(12)

DEMANDE DE BREVET EUROPEEN

(43) Date de publication: **20.04.2005 Bulletin 2005/16**

(51) Int CI.⁷: **F02D 41/02**, F02D 41/04, F02D 41/22

(21) Numéro de dépôt: 04300673.3

(22) Date de dépôt: 11.10.2004

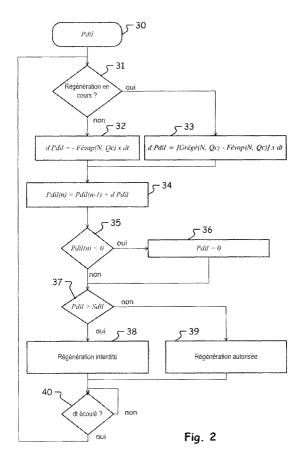
(84) Etats contractants désignés:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR Etats d'extension désignés:

AL HR LT LV MK

(30) Priorité: 13.10.2003 FR 0311926

(71) Demandeur: Renault s.a.s. 92100 Boulogne Billancourt (FR)


(72) Inventeurs:

- Brochon, Vincent 75009, PARIS (FR)
- Fouet, Jean-Paul 91800, BRUNOY (FR)
- Ginoux, Christian
 95350, SAINT BRICE SOUS FORET (FR)
- Lafite, Jacques 45480, CHAUSSY (FR)

(54) Procède de commande pour la régénération d'un filtre a particules

(57) Un système de motorisation comporte un moteur (1), un filtre à particules (3) recevant des gaz d'échappement du moteur (1) pour retenir les particules des gaz d'échappement. Selon un procédé de commande, on traite des Informations et on commande le moteur

(1) pour obtenir la régénération du filtre à particules (3) lorsque nécessaire. On établit une estimation du taux de dilution (Pdil) de carburant dans l'huile, et on autorise la régénération si le taux de dilution (Pdil) est inférieur à un seuil de dilution prédéterminé (Sdil).

Description

[0001] L'invention concerne un procédé de commande pour la régénération d'un filtre à particules équipant un groupe motopropulseur d'un véhicule.

[0002] L'hétérogénéité des processus de combustion dans les moteurs à mélange pauvre, en particulier dans les moteurs Diesel, a pour effet de générer des particules de carbone, qui ne peuvent être brûlées efficacement dans le moteur. Cela se traduit par exemple par l'apparition, en sortie de la ligne d'échappement, de fumées noires. Ce phénomène est une source de pollution que l'on cherche à réduire.

[0003] La présence d'un filtre à particules dans la ligne d'échappement du moteur permet de diminuer considérablement la quantité de particules, poussières et autres suies, émises dans l'atmosphère, et de satisfaire aux normes antipollution.

[0004] Des dispositifs de régénération pilotés par un calculateur permettent de brûler périodiquement les particules piégées dans le filtre et d'éviter le colmatage de ce dernier. Les particules de suies sont des éléments essentiellement carbonés, et leur combustion consomme de l'oxygène pour former du gaz carbonique.

[0005] Ceci est effectué en élevant la température au sein du filtre à particules jusqu'à une température de l'ordre de 550 à 650 °C, température à partir de laquelle les particules de carbone retenues dans le filtre s'enflamment spontanément.

[0006] Le déclenchement de la régénération du filtre est contrôlé par un calculateur qui détermine si la régénération doit avoir lieu et, quand elle est en cours, si elle peut continuer. Pour cela, le calculateur reçoit des informations sur le fonctionnement du véhicule. Ces informations comprennent par exemple les températures du liquide de refroidissement du moteur, des gaz en amont et en aval du filtre à particules, la vitesse du véhicule, la masse de suie accumulée dans le filtre à particules et la distance parcourue depuis la dernière régénération.

[0007] Le calculateur vérifie des conditions sur ces informations et ne déclenche la régénération que si toutes les conditions sont satisfaites. La régénération est maintenue, même si certaines conditions ne sont plus satisfaites pendant une durée inférieure à un seuil prédéterminé, de l'ordre d'une à deux minutes. Si au moins une condition n'est plus satisfaite pendant une durée supérieure audit seuil, alors le processus de régénération est interrompu.

[0008] Pour déclencher et. maintenir la régénération, les conditions de fonctionnement du moteur sont modifiées pour augmenter la température des gaz d'échappement avant leur passage dans le filtre à particules. Ces modifications concernent souvent l'injection de carburant, qui peut être retardée pour au moins un cylindre du moteur. Ces modifications augmentent la consommation de carburant et également la quantité de carburant qui se dissout dans l'huile du moteur, en passant

par l'espace entre le cylindre et le piston.

[0009] Avec une nouvelle génération de filtres à particules catalytiques, qui intègrent les fonctions de pot catalytique et de filtre à particules, on doit agir pendant toute la durée de la régénération pour maintenir les conditions permettant la combustion des suies piégées dans le filtre. Les inconvénients mentionnés précédemment sont donc prolongés pendant toute la durée de la régénération. De plus, ils sont aggravés dans certaines conditions de fonctionnement du moteur, dans lesquelles peu de chaleur est naturellement apportée aux gaz d'échappement.

[0010] L'augmentation de la quantité de carburant diluée dans l'huile du moteur a pour effet de faire varier les caractéristiques de l'huile, éventuellement jusqu'à un point où le moteur pourrait se détériorer.

[0011] C'est donc un objectif de l'invention de proposer un procédé de commande d'un système de motorisation à moteur Diesel d'un véhicule comportant un filtre à particules limitant la dilution de carburant dans l'huile pour éviter de détériorer le moteur.

[0012] Avec ces objectifs en vue, l'invention a pour objet un procédé de commande d'un système de motorisation comportant un filtre à particules recevant des gaz d'échappement du moteur pour retenir les particules des gaz d'échappement, le procédé traitant des informations et commandant le moteur pour obtenir la régénération du filtre à particules lorsque nécessaire, caractérisé en ce que le procédé établit une estimation du taux de dilution de carburant dans l'huile, le procédé autorisant la régénération si l'estimation du taux de dilution est inférieur à un seuil de dilution prédéterminé.

[0013] Ainsi, la régénération est interdite si le taux de dilution est trop important. Le moteur est préservé contre un risque de détérioration.

[0014] De préférence, la variation du taux de dilution est évaluée par une première fonction représentative de l'évaporation, du carburant lorsque aucune régénération du filtre à particules n'est en cours, et par une deuxième fonction lorsqu'une régénération du filtre à particules est en cours. On simule bien ainsi la différence de comportement selon qu'une régénération est en cours ou non.

[0015] Selon un perfectionnement, la deuxième fonction est la somme de la première fonction et d'une troisième fonction.

[0016] De manière avantageuse, la variation du taux de dilution est évaluée en fonction de la vitesse de rotation du moteur et d'une variable représentant la charge du moteur. En effet ces variables sont très influentes sur la variation du taux de dilution.

[0017] De manière particulière, la variable représentant la charge moteur est un débit de carburant injecté. [0018] De préférence, la première et la deuxième fonction sont mémorisées sous forme de cartographies. Ainsi, les fonctions peuvent être mises en oeuvre de manière simple, après une phase de mise au point du système de motorisation.

[0019] L'invention sera mieux comprise et d'autres particularités et avantages apparaîtront à la lecture de la description qui va suivre, la description faisant référence aux dessins annexés parmi lesquels :

- la figure 1 est une vue schématique d'un système de motorisation conforme à l'invention;
- la figure 2 est un organigramme de la commande de régénération du filtre à particules.

[0020] Un système de motorisation mettant en oeuvre le procédé selon l'invention et représenté sur la figure 1, comporte un moteur 1 du type Diesel suralimenté par un turbocompresseur 2 et dont les gaz d'échappement sont traités par un filtre à particules catalytique 3. Le moteur 1 est alimenté en air par un circuit d'air comprenant une prise d'air 11, un compresseur 12 du turbocompresseur 2, une conduite de refoulement 13 et une tubulure d'admission 14 débouchant dans des chambres de combustion du moteur 1, une seule chambre 15 étant représentée.

[0021] Les gaz d'échappement E produits par la combustion sont évacués de la chambre 15 par une tubulure d'échappement 16, traversent une turbine 17 du turbo-compresseur, puis le filtre à particules catalytique 3. Un circuit de recyclage des gaz d'échappement comporte un piquage 18 sur la tubulure d'échappement, une vanne de sélection 19 orientant les gaz d'échappement vers la conduite de refoulement soit en passant par un refroidisseur 20, soit par une conduite directe 21.

[0022] Un calculateur 24 reçoit des informations sur le fonctionnement du système de motorisation et commande le moteur 1. Il met en oeuvre en particulier le procédé selon l'invention.

[0023] Le calculateur 24 détermine si la régénération doit être pilotée ou non. Pour cela, il établit si certains critères sont satisfaits. Lorsque tous les critères sont satisfaits, un signal de commande de la régénération est délivré. Le calculateur maintient le signal de commande de la régénération pendant une durée prédéterminée D1 après qu'au moins un critère n'est plus satisfait.

[0024] Selon l'invention, parmi les critères cités précédemment, le calculateur prend en compte un critère sur le taux de dilution Pdil de carburant dans l'huile du moteur. Le taux de dilution est estimé par le calculateur, et si l'estimation du taux de dilution Pdil est supérieure à un seuil de dilution Sdil prédéterminé, le critère n'est, plus satisfait.

[0025] Pour l'élaboration de ce critère, on se réfère à l'organigramme de la figure 2. Dans une étape d'initialisation 30, l'estimation du taux de dilution Dpil est initialisé soit à une valeur nulle si l'huile est neuve, soit à une valeur précédemment estimée et mémorisée. A l'étape de test 31, on oriente vers une étape 32 si aucune régénération n'est en cours, ou vers une étape 33 dans le cas contraire.

[0026] Lors de l'étape 32, une estimation de variation

du taux de dilution dPdil est calculée par l'opposé du produit d'une fonction Févap d'évaporation du carburant et d'un pas de temps dt. La fonction Févap est calculée à partir d'une cartographie mémorisée, en fonction de la vitesse de rotation N et du débit de carburant Qc.

[0027] Lors de l'étape 33, l'estimation de variation du taux de dilution dPdil est calculée comme à l'étape 32 avec en plus l'ajout du produit d'une fonction de régénération Grégé d'un pas de temps dt. La fonction de régénération Grégé est également calculée à partir d'une cartographie mémorisée, en fonction de la vitesse de rotation N et du débit de carburant Qc.

[0028] Après l'évaluation de l'une des étapes 32 ou 33, le nouveau taux de dilution Pdil(n) est calculé en ajoutant au taux de dilution au pas de temps précédent Pdil(n-1) l'estimation de variation du taux de dilution dPdil.

[0029] Aux étapes 35 et 36, on s'assure que le taux de dilution ne deviendra pas négatif. Ensuite, à l'étape 37, le taux de dilution Pdil est comparé au seuil de dilution Sdil prédéterminé : s'il est supérieur, le critère n'est pas satisfait et une régénération est interdite (étape 38). Dans le cas contraire, une régénération est autorisée (étape 39).

[0030] A l'étape 40, on attend l'écoulement du pas de temps dt avant de procéder à un nouveau pas de calcul, en reprenant à l'étape 31.

[0031] L'invention n'est pas limitée au mode de réalisation qui vient d'être décrit uniquement à titre d'exemple. On pourra utiliser d'autres variables représentative de la charge du moteur, telle que le débit d'air ou la pression d'air d'admission.

35 Revendications

40

- 1. Procédé de commande d'un système de motorisation comportant un moteur (1), un filtre à particules (3) recevant des gaz d'échappement du moteur (1) pour retenir les particules des gaz d'échappement, le procédé traitant des informations et commandant le moteur (1) pour obtenir la régénération du filtre à particules (3) lorsque nécessaire, caractérisé en ce que le procédé établit une estimation du taux de dilution (Pdil) de carburant dans l'huile, le procédé autorisant la régénération si l'estimation du taux de dilution (Pdil) est inférieur à un seuil de dilution prédéterminé (Sdil).
- 2. Procédé de commande selon la revendication 1, dans lequel la variation du taux de dilution (dPdil) est évaluée par une première fonction (-Févap) représentative de l'évaporation du carburant lorsque aucune régénération du filtre à particules n'est en cours, et par une deuxième fonction lorsqu'une régénération du filtre à particules est en cours.
 - 3. Procédé de commande selon la revendication 2,

dans lequel la deuxième fonction est la somme de la première fonction (-Févap) et d'une troisième fonction (Grégé).

4. Procédé de commande selon l'une des revendications 1 à 3, dans lequel la variation du taux de dilution (dPdil) est évaluée en fonction de la vitesse de rotation du moteur (N) et d'une variable représentant la charge du moteur (Qc).

5. Procédé de commande selon la revendication 4, dans lequel la variable représentant la charge moteur est un débit de carburant injecté (Qc).

Procédé de commande selon la revendication 2 ou 3, dans lequel les fonctions (Févap, Grégé) sont mémorisées sous forme de cartographies.

20

25

30

35

40

45

50

55

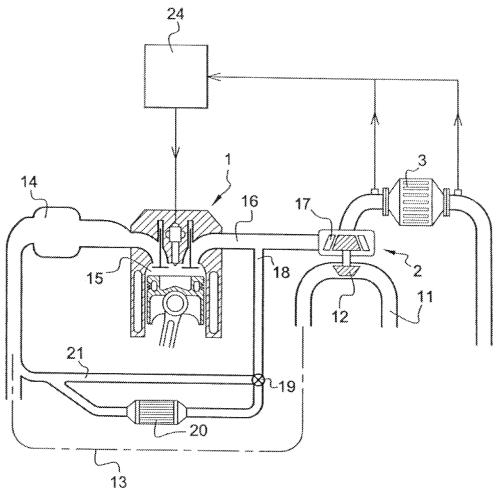
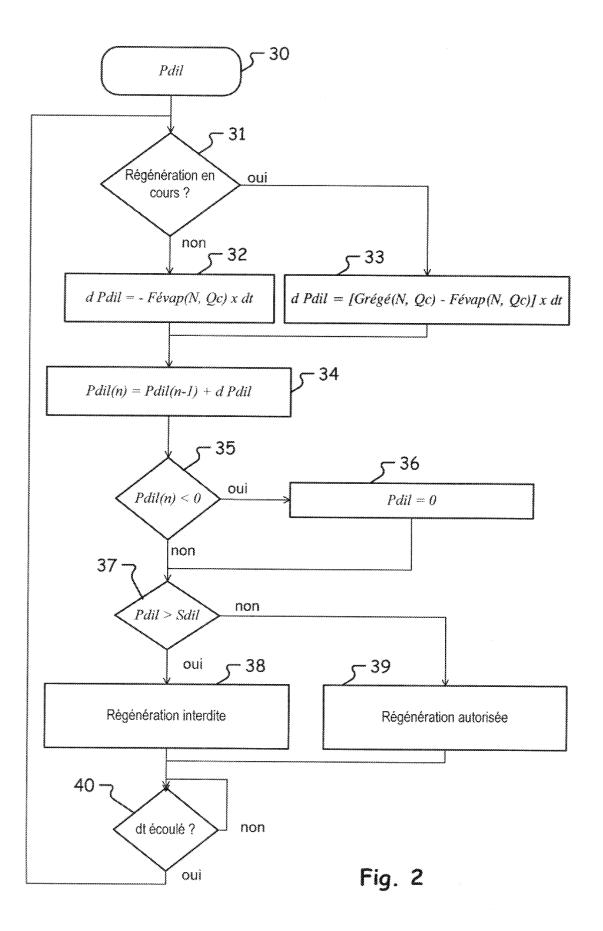



Fig. 1

RAPPORT DE RECHERCHE EUROPEENNE

Numéro de la demande EP 04 30 0673

Catégorie	Citation du document avec des parties pertine	ndication, en cas de besoin, ntes		Revendication concernée	CLASSEMENT DE LA DEMANDE (Int.Cl.7)
A	US 2003/168039 A1 (AL) 11 septembre 20 * le document en en	WENNINGER GUENTE 03 (2003-09-11)	R ET	1-6	F02D41/02 F02D41/04 F02D41/22
A	EP 1 281 852 A (FIA 5 février 2003 (200 * le document en en	3-02-05)		1-6	
A	EP 1 308 617 A (MIT 7 mai 2003 (2003-05 * le document en en	-07)	DRP)	1-6	DOMAINES TECHNIQUES RECHERCHES (Int.Cl.7) F02D F01N F01M
	ésent rapport a été établi pour tou Lieu de la recherche	Date d'achèvement de la re		A.:	Examinateur
	Munich	14 janvie	2005	Aig	n, T
X : parti Y : parti autre	TEGORIE DES DOCUMENTS CITES culièrement pertinent à lui seul culièrement pertinent en combinaison document de la même catégorie re-plan technologique.	## E : door date avec un	ument de brev de dépôt ou a dans la dema pour d'autres	raisons	s publié à la
A : arriè	re-plan technologique Igation non-écrite				ment correspondant

ANNEXE AU RAPPORT DE RECHERCHE EUROPEENNE RELATIF A LA DEMANDE DE BREVET EUROPEEN NO.

EP 04 30 0673

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche européenne visé ci-dessus.

Lesdits members sont contenus au fichier informatique de l'Office européen des brevets à la date du Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

14-01-2005

au rap	ument brevet cité oport de recherche		Date de publication		Membre(s) de la famille de brevet(s	ı s)	Date de publication
US 2	2002160020						
	2003168039	A1	11-09-2003	DE FR	10159479 2833037		18-06-20 06-06-20
EP :	1281852	Α	05-02-2003	IT EP JP US	T020010786 1281852 2003106205 2003033800	A2 A	03-02-20 05-02-20 09-04-20 20-02-20
EP :	1308617	Α	07-05-2003	JP CN EP US	2003138952 1420263 1308617 2003084660	A A1	14-05-20 28-05-20 07-05-20 08-05-20

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82