière générée par l'au
moins une DEL (104) en réponse au fonctionnement de l'interface utilisateur.
10. Appareil selon la revendication 9, dans lequel le fonctionnement de l'interface utilisateur
fait varier un cycle d'usage du signal se rapportant au courant, et dans lequel l'au
moins un contrôleur (204) est configuré pour commander de manière variable l'au moins
un paramètre de la lumière sur la base au moins du cycle d'usage variable du signal
se rapportant au courant.
11. Appareil selon la revendication 9, dans lequel l'au moins un paramètre de la lumière
qui est commandée de manière variable par l'au moins un paramètre (204) en réponse
au fonctionnement de l'interface utilisateur comprend au moins l'une d'une intensité
de la lumière, d'une couleur de la lumière, d'une température de couleur de la lumière
et d'une caractéristique temporale de la lumière.
12. Appareil selon la revendication 9, dans lequel l'au moins un contrôleur (204) est
configuré pour commander de manière variable au moins deux paramètres différents de
la lumière générée par l'au moins une DEL (104) en réponse au fonctionnement de l'interface
utilisateur.
13. Appareil selon la revendication 12, dans lequel l'au moins un contrôleur (204) est
configuré pour commander de manière variable au moins une intensité et une couleur
de la lumière simultanément en réponse au fonctionnement de l'interface utilisateur.
14. Appareil selon la revendication 12, dans lequel l'au moins une DEL (104) est configurée
pour générer une lumière essentiellement blanche, et dans lequel l'au moins un contrôleur
(204) est configuré pour commander de manière variable au moins une intensité et une
température de couleur de la lumière blanche simultanément en réponse au fonctionnement
de l'interface utilisateur.
15. Appareil selon la revendication 14, dans lequel l'au moins un contrôleur (204) est
configuré pour commander de manière variable au moins l'intensité et la température
de couleur de la lumière essentiellement blanche en réponse au fonctionnement de l'interface
utilisateur de manière à approximer les caractéristiques de génération de lumière
d'une source de lumière incandescente.
16. Appareil selon la revendication 15, dans lequel l'au moins un contrôleur (204) est
configuré pour commander de manière variable la température de couleur de la lumière
essentiellement blanche sur une plage d'une intensité minimale d'environ 2000 degrés
K à une intensité maximale d'environ 3200 degrés K.
17. Appareil selon la revendication 15, comprenant en outre :
un connecteur de courant de type vissé (202) configuré pour se mettre en prise mécaniquement
et électriquement avec une douille de lumière incandescente conventionnelle de manière
à coupler l'appareil au circuit de gradateur de courant alternatif.
18. Appareil selon la revendication 17, comprenant en outre :
un boîtier, couplé au connecteur de courant de type vissé, pour enfermer l'au moins
une DEL (104) et l'au moins un contrôleur (204), le boîtier étant structurellement
configuré pour ressembler à une ampoule de lumière incandescente.
19. Appareil selon la revendication 15, dans lequel l'au moins une DEL comprend une pluralité
de DEL de couleurs différentes.
20. Appareil selon la revendication 9, dans lequel l'au moins un contrôleur comprend :
un circuit d'ajustement (208) pour commander de manière variable l'au moins un paramètre
de la lumière sur la base du signal se rapportant au courant variable ; et
un circuit de courant pour fournir au moins le courant à l'au moins une DEL (104)
sur la base du signal se rapportant au courant variable.
21. Appareil selon la revendication 20, dans lequel le circuit de courant comprend :
un redresseur (404) pour recevoir le signal se rapportant au courant et fournir un
signal se rapportant au courant redressé ;
un filtre passe-bas (408) pour filtrer le signal se rapportant au courant redressé
; et
un convertisseur de courant continu (402) pour fournir le courant au moins à l'au
moins une DEL (104) sur la base du signal se rapportant au courant redressé filtré.
22. Appareil selon la revendication 21, dans lequel le circuit d'ajustement est couplé
au convertisseur de courant continu et est configuré pour commander de manière variable
l'au moins une DEL (104) sur la base du signal se rapportant au courant redressé filtré.
23. Appareil selon la revendication 21, dans lequel le circuit d'ajustement comprend au
moins un processeur (102) configuré pour surveiller au moins l'un du signal se rapportant
au courant, du signal se rapportant au courant redressé, et du signal se rapportant
au courant redressé filtré de façon à commander de manière variable l'au moins une
DEL (104).
24. Appareil selon la revendication 21, dans lequel le circuit de courant est configuré
pour fournir au moins le courant à l'au moins une DEL (104) et du courant à l'au moins
un processeur (102) sur la base du signal se rapportant au courant variable.
25. Appareil selon la revendication 21, dans lequel l'au moins un processeur (102) est
configuré pour échantillonner le signal se rapportant au courant variable et déterminer
au moins une caractéristique variable du signal se rapportant au courant variable.
26. Appareil selon la revendication 21, dans lequel le fonctionnement de l'interface utilisateur
fait varier un cycle d'usage du signal se rapportant au courant, et dans lequel l'au
moins un processeur (102) est configuré pour commander de manière variable l'au moins
un paramètre de la lumière sur la base au moins du cycle d'usage variable du signal
se rapportant au courant.
27. Appareil selon la revendication 26, dans lequel l'au moins une DEL (104) comprend
une pluralité de DEL de couleurs différentes.
28. Appareil selon la revendication 27, dans lequel
la pluralité de DEL de couleurs différentes comprend :
au moins une première DEL (104A, 104B, 104C) apte à délivrer au moins un premier rayonnement
ayant un premier spectre ; et
au moins une seconde DEL (104A, 104B, 104C) apte à délivrer un second rayonnement
ayant un second spectre différent du premier spectre ; et
l'au moins un processeur (102) est configuré pour commander de manière indépendante
au moins une première intensité du premier rayonnement et une seconde intensité du
second rayonnement en réponse au fonctionnement de l'interface utilisateur.
29. Appareil selon la revendication 28, dans lequel l'au moins un processeur (102) est
programmé pour mettre en oeuvre une technique de modulation de largeur d'impulsion
(PWM) pour commander au moins la première intensité du premier rayonnement et la seconde
intensité du second rayonnement.
30. Appareil selon la revendication 29, dans lequel l'au moins un processeur (102) est
en outre programmé pour :
générer au moins un premier signal PWM pour commander la première intensité du premier
rayonnement et un second signal PWM pour commander la seconde intensité du second
rayonnement ; et
déterminer des cycles d'usage des premier et second signaux PWM respectifs sur la
base au moins en partie des variations du signal se rapportant au courant en raison
du fonctionnement de l'interface utilisateur.
31. Appareil selon la revendication 20, dans lequel le circuit d'ajustement comprend un
circuit d'entraînement (109) comprenant au moins un convertisseur de tension en intensité
pour fournir au moins une intensité d'entraînement à l'au moins une DEL de manière
à commander l'au moins un paramètre de la lumière générée.
32. Appareil selon la revendication 31, dans lequel l'au moins un convertisseur de tension
en intensité comprend un amplificateur opérationnel (UIA) configuré de manière à avoir
une tension d'erreur prédéterminée appliquée à travers ses entrées sans inversion
et avec inversion pendant le fonctionnement pour essentiellement réduire à zéro une
sortie d'intensité de l'au moins un convertisseur de tension en intensité lorsqu'une
tension appliquée à l'au moins un convertisseur de tension en intensité est essentiellement
nulle.
33. Procédé d'illumination, comprenant un acte consistant à :
A) fournir du courant continu à l'au moins une DEL (104) sur la base d'un signal se
rapportant au courant fourni par une source de courant alternatif ayant des composants
de fréquence supérieure à une tension de ligne de courant alternatif standard,
caractérisé en ce que les composants de fréquence supérieure sont filtrés du signal se rapportant au courant
avant de fournir du courant continu à l'au moins une DEL (104).
34. Procédé d'illumination selon la revendication 33, dans lequel l'acte A) comprend un
acte consistant à :
fournir le courant continu à l'au moins une DEL (104) sur la base d'un signal se rapportant
au courant émanant du circuit de gradateur de courant alternatif.
35. Procédé selon la revendication 34, dans lequel le circuit de gradateur de courant
alternatif est commandé par une interface utilisateur pour faire varier le signal
se rapportant au courant, et dans lequel l'acte A) comprend un acte consistant à :
B) fournir un courant essentiellement non variable à l'au moins une DEL (104) sur
une plage significative de fonctionnement de l'interface utilisateur.
36. Procédé selon la revendication 35, dans lequel le fonctionnement de l'interface utilisateur
fait varier un cycle d'usage du signal se rapportant au courant, et dans lequel l'acte
B) comprend un acte consistant à fournir le courant essentiellement non variable à
l'au moins une DEL (104) sur une plage significative de fonctionnement de l'interface
utilisateur indépendamment des variations du cycle d'usage du signal se rapportant
au courant.
37. Procédé selon la revendication 35, dans lequel l'acte B) comprend les actes consistant
à :
redresser le signal se rapportant au courant pour fournir un signal se rapportant
au courant redressé ;
filtrer le signal se rapportant au courant redressé ; et fournir le courant essentiellement
non variable sur la base du signal se rapportant au courant redressé filtré.
38. Procédé selon la revendication 35, dans lequel l'au moins une DEL comprend une pluralité
de DEL de couleurs différentes.
39. Procédé selon la revendication 34, dans lequel le circuit de gradateur de courant
alternatif est commandé par une interface utilisateur pour faire varier le signal
se rapportant au courant, et dans lequel l'acte A) comprend un acte consistant à :
C) commander de manière variable au moins un paramètre de la lumière générée par l'au
moins une DEL (104) en réponse au fonctionnement de l'interface utilisateur.
40. Procédé selon la revendication 39, dans lequel le fonctionnement de l'interface utilisateur
fait varier un cycle d'usage du signal se rapportant au courant, et dans lequel l'acte
C) comprend un acte consistant à :
D) commander de manière variable l'au moins un paramètre de la lumière sur la base
au moins du cycle d'usage variable du signal se rapportant au courant.
41. Procédé selon la revendication 39, dans lequel l'acte D) comprend un acte consistant
à : commander de manière variable au moins l'une d'une intensité de la lumière, d'une
couleur de la lumière, d'une température de couleur de la lumière et d'une caractéristique
temporale de la lumière en réponse au fonctionnement de l'interface utilisateur.
42. Procédé selon la revendication 39, dans lequel l'acte D) comprend un acte consistant
à :
E) commander de manière variable au moins deux paramètres différents de la lumière
générée par l'au moins une DEL (104) en réponse au fonctionnement de l'interface utilisateur.
43. Procédé selon la revendication 42, dans lequel l'acte E) comprend un acte consistant
à :
commander de manière variable au moins une intensité et une couleur de la lumière
simultanément en réponse au fonctionnement de l'interface utilisateur.
44. Procédé selon la revendication 42, dans lequel l'au moins une DEL (104) est configurée
pour générer une lumière essentiellement blanche, et dans lequel l'acte E) comprend
un acte consistant à :
F) commander de manière variable au moins une intensité et une température de couleur
de la lumière blanche simultanément en réponse au fonctionnement de l'interface utilisateur.
45. Procédé selon la revendication 44, dans lequel l'acte F) comprend un acte consistant
à :
G) commander de manière variable au moins l'intensité et la température de couleur
de la lumière essentiellement blanche en réponse au fonctionnement de l'interface
utilisateur de manière à approximer les caractéristiques de génération de lumière
d'une source de lumière incandescente.
46. Procédé selon la revendication 45, dans lequel l'acte G) comprend un acte consistant
à :
commander de manière variable la température de couleur de la lumière essentiellement
blanche sur une plage d'une intensité minimale d'environ 2000 degrés K à une intensité
maximale d'environ 3200 degrés K.
47. Procédé selon la revendication 46, dans lequel l'au moins une DEL comprend une pluralité
de DEL de couleurs différentes.
48. Procédé selon la revendication 39, dans lequel l'acte C) comprend un acte consistant
à :
H) échantillonner numériquement le signal se rapportant au courant variable et déterminer
au moins une caractéristique variable du signal se rapportant au courant variable.
49. Procédé selon la revendication 48, dans lequel le fonctionnement de l'interface utilisateur
fait varier un cycle d'usage du signal se rapportant au courant, et dans lequel l'acte
H) comprend un acte consistant à :
commander de manière variable l'au moins un paramètre de la lumière sur la base au
moins du cycle d'usage variable du signal se rapportant au courant échantillonné.
50. Procédé selon la revendication 39, dans lequel :
l'au moins une DEL (104) comprend :
au moins une première DEL (104A, 104B, 104C) apte à délivrer au moins un premier rayonnement
ayant un premier spectre ; et
au moins une seconde DEL (104A, 104B, 104C) apte à délivrer un second rayonnement
ayant un second spectre différent du premier spectre ; et
l'acte C) comprend un acte consistant à :
I) commander de manière indépendante au moins une première intensité du premier rayonnement
et une seconde intensité du second rayonnement en réponse au fonctionnement de l'interface
utilisateur.
51. Procédé selon la revendication 50, dans lequel l'acte I) comprend un acte consistant
à :
J) mettre en oeuvre une technique de modulation de largeur d'impulsion (PWM) pour
commander au moins la première intensité du premier rayonnement et la seconde intensité
du second rayonnement.
52. Procédé selon la revendication 51, dans lequel l'acte J) comprend les actes consistant
à :
générer au moins un premier signal PWM pour commander la première intensité du premier
rayonnement et un second signal PWM pour commander la seconde intensité du second
rayonnement ; et
déterminer des cycles d'usage des premier et second signaux PWM respectifs sur la
base au moins en partie des variations du signal se rapportant au courant en raison
du fonctionnement de l'interface utilisateur.