(11) **EP 1 503 395 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:02.02.2005 Patentblatt 2005/05

(51) Int Cl.⁷: **H01H 47/04**, H01H 47/00

(21) Anmeldenummer: 04016168.9

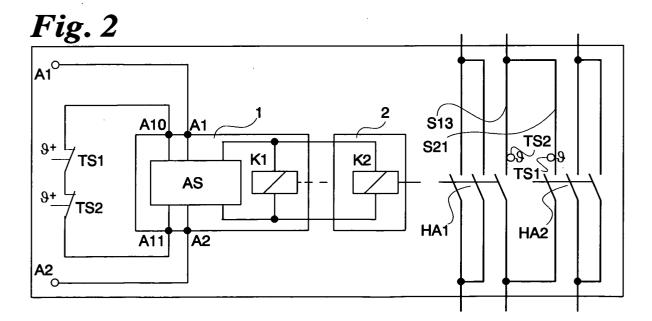
(22) Anmeldetag: 09.07.2004

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IT LI LU MC NL PL PT RO SE SI SK TR
Benannte Erstreckungsstaaten:

AL HR LT LV MK

(30) Priorität: 30.07.2003 DE 20311712 U


(71) Anmelder: Moeller GmbH 53115 Bonn (DE)

(72) Erfinder: Schmitz, Gerd 53844 Troisdorf (DE)

(54) Elektrische Anordnung zum Ansteuern parallel betriebener Schütze

(57) Die Erfindung betrifft eine elektrische Anordnung zum Ansteuern parallel betriebener Schütze. Das zu lösende Problem besteht darin, auszuschließen, dass von mehreren parallel betriebenen Schützen (1; 2) nur einzelne sich im eingeschalteten Zustand befinden. Dazu ist eines der Schütze (1) mit einer elektronischen Antriebssteuerung (AS) versehen, welche die Magnetantriebe (K1; K2) aller Schütze (1; 2) steuert, und mit zwei hochstromigen Steuereingängen (A1; A2) sowie

mit zwei niederstromigen Steuereingängen (A10; A11) ausgestattet, die mit den hochstromigen Steuereingängen (A1; A2) widerstandsbehaftet verbunden sind. Die niederstromigen Steuereingänge (A10; A11) werden durch seriell verbundene, nach Erreichen einer voreingestellten Grenztemperatur öffnende Thermoschalter (TS1; TS2) überbrückt, die jeweils einem der Schütze (1; 2) zugeordnet und mit wenigstens einer der internen Hauptstromschienen (S13; S21) des jeweiligen Schützes (1; 2) thermisch gekoppelt sind.

EP 1 503 395 A2

Beschreibung

[0001] Die Erfindung betrifft eine elektrische Anordnung zum Ansteuern parallel betriebener Schütze. Schütze bzw. elektromagnetische Schaltgeräte werden parallel betrieben, um einen hohen Nennstrom auf mehrere für einen niedrigeren Nennstrom ausgelegte Schütze zu verteilen. Beim Parallelbetrieb muss gewährleistet sein, dass alle einzelnen Schütze ordnungsgemäß einund abschalten. Insbesondere wird eine symmetrische Stromverteilung auf die Schütze sowie eine Symmetrierung deren Schaltdynamik angestrebt und vor allem zur Vermeidung einer thermischen Überlastung eines der Schütze und der damit verbundenen Brandgefahr die unbedingt gleiche Schaltstellung der Schütze gefordert. [0002] Für die Gleichschaltung ist bisher eine aufwendige mechanische und elektrische Verriegelung der Schütze erforderlich, um ein thermisches Ungleichgewicht zwischen den Schützen bzw. eine thermische Überlastung eines einzelnen Schützes zu vermeiden. Eine zwischen den Schützen abweichende Schaltstellung kann beispielsweise durch einen Leitungsbruch, einen mechanischen Defekt oder eine kurzzeitige Spannungsabsenkung hervorgerufen werden. Im letztgenannten Falle könnte aus Toleranzgründen nur einer der elektromagnetischen Antriebe der Schütze abfallen und die Hauptstromkontakte des zugehörigen Schützes öffnen. Ein solcher Zustand ist auf alle Fälle zu vermeiden. [0003] Derzeit werden für einen solchen Parallelbetrieb die Schütze über externe Zeitrelais und über Koppelschütze verriegelt, was einen erheblichen zusätzlichen Material- und Verdrahtungsaufwand erfordert.

[0004] Nach DE 35 28 948 A1 ist eine mechanische Verriegelungsvorrichtung bekannt, die das gleichzeitige Einschalten zweier unmittelbar nebeneinander angeordneter Schütze verhindert. Diese Verriegelungsvorrichtung lässt sich nicht auf den eingangs genannten Parallelbetrieb mehrerer Schütze übertragen.

[0005] Aus der DE 299 09 901 U1 ist eine elektronische Antriebssteuerung für einen Schützantrieb bekannt, durch die bei Anlegen eines Gleich- oder Wechselspannungssignals an hochstromige Steuereingänge A1 und A2 die Antriebsspule des Schützantriebes mit einer pulsbreitenmodulierten Gleichspannung beaufschlagt wird. Die hochstromigen Steuereingänge nehmen zur Abdeckung der Antriebsleistung einen relativ hohen Eingangsstrom auf. Die Antriebssteuerung ist weiterhin mit niederstromigen, d.h. leistungsarmen Steuereingängen A10 und A11 versehen, die gegenüber den hochstromigen Steuereingängen einen wesentlich geringeren Eingangsstrom aufnehmen. Die niederstromigen Steuereingänge können über interne oder externe Widerstände mit den hochstromigen Steuereingängen verbunden werden. Dann tritt beim Anliegen eines Steuersignals an den hochstromigen Steuereingängen an den offenen niederstromigen Steuereingängen ein Potenzialunterschied auf. Um den Antrieb anzusteuern, müssen die niederstromigen Steuereingänge direkt oder über einen Widerstand, der einen von der Höhe des Steuersignals abhängigen Höchstwert nicht übersteigen darf, verbunden sein. Anderenfalls wird die Schützspule trotz eines an den hochstromigen Steuereingängen anstehenden Steuersignals nicht erregt bzw. bei bisheriger Erregung entregt.

[0006] Der Erfindung liegt die Aufgabe zugrunde, mit geringem Zusatzaufwand auszuschließen, dass von mehreren parallel betriebenen Schützen nur einzelne sich im eingeschalteten Zustand befinden.

[0007] Die Aufgabe wird erfindungsgemäß durch die Merkmale des unabhängigen Anspruches gelöst, während den abhängigen Ansprüchen vorteilhafte Weiterbildungen der Erfindung zu entnehmen sind. Die erfindungsgemäße Anordnung zeichnet sich durch einen in sich geschlossenen kompakten Aufbau, einen gegenüber den einzelnen Schützen geringen zusätzlichen Material- und Herstellungsaufwand sowie das Fehlen externer Zusatzkomponenten aus.

[0008] Die beiden niederstromigen Steuereingänge der einzigen, einem der Schütze angehörenden Antriebssteuerung werden von einer Reihenschaltung den einzelnen Schützen zugeordneten Thermoschaltern überbrückt. Beim Anlegen eines Steuersignals an die hochstromigen Steuereingänge fließt über die geschlossenen Thermoschalter ein Strom ausreichender Höhe in die niederstromigen Steuereingänge, der die Antriebssteuerung zum Anziehen der Magnetantriebe aller Schütze und damit das Schließen aller Hauptstromkontakte veranlasst. Das Deaktivieren der Antriebssteuerung und damit das Abschalten aller Schütze erfolgt in üblicher Weise durch Wegnahme des Steuersignals an den hochstromigen Steuereingänge. Die Thermoschalter sind mit internen Stromschienen der Schütze thermisch verbunden. Sollte nach Anlegen des Steuersignals der Magnetantrieb eines einzelnen Schützes nicht anziehen oder nach dem Anziehen aus irgend einem Grunde wieder abfallen, dann fließt infolge seiner offenen Hauptstromkontakte der Hauptlaststrom über die geschlossenen Kontakte der übrigen Schütze. Deren Stromschienen erwärmen sich in der Folge übermäßig, wodurch einer der zugeordneten Thermoschalter öffnet. Infolge der stromlosen niederstromigen Steuereingänge wird die Antriebssteuerung deaktiviert, werden alle Magnetantriebe entregt und nehmen die Hauptstromkontakte aller Schütze den geöffneten Zustand ein. Dadurch kann es nicht zu dauerhaft unterschiedlichen Schaltzuständen zwischen allen Hauptstromkontakten bzw. zur thermischen Überlastung eines einzelnen Schützes kommen.

[0009] Durch die pulsbreitenmodulierte Gleichspannungserregung der Antriebsspulen ist die von der Schaltstellung abhängige Gegeninduktivität der einzelnen Magnetantriebe ohne erhebliche Bedeutung, sodass die Antriebsspulen der Schütze mit Vorteil elektrisch parallel oder in Reihe anzuordnen sind. Es ist lediglich darauf zu achten, dass die einzige Antriebssteuerung ausreichend Leistung liefert, um das gleich-

zeitige Anziehen aller Magnetantriebe zu gewährleisten.

[0010] Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus dem folgenden, anhand von Figuren erläuterten Ausführungsbeispiel. Es zeigen

Figur 1: die schematische Darstellung eines ansteuernden Schützes;

Figur 2: die schematische Darstellung parallel betriebener Schütze mit der erfindungsgemäßen Anordnung zur deren Ansteuerung;

Figur 3: die Draufsicht auf parallel betriebene Schütze mit der teils schematisch dargestellten erfindungsgemäßen Anordnung.

[0011] Fig. 1 zeigt ein dreipoliges Einzelschütz 1 mit einer elektronischen Antriebssteuerung AS für deren Magnetantrieb K1 und die von diesem betätigten Hauptstromkontakte HA1. Die Antriebssteuerung AS enthält als wesentlichen Bestandteil ein Leistungsund Steuerteil LS. Die Einzelheiten des Leistungs- und Steuerteils LS können der in der DE 299 09 901 U1 ausführlich beschriebenen elektronischen Antriebssteuerung entnommen werden, sodass im Folgenden nur die für die Erfindung wesentlichen Merkmale und Eigenschaften dargelegt werden. Zum Aktivieren des Magnetantriebes K1 ist ein Gleich- oder Wechselspannungssignals an hochstromige Steuereingänge A1 und A2 anzulegen. Niederstromige Steuereingänge A10, A11 sind über relativ hochohmige Koppelwiderstände RK mit den hochstromigen Steuereingängen A1, A2 verbunden, wobei seriell zu dem mit dem Steuereingang A11 verbundenen Koppelwiderstand RK noch eine Antiparallelschaltung aus einer Leuchtdiode LED und einer Gleichrichterdiode DVO angeordnet ist. Die Leuchtdioden LED und ein zugehöriger Fototransistor TVO sind Bestandteil eines Optokopplers. Die niederstromigen Steuereingänge A10, A11 sind extern miteinander verbunden. Beim Anlegen eines Steuersignals in Form einer ausreichend hohen Gleich- oder Wechselspannung an die hochstromigen Steuereingänge A1, A2 wird der Leistungsteil des Leistungs- und Steuerteils LS mit Strom versorgt und durch den Stromfluss über die niederstromigen Steuereingänge A10, A10 und die Leuchtdiode LED des Optokopplers der Steuerteil des Leistungs- und Steuerteils LS in der Weise aktiviert, dass die Antriebsspule des Magnetantriebes K1 mit einer pulsbreitenmodulierten Gleichspannung beaufschlagt wir, die den Magnetantrieb K1 zuerst zum Schließen der Hauptstromkontakte HA1 aktiviert und danach im Schließzustand hält. Durch Wegnahme des Steuersignals an den hochstromigen Steuereingängen A1, A2 oder durch Öffnen der Verbindung zwischen den niederstromigen Steuereingängen A10, A11 deaktiviert das Leistungs- und Steuerteil LS den Magnetantrieb K1, sodass die Hauptstromkontakte HA1 öffnen. Bei nichtverbundenen niederstromigen Steuereingängen A10, A11 kann ein Steuersignal an den hochstromigen Steuereingängen A1, A2 nicht zum Aktivieren des Magnetantriebes K1 führen.

[0012] Für die in Fig. 2 gezeigte Kombination aus zwei parallel betriebenen Schützen 1 und 2 mit zugehörigen Magnetantrieben K1 bzw. K2 und Hauptstromkontakten HA1 bzw. HA2 wird für das ansteuernde Schütz 1 das vorstehend mit Fig. 1 beschriebene Einzelschütz mit elektronischer Antriebssteuerung AS verwendet. Das andere Schütz 2 besitzt dagegen keine eigene Antriebsteuerung. Sein Magnetantrieb K2 wird ebenfalls von der leistungsmäßig ausreichend ausgelegten Antriebsteuerung AS des ansteuernden Schützes 2 betrieben. Bei der gezeigten Schützkombination sind zur Erhöhung der Stromtragfähigkeit jeweils zwei zum gleichen Schütz 1 bzw. 2 gehörende Hauptstrompfade einerseits und die verbleibenden Hauptstrompfade beide Schütze 1, 2 anderseits miteinander verbunden.

[0013] Die Antriebsspulen der Magnetantriebe K1, K2 bilden eine Parallelanordnung. Die niederstromigen Steuereingänge A10, A11 sind über eine Reihenschaltung zweier Thermoschalter TS1, TS2 verbunden. Der Thermoschalter TS1 ist mit einer internen Stromschiene S13 des ersten Schützes 1 und der Thermoschalter mit einer internen Stromschiene S21 des zweiten Schützes 2 thermisch gekoppelt. Der Thermoschalter TS1 bzw. TS2 öffnet, wenn die an der Stromschiene S13 bzw. S21 erfasste Temperatur eine voreingestellte Grenztemperatur überschritten hat.

[0014] Beim Anlegen eines Gleich- oder Wechselspannungssteuersignals an die hochstromigen Steuereingänge A1, A2 fließt über die geschlossenen Thermoschalter TS1, TS2 und die niederstromigen Steuereingängen A10, A11 ein Strom, durch den die Antriebssteuerung AS zum Erregen der Magnetantriebe K1, K2 aktiviert wird. Sollte einer der Magnetantriebe K1 oder K2 nicht ordnungsgemäß anziehen, oder fällt einer der bis dahin angezogenen Magnetantriebe K1 oder K2 eines der beiden Schütze 1 bzw. 2 durch einen Defekt oder eine Störung ab, wird der Gesamtstrom der parallel betriebenen Kombination von dem anderen Schütz 2 bzw. 1 übernommen. Durch den erhöhten Strom erfährt die Stromschiene S21 bzw. S13 eine erhebliche Erwärmung, die zum Öffnen des Thermoschalters TS2 bzw. TS1 führt. Die Unterbrechung der Verbindung zwischen den niederstromigen Steuereingängen A10, A11 führt über die deaktivierte Antriebssteuerung AS zum Abfallen auch des anderen Magnetantriebes K2 bzw. K1, womit alle Hauptstromkontakte HA1 und HA2 geöffnet sind.

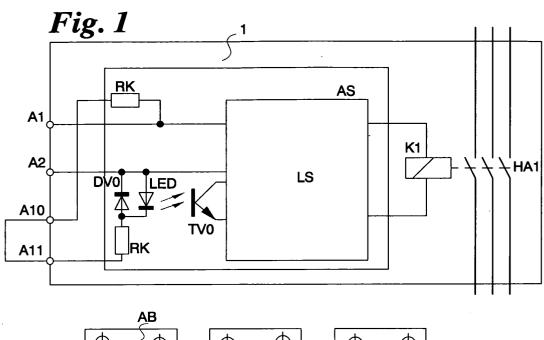
[0015] Fig. 3 zeigt eine zweckmäßige räumliche Ausführung der parallel betriebenen Schützkombination. Die Schütze 1 und 2 sind seitlich nebeneinander angeordnet, wobei jeweils zwei benachbarte Hauptstrompfade über externe Anschlussbrücken AB leitend miteinander verbunden sind. In dem rechts angeordneten, ersten Schütz 1 ist die Antriebssteuerung AS integriert, die eingangsseitig mit Klemmen für die hochstromigen Steuereingänge A1, A2 an der rechten Seite verbunden ist. An der linken Seite sind Klemmen für die niederstro-

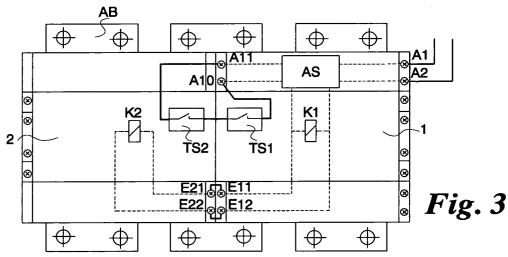
migen Steuereingänge A10, A11 vorgesehen. Die Antriebssteuerung AS ist ausgangsseitig zu ersten Zusatzklemmen E11, E12 geführt und im Inneren des Schützes 1 mit den Spulenanschlüssen des ersten Magnetantriebes K1 verbunden. Die niederstromigen Steuereingänge A10 und A11 sind jeweils mit einer Anschlussseite der Thermoschalter TS1 bzw. TS2 verbunden, deren andere Anschlussseiten untereinander verbunden sind. Die Thermoschalter TS1, TS2 sind hier mit denjenigen internen Stromschienen der Schütze 1, 2 thermisch gekoppelt, die den anstoßenden Seitenwänden der Schütze 1, 2 benachbart sind. Die Spulenanschlüsse des zweiten Magnetantriebes K2 sind intern zu zweiten Zusatzklemmen E21, E22 auf der linken Seite des zweiten Schützes 2 geführt, die extern mit den benachbarten ersten Zusatzklemmen E11, E12 verbunden sind.

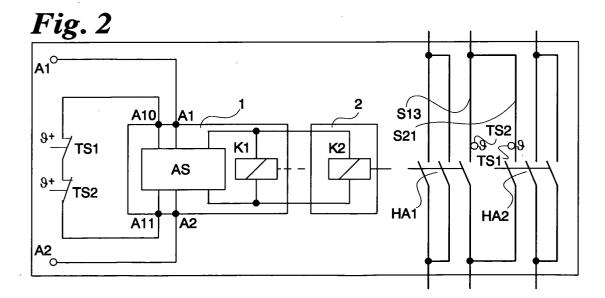
[0016] Die vorliegende Erfindung ist nicht auf die vorstehend beschriebene Ausführungsform beschränkt. So müssen die Magnetspulen der Magnetantriebe K1, K2 nicht unbedingt parallel geschaltet sein, sondern können auch seriell miteinander verbunden sein.

[0017] Offensichtlich können mit der Erfindung auch mehr als zwei Schütze parallel betrieben werden. Hierzu ist in einem der Schütze die Antriebssteuerung LS vorzusehen. Alle Schütze sind mit je einem Thermoschalter versehen, wobei alle Thermoschalter seriell verbunden sind. Die Thermoschalter können von vornherein in den einzelnen Schützen integriert sein.

Patentansprüche


- Elektrische Anordnung zum Ansteuern parallel betriebener Schütze bei jeweils mindestens zwei elektrisch parallel verbundenen, den Hauptstrompfaden zuzuordnenden Hauptstromkontakten, mit folgenden Merkmalen:
 - eines der Schütze (1) weist eine mit zwei hochstromigen Steuereingängen (A1; A2) versehene elektronische Antriebssteuerung (AS) zur pulsbreitenmodulierten Gleichspannungserregung der Magnetantriebe (K1; K2) aller Schütze (1; 2) auf,
 - die Antriebssteuerung (AS) ist weiterhin mit zwei niederstromigen Steuereingängen (A10; A11) ausgestattet, die mit den hochstromigen Steuereingängen (A1; A2) widerstandsbehaftet verbunden und zur Erregung der Magnetantriebe (K1; K2) bei Anlegen eines Steuersignals an die hochstromigen Steuereingänge (A1; A2) durch eine einen Höchstwiderstand nicht überschreitende Verbindung zu überbrücken sind,
 - die niederstromigen Steuereingänge (A10; A11) werden durch seriell verbundene, nach Erreichen einer voreingestellten Grenztemperatur öffnende Thermoschalter (TS1; TS2) überbrückt, die jeweils einem der Schütze (1;


2) zugeordnet und mit wenigstens einer der zu den Hauptstromkontakten (HA1; HA2) führenden internen Stromschienen (S13; S21) des jeweiligen Schützes (1; 2) thermisch gekoppelt sind.


- Elektrische Anordnung nach Anspruch 1, durch gekennzeichnet, dass die Antriebsspulen der Magnetantriebe (K1; K2) parallel angeordnet sind.
- Elektrische Anordnung nach Anspruch 1, durch gekennzeichnet, dass die Antriebsspulen der Magnetantriebe (K1; K2) seriell angeordnet sind.

55

30

