(11) **EP 1 519 048 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 30.03.2005 Patentblatt 2005/13 (51) Int Cl.⁷: **F04D 23/00**, F04D 29/62, F04D 29/08

(21) Anmeldenummer: 04022009.7

(22) Anmeldetag: 16.09.2004

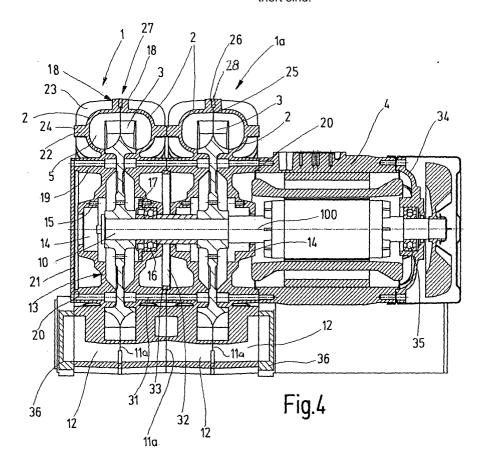
(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR Benannte Erstreckungsstaaten:

AL HR LT LV MK

(30) Priorität: 26.09.2003 DE 10344718

(71) Anmelder: Elektror M. Müller GmbH 73728 Esslingen (DE)


(72) Erfinder: Kuhn, René 73727 Esslingen (DE)

(74) Vertreter: Rüger, Barthelt & Abel Patentanwälte Postfach 10 04 61 73704 Esslingen a.N. (DE)

(54) Seitenkanalverdichter

(57) Ein Seitenkanalverdichter weist wenigstens ein ringförmiges, zweischaliges Laufradgehäuse (1) auf, das ein in ihm drehbar gelagertes Laufrad (3) umschließt und mit einem Luftansaug- und einem Luftauslassstutzen (6,7) versehen ist. Das Laufradgehäuse besteht aus zwei gleich gestaltet ausgebildeten Gehäuse-

schalen (2), die mit Planflächen an einer rechtwinklig zu der Drehachse des Laufrades sich erstreckenden Trennfläche aneinanderliegend in Achsrichtung miteinander verspannt sind. Im Bereiche der Planflächen ist ein ringsum laufender Ring (28) angeordnet, durch den die beiden Gehäuseschalen (2) gegeneinander zentriert sind.

Beschreibung

[0001] Die Erfindung betrifft einen Seitenkanalverdichter mit einem ringförmigen zweischaligen Laufradgehäuse, das ein in ihm drehbar gelagertes Laufrad umschließt und mit einem Luftansaug- und einem Luftauslassstutzen versehen ist.

[0002] Ein typisches Beispiel für solche Seitenkanalverdichter ist in der DE 2 223 762 A1 beschrieben. Bei diesem Seitenkanalverdichter besteht das Laufradgehäuse aus zwei Gehäuseschalen, die unterschiedlich ausgebildet sind und von denen eine eine angeformte Wälzlageraufnahme für das das Laufrad lagernde Wälzlager und einen ebenfalls angeformten Flansch zum Anflanschen des das Laufrad antreibenden Elektromotors trägt. Die andere Gehäuseschale ist als Deckel ausgebildet, der mittels randseitig verteilt angeordneter Schraubenbolzen mit der das Laufrad lagernden Gehäuseschale verschraubt ist. Beide Gehäuseschalen sind im Bereiche ihres äußeren Randes jeweils mit einer Planfläche versehen, wobei im zusammengebauten Zustand die Planflächen in einer rechtwinklig zu der Drehachse des Laufrads sich erstreckenden Trennfläche aneinander liegen. Die funktionsbedingt erforderliche Zentrierung des Deckels zu der das Laufrad lagernden Gehäuseschale geschieht durch eine passgenaue Eindrehung in dem Deckel und in dieser Gehäuseschale. Der Luftansaug- und der Luftauslassstutzen sind an der das Laufrad lagernden Gehäuseschale angeformt.

[0003] Die Herstellung zweier unterschiedlicher Gehäuseschalen, von denen eine mit ihrer Lagerstelle für das Laufrad das eigentliche Gehäuse bildet, während die andere als Deckel ausgebildet ist, ist aufwendig. Außerdem ist die Abdichtung der beiden Gehäuseschalen gegeneinander im Bereiche der Trennfläche kritisch, u. a., weil fertigungsbedingt an dem Einpassbund ein Ringspalt vorhanden ist.

[0004] Aufgabe der Erfindung ist es deshalb einen Seitenkanalverdichter zu schaffen, der sich durch ein preisgünstigeres Laufradgehäuse mit verbesserten Abdichtungseigenschaften auszeichnet.

[0005] Zur Lösung dieser Aufgabe weist der erfindungsgemäße Seitenkanalverdichter die Merkmale des Patentanspruchs 1 auf.

[0006] Das Laufradgehäuse des neuen Seitenkanalverdichters beseht aus zwei gleich gestaltet ausgebildeten Gehäuseschalen, von denen jede an ihrem äußeren Rand eine in Radialrichtung durchgehende Planfläche trägt. Die Gehäuseschalen sind mit ihren Planflächen in einer rechtwinklig zu der Drehachse des Laufrades sich erstreckenden Trennfläche aneinander liegend in Achsrichtung miteinander verspannt. Im Bereiche der Planflächen ist ein ringsum laufender Ring angeordnet, durch den die beiden Gehäuseschalen gegeneinander zentriert sind.

[0007] Damit wird der Vorteil des Wegfalls der bisher üblichen beidseitigen Eindrehung in Gehäuse- und Dekkelhalbschale erreicht, so dass jede Halbschale als "Ge-

häuse" und "Deckel" verwendbar ist. Da der fertigungsbedingte Ringspalt am Einpassbund entfällt, lässt sich eine bessere Abdichtung der Halbschalen gegeneinander erreichen. Dazu ist es zweckmäßig, dass der Ring als Dichtring ausgebildet ist, durch den ein im Bereiche der Trennflächen vorhandener Spalt abgedichtet ist. Die so erzielte Abdichtung ist in der Regel ausreichend, doch kann erforderlichenfalls im Bereich der beiden Planflächen zusätzlich zu dem Ring ein weiteres Dichtmittel zur Spaltabdichtung zwischen den beiden Planflächen vorgesehen sein.

[0008] Der Ring besteht in der Regel aus Metall, insbesondere Stahl, er kann aber auch aus einem formbeständigen Kunststoff hergestellt sein. Er weist mit Vorteil eine im Wesentlichen rechteckige oder quadratische Querschnittsgestalt auf. Wenn der Ring als Dichtring ausgebildet ist, kann er einen formstabilen Ringkern aufweisen, der eine aus einem Dichtmaterial bspw. aus Polytetrafluoräthylen bestehende Abdichtschicht trägt. [0009] In einer zweckmäßigen Ausführungsform ist der Ring am radial äußeren Rand der beiden Planflächen angeordnet, doch ist es grundsätzlich auch möglich, den Ring am radial inneren Rand der beiden Planflächen vorzusehen. Dazu können die beiden Gehäuseschalen im Bereiche ihrer Planfläche jeweils eine randoffene Ringnut aufweisen, wobei die beiden Ringnuten der miteinander verbundenen Gehäuseschalen sich zu einem in Umfangsrichtung erstreckenden Kanal ergänzen, in dem der Ring angeordnet ist. Damit ist auf einfache Weise eine formschlüssige, passgenaue Zentrierung der beiden Gehäuseschalen gegeneinander gewährleistet. Zu bemerken ist allerdings, dass grundsätzlich der Ring nicht in einem Kanal der erwähnten Art angeordnet sein muss. Es sind auch Ausführungsformen denkbar, bei denen der Ring unter radialer Vorspannung auf eine zylindrische Umfangsfläche der Gehäuseschalen aufgesetzt ist, wobei der Ring am radial äußeren oder radial inneren Rand der Planflächen angeordnet sein kann.

[0010] Jede der Gehäuseschalen ist mit einem Ansaug- und einem Auslassstutzen ausgebildet. Im zusammengesetzten Zustand sind die jeweils nicht benutzten Stutzen durch ein Verschlussmittel, bspw. einen Deckel verschlossen.

[0011] Die vielseitige Einsatzmöglichkeit der Gehäuseschalen kann dadurch erhöht werden, dass die Gehäuseschalen auf ihrer Außenseite jeweils Passflächen tragen, an denen die zweischaligen Laufradgehäuse mehrerer Verdichterstufen passgenau axial miteinander verspannbar sind. Auf diese Weise ist es möglich mehrstufige Seitenkanalverdichter aufzubauen, die lauter gleiche Halbschalen enthalten. Die benachbarten Laufradgehäuse der Verdichterstufen sind gegeneinander zentriert, wobei lediglich eine Gehäuseschale ein Lager für eine die Laufräder tragende Welle enthält. Die an den anderen gleich gestalteten Gehäuseschalen vorhandenen Lageraufnahmen bleiben leer.

[0012] In jeder Gehäuseschale kann ein auf den ein-

20

ander gegenüber liegenden Schalenseiten mündender Durchgangskanal ausgebildet sein, so dass die Durchgangskanäle nebeneinander liegender Gehäuseschalen sich zu einem insgesamt durchgehenden Axialkanal ergänzen. Durch diesen Axialkanal lässt sich bei zweioder mehrstufiger Ausführung eine Rückführung der komprimierten Luft durch das Gesamtgehäuse ermöglichen. Die notwendige Umlenkung der Luft erfolgt durch zugeordnete Umlenkmittel, bspw. in Form von aufgesetzten oder eingefügten Umlenkstücken. Der Axialkanal kann auch zur Durchleitung eines Kühlmediums dienen.

[0013] Weitere Ausgestaltungen des erfindungsgemäßen Seitenkanalverdichters sind Gegenstand von Unteransprüchen.

[0014] In der Zeichnung ist ein Ausführungsbeispiel des Gegenstandes der Erfindung dargestellt. Es zeigen:

- Fig. 1 einen Seitenkanalverdichter, gemäß der Erfindung, in perspektivischer Darstellung,
- Fig. 2 den Seitenkanalverdichter nach Fig. 1 in einer Seitenansicht,
- Fig. 3 den Seitenkanalverdichter nach Fig. 1 in einer Seitenansicht auf die Motorseite und
- Fig. 4 den Seitenkanalverdichter nach Fig. 1 in zweistufiger Ausführung, in einer Schnittdarstellung entsprechend der Linie IV-IV der Fig. 3 und
- Fig. 5 den Seitenkanalverdichter nach Fig. 4 in einer perspektivischen Explosionsdarstellung.

[0015] Der in den Fig. 1 und 2 dargestellte Seitenkanalverdichter weist ein im Wesentlichen ringförmiges Laufradgehäuse 1 auf, das aus zwei identischen Gehäuseschalen 2 besteht und ein in Fig. 4 bei 3 dargestelltes Laufrad umschließt. Das Laufrad 3 ist von einem Elektromotor 4 angetrieben, der seitlich und koaxial an das Laufradgehäuse 1 angeflanscht ist. Die das Laufradgehäuse 1 bildenden beiden Gehäuseschalen 2 sind identisch ausgebildet. Jede der Gehäuseschalen 2 weist einen das Laufrad 3 aufnehmenden Seitenkanal 5 auf, der sich über den größten Teil des Umfangs erstreckt und einen angeformten Lufteinlassstutzen 6 mit einem angeformten Luftauslassstutzen 7 verbindet. Zwischen dem Lufteinlassstutzen 6 und dem Luftauslassstutzen 7 ist ein Sperrstück 8 angeordnet, wie dies bei Seitenkanalverdichtern an sich bekannt ist. Der Luftansaugstutzen 6 und der Luftauslassstutzen 7 sind in einem gemeinsamen Gehäuseteil 9 ausgebildet, das einstückig an der Gehäuseschale 2 angeformt ist und beidseitig eine ebene, rechtwinklig zu der Laufradachse 10 verlaufende Passfläche 11, bzw. 11a trägt. In dem Gehäuseteil 9 ist zwischen dem Luftansaugstutzen 6 und dem Luftauslassstutzen 7 ein Durchgangskanal 12

ausgebildet, der sich über die ganze axiale Länge der Gehäuseschale 2 erstreckt und in den beiden einander gegenüberliegenden und zueinander parallelen Passflächen 11, 11a mündet. Der Durchgangskanal 12 ist im Bereiche des Sperrstücks 8 angeordnet und steht mit dem Seitenkanal 5 nicht in Verbindung.

[0016] Der teilringförmige Seitenkanal 5 erstreckt sich rings um ein scheibenförmiges Nabenteil 13 der Gehäuseschale 2, an dem ein zentrisches Lagergehäuse 14 ausgebildet ist, das zur Aufnahme eines Wälzlagers 16 für die das Laufrad 3 tragende Welle 10 bestimmt ist (vgl. Fig. 4). Das Wälzlager 16 ist durch einen aufgeschraubten Lagerdeckel 17 nach außen zu abgeschlossen. Im radialen Abstand ist das Lagergehäuse 14 von einem rohrförmigen, im Wesentlichen zylindrischen Ringflansch 19 umgeben, der an seiner außenliegenden Stirnseite eine ebene Passfläche 20 trägt, die parallel zu der Passfläche 11 an dem Gehäuseteil 9 ausgerichtet ist und mit dieser in einer gemeinsamen Ebene liegt. An dem zu der Laufradachse 100 koaxialen Ringflansch 19 einer Gehäuseschale 2 des Laufradgehäuses 1 ist, wie aus Fig. 4 zu ersehen, der Elektromotor 4 angeflanscht, während auf der dem Elektromotor 4 gegenüber liegenden Laufradgehäuseaußenseite auf den Ringflansch 19 der entsprechenden Gehäuseschale 2 ein Deckel 21, gegenüber der Passfläche 20 abgedichtet aufgeschraubt ist.

[0017] Auf der dem Gehäuseteil 9 diametral gegenüberliegenden Seite ist an der Gehäuseschale 2 ein Abstützblock 22 angeformt, der zwischen zwei Kühlrippen 23 liegt, die den den Seitenkanal 5 enthaltenden Gehäuseschalenteil außen in der bspw. aus Fig. 1, 4 ersichtlichen Weise umgeben. Der Abstützblock 22 ragt axial etwas über die Kühlrippen 23 vor und trägt auf seiner Außenseite eine ebene Passfläche 24, die mit der Passfläche 11 des Gehäuseteils 9 und der Passfläche 20 des Ringflansches 19 in einer gemeinsamen Ebene liegt.

[0018] Ein am äußeren Rand der Gehäuseschale 2 angeordneter Flansch 18 trägt auf seiner dem Ringflansch 19 abgewandten Seite eine ebene Planfläche 25, die rechtwinklig zu der Laufradachse 100 verläuft und in einer Ebene mit der zugeordneten Passfläche 11 des Gehäuseteils 9 liegt. Im Bereiche der Passfläche 25 ist in dem Flansch 18 eine randoffene Ringnut 26 ausgebildet, die einen L-förmigen Querschnitt aufweist und von zwei Flächen begrenzt ist, von denen eine rechtwinklig und die andere parallel zu der Laufradachse 100 verläuft. Im zusammengebauten Zustand liegen die beiden Gehäuseschalen 2 eines Laufradgehäuses 1 mit ihren Passflächen 25 aneinander an, so dass die beiden Ringnuten 26 sich zu einem in Umfangsrichtung erstreckenden Kanal 27 ergänzen, der eine rechteckige Querschnittsgestalt aufweist. In den Kanal 27 ist ein geschlossener formstabiler Ring 28 eng toleriert eingepasst, der die beiden Gehäuseschalen 2 gegeneinan-

[0019] Der Ring 28 besteht aus Aluminium oder bspw.

aus Stahl, Messing oder auch aus Kunststoff und ist mit einem Dichtmaterial, insbesondere aus Polytetrafluoräthylen beschichtet, so dass er als Dichtring wirkt. Im Bereiche des Luftansaugstutzens 6 und des Luftauslassstutzens 7 ist der Ring 28, wie bei 29 in Fig. 5 für den Luftansaugstutzen 6 dargestellt, mit einem die jeweilige Stutzenbohrung umschließenden ösenartigen Teil ausgebildet.

[0020] Die beiden Gehäuseschalen 2 sind durch rings um den Umfang gleichmäßig verteilt angeordnete Schraubenbolzen axial miteinander verspannt, die im Einzelnen nicht dargestellt sind und durch zugeordnete Axialbohrungen 30 verlaufen, welche den Flansch 18 und das Gehäuseteil 9 durchdringen. Bei dem dargestellten Ausführungsbeispiel ist die Anordnung so getroffen, dass auch der Ring 28 mit Bohrungen 30 versehen ist. Bei axial miteinander verspannten Gehäuseschalen 2 des Laufradgehäuses 1 sind, wie bereit erwähnt, die Gehäuseschalen mit ihren Passflächen 25 gegeneinander gepresst und über den Ring 28 radial gegeneinander zentriert, wobei der Ring 28 gleichzeitig die Abdichtung des Laufradgehäuses 1 im Bereiche der rechtwinklig zu der Laufradachse 10 sich erstreckenden Trennfläche zwischen den beiden Gehäuseschalen bewirkt. Diese Abdichtung ist sehr wirksam, weil die von den axial in die Bohrungen 30 eingesetzten Schraubenbolzen erzeugte Anpresskraft unmittelbar auf den Ring 28 übertragen wird.

[0021] Während in den Figuren 1 und 2 ein einstufiger Seitenkanalverdichter dargestellt ist, der lediglich ein aus zwei identischen Gehäuseschalen 2 zusammengesetztes Laufradgehäuse 1 aufweist, zeigen die Figuren 4, 5 eine zweistufige Ausführungsform, bei der zwei identische Laufradgehäuse 1, 1a, von denen jedes ein eigenes Laufrad 3 umschließt, axial miteinander verbunden sind. Wie insbesondere aus Fig. 4 zu entnehmen, sind die einander benachbarten Gehäuseschalen 2 der Laufradgehäuse 1, 1a mit ihren in einer gemeinsamen Ebene liegenden Passflächen 11, 20 und 24 satt aneinander anliegend durch Zuganker 31 axial gegeneinander verspannt. Außerdem sind diese beiden Gehäuseschalen 2 durch einen zu der Laufradachse 10 koaxialen innen liegenden aus Stahl bestehenden Zentrierring 32 radial zentriert. Der Zentrierring 32 greift formschlüssig in im Querschnitt L-förmige, randoffene Ausdrehungen auf der Innenseite des Ringflansches 19 ein. Er ist unter Vorspannung spielfrei eingesetzt und ergibt zusammen mit den Passflächen 11, 20, 24 eine exakt zentrierte und bezüglich der Laufradwelle 10 genau rechtwinklig ausgerichtete Orientierung der beiden Laufradgehäuse 1, 1a. Die Laufradwelle 10 ist durch die beiden nebeneinander liegenden Laufradgehäuse 1, 1a durchgehend ausgebildet und trägt beide Laufräder 3, während der Elektromotor 4 an die außenliegende Gehäuseschale 2 des Laufradgehäuses 1a angeflanscht ist und der außenliegende Ringflansch 19 des anderen Laufwerkgehäuses 1 durch den Deckel 21 verschlossen

[0022] Fig. 4 zeigt außerdem, dass die Laufradwelle 10 auf der Laufradseite lediglich in einem einzigen Wälzlager 16 gelagert ist, das auf der dem Elektromotor 4 zugewandten Seite in der entsprechenden Gehäuseschale 2 des Laufradgehäuses 1 angeordnet ist. Eine zweite Lagerstelle der Laufradwelle 10 ist in dem Lagerschild 34 des Elektromotors 4 vorhanden und durch ein Wälzlager 35 gebildet.

[0023] Ähnlich der anhand der Fig. 4, 5 beschriebenen zweistufigen Ausbildung des Seitenkanalverdichters sind auch Ausführungsformen möglich, bei denen in entsprechender Weise mehrere Laufradgehäuse 1, 1a axial aneinander angeflanscht sind, um Seitenkanalverdichter mit mehr als zwei Verdichterstufen zu schaffen. Bei allen diesen mehrstufigen Seitenkanalverdichtern sind die Durchgangskanäle 12 der einzelnen Gehäuseschalen 2 miteinander fluchtend abgedichtet, stumpf aneinander stoßend miteinander verbunden, so dass sich ein über die ganze Axiallänge des Verdichters durchgehender Axialkanal ergibt (vgl. Fig. 4). Endseitig aufgesetzte Umlenkstücke 36 erlauben es, den Luftauslassstutzen 7 einer Verdichterstufe mit dem Lufteinlassstutzen 6 einer nachfolgenden Verdichterstufe zu verbinden, um eine Verwendungsmöglichkeit des durchgehenden Axialkanals zu erwähnen. Eine andere Verwendungsmöglichkeit besteht darin, Kühlmittel durch den Kanal durchzuleiten, um anfallende Verdichtungswärme abzuführen. Davon abgesehen, kann der in diesem Fall nicht benutzte Durchgangskanal 12 durch einen an der außenliegenden Gehäuseschale 2 des Laufradgehäuses 1 angebrachten Deckel 37 (Fig. 1,5) verschlossen werden.

[0024] Der Deckel 37 ist mit zwei Deckelteilen 38 ausgebildet, die den nicht benutzten Luftansaugstutzen 6 und den ebenfalls nicht benutzten Luftauslassstutzen 7 an dieser Gehäuseschale 2 abgedichtet verschließen. Gleichzeitig sind an dem Deckelteil 37 zwei Standfüße 39 für den Seitenkanalverdichter angeformt, die eine ebene Standfläche 40 und Bohrungen 41 für Verankerungsschrauben aufweisen.

[0025] An den Luftansaugstutzen 6 und den Luftauslassstutzen 7 der gegenüberliegenden, mit dem Elektromotor 4 verschraubten Gehäuseschale 2 sind zwei Schalldämpfer 42 angeschlossen, die an ihren freien Stirnseiten Anschlussflansche 43 für Luftzu- bzw. Abfuhrleitungen aufweisen (vgl. Fig. 3). Zwischen dem jeweiligen Schalldämpfer 42 und dem Gehäuseteil 9 der zugeordneten Gehäuseschale 2 ist ein separates Fußteil 44 (Fig. 1, 2) vorgesehen, das auf einen rohrförmigen Ansatz 45 des jeweiligen Schalldämpfers 42 aufgesetzt und gegen das Gehäuseteil 9 verspannt ist. Das Fußteil 44 weist ebenfalls eine Aufstellfläche 40 und Vertikalbohrungen 41 für Verankerungsschrauben auf. Die rohrförmigen Ansätze 45 sind bspw. mit einem Außengewinde versehen und in ein Innengewinde des jeweiligen Stutzens 6,7 eingeschraubt.

[0026] Da alle Gehäuseschalen 2 identisch ausgebildet sind und die bei ein- oder mehrstufiger Ausführung

20

40

45

50

55

des Seitenkanalverdichters jeweils axial außen liegenden Gehäuseschalen 2 konstruktiv gleich gestalteten Lufteinlassstutzen 6 und Luftauslassstutzen 7 tragen, können die Schalldämpfer 42 mit dem Fußteil 44 und der Deckel 37 auch gegeneinander vertauscht werden, d.h. dass die Schalldämpfer 42, bezogen auf die Figuren 1, 2 auf der rechten Seite des Laufradgehäuses 1 zu liegen kommen, wenn dies die besonderen Einbauverhältnisse des Seitenkanalverdichters zweckmäßig erscheinen lassen. Selbstverständlich können anstelle der Schalldämpfer 42 und/oder zusätzlich dazu auch andere Luftleitelemente, bspw. Anschlussrohre oder -schläuche, Ventile, Rohrbögen und dergleichen treten, wie dies an sich bekannt ist.

[0027] Während bei der dargestellten Ausführungsform die beiden jeweils ein Laufradgehäuse 1 oder 1a bildenden Gehäuseschalen 2 durch den radial außen liegenden Ring 28 gegeneinander zentriert sind, könnte die Anordnung auch so getroffen werden, dass der Ring 28 auf der Innenseite der Gehäuseschalen 2, d.h. im Bereiche der Seitenkanäle 5 angeordnet ist, so dass sich eine ähnliche Anordnung wie bei dem Zentrierring 32 zwischen den beiden Laufradgehäuse 1, 1a ergibt. Dazu ist zu bemerken, dass auch der Zentrierring 32 radial außen liegend angeordnet sein könnte, d.h. entsprechend dem Ring 28.

[0028] Die Laufradwelle 10 ist bei der dargestellten zweistufigen Ausführungsform nach Fig. 4 einstückig über die Länge der beiden Verdichterstufen durchgehend dargestellt und, wie erläutert, lediglich in einem einzigen Wälzlager 16 gelagert. Es sind aber auch Ausführungsformen denkbar, bei denen jeder der beiden Verdichterstufen eine eigene Laufradwelle zugeordnet ist und die Wellen jeweils durch einen stirnseitigen Mitnehmer in Form einer formschlüssigen Wellenkupplung koaxial miteinander verbunden sind. In diesem Falle ist die in dem Laufradgehäuse 1 enthaltene Laufradwelle in zwei Wälzlagern 16 gelagert, die in die beiden Lagergehäuse 14 dieses Laufradgehäuses 1 eingesetzt sind. Bei dem dargestellen zweistufigen Ausführungsbeispiel genügt für das andere Laufradgehäuse 1a eine einzige Lagerstelle, die insbesondere durch ein in das dem Elektromotor 4 benachbarte Lagergehäuse 14 eingesetztes Wälzlager 16 gebildet ist. Die Wellenkupplung im Bereiche der Trennfläche zwischen den beiden Laufradgehäusen 1, 1a ist zweckmäßigerweise so ausgebildet, dass sie etwa vorhandene unvermeidbare Fluchtungsfehler zwischen den Wellen in den beiden Laufradgehäusen 1, 1a ausgleicht.

Patentansprüche

 Seitenkanalverdichter mit einem ringförmigen, zweischaligen Laufradgehäuse (1), das ein in ihm drehbar gelagertes Laufrad (3) umschließt und mit einem Luftansaug- und einem Luftauslassstutzen (6;7) versehen ist, mit zwei gleichgestaltet ausgebildeten Gehäuseschalen (2), von denen jede an ihrem äußeren Rand jeweils eine in Radialrichtung durchgehende Planfläche (25) trägt, wobei die Gehäuseschalen (2) mit ihren Planflächen (25) in einer rechtwinklig zu der Drehachse (10)des Laufrades (3) sich erstreckenden Trennfläche aneinander liegend in Achsrichtung mit einander verspannt sind und im Bereiche der Planflächen (25) ein ringsumlaufender Ring (28) angeordnet ist, durch den die beiden Gehäuseschalen (2) gegeneinander zentriert sind.

- Seitenkanalverdichter nach Anspruch 1, dadurch gekennzeichnet, dass der Ring (28) als Dichtring ausgebildet ist, durch den ein im Bereiche der Trennfläche vorhandener Spalt abgedichtet ist.
- Seitenkanalverdichter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Ring (28) aus Metall besteht.
- Seitenkanalverdichter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Ring (28) eine im Wesentlichen rechtekkige oder quadratische Querschnittsgestalt aufweist.
- Seitenkanalverdichter nach Anspruch 2, dadurch gekennzeichnet, dass der Ring (28) einen formstabilen Ringkern aufweist, der eine aus einem Dichtmaterial bestehende Abdichtschicht trägt.
- Seitenkanalverdichter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Ring (28) am radial äußeren Rand der beiden Planflächen (25) angeordnet ist.
- Seitenkanalverdichter nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Ring (28) am radial inneren Rand der beiden Planflächen (25) angeordnet ist.
- 8. Seitenkanalverdichter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die beiden Gehäuseschalen (2) im Bereiche ihrer Planfläche (25) jeweils eine randoffene Ringnut (26) aufweisen und dass die beiden Ringnuten (26) sich zu einem in Umfangsrichtung erstreckenden Kanal (27) ergänzen in dem der Ring (28) angeordnet ist.
- 9. Seitenkanalverdichter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die beiden Gehäuseschalen (2) durch im Bereich der beiden Planflächen (25) angeordnete Spannmittel (bei 30) axial miteinander verspannt sind.

15

10. Seitenkanalverdichter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Bereich der beiden Planflächen (25) zusätzlich zu dem Ring (28) ein weiteres Dichtmittel zur Spaltabdichtung zwischen den beiden Planflächen vorgesehen ist.

11. Seitenkanalverdichter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Gehäuseschalen (2) auf ihrer Außenseite Passflächen (11a,20,24) tragen, an denen die zweischaligen Luftradgehäuse (1,1a) mehrere Verdichtungsstufen passgenau axial miteinander ver-

spannbar sind.

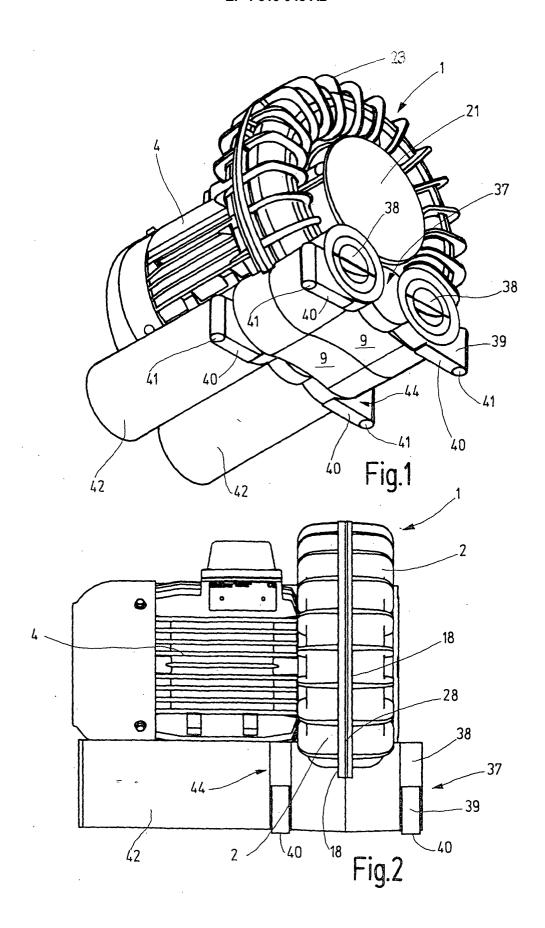
12. Seitenkanalverdichter nach Anspruch 11, dadurch gekennzeichnet, dass die benachbarten Laufradgehäuse (1,1a) der Verdichterstufen gegeneinander zentriert sind und lediglich eine Gehäuseschale (2) ein Lager (16) für eine die Laufräder (3) tragende Welle enthält.

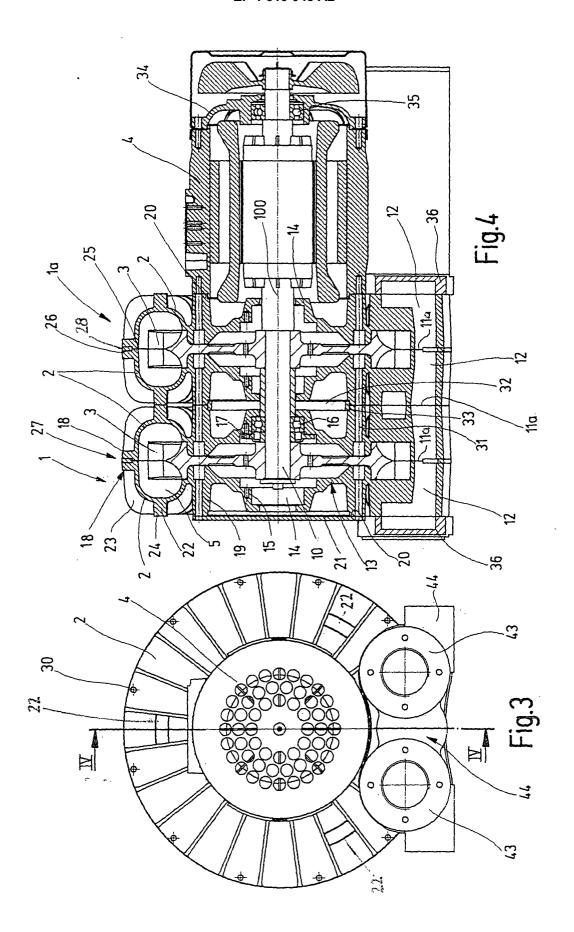
13. Seitenkanalverdichter nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass die benachbarten Gehäuseschalen (2) durch einen Zentrierring (32) gegeneinander zentriert sind, der formschlüssig zwischen die Gehäuseschalen (2) eingesetzt ist.

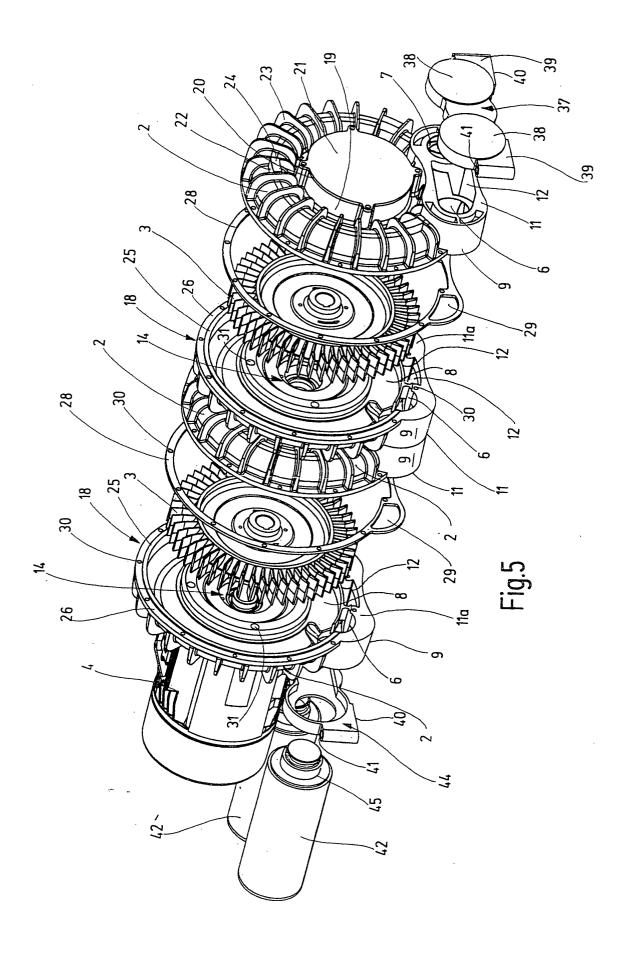
14. Seitenkanalverdichter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass nicht benutzte Ansaug- und einen Auslassstutzen (6,7) durch ein Verschlußmittel (37) verschlossen sind.

15. Seitenkanalverdichter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in jeder Gehäuseschale (2) ein auf den gegenüber liegenden Schalenseiten mündender Durchgangskanal (12) ausgebildet ist und die Durchgangskanäle (12) nebeneinander liegender Gehäuseschalen (2) sich zu einem insgesamt durchgehenden Axialkanal ergänzen.

16. Seitenkanalverdichter nach Anspruch 11 und 15, dadurch gekennzeichnet, dass dem insgesamt durchgehenden Axialkanal Umlenkmittel (36) zugeordnet sind, durch die der Luftauslassstutzen (6) einer Verdichtungsstufe mit dem Luftansaugstutzen (7) einer anderen Verdichtungsstufe verbunden ist.


17. Seitenkanalverdichter nach Anspruch 15, dadurch gekennzeichnet, dass in jeder Gehäuseschale (2) der Durchgangskanal zwischen dem Luftansaugund den Luftauslassstutzen (6;7) angeordnet ist.


18. Seitenkanalverdichter nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet, dass** er Fußteile (40,44) aufweist, die mit Gehäu-


seschalen (2) im Bereiche deren Luftansaug- und Luftauslassstutzen (6;7) verbunden sind.

6

50

